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Abstract 

Circular RNAs (circRNAs) are regulatory molecules that show diverse functions. However, 
the regulation of circRNA formation is not yet well-understood. Through large-scale neuron 
isolation from the first larval stage of Caenorhabditis elegans followed by RNA sequencing 
with ribosomal RNA depletion, the first neuronal circRNA profile in C. elegans was 
obtained. Using circRNAs identified in this dataset, I performed an in vivo investigation of 
circRNA regulation by cis and trans elements. 

Several neuronal circRNAs were knocked out by deleting one of the reverse complementary 
match (RCM) sequences flanking circRNA exon(s) (cis elements). Further, RCMs not only 
vigorously promote circRNA formation but also are beneficial for the skipping of exon(s) to 
be circularized. Through in vivo one-by-one mutagenesis of all the splicing sites and branch 
points required for exon-skipping and back-splicing in the zip-2 gene, I showed that exon-
skipping is not absolutely required for back-splicing, neither the other way. Instead, the 
coupled exon-skipping and back-splicing are promoted by RCMs directly at the same time.  

As for trans elements that regulate circRNA in C. elegans, thirteen RNA binding proteins 
were screened, among which loss of FUST-1, the homolog of FUS, causes substantial 
downregulation of multiple circRNAs. Further, FUST-1 regulates circRNAs without 
affecting their cognate linear mRNA levels. When recognizing circRNA pre-mRNAs, 
FUST-1 can affect the coupled exon-skipping and circRNA formation in the same genes. In 
zip-2, the 5’ splice sites for back splicing and exon skipping seem important for FUST-1’s 
role in exon-skipping and back-splicing regulation, respectively. Two mutations (R446S and 
P447L) were introduced in FUST-1 to mimic the amyotrophic lateral sclerosis-related 
natural mutations in the nuclear localization signal of FUS (R524S and P525L). Both 
mutations dramatically affect circRNA levels. Moreover, I identified an autoregulation loop 
important for circRNA regulation in fust-1, where FUST-1, isoform a promotes the skipping 
of exon 5 of its own pre-mRNA, which produces FUST-1, isoform b with different N-
terminal sequences. FUST-1, isoform a is the functional isoform in circRNA regulation. 
Although FUST-1, isoform b has the same functional domains as isoform a, it cannot 
regulate either exon-skipping or circRNA formation. 

This thesis explored circRNA regulation in vivo using C. elegans as the model organism, 
providing new insights into mechanisms governing the relationship between back-splicing. 
The combinatorial regulation of circRNA by cis and trans elements supports a model of 
circRNA formation, where RCM sequences (cis elements) determine whether circRNA can 
be formed or not, and RBPs (trans elements) regulate how efficiently they can be produced. 
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1. Introduction 

For most eukaryotes, nascent precursor messenger RNA (pre-mRNA) must undergo a 
splicing process, by which non-coding introns are removed and exons are joined together 
(Figure 1.1A). In many cases, splicing can generate a variety of mature mRNA isoforms, in 
which the composition of exons from the same pre-mRNA can be very different. This 
phenomenon is called alternative splicing (AS), and it is a fundamental mechanism to 
increase the diversity of the transcriptome. It is estimated that 92-94% of human genes are 
alternatively spliced (1). In general, transcript isoforms generated by AS are linear. However, 
recently, circular transcripts have been identified in various species, with most of them 
derived from coding genes (2, 3). In these circRNAs, the 5’ and 3’ ends are covalently joined 
to form a single-stranded circle. It is believed that most circRNAs are generated by “back-
splicing,” in which a splice donor downstream (5’ splice site or 5’ss) is ligated to an upstream 
splice acceptor (3’ss) (Figure 1.1B and C). Introns can be retained in this process, forming 
exon-intron circRNAs (EIciRNAs) (4). In some cases, intron lariats can escape debranching 
and form circular intronic RNAs (ciRNAs) with 2’,5’-phosphodiester bonds between the 
branch point nucleotides and the 5’ splice sites (Figure 1.1D) (5). 

Here, I summarize the discovery of circRNAs, the mechanisms that govern their biogenesis, 
and the functions of circRNAs. 

1.1 History of circRNA discovery 

The first RNA circles were reported in 1976 when Sanger et al. examined RNAs from four 
viroids and found that they were covalently closed single-stranded circular molecules (6). 
Subsequent sequencing of the viroid nucleic acid confirmed that these RNA molecules were 
indeed circRNAs (7). Later, in some fractions of yeast mitochondria RNA, Arnberg et al. 
reported the existence of circular molecules (8). circRNA molecules were later identified in 
self-splicing introns of ribosomal RNA precursors (9, 10) and hepatitis delta () virus (HDV) 
(11). It was not until the 1990s that the first circRNA in human cells was identified. In 1991, 
Nigro et al. reported the existence of “scrambled exons” in the transcripts of a tumor 
suppressor gene called deleted in colorectal carcinoma (12). Exons in these transcripts were 
joined precisely at the consensus splice sites; however, the orders of the exons differ from 
those in their nascent transcripts (12). These “scrambled” transcripts were expressed at 
relatively low levels and were enriched in the non-polyadenylated fraction of RNA in the 
cytoplasm; hence, they were considered splicing errors (12). Subsequently, Cocquerelle et 
al. also reported “splicing with inverted order of exons” in the human ETS1 gene (13). With 
further characterization, they showed that these transcripts corresponded to circRNAs with 
high stability (14). These transcripts that indicated the existence of circRNA were regarded 
as by-products or errors (mis-splicing) in canonical splicing steps due to their relatively low 
abundances (12, 14). However, some circRNAs were found to be abundant.  The Sry gene 
in mouse testis produced a single-exon circRNA that represented more than 90% of the Sry 
transcripts (15). The circRNA derived from exon 2 of NCX1 showed relatively high 
abundance across different species (16). The circRNA derived from exons in the mouse 
formin (Fmn) gene also presented very high levels (17). This evidence demonstrated the 
existence of circRNAs in different species, but due to the lack of high-throughput 
technologies, it was not possible to identify circRNAs systematically. Hence, during the 
subsequent several years, only a handful of circRNAs were reported (18-20). Thanks to the 
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development of RNA sequencing (RNA-seq) technology and bioinformatics algorithms, 
thousands of circRNAs were identified in an attempt to identify transcripts in cancer cells 
resulting from chromosomal rearrangements (21). These circRNAs were also identified in 
normal cells, indicating that they were not specific to cancer cells. This finding spurred the 
field of circRNA research, and in ensuing years, hundreds of thousands of circRNAs have 
been predicted in human, mouse, fly, worm, etc (22). 

