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ABSTRACT: A transition-metal catalyzed alkyne ben-
zannulation allowed an unprecedented synthesis of
circumpyrene, starting from 3,11-dibromo-6,14-dimesityl-
dibenzo[hi,st]ovalene (DBOV). The circumpyrene was
characterized by a combination of NMR, mass spectrom-
etry, and single-crystal X-ray diffraction analysis, revealing
its multizigzag-edged structure. Two newly introduced
CC bonds in circumpyrene strongly perturbed the
electronic structures of DBOV, as evidenced by increased
optical and electrochemical energy gaps. This is in good
agreement with an increased number of Clar’s sextets as
well as a decreased number of π-electrons in the
conjugation pathway of circumpyrene, according to
anisotropy of the induced current density (ACID)
calculations. The present approach opens a new avenue
to multizigzag-edged nanographenes and offers insights
into their (opto)electronic properties.

Nanographenes, extended, nanosized, polycyclic aromatic
hydrocarbons (PAHs), exhibit unique and structure-

dependent electronic, optical, and magnetic properties,1−3

highlighting their potential as next-generation carbon materials
for photonics, (opto)electronics, and spintronics.4−10 Nano-
graphenes having both zigzag edges (L-regions) and armchair
edges (with bay-regions), e.g. periacenes, anthenes, and
zethrenes, have attracted particular attention because of their
low energy gaps and/or open-shell characters.11−18 On the other
hand, multizigzag-edged nanographenes, consisting only of
zigzag edges and K-regions, without bay regions, have also been
frequent targets of theoretical studies.19−28 Nevertheless, there
are still a limited number of synthesized examples, precluding
detailed experimental investigations.29 Circumarenes are a
subclass of such nanographenes featuring a central aromatic
core surrounded by one outer layer of annulene (Scheme 1).
The smallest circumarenes, namely circumbenzene (coro-
nene)30−34 and circumnaphthalene (ovalene),35 were synthe-
sized by Scholl and Clar, respectively, and their soluble
derivatives were later employed in supramolecular self-assembly
and (opto)electronic device studies.36−38 A larger circum-
anthracene was first synthesized by Diederich and colleagues,39

and its tetracyano derivative was more recently reported by Feng

et al.12 Circumpyrene and circumcoronene, as the next members
of the circumarene family, have been targets of theoretical
studies.19,24−28 However, to the best of our knowledge, synthesis
of circumarenes comprising a central aromatic unit larger than
three benzene rings has never been achieved.
The challenge has been that multizigzag-edged nano-

graphenes cannot be readily obtained by the cyclodehydroge-
nation of preformed polyphenylene precursors, which has been
well established and has yielded numerous PAHs in recent
decades.40 Reactions occurring at bay regions of PAHs, such as
intramolecular Friedel−Crafts alkylation,41−43 Diels−Alder
cycloaddition,30,35 and cyclization of preinstalled ethynyl
bonds,36 permit this obstacle to be surmounted and are capable
of building extended aromatic cores. In addition, Pd-catalyzed
direct annulation of substituted acetylenes and halogenated
PAHs has been used to form new fused ring systems with extra
five-, six-, or eight-membered rings appended.44−47 Recently, we
reported syntheses of dibenzo[hi,st]ovalene (DBOV) deriva-
tives, including 1 (Scheme 2), as new nanographenes with both
zigzag and armchair edges.43,48−50 Anticipating that introduc-
tion of two additional double bonds to the bay regions of DBOV
would lead to the long-awaited circumpyrene, we explored
possible synthetic strategies.
Herein, we describe a concise synthesis of two circumpyrene

derivatives 5a and 5b using platinum- and palladium-catalyzed
cyclization and benzannulation reactions, respectively, as the key
steps, starting from DBOV derivatives. Although possessing
multiple zigzag edges, these molecules exhibit remarkably high
stability under ambient conditions. Spectroscopic and electro-
chemical characterizations reveal significant electronic effects of
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Scheme 1. Structures of Representative Circumarenes
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the fused CC bonds when going from DBOV to circum-
pyrene.
Toward the synthesis of circumpyrene 5b, we initially

