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Abstract 

Van der Waals (vdW) heterostructures is a rapidly emerging field that promises to produce on-demand 

properties for novel optoelectronic devices. Assembly of dissimilar two-dimensional atomic crystals in the 

vdW heterostructure enables unique features and properties which are fundamentally different from 

individual 2-dimensional (2D) crystals. Currently, most growth and fabrication methods prohibit large scale, 

micron-thick and robust heterostructures. An alternative approach is the one based on liquid phase 

exfoliation allowing the possibility of scalable thin films and composites. Such thin films have inherent and 

predicted advantages: they can display new behaviors due to their extremely high surface area and, as free-
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standing laminates, can be manipulated with mixing of nanosheets and other materials for novel device 

attributes. We use the aforementioned route to prepare spray-coated and few microns thick WS2 and 

hBN/WS2 heterostructure laminates. A combination of photoluminescence and transmission electron 

microscope measurements show that, despite the disordered layer stacking inherent to the fabrication 

process, the laminates preserve the few layer optical response. In particular, the hBN/WS2 heterostructure 

laminates exhibit a 3-layer average distribution. Using optical pump-terahertz probe (OPTP) measurement 

to access the photocarrier dynamics and photoconductivity, we study and compare the photocarrier 

dynamics and photoconductivity of pure WS2 and hBN/WS2 samples. The hBN/WS2 samples show an 

unusual response different from what has been previously reported for pure transition metal dichalcogenides. 

After photoexcitation, instead of a monotonic decay as in pure WS2, an initial fast decay is followed by a 

rise of the negative differential terahertz (THz) transmission dominating the dynamics for the following 50 

ps. By analyzing the time resolved THz complex photoconductivity, we attribute this effect to the presence 

of free carriers as well as dipoles at the hBN/WS2 interfaces. As previously reported in hBN/Graphene 

heterostructures, interfacial dipoles can form along with free carriers at the instant of photoexcitation. 

Whereas free carriers cause a decrease in the transient THz transmission due to Coulomb screening, dipoles 

can provide an increase in the pump-induced change in transmission. In terms of complex 

photoconductivity, free carriers have both real and imaginary components while dipoles probed off-

resonance provide almost a purely imaginary response. Our results provide a deeper understanding of the 

photoconductive response of large van der Waals heterostructure laminates fabricated by liquid phase 

exfoliation, and will enable their use in future optoelectronic applications.  

Introduction 

The realization of van der Waals (vdW) heterostructures [1] has stimulated vigorous research efforts for 

their use in advanced electronic and optoelectronic devices. The diversity of the two-dimensional materials 

gives us a unique playground to design hybrid structures by combining dissimilar two-dimensional (2D) 

layers. The interlayer coupling between the different 2D layered materials in vdW heterostructures plays a 



3 
 

vital role in controlling their electronic and optical behaviors. Interesting questions arise as to how and what 

new features can emerge in heterostructures that differs from those of individual layers. Recent works have 

shown formation of charge transfer states and type II band alignment [2–10], in which photoexcited 

electrons and holes are confined to different layers of vdW heterostructures owing to strong interlayer 

interactions. A recent report [2] provides evidence of very rapid charge transfer (<50 fs) between interlayers 

using ultrafast pump-probe spectroscopy. These separated charge species in different layers have shown 

promising properties such as micron-scale drift-diffusion and long lasting valley population and 

polarization [11]. These kinds of artificial heterostructures have led to exciting progress in fundamental 

science [12–14] as well as bandgap-engineered devices for efficient LEDs and photodetectors [15,16]. The 

interlayer interactions in the 2D vdW heterostructures can also be engineered by intercalation of dielectric 

barrier layers in 2D semiconductors [17,18]. vdW heterostructures comprising intercalated dielectric layers 

or substrates show the emergence of an interfacial potential difference [17–21] and is essentially interpreted 

as a 2D dipole – an atomically thin parallel plate capacitor with vdW gap and built-in potential. The 

development of interfacial potential difference is due to the charge rearrangement led by the work function 

mismatch and Pauli exchange repulsion [19]. From this intercalation of dielectric layers in-between 

semiconducting or conducting 2D layers emerges novel properties due to modification of the interlayer 

coupling [17–19,21,22]. Inevitably, the interlayer interactions provide a new degree of freedom in band 

engineering and pave the way to create a new library of 3D structures for tunable optoelectronic properties 

with designed composite layers. However, accessing the optoelectronic properties of such heterostructures 