 

 

Figure 1.1 Types of circRNAs generated during splicing. (A) Canonically, a pre-mRNA molecule 
is spliced to form a mature linear mRNA with exons by joining the upstream 5’ss to downstream 3’ss. 
(B, C) Through back-splicing, circRNAs are formed. Introns can be retained in circRNAs, forming 
exon-intron circRNAs (EIciRNA). circRNAs formed by exons only are called exonic circRNAs. (D) 
Circular intronic RNAs (ciRNAs) are formed if intron lariats are trimmed and escaped from 
degradation. 

1.2 circRNA Biogenesis 

Although the detailed mechanism of circRNA biogenesis is still not fully understood, some 
progress has been achieved regarding elements involved in their production. Recent findings 
suggest that both cis and trans elements can regulate circRNA biogenesis.  

1.2.1 Canonical splicing and back-splicing 

The precise joining of canonical splice sites in reverse order in circRNAs suggests that 
spliceosomes are involved in circRNA formation (12-14). Indeed, exon(s) in pre-mRNAs 
can be circularized in vitro using nuclear extract, although in low efficiency (23-27). Several 
recent studies also showed that mutations of canonical splicing sites abolish circRNA 
formation (28-31). Especially, using systematic mutagenesis analysis of splice sites and 
branch points in circRNA expression vectors, Starke et al. proved that back-splicing requires 
canonical splicing signals (29). Since back-splicing uses the same splice sites and 
spliceosome components as canonical splicing, it is reasonable to speculate that back-
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splicing and canonical splicing affect each other. Introduction of canonical splice sites in 
circRNA expression minigenes dramatically decreases the production of circRNAs, 
indicating the competition between canonical splicing and circRNA biogenesis (28). 
Interestingly, back-splicing and canonical splicing show different responses to the depletion 
of core components of spliceosomes, where the linear spliced mRNAs get decreased while 
the circRNA biogenesis gets enhanced (32). Increased circRNA production was also 
observed in rat neurons treated with splicing inhibitor isoginkgetin (33). 

1.2.2 Transcription and back-splicing 

Back-splicing can happen both co-transcriptionally and post-transcriptionally. circRNAs 
were identified from RNA-seq data of chromatin-bound RNA samples from fly heads and 
mouse livers, suggesting they are produced co-transcriptionally (28). However, in another 
study trying to identify nascent circRNAs by 4sU pulse labeling, only a few circRNAs can 
be identified with short labeling periods (10-15 min) (34). Increasing the labeling time 
increases both the number and abundance of nascent circRNAs dramatically, suggesting that 
circRNAs are produced after the completion of transcription of their cognate pre-mRNAs 
(34). Using circRNA expression vectors, Liang et al. also showed that a functional 3’-end 
processing signal is required for circRNA formation, suggesting back-splicing may occur 
post-transcriptionally (31). The coupling between transcription and back-splicing has been 
related to the elongation rate of RNA polymerase II (Pol II). Analysis of nascent transcripts 
revealed that circRNA-producing genes have a higher transcription elongation rate (TER) 
than non-circRNA genes (34). In Drosophila, a low TER of RNA Pol II results in 
significantly fewer circRNAs (28). It is possible that fast transcription enables sequences in 
downstream introns to pair with upstream introns before upstream introns are spliced out by 
canonical splicing (section 1.2.4). 

1.2.3 Exon-skipping and back-splicing 

circRNA is found to be correlated to exon-skipping (35-40). In early years, sporadic 
examples showed that some circRNA-producing genes generate linear transcripts that skip 
the exons to be circularized (38-40). Later, systematic analysis of RNA-seq data in human 
cells found that the more exons undergo circularization, the less likely these exons are 
presented in the linear mRNAs from the cognate genes (35). Another study showed that 
circRNAs from the I-band of the titin gene are altered when RNA-binding motif protein 20 
(RBM20) is mutated or lost (41). Interestingly, the I band region can be skipped, and the 
skipping is dependent on RRM20 (41). However, it remains unclear whether altered 
circRNA formation in this region results from RBM 20-dependent skipping or not. The 
correlated skipping transcripts were also identified when using plasmid-based circRNA 
vectors (32, 34, 42). Moreover, in Schizosaccharomyces pombe, Barrett et al. showed that 
circRNA could be produced from an exon-containing lariat intermediate produced by exon-
skipping (36). However, it should be noted that not all circRNA genes have the 
corresponding skipped transcripts, neither can all skipped exons produce circRNAs.  

When reporting the first example of the correlation between circRNA formation and exon-
skipping in the rat cytochrome P450 2C24 gene, Zaphiropoulos proposed two mechanisms 
that might explain how the two types of transcripts were produced from the same gene (40), 
which are later referred to as the “direct back-splicing” model and the “lariat precursor” 
model  (36, 37, 43, 44) (Figure 1.2A and B). In the “direct back-splicing” model, circRNAs 
are first produced by back-splicing, and the skipped transcripts are formed from the y-shaped 
intermediate of back-splicing (Figure 1.2A). In the “lariat precursor” model, exon-skipping 
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happens first, and then circRNAs are produced by back-splicing of the lariat intermediate 
(Figure 1.2B). The former model is for circRNAs driven by intronic complementary 
sequences (section 1.2.4), and the latter model is for circRNA genes lacking such sequences 
(36, 43). Despite these, some other mechanisms might also play a role in the correlation 
between exon-skipping and back-splicing. In Arabidopsis, Conn et al. showed that a 
circRNA from the exon 6 of the SEPALLATA3 gene promotes the exon-skipping of this exon 
6 by forming an R-loop structure (Figure 1.2C) (45). 