attempted direct Diels−Alder cycloaddition of 1 with
diphenylacetylene (Scheme 2). However, no reaction occurred
even when heated at 180 °C in o-dichlorobenzene for 24 h, most
probably because of the weakly pronounced diene character of
1.51 In an alternative approach, 3,11-dibromo-6,14-dimesityl-
dibenzo[hi,st]ovalene (2) was considered as a precursor that
could be obtained by regioselective bromination of 1 with N-
bromosuccinimide (NBS).49 We previously reported a Sonoga-
shira coupling of 2 with triisopropylsilyl (TIPS) acetylene to
obtain 3 in 31% yield.49 Deprotection of 3 with tetra-n-
butylammonium fluoride (TBAF) proceeded at room temper-
ature to give 4 in 32% yield. Subsequently, PtCl2 catalyzed
cyclization of the ethynyl groups yielded circumpyrene 5a in
46% yield. 5a could be characterized by 1H NMR and high-
resolution mass spectrometry (see SI), but its low solubility
hampered further characterizations, for example, by 13C NMR
and cyclic voltammetry. In order to increase the solubility of the
circumpyrene and also to simplify its synthesis, we considered
direct benzannulation of 2 with diarylacetylenes.44 To our
delight, reaction of 2 and diphenylacetylene in toluene at 130 °C
using Pd(PPh3)4 as catalyst provided a mixture of 6 and 5b as
one- and twofold benzannulated products (Figure S1). After
optimizing the reaction conditions, the combination of Pd-
(OAc)2/NaOAc/LiCl achieved the best result, affording 6 and
5b in 40% and 15% yield, respectively.

1H NMR spectra (Figure 1) of 1, 6, and 5b displayed well-
resolved peaks that could be fully assigned by two-dimensional
(2D) NMR techniques (Figures S11−S12 and S16−S17). After
fusing one CC bond to 1, five more new peaks appeared in the
1H NMR spectrum of 6. In contrast, circumpyrene 5b exhibited
only one singlet peak and four sets of doublet peaks, in
accordance with its C2h symmetry. Compared with 1, the signals
of protons in the core of 5b are shifted downfield as a result of
the extended size of its aromatic core and more significant
deshielding. For example, the doublet peak of 1 at 8.61 ppm
(H1) was moved to 9.27 ppm in the spectrum of 6 and 9.95 ppm
in that of circumpyrene 5b. Other peaks also displayed similar

low-field shifts. The potential open-shell character of circum-
pyrene could be excluded by these sharp 1H NMR peaks
observed at room temperature and by its high chemical stability
in air. Further insights into the aromaticity of the circumpyrene
skeleton came from a nucleus-independent chemical shift
(NICS) analysis (Figure 2a−2c):52,53 Going from 1 to 6 and
5b, NICS(1) values of all benzene rings decrease while the newly
formed benzene rings G/G′ have the second highest aromaticity.
Moreover, the antiaromatic rings B/B′ in 1 (Figure 2a) become

Scheme 2. Synthesis of Circumpyrenes via Transition-Metal
Catalyzed Benzannulationa

aReagents and conditions: (a) diphenylacetylene, o-dichlorobenzene,
180 °C, 24 h, no reaction; (b) NBS, THF, rt, 79% yield; (c) TIPS-
acetylene, Pd(PPh3)2Cl2·CH2Cl2, CuI, TEA, THF, 80 °C, overnight,
31% yield; (d) TBAF, THF, rt, 32% yield; (e) PtCl2, toluene, 80 °C,
24 h, 46% yield; (f) diphenyl acetylene, Pd(OAc)2, NaOAc, LiCl,
DMF, 130 °C, 12 h, for 6: 40% yield; for 5b: 15% yield. THF:
tetrahydrofuran. DMF: N,N-dimethylformamide. TEA: triethylamine.