is challenging due to limited to micron scale lateral size or few layer thick samples obtained for the standard 

fabrication processes, such as mechanical exfoliation and chemical vapor deposition. Another possible 

method to fabricate larger heterostructures from 2D materials is by liquid phase exfoliation [19,23–25]. In 

this technique, a variety of layered compounds, including graphene and TMDs, can be efficiently dispersed 

in common solvents and deposited as individual flakes, or even as thin films. By mixing dispersions of 

different layered materials in specific ratios one can also form specific composites [18,26] , which can in 

turn be spray coated to form thick, robust films [18]. These robust thick films can exhibit novel opto-
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electronic properties that can be engineered based on their 2D composition. Combined with their ease of 

production and scalability, they can be potentially useful for future opto-electronic devices. From that 

perspective, developing a deeper understanding of the photoconductive and opto-electornic response of 

such heterostructure films is an important avenue of study.   

Previously, time resolved optical pump terahertz probe (OPTP) techniques have been shown to be powerful 

tools to access the dynamics of photocarriers, such as the time-resolved complex conductivity on 

photoexcitation, the lifetime of free carriers and the formation of bound states like excitons. [27,28]. In 

these techniques, typically a visible or near infrared probe pulse photoexcite the sample, which is then 

probed by a time-delayed, broadband THz pulse. By measuring the change in amplitude and phase of the 

transmitted (or reflected) THz pulse due to photoexcitation, one can access the time-resolved complex 

photoconducitivty of the sample. Recently, these techniques were used to study the change in performance 

of semiconductor opto-electronic devices due to laser ablation [29], as well as to understand the 

fundamental opto-electronic response of hBN/Graphene heterostructure laminates [18]. Using this 

technique to further study the complex photoconductive response of other vdW heterostructure laminates, 

particularly ones containing the optically active semiconducting TMDs, would provide an important 

contribution in understanding their utility in future optoelectronic devices.  

In this work, we have fabricated WS2 laminates, as well as heterostructure laminates formed from WS2 and 

hexagonal boron nitride (hBN) (from here onwards termed as hBN/WS2), and compared their photocarrier 

dynamics and frequency-resolved THz photoconductivity. We show that, despite the disordered nature of 

the stacking and orientations, novel macroscopic optoelectronic phenomena emerge from the microscopic 

interaction of the preserved 2D constituents, i.e. interfacial dipoles formation at the insulator-semiconductor 

interfaces in the hBN/WS2 laminates. A combination of transmission electron microscopy (TEM) and 

photoluminescence (PL) measurements reveal that the laminates preserve the few layer optical response of 

the WS2 and hBN/WS2 samples. We compare the carrier recombination dynamics between WS2 and 

hBN/WS2 using optical pump-terahertz probe (OPTP). Whereas WS2 shows a monotonic decay composed 
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of a slow and fast component, in the hBN/WS2, an initial fast decay is followed by a 3.5 ps rise dominating 

the response. We attribute this effect to the decay of free carriers (drop in transmission) combined with an 

opposite sign contribution (increased transmission) originating from interfacial dipoles decay. In addition, 

we show that while the WS2 complex photoconductivity can be well reproduced by a Drude-Smith response, 

the hBN/WS2 response follows a Drude-Lorentz model including a dipole term.   

Results and discussions 

Artificial  laminates of WS2 and hBN/WS2 are fabricated similarly to our previous work [18]. WS2 and hBN 

few layer flakes are independently exfoliated in dimethylformamide via ultrasonic cleavage of high-purity 

powdered bulk crystals from Sigma-Aldrich. The resulting solution of exfoliated flakes is centrifuged at 

10000 rpm to get a stable dispersion. These WS2 and hBN dispersions are filtered and re-dispersed 

separately in tetrahydrofuran (THF) and then mixed together in 1:1 volume ratios. The hybrid flakes in the 

solution undergo van der Waals interactions that lead to the formation of hBN/WS2 hybrid flakes. We spray 

coat these hybrid flakes onto a quartz substrate and allow for the solvent (THF) to evaporate. The procedure 

is repeated to form hybrid films of a few micrometer thicknesses with the specified composition on 1 square 

cm quartz.  

TEM and Photoluminescence studies: 
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Figure 1. Left panels depict the average layer distribution of the flakes in hBN, WS2, and hBN/WS2. Right 

panels show TEM images of typical flake size obtained in the laminates. 