 

 

Figure 1.2 Mechanisms involved in the correlated exon-skipping and back-splicing. (A) “Direct 
back-splicing” model: RCM-driven back-splicing produces a circRNA and a y-shaped intermediate, 
which is further spliced to form a skipped transcript. (B) “Lariat precursor” model: Exon-skipping 
happens first to produce a skipped transcript and a lariat intermediate, which serves as a precursor 
for back-splicing. (C) R-loop formation mechanism: Exon 6 in the SEPALLATA3 gene produces a 
circRNA, which interacts with the genomic DNA sequences of this exon in its cognate gene, forming 
an R-loop structure that promotes the skipping of the exon 6.  

 



 

5 
 

1.2.4 Cis elements regulating circRNA biogenesis 

In the 1990s, when it was first discovered that Sry produces mainly circular transcripts, Capel 
et al. suggested that “inverted repeat” sequences in introns flanking the circle-forming exon 
could facilitate circRNA production by base-pairing, bringing splice sites into close 
proximity (15) (Figure 1.3A). They proposed this model based on the existence of > 15.5 kb 
of almost fully complementary sequences flanking the ~ 1.2 kb exon of Sry (46). In support 
of this model, subsequent in vitro experiments showed that as little as 400 nt of 
complementary sequences are sufficient to produce circSry. The addition of “inverted 
repeats” to RNA splicing substrates could also promote circRNA formation (47). Although 
very few exons are flanked by such long repeats, this example provided the first cis elements 
that regulate circRNA biogenesis.   

Subsequent genome-wide analysis of RNA-seq data in humans revealed that Alu repeats, a 
kind of inverted repeat in the human genome, are enriched in the flanking introns of 
circRNAs (37). Later, Zhang et al. reported that circRNA-forming exons are preferentially 
flanked by orientation-opposite Alu elements, which can promote circRNA formation by 
base-pairing (42). Moreover, non-repetitive but complementary sequences can also enhance 
circRNA production (42). Through deletions of sequences in circRNA-flanking introns of 
ZKSCAN1 in an expression vector, Liang et al. showed that as short as 40 nt intronic repeats 
are sufficient to promote exon circularization (31). Similar base-pairing of intronic 
sequences in circRNA-flanking introns were also identified in other organisms, such as flies 
(48) and nematodes (49, 50). More interestingly, introns always contain multiple repeats, 
which diversifies pattern combinations and results in various circRNAs with different exon 
contents from the same genes (42). This process is called “alternative back-splicing,” which, 
together with other types of alternative splicing, leads to the diversity of circRNA landscape 
(Figure 1.3) (22, 51).  

Other cis elements from the same loci as circRNA genes can also regulate circRNA 
biogenesis—for example, the sequences recognized by RNA-binding proteins (RBPs) 
(section 1.2.5). A notable example is circMbl from the muscleblind (mbl/MBNL1) gene in 
Drosophila, where MBL protein recognizes and binds to the sequences in the circMbl-
flanking introns and promotes circRNA formation (28). In this case, the intron sequences 
bound by MBL and the MBL protein itself are all cis regulating elements for circMbl. 

Currently, many names have been used to indicate the reverse complementary sequences 
that promote circRNA formation: inverted repeats (IRs) (46, 47), intronic complementary 
sequences (ICSs) (2, 34, 44), and reverse complementary matches (RCMs) (49, 52). Since 
not all such elements are derived from repeated sequences, RCM is used to indicate these 
sequences in this thesis. 

The existence of RCMs has been used to predict circRNA formation with reasonable 
accuracy (49, 52). This model provides a simple, powerful method for circRNA 
overexpression. Also, the RCM sequences can be potential targets for circRNA 
knockout/knockdown with minimal effect on the cognate mRNA, for example, knockout of 
circGCN1L1 in human cells (34), cia-cGAS in mice (53), circERBB2 in gallbladder cancer 
cell lines (54), and circ-E-Cad in glioma stem cell lines (55).   
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Figure 1.3 circRNA biogenesis is regulated by RCMs and RBPs. (A) Base-paring between RCMs 
facilitate back-splicing by bringing the splice sites into proximity. Note that different choices between 
RCM sequences in introns can result in the production of circRNAs with different exon contents, 
which is called alternative back-splicing.  (B) RBPs bind to circRNA flanking introns, regulate back-
splicing efficiency.   
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1.2.5 Trans elements regulating circRNA biogenesis 

Elements in trans can also regulate circRNA formation. Currently identified trans elements 
are all RBPs that regulate back-splicing efficiency (Figure 1.3B). Depending on the 
properties of each RBP, their roles in circRNA production are different.  

As an RNA-editing enzyme, adenosine deaminase acting on RNA-1 (ADAR1) binds to the 
double-stranded RNA (dsRNA) region and transforms adenosines into inosines (56). 
ADAR1 can interrupt the base-pairing of RCMs and inhibit circRNA formation (49, 52). 
ADAR1’s role in circRNA biogenesis is conserved across species, from flies to mice and 
human cells (49, 52). Another dsRNA-binding protein, DHX9, also negatively regulates 
circRNA biogenesis (57). DHX9 has helicase activity; hence it is speculated that DHX9 
could unwind RNA pairs formed by RCMs in circRNA-flanking introns and inhibit circRNA 
formation (57). In support of this speculation, loss of DHX9 leads to global upregulation of 
circRNAs (57). A later study also reported that depletion of DXH9 in HEK293T cells 
promotes the formation of multiple circRNAs from the SMN gene (58). dsRNA-binding 
proteins (dsRBPs) can also be beneficial to circRNA formation. In a genome-wide RNAi 
screening of circRNA regulators, more than one hundred of RBPs were identified, among 
which the immune factors, NF90/NF110, facilitate circRNA production by direct binding to 
dsRNA formed by RCMs in nascent pre-mRNAs (59).  