Figure 1. 1H NMR spectra of 1 (300 MHz, 298 K), 6, and 5b in
tetrahydrofuran-d8:CS2 (1:1) (700 MHz, 298 K).

Figure 2. Calculated ACID (B3LYP/6-31G(d,p)) plots of (a) 1, (b) 6,
(c) 5b, (d) coronene, (e) ovalene, and (f) circumanthracene (isovalue
= 0.05). Only contributions from π-electrons of the aromatic cores are
considered. The magnetic field vector is perpendicular to the ring plane
and points outward. Red arrows indicate directions of induced ring
current. For (a)−(c), the numbers inside the six-membered rings
indicate NICS (1) values calculated at the same level (substituents were
replaced by H for all calculations).
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aromatic in 5b. These results accord with experimentally
observed chemical shifts of H1, H2, and H3 at lower fields
when compared with H9 and H10 for 5b.
The anisotropy of the induced current density (ACID)54 plot

of DBOV calculated at B3LYP/6-31G(d,p) level (Figure 2a)
indicates that at the isosurface value 0.05 there is clockwise
(diatropic) ring current delocalized over a pathway comprising
34 π-electrons. After fusing with one CC bond, π-electrons
involved in the conjugation pathway decrease to 30 (Figure 2b).
In circumpyrene, only 26 π-electrons in the outer rim participate
in the diatropic ring current, and the two benzene rings in the
center possess almost no induced ring current (Figure 2c).
These results are in very good agreement with the low
aromaticity of the B/B′ and E/E′ rings, and also resemble
characteristics of the ACID calculated for smaller circumarenes
(Figure 2d−2f).
The single-crystal structure of 5b clearly revealed the central

pyrene and zigzag-shaped periphery forming the outer rim
(Figure 3a−b). The main skeleton of 5b adopts a planar

configuration, with all peripheral substituents being nearly
perpendicular to the core (dihedral angels 85°−90°). Two
circumpyrene molecules are stacked almost parallel to each
other to form a dimer, which are staggered with respect to each
other (Figure 3c and Figure S2). The plane-to-plane distance is
4.73 Å, denoting an absence of π−π interactions between
circumpyrene molecules. On the other hand, the distance
between the CH bonds of the phenyl rings and the core of the
neighboring circumpyrene molecules is as short as 2.75 Å (less
than the sum of the van der Waals radius), indicating the
existence of CH−π interactions,55 which is responsible for the
close intermolecular packing in the single-crystal structure.

The UV−vis absorption and fluorescence spectra of 1, 6, 5a,
and 5b were measured in toluene to reveal the effect of
benzannulation on their optoelectronic properties (Figure 4a

and Figure S3). Fusion of one double bond to the bay region of 1
induced significant blue shifts of the longest absorption
wavelength (λmax) from 611 nm (1) to 555 nm (6), indicating
an increase in the highest occupied molecular orbital
(HOMO)−lowest unoccupied molecular orbital (LUMO)
gap, although the aromatic core size was extended. This
observation is consistent with the decreased number of π-
electrons in the conjugation pathway of 6 in the ACID plots
(Figure 2a and b), as well as an increased number of Clar’s π-
sextet from four to five (Scheme S1).56 Circumpyrenes 5a and
5b displayed different patterns of UV−vis absorption from those
of 1 and 6, and their longest-wavelength bands located at 549
and 558 nm, respectively, were apparently a forbidden
transition. The intensity ratios of these peaks were independent
of the concentration of 5 (10−5−10−8 M), which excluded the
possibility of aggregation-induced effects (Figure S4). Notably,
these observations agreed very well with a recent report by
Lischka and co-workers, who theoretically predicted forbidden
HOMO−1 (H−1) → LUMO (L) and H→ L+1 transitions as
the longest-wavelength absorption of circumpyrene, based on
density functional theory/multireference configuration inter-
action (DFT/MRCI) calculations.27 On the other hand, the
second-longest-wavelength band of 5 was mainly assigned to H
→ L transitions (Figure S5, Table S1),27 which are split into
several small shoulder peaks due to vibronic coupling. The latter
corresponded to the longest-wavelength bands of 1 and 6. There
was no detectable change in the absorption spectra of 5 after
storage of the solution under ambient conditions for more than 8

Figure 3. Single-crystal structure of circumpyrene 5b, (a) front view,
(b) side view (H, C atoms are shown as ellipsoids set at 50%
probability); (c) packing arrangement of 5b in the crystal (solvents are
omitted for clarity).