The distribution of layers (average over multiple measurements) was determined by TEM studies of WS2 

and hBN/WS2 flakes deposited on the carbon grid from the colloidal suspensions before they were used to 

make the thick laminates by spray coating. The left panels in Figure 1 show average distribution of layers 

in hBN, WS2 and hBN/WS2 samples. Spray-coating process formed 6-9 layers distribution in WS2 by 

aggregation whereas hBN barrier layers minimize the layer distribution to 2-4 layers along with presence 
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of few monolayers in hBN/WS2. The formation and configuration of layers in the laminates are shown in 

TEM images of Figure 1.  

 The room temperature photoluminescence spectrum excited with 532 nm CW laser for WS2 and hBN/WS2 

laminates are illustrated in Figure 2. It has been shown that in WS2, the PL spectra exhibits remarkable 

dependence on the number of layers such as blue shifting in an indirect gap peak emission and emission 

intensity enhancement when the thickness of the flakes is reduced [30,31]. Excitonic emission peaks A and 

B arise from direct bandgap transitions in WS2 at the K points around 2 eV and 2.3 eV independent of the 

thickness and is in good agreement with previous studies [30–32]. The relative peak energy difference 

between indirect gap and the A-exciton in the bulk is Ebulk~500 meV and decreases as the thickness of the 

flake is reduced [30,32]. In Figure 2, the laminates show strong and broad emission for indirect bandgap 

transition compared to the bulk [31,32], which indicates simultaneous emission from a distribution of few 

layers. In addition, the relative peak energies between the indirect and A-exciton are EWS2 ~ 400 meV and 

EhBN/WS2 ~300 meV and are in agreement with the distributions measured by TEM (hBN/WS2 is composed 

of thinner layers). The enhanced emission in hBN/WS2 (see inset of Figure 2) can be explained by a better 

quantum yield owing to the hBN intercalation and fewer layers.  
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Figure 2. Normalized PL spectra of WS2 and hBN/WS2 laminates. Peak I-indirect gap emission and A & B 

are exciton peaks due to direct gap transition at the K-point. Inset shows the increase of PL intensity in 

hBN/WS2 due to hBN intercalation 

Photocarrier dynamics in the laminates: 

To measure the photocarrier dynamics and terahertz photoconductivity in WS2 and hBN/WS2 laminates, 

we performed optical pump-terahertz probe measurements [27]. The pump is delivered by a 1 kHz 

Ti:Sapphire amplifier, frequency-doubled to 400 nm (3.1 eV) and attenuated to a fluence of 220 μJ/cm2 

(≈1017cm−3 photocarriers in the sample). The THz probe is generated via optical rectification in a ZnTe 

crystal and detected by electro-optic sampling provides a 0.5-2 THz bandwidth. The differential terahertz 

transmission (T/T) is measured by parking the THz sampling delay line at the peak of THz field and 

scanned the pump delay line. Details of the technique used are described in [18]. This spectroscopy 
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technique allows not only access to the change in the transmitted probe amplitude but also to phase shifts 

as the THz pulse propagates through a medium. From that, one can extract the complex photoconductivity 

which gives the possibility to distinguish between the free charge carriers’ and bound charges’ (neutral) 

contributions [18,28,33,34]. The measured transient photo-induced terahertz transmission for WS2 and 

hBN/WS2 is depicted in Figure 3. In WS2 laminate, the negative differential THz transmission signal decays 

on a fast time scale of few ps followed by a slow decay. The hBN/WS2 shows an unusual response 

composed of an initial fast decay immediately followed by a fast rise.   
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Figure 3. a) Negative differential terahertz transmission versus probe delay with respect to pump pulse for 

pure WS2 and WS2/hBN laminates. The pump fluence is 220 μJ/cm2. b) Transient response over a 500 ps 

time window. Note: Step size was continuously increased from 100fs to 10 ps to optimize the acquisition 

time.  

In Figure 3(a) and 3(b), the dashed lines correspond to fitting functions using exponential decays. The WS2 

transient response was fitted using a function of the form 𝐴𝑒−𝑡/𝑇1 + 𝐵𝑒−𝑡/𝑇2 from which we extract a short 

lifetime (8 ps) and longer lifetime (143 ps). The mechanisms dominating the charge dynamics in transition 

metal dichalcogenide laminates is known to be non-radiative like defect-assisted Auger recombination 

[35,36]. The hBN/WS2 can only be fitted by a function of the form 𝐴𝑒−𝑡/𝑇1 + 𝐵𝑒−𝑡/𝑇2 − 𝐶𝑒−𝑡/𝑇3. The last 

term is a decay with negative amplitude. This component contributes as an increased THz transmission 
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after photoexcitation. From the fitting parameters, we extract values of 1.7 ps and 334 ps for T1 and T2, as 

well as T3 of 25 ps corresponding to the rise time. 