RBPs with single-stranded RNA (ssRNA)-binding capacity can also regulate circRNA 
formation by binding to specific RNA motifs. Except being a cis element for circMbl, MBL 
protein also promotes circLuna formation, serving as a trans element in this case (28). 
Splicing factor Quaking (QKI) enhances circRNA production during human epithelial-
mesenchymal transition (EMT) (60). QKI binds to the ssRNA motif in flanking introns of 
the exon(s) to be circularized and then dimerizes, which results in enhanced circRNA 
formation (60). Moreover, the insertion of synthetic QKI binding sites into introns is 
sufficient to induce circRNA formation (60). Another splicing factor, Fused in Sarcoma 
(FUS), can regulate circRNA generation by binding to circRNA-flanking introns in mouse 
embryonic stem cell (eSC)-derived motor neurons (61). In human prostate cancer, the 
heterogeneous nuclear ribonucleoprotein L (HNRNPL) also regulates circRNA formation 
by binding to the flanking introns (62). Some other RBPs are regulators of circRNAs derived 
from specific genes. As mentioned before, RBM20 is critical for the formation of a subset 
of circRNAs originated from the I-band of the titin gene in the mammalian heart (41). Sam68, 
an RBP homologous to QKI, promotes multiple circRNA formation in the SMN gene by 
binding in the proximity of Alu-rich regions in SMN introns, presumably stabilizing the base 
pairing of Alu repeats (58). Very recently, Stagsted et al. reported that splicing factor 
proline/glutamine rich (SFPQ) is a key regulator of circRNAs with distal Alu repeats and 
long flanking introns by preserving accurate long intron splicing (63). RBPs can work 
together to regulate circRNA formation. Multiple hnRNP (heterogeneous nuclear 
ribonucleoprotein) and SR (Ser/Arg) proteins function in a combinatorial manner for the 
efficient back-splicing of Laccase 2 in Drosophila melanogaster (48). 

The reported circRNA-regulating RBPs are summarized in Table 1.1. 

In all, regulation of circRNA production is a complicated and well-tuned process. Given that 
a substantial number of circRNAs show tissue-/cell type-specific and developmental stage-
specific patterns, a tightly regulated mechanism network should exist, which involves cis 
and trans elements. 
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Table 1.1 Summary of RBPs regulating circRNA biogenesis. 

RBP Organism/cell Targets Positive/ 
Negative 

Methods Ref. 

Muscleblind Drosophila S2 circMbl; 
circLuna 

Positive Overexpression; 
minigene 

(28) 

ADAR1 Human HEK293; 
Mouse P19 and 
human SH-SY5Y 

multiple Negative RNAi (49, 52) 

Quaking  Human mammary 
epithelial cells  

multiple Mainly 
positive 

RNAi screening; 
IRES reporter 

(60) 

hnRNPs(Hrb2
7C, Hrb87F);  
SR proteins 
(SF2, SRp54, 
B52) 

Droshaphila S2 multiple Mixed RNAi (48) 

RBM20 Mice multiple 
circRNAs 
from Tintin 

Positive Knockout (41) 

DHX9 Human FLPinTrex 
HEK293 cells; 
HEK293T cells 

multiple; 
circRNAs 
from SMN 

Negative RNAi (57, 58) 

FUS Mice eSC-derived 
motor neurons 

multiple Mixed Knockout; 
RNAi 

(61) 

HNRNPL Human LNCaP multiple Mixed RNAi (62) 

NF90/NF110 Human Hela multiple Mixed RNAi screening, 
IRES reporter 

(59) 

Sam68 Human HEK293T circRNAs 
form SMN 

Positive RNAi (58) 

SFPQ Human HepG2 and 
HEK 293T Cells 

Multiple Mainly 
positive 

RNAi (63) 

AUF1 Hepatocellular 
carcinoma cell lines 

circMALAT1 Positive RNAi (64) 
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1.2.6 circRNA homeostasis 

Because of their circular structures without 5’-ends or 3’-ends, circRNAs show high stability 
and are resistant to degradation by exoribonucleases involved in many RNA decay 
mechanisms. In line with this, circRNAs show much longer half-lives than their cognate 
linear mRNAs. Jeck et al. showed that many circRNAs have > 48 hours of half-lives after 
actinomycin D treatment, much longer than their linear transcripts, which show < 20 hours 
of half-lives (37). By measuring half-lives of circular and linear transcripts from 60 circRNA 
genes, Enuka et al. reported that circRNAs have a median half-life of 18.7 – 23.7 hours, 
while the linear RNAs show 4.4 – 7.4 hours of median half-life (65). Hence circRNA can 
accumulate to high levels during development or aging, especially in post-mitotic cells, like 
neurons (50, 66-68). Although the enrichment of circRNAs in brain tissues is always 
independent of their linear mRNAs (66, 67), it is possible that high levels of circRNAs are 
due to the different decay rates between the linear and circular transcripts. 

Most of the current studies focused on the steady-state levels of circRNAs, which is a balance 
between biogenesis and degradation. As summarized before, circRNA formation is regulated 
by many factors. However, how circRNAs are degraded is still poorly understood.  