Figure 4. (a) UV−vis absorption and (b) fluorescence spectra of 1, 6,
and 5a/5b in toluene with concentration of 10−6 M.
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months, demonstrating its extremely high stability. In
fluorescence spectra (Figure 4b), the maximum emission
wavelengths of 1, 6, 5a, and 5b were located at 614, 563, 555,
and 566 nm, respectively, and their absolute fluorescence
quantum yields (Φ) decreased dramatically after fusing extra
double bonds from 0.79 to 0.42, 0.11, and 0.17. Stokes shifts
were less than 10 nm (Figure S3), indicating the structural
rigidity of these molecules.
Cyclic voltammetry (CV) analysis of 1 revealed two sets of

reversible reduction and oxidation peaks with the half-wave
potential of the first oxidation and reduction peaks as−0.01 and
−1.67 V relative to Fc/Fc+ (Figure 5a). Fusion with one double

bond to form 6 had a negligible effect on the reduction potential
of 1, but greatly increased its first oxidation potential. 5b
exhibited the first oxidation potential at 0.31 V and slightly
lowered the first reduction potential at −1.71 V. The
electrochemical energy gaps were estimated from the onsets of
the first oxidation and reduction potential to be 1.81, 2.06, and
2.16 eV, for 1, 6, and 5b, respectively. This trend agreed with the
HOMO−LUMO gaps based on the DFT calculations (Figure
5b and S6) and could be reasonably explained by the decreased
number of π-electrons in the conjugation pathway after fusing
with CC bonds, according to the ACID plots (Figure 2).
In conclusion, we have achieved the synthesis of circum-

pyrenes as novel, multizigzag-edged nanographenes, based on
(1) transition-metal catalyzed cyclization of ethynyl-substituted
DBOV and (2) direct benzannulation of dibrominated DBOV
with diphenylacetylene. Stepwise fusion of extra benzene rings

to the bay region of DBOV enlarged their energy gaps, which
was demonstrated by UV−vis absorption spectroscopy and CV
measurements, and was supported with theoretical calculations.
Circumpyrene represents the largest circumarene molecule
synthesized thus far and provides further insights into this
intriguing class of PAHs, not only the optoelectronic and
electrochemical properties, as studied here, but also more
detailed photophysics, self-assembly behavior, and potential
applications in electronic devices as the next steps. Moreover,
the current synthetic approach for circumpyrenes should enable
synthesis of a greater variety of unprecedented nanographenes
with multiple zigzag edges.
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(10) Wu, J.; Pisula, W.; Müllen, K. Graphenes as potential material for
electronics. Chem. Rev. 2007, 107, 718−747.
(11) Inoue, J.; Fukui, K.; Kubo, T.; Nakazawa, S.; Sato, K.; Shiomi, D.;
Morita, Y.; Yamamoto, K.; Takui, T.; Nakasuji, K. The First Detection
of a Clar’s Hydrocarbon, 2,6,10-Tri-tert-Butyltriangulene: A Ground-
State Triplet of Non-Kekule ́ Polynuclear Benzenoid Hydrocarbon. J.
Am. Chem. Soc. 2001, 123, 12702−12703.
(12) Ajayakumar, M. R.; Fu, Y.; Ma, J.; Hennersdorf, F.; Komber, H.;
Weigand, J. J.; Alfonsov, A.; Popov, A. A.; Berger, R.; Liu, J.; Müllen, K.;
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