Frequency-dependent terahertz conductivity of the laminates: 

The frequency-resolved terahertz complex photoconductivity response is measured in the range from 0.5 

THz - 2 THz. We acquire THz spectra at different pump–probe delays of Δt = 0, 8, 20 and 100 ps, 

corresponding to the instant of photoexcitation, the dip and the rise in the hBN/WS2 and at later time delay, 

respectively. These time domain THz spectra were then Fourier transformed to frequency domain. From 

the information on the amplitude and phase of the Fourier transformed THz spectra, we can extract the 

pump-induced change of the complex photoconductivity, ∆𝜎, at different time delays (see Fig. 4(a) and (b)). 

Details can be found in [18]. We estimate a penetration depth of around ~100 nm and is just a scaling factor 

for the photoconductivity. In reality most of the dynamics takes place within this length, however our 

calculated photoconductivities can be understood as effective conductivity of the few micron films. For the 

WS2, we fit our data by using a Drude-Smith response [37] 

∆𝜎𝑊𝑆2 = 𝛼𝑊𝑆2𝑒
−∆𝑡/𝑇𝑊𝑆2

1

1−𝑖𝜔𝜏
(1 +

𝐶𝑊𝑆2

1−𝑖𝜔𝜏
)  (1) 

where 𝛼𝑊𝑆2  = 15 S cm-1,  ∆𝑡 is the time delay, 𝑇𝑊𝑆2 = 140 ps is an average free carrier lifetime, 𝜏=0.4 ps 

is the scattering time and 𝐶𝑊𝑆2=-0.85 is the back-scattering parameter constant.  

In the case of the hBN/WS2, the previous model does not reproduce the experimental data. Instead, we use 

a Drude-Lorentz model that includes a dipole term. The temporal change of the complex photoconductivity 

can be expressed as: 

∆𝜎ℎ𝐵𝑁/𝑊𝑆2 = 𝛼ℎ𝐵𝑁/𝑊𝑆2𝑒
−∆𝑡/𝑇𝑊𝑆2

1

1−𝑖𝜔𝜏
(1 +

𝐶ℎ𝐵𝑁/𝑊𝑆2

1−𝑖𝜔𝜏
) + 𝐿𝑒−∆𝑡/𝑇𝐷𝑖𝑝𝑜𝑙𝑒𝑠 (

1

1−𝑖𝜏(𝜔−
𝜔0
2

𝜔

)  (2) 

where 𝛼ℎ𝐵𝑁/𝑊𝑆2=4 S cm-1, L=0.9 S cm-1, 𝑇𝐷𝑖𝑝𝑜𝑙𝑒𝑠=25 ps (as extracted from the transient data) and 𝜔0=12.5 

THz is the resonant dipole frequency. 
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Figure 4. Terahertz complex photoconductivity spectra at 0, 8, 20 and 100 ps of (a) the WS2 laminate and 

(b) the hBN/WS2 structure. The solid lines correspond to fits obtained from equation (1) and (2). 
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The necessity of adding a dipole term to model the photo-response of the hBN/WS2 heterostructure confirms 

the coexistence of two populations, free carriers and neutral dipoles. After photoexcitation, free carriers and 

dipoles decay at different rates and with opposite signs in the temporal response. As seen in Figure 4, the 

real part of the photoconductivity for the two compounds shows a similar trend. For the imaginary part, the 

two compounds have a different response from 0 to 20 ps and then become similar again at 100 ps. It shows 

that the dipole population mainly affects the imaginary part of the photoconductivity and can be understood 

as a transient change of refractive index, which results in an induced transmission component in the negative 

differential signal. 

Conclusion: 

We have fabricated large van der Waals heterostructures from 2D layers of WS2 and hBN. These laminates 

preserve the few layer optical response. Moreover, the intercalation with hBN allows an average 

distribution of 2-4 layers. The hBN/WS2 heterostructure also exhibit additional 2D properties like interface 

dipoles sensitive to photoexcitation even at a large 3D scale. The decay of those dipoles along with free 

carriers provides an additional way of altering and controlling the ultrafast response of a material. This 

feature, combined with the possibility of designing a large variety of heterostructures with various 

optoelectronic responses, is of importance to developing new devices such as THz phase shifters or 

modulators. 
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