Argonaute 2 (AGO2) is an endoribonuclease responsible for the slice of target mRNAs in 
the RNAi pathway. CDR1as can be degraded by AGO2 when miR-671 binds to it (Figure 
1.4A and section 1.3.1) (69). RNAi is widely used as an effective method to knock down 
specific circRNAs. The degradation of circRNAs by RNAi/AGO2 requires sequence 
recognition by miRNAs or short interfering RNAs (siRNAs). Some other endoribonucleases 
are also involved in circRNA decay without recognizing specific sequences. The 
endoribonuclease RNase L degrades circRNAs globally when activated upon viral infection 
(Figure 1.4B) (70). Some N6-methyladenosine (m6A)-modified circRNAs can be targeted by 
RNase P/MRP complex, in which m6A reader protein YTHDF2 is responsible for 
recognition and HRSP12 makes connections between YTHDF2 and RNase P/MRP complex 
(Figure 1.4C) (71).  In a screening of 31 genes with known functions in RNA metabolism, 
Jia et al. identified that knockdown of GW182 increases circRNA levels in Drosophila cells 
(Figure 1.4D) (72). They further showed that the human homolog proteins of GW182 
function similarly, suggesting a conserved role of GW182 protein in circRNA decay (72). 
GW182 is a component of the P-body and a scaffold protein of RNAi machinery (73). 
Through domain deletions in GW182, they found that the Ago-binding domain or P-body 
targeting domains are dispensable, and the Mid domain of GW182 is critical for circRNA 
degradation (72). However, other components, especially the ribonucleases, interacting with 
GW182 are not known yet. In another study, Fischer et al. reported that ATP-dependent 
RNA helicase upstream frameshift 1 (UPF1) and its associated endonuclease G3BP1 
selectively degrade highly structured RNA molecules, including circRNAs (Figure 1.4E) 
(74). 

Since there are no ends in circRNAs, it is likely that endoribonucleases first cut them into 
linear molecules, and then exonucleases further degrade the linearized molecules. 
Nevertheless, the circRNA biogenesis mechanisms and decay pathways work together to 
maintain the homeostasis of circRNAs. 
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Figure 1.4 circRNA decay pathways. (A) miR-671-mediated degradation of CDR1as by AGO2. (B) 
Global circRNA degradation by activated RNase L. (C) m6A-mediated circRNA decay by RNase 
P/MRP, in which m6A reader YTHDF2 and adaptor protein HRSP12 are involved. (D) GW182 is 
involved in circRNA decay. The other components involved are not clear yet. (E) Structured-mediated 
decay of circRNAs by UPF1 and G3BP1. 
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1.3 circRNA Functions 

Based on the data from CIRCpedia v2 (75), hundreds of thousands of circRNAs have been 
predicted from RNA-seq data from humans, mice, flies, zebrafish, worms, etc. Given that 
levels of circRNAs are generally low, it is possible that they might be by-products of the 
splicing process of eukaryotic genes. However, recent findings have suggested that at least 
some circRNAs play various roles in different physiological environments. 

1.3.1 miRNA sponge 

It has been proposed that competing endogenous RNAs (ceRNAs) can participate in the 
regulation of microRNA (miRNA) activity by acting as decoys or sponges through their 
conserved miRNA binding sites (76). Given the high stability of circRNAs, they can serve 
as miRNA sponges if miRNA-binding sites are in their sequences. 

In mouse circSry and human CDR1as/ciRS-7, a considerable number of miRNA binding 
sites have been revealed. There are 16 binding sites for miR-138 in circSry (77), while 
CDR1as contains >70 conserved binding sites for miR-7(77, 78). What’s more, binding sites 
for miR-7 in CDR1as are not all fully complementary, which allows dense binding of miR-
7 and at the same time prevents degradation of CDR1as through the RNAi pathway (77). 
Consistent with this idea, co-transfection of CDR1as with miR-7 significantly reduces the 
knockdown efficiency of miR-7 target genes (77). More interestingly, CDR1as also contains 
a region near-perfectly complementary to miR-671, which enables the circRNA to be 
cleaved by AGO2 (69). Based on these results, Memczak et al. proposed that CDR1as could 
help transport miR-7 to subcellular locations, where miR-671 could trigger the release of 
miR-7 and the subsequent silencing of miR-7 target genes (78). 

CDR1as is highly expressed in the excitatory neurons in mice. Piwecka et al. generated a 
Cdr1as-knockout mouse model by deleting the whole ~ 2.9 kb locus coding Cdr1as. 
CDR1as knockout mice exhibit dysfunction of excitatory synaptic transmission and 
abnormal brain function associated with neuropsychiatric disorders (79). This phenotype 
was presumably caused by the loss of Cdr1as (79). However, although Cdr1as represents 
the most dominant transcript from the deleted locus (79), it is also possible that the other 
transcripts from the deleted genomic sequences are involved in the observed phenotypes, 
like the linear long non-coding RNA from which Cdr1as is produced, or the Cdr1 gene from 
the sense strand (80). The long non-coding RNA (lncRNA), Cyrano, is also involved in the 
interactions of CDR1as, miR-7, and miR-671, forming a well-organized regulatory network 
in the mammalian brain (81).  

In addition to CDR1as and circSry, some other circRNAs were also reported to function 
through a miRNA sponge mechanism. For example, circHIPK3, derived from the second 
exon of the HIPK3 gene, regulates cell growth by sponging multiple miRNAs (82). 
circBIRC6, which was enriched in undifferentiated human embryonic stem cells (hESCs), 
suppresses hESC differentiation by attenuating target genes of miR-34a and miR-154 (83). 
circRNAs reportedly showing miRNAs sponge functions are summarized in Table 7.1. 

It should be noted that miRNA sponge function may only be limited to a small subset of 
circRNAs. This is mainly due to the generally low levels of most circRNAs and most 
annotated circRNAs contain few miRNA-binding sites (65, 84). Despite the limited miRNA-
sponge capacity of endogenous circRNAs, synthetic circRNAs have been used as effective 
tools to regulate gene expression by targeting specific miRNAs (85-87). 
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1.3.2 circRNA-protein interaction 

circRNAs act as miRNA sponges by sequence recognitions. Similarly, they can also be 
recognized by RBPs if specific sequences or structures exist, acting as decoys of RBPs or as 
scaffold structures for RNA-protein complexes. 

In the production of circMbl in Drosophila, multiple MBL proteins bind to flanking introns 
to promote circMbl formation. Also, multiple MBL binding sites exist in circMbl, which can 
sequester MBL protein’s other functions (28). circFOXO3 functions as a protein decoy for 
cell cycle proteins: cyclin-dependent kinase 2 (CDK2) and cyclin-dependent kinase inhibitor 
1 (p21), forming a circFOXO3-p21-CDK2 ternary complex that arrests the function of 
CDK2 and p21 (88). Another example is cia-cGAS, which is highly enriched in the nuclei 
of human long-term hematopoietic stem cells (LT-HSCs) (53). Cia-cGAS binds to cyclic 
GMP-AMP synthase (cGAS), the sensor for exogenous dsDNA for innate immunity, acting 
as an antagonist to dsDNA, which protects LT-HSCs from interferon-mediated exhaustion 
(53). The binding of circRNA to proteins can be evolutionarily conserved across species. 
Multiple circRNAs from the conserved BOULE gene bind to heat shock proteins in germ 
cells of flies, mice, and humans, protecting against stress-induced fertility decline (89). 
There are many other examples of circRNA-protein interactions, which are summarized in 
Table 1.2.  

These identified circRNA-protein interactions are either based on protein co-
immunoprecipitation or RNA pulldown, followed by mass spectroscopy for protein 
identification, which may only reveal a part of the “interactome” of circRNAs.  
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Table 1.2 Summary of circRNA-protein interactions. 

circRNA host gene protein organism/cell type Ref. 
circ-Foxo3 Foxo3 CDK2, p21; 

ID1, E2F1, HIF1α, 
FAK. 

NIH3T3 cells; 
mouse embryonic 
fibroblasts 

(88), 
(90) 

circ-Amotl1 Human 
angiomotin-like 1 
gene (Amotl1) 

PDK1, AKT1 Human and mouse 
cardiac tissues 

(91) 

circRNA_102171 not mentioned CTNNBIP1 Thyroid cancer 
tissues and cell lines 

(92) 

circDNMT1 DNMT1 p53, AUF1 Breast cancer cells (93) 
circAGO2 AGO2 human antigen R 

(HuR) 
Multiple cancer cell 
lines 

(94) 

circFAT1(e2) FAT1 Y-box binding protein-1 
(YBX1) 

Gastric cancer cells (95) 

circFndc3b Fndc3b Fused in Sarcoma 
(FUS) 

Mouse cardiac 
endothelial cell line  

(96) 

circPOK Zbtb7a 
(POKEMON, LRF) 

ILF2/3 complex Mesenchymal 
tumor 

(97) 

circACC1 ACC1 AMP-activated protein 
kinase β and γ 

HCT116 (98) 

circNfix Nfix Ybx1 Cardiomyocyte (99) 

cia-cGAS D430042O09Rik cyclic GMP-AMP 
synthase (cGAS) 

Long-term 
hematopoietic stem 
cells  

(53) 

circSKA3 SKA3 Integrin β1, 
Tsk5 

Breast cancer (100) 

circZNF827 ZNF827 hnRNP K,hnRNP L, 
ZNF827 

Cultured neuron cells (101) 

circERBB2 ERBB2 PA2G4 Gallbladder cancer 
cells 

(54) 

circFOXK2 FOXK2 YBX1, hnRNP K Pancreatic ductal 
adenocarcinoma cells 

(102) 

circRHOT1 RHOT1 TIP60 Hepatocellular 
carcinoma cells 

(103) 

circSamd4 Samd4 PURA, 
PURB 

C2C12 myoblasts (104) 

circPABPC1 PABPC1 ITGB1 Human hepatocellular 
carcinoma  

(105) 

circBoule 
(multiple 
circRNAs) 

Boule 
(Drosophila), 
Boule (mice), 
BOULE (Humans) 

Heat shock proteins  Germs of Drosophila, 
mice, and humans 

(89)  
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1.3.3 circRNAs can be translated 

Canonically, translation of mRNA into protein requires the 5’ cap (7-methylguanosine, m7G) 
structure and 3’ poly(A) tail. Since circRNAs lack both structures, it is suggested that 
eukaryotic ribosomes cannot load onto circRNAs. Ribosome profiling experiments and 
polysome-circRNA co-precipitation experiments also showed that circRNAs are not likely 
to recruit ribosomes (37, 84). Despite these results, some studies have shown that at least a 
subset of circRNAs can be translated in a cap-independent manner using internal ribosome 
entry sites (IRES) (reviewed in (106, 107)). RNA circularization forms new sequences in the 
junctions, which in principle can form new open reading frames or IRES elements that drive 
the translation.  

By RNAi screening, circZNF609 was found to regulate proliferation in human myoblasts 
(108). Furthermore, circZNF609 contains an IRES and an open reading frame that shares the 
same start codon as its linear mRNA. Overexpression of this circRNA in a vector resulted 
in the production of a protein that localized mainly in the nucleus. Of note, translation of 
circZNF609 was of low efficiency (only ~1% as efficient as that of a linear mRNA), with a 
weak association with polysomes (108). In this study, translation from both overexpression 
vector and endogenous circZNF609 was verified (108). However, a recent study reported 
that translation of circZNF209-overexpression vector is originated from trans-spliced linear 
transcripts produced by the overexpression vector, which suggests that particular caution is 
needed when dealing with circRNA translation from expression vectors (109). 

Ribosome profiling data from fly heads revealed that as many as 122 Drosophila circRNAs 
might be translated (110). For example, circMbl3, with an IRES element, is able to produce 
a protein that was verified by mass spectroscopy (110).  

In addition to IRES, m6A modification induces protein translation initiation from circRNAs 
in human cells (111). m6A-driven translation of circRNA is widespread in human cells and 
is enhanced upon heat shock, indicating a possible role of circRNA-derived proteins in 
cellular responses to environmental stress (111).  

Some circRNAs can produce proteins with functions in brain tumors. Dr. Zhang Nu’s group 
reported multiple functional translated circRNAs in glioblastoma (GBM) (55, 112-115). 
Among them, the 254-aa protein (C-E-Cad) is encoded by circ-E-Cad, which is derived from 
exon 7 to exon 10 of the E-cadherin gene CHD1 (55). Interestingly, circ-E-Cad is translated 
in two rounds, which results in a unique 14-aa C-terminal tail in C-E-Cad, formed by a 
natural frameshift in the second-round translation (55). The unique C-terminal tail renders 
C-E-Cad capable of binding with epidermal growth factor receptor (EGFR) and activating 
downstream signals (55). 

It is still not known how frequently a circRNA can be translated and what are the functions 
of the translated peptides/proteins. The development of bioinformatic tools that predict 
circRNA translation potential may be helpful to answer these questions (116-118). 
Nevertheless, artificially circularized RNA molecules can bypass RNA sensors and be 
effectively translated in vivo and in vitro, serving as expression vectors with potential 
therapeutic applications (30, 119, 120). Recently, a preprint paper reported the use of 
circularized RNAs for the development of COVID-19 vaccines (121). 

1.3.4 circRNAs as biomarkers 

Intrinsically, circRNAs are resistant to exonuclease and show much longer half-lives than 
linear RNAs (see section 1.2.6). Moreover, circRNAs have also been identified in human 
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peripheral blood (122) and can be transported to the extracellular fluid in exosomes (123). 
These two characteristics suggest that circRNA can be used as stable molecular biomarkers 
for disease diagnosis, especially for cancers (reviewed in (124)). 

1.3.5 Others  

Although the majority of circRNAs are derived from exon(s), introns can also be retained in 
circRNAs, like EIciRNAs and ciRNAs (Figure 1.1 B and D). Unlike the majority of 
circRNAs that reside in the cytoplasm, EIciRNAs and ciRNAs are mainly located in the 
nucleus in human cells (4, 5). Some EIciRNAs enhance transcription of their parental genes 
by interacting with U1 small nuclear ribonucleoproteins (snRNPs) and RNA polymerase II 
in the promoter regions (4). Disruption of the interaction between EIciRNAs and U1 snRNPs 
could reduce the transcription of their parental genes. ciRNAs accumulate in nuclei of human 
cells and can also regulate transcription of parental genes by acting as positive regulators of 
RNA polymerase II transcription (5). 

Some circRNAs show multiple-facet functions. circMALAT1 has an IRES element and 11-
nt complementary sequences to the coding sequences of PAX5 (64). circMALAT1 binds to 
PAX5 mature mRNA and at the same time interacts with ribosomes, which results in the 
inhibition of PAX5 translation, acting as an “mRNA translation brake” (64). In the meantime, 
circMALAT1 functions as the miR-6887-3p sponge to upregulate JAK2 (64). The two 
properties of circMALAT1 work synergistically to promote the self-renewal of 
hepatocellular cancer stem cells (64). 

Fusion circRNAs derived from cancer-associated chromosomal translocations can promote 
cellular transformation, affect cell viability, and confer resistance to treatment in tumor cells 
(125). Dozens of pseudogenes have been identified to be derived from circRNAs in the 
human and mouse genomes, which could reshape genome architecture by providing 
additional CTCF-binding sites (126).  

To summarize, circRNAs play diverse roles in regulating almost every aspect of gene 
expression, from transcription to splicing and translation. Also, as RNA molecules, 
circRNAs can interact with DNA sequences, RNAs, and proteins to show different functions. 
We can expect that more and more functional circRNAs will be identified, especially those 
with clinical applications. 

1.4 circRNAs in C. elegans 

Currently, only three papers reported the existence of circRNAs in C. elegans. Memczak et 
al. showed that circRNAs in early developmental cell stages (one/two-cell embryo, oocytes, 
and sperm) of C. elegans were specifically expressed (78). Ivanov et al. then characterized 
the profile of circRNAs in major life stages, from which additional ~800 circRNAs were 
identified (49). They found that introns flanking circRNA exons were much longer (~10 fold) 
than average and that the number of RCMs in flanking introns was also much greater than 
average (49). Cortés-López et al. reported circRNA profiles in C. elegans from the fourth 
larval (L4) stage to day-10 adult stage, in which they found a global accumulation trend of 
circRNAs during aging (50).  
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1.5 Aim of this thesis  

circRNAs are expressed in a tissue-specific manner. Especially, circRNAs are enriched in 
the brain tissue of almost all the examined organisms, like humans (52, 127), mice (52, 66), 
flies (68), monkeys (128), et al. circRNAs in the brains are more likely to be derived from 
synaptic genes and are enriched at the synaptic sites (52, 127).  

As an excellent animal model, C. elegans has many features that are advantageous for 
circRNA research, like a relatively small and well-annotated genome, high efficiency in 
genome editing, thousands of available mutant strains, many behavior phenotypes for 
functional studies, etc. In this thesis, I aimed to use C. elegans as an in vivo model to study 
the potential functions and regulation of circRNAs, especially in neurons. However, the 
neuron-specific profile was not available yet in C. elegans. Hence the first aim was to 
provide the first neuronal circRNA profile. 

Based on the obtained neuronal circRNA profile, several neuronal circRNAs were knocked 
out, trying to identify potential functional circRNAs. Unfortunately, no phenotypes were 
observed. Then I switched my focus to circRNA regulation in C. elegans since our 
understanding of circRNA regulation has been mainly based on in vitro systems. Hence, 
another aim was to understand what factors/elements can regulate circRNA formation in C. 
elegans, providing in vivo perspectives to understand mechanisms involved in circRNA 
formation.  
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2. Methods 

Worm maintenance 

C. elegans Bristol N2 strain was used as the wild type. Worms were maintained using 
standard conditions on Nematode Growth Media (NGM) agar plates with Escherichia coli 
strain OP50 (129) at 20°C. For locomotion assay on N2 and fust-1(csb21) strain, worms 
were cultured at 25oC. New transgenic worms were generated by microinjection with ~ 40 
ng/μl plasmid. The strains used in this study are listed in Table 5.9. 

Plasmid preparation 

fust-1p::fust-1::mRFP: fust-1 genomic fragment containing sequences from 2181 bp 
upstream ATG to just before stop codon was cloned into the SmaI site of pHK-mRFP vector 
in frame with mRFP by In-Fusion HD Cloning Kit (Takara). This plasmid was further used 
to generate the backbone structure containing fust-1 promoter and mRFP, to which cDNAs 
of FUST-1 isoforms (isoform a, isoform b, and ΔN) were inserted by In-Fusion (Takara). 
The mRFP fused FUST-1 cDNA plasmids were used to generate cDNA only plasmids for 
splicing reporter rescue by removing the mRFP sequences using In-Fusion (Takara). 
Splicing reporter of fust-1 exon 5 was prepared by cloning exon 4 to exon 6 into the plasmids 
provided by Dr. Adam Norris. The full sequences of these plasmids are listed in section7.4, 
with some annotations highlighted. 

Worm synchronization  

Worm synchronization was performed by bleaching for large-scale worm preparation (L1 
worms for dissociation and RNA extraction). Briefly, worms were washed off plates using 
M9 buffer when a lot of eggs were laid and most of the worms were gravid adults. The 
worms were washed with M9 buffer and then bleached in the bleach solution (1 M NaOH, 
0.6% (m/v) NaClO) with ~5 minutes of continuous shaking. Then eggs were pelleted and 
washed three times with 12 ml M9 buffer by centrifuging at 2000 rpm for 0.5 minutes. 
Finally, the egg pellet was re-suspended in ~5 ml M9 buffer and rocked at room temperature 
for 17-24 hours to hatch. For small-scale worm preparation (hundreds of worms for 
chemotaxis, lifespan, aldicarb resistance, and locomotion assay), worms were synchronized 
by a timed egg-laying approach. Briefly, 10-15 gravid adult worms were placed onto an 
NGM plate for four hours, and worms were removed after egg-laying. The eggs were then 
cultured to the desired stage. 

RNA extraction 

RNA extraction was performed using the Direct-zol RNA MicroPre kit (ZYMO Research) 
with on-column DNase I (ZYMO Research) digestion according to the manufacturer’s 
protocol. For worm samples, worms were first flash-frozen in Trizol solution (Invitrogen) in 
liquid N2 and then homogenized by vortexing with glass beads (φ 0.1 mm) in Beads Cell 
Disrupter MS-100 (TOMY). For sorted neuron samples, no homogenization is needed. Cell 
samples in Trizol were directly used for RNA extraction. 

L1 worm dissociation 

To ~80 µl of L1 worm pellet, 200 µl SDS-DTT solution (200 mM DTT, 0.25% SDS, 20 mM 
HEPES pH 8.0, 3% sucrose) was added, followed by a 1.5-minute incubation at room 
temperature. Then, the worm pellet was washed with 5 × 1 ml egg buffer (25 mM HEPES 
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pH 7.3, 118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 0.340 ± 0.005 Osmolarity) 
and centrifuged at 10,000 ×g for 30 seconds after each wash. The washing steps and 
centrifugation should be performed quickly so that one round of washing and centrifugation 
is done in 40-50 seconds. The washed worm pellet was re-suspended in 100 µl pronase (15 
mg/ml in egg buffer) from Streptomyces griseus (Sigma-Aldrich). Worms were dissociated 
by periodic mechanical disruption by pipetting for 15 minutes. 200 µl tips were used for 
mechanical disruption using the method mentioned in Zhang et al.’s protocol (“Pipette the 
larvae suspension with a 200 µl tip during the digestion. Adjust the pipetting volume to the 
approximate volume of the suspended pellet. Slowly pull suspended larvae into the pipette 
tip. Then, press down to force the pipette tip against the bottom of the microcentrifuge tube 
and slowly eject the contents”) (130). Do as many times as possible. When most worm 
bodies were dissociated, 900 µL L-15/FBS medium (10% FBS in Leibovitz’s L-15 medium 
(Gibco), 0.340 ± 0.005 Osmolarity adjusted by sucrose) was added. Cells were collected and 
washed twice with 1 ml egg buffer by centrifuging at 9600 × g for 5 min at 4oC. Cells were 
suspended in the appropriate amount of egg buffer and allowed to sit on ice for at least 30 
min. The upper volume of cell suspension was used for FACS. For whole worm control, 
after dissociation and washing, the cell suspension was put on ice in the whole procedure of 
sorting. 

Fluorescence-Activated Cell Sorting (FACS) 

Cell sorting was performed on a FACS AriaII flow cytometer (Becton Dickinson) equipped 
with a 70 µm nozzle. 2 µm and 3.4 µm polystyrene beads (Spherotech) were used for size 
calibration. Before sorting, propidium iodide (PI) was added to the cell suspension to a final 
concentration of 0.2 - 0.5 µg/ml. Then, profiles of dissociated cells from GFP-labeled strains 
were compared to profiles of cells from N2 worms to exclude auto-fluorescent cells. Sorted 
cells were collected in 3 ml L-15/FBS medium in a 15 ml conical tube chilled on ice. For 
RNA extraction, sorted cells and whole worm control samples were collected by 
centrifugation in a swing-bucket centrifuge at 4400 rpm, 4oC for 10 min. The supernatant 
was removed, and 0.3 ml Trizol solution (Invitrogen) was added and stored at -80oC. For 
culture, sorted cells were seeded onto a poly-D-lysine coated glass-bottom dish (MatTec) 
with daily changes of L-15/FBS buffer. Cells were visualized by confocal microscopy (Carl 
Zeiss, LSM780) with a 60 × oil lens.  

Western blot 

Protein samples were resolved by SDS-PAGE (5% stacking gel and 12% resolving gel) and 
transferred to PVDF membrane by the standard protocol (25 V, 30 min) of Trans-Blot Turbo 
Transfer System (Bio-Rad). After blocking with 5% BSA-PBST (137 mM Sodium Chloride, 
10 mM Phosphate, 2.7 mM Potassium Chloride, pH 7.4, 0.1% (v/v) Tween-20, and 5% (w/v) 
BSA) for 1 hour at room temperature, the membrane was incubated overnight with primary 
antibody (listed below) at 4oC. After 3 × 5 min washes in PBST, the membrane was 
incubated with HRP-conjugated secondary antibody at room temperature for 1 hour. The 
membrane was washed 3 × 5 min in PBST and then visualized by Amersham ECL Prime 
Western Blot Detection Reagent (GE Healthcare). Images were taken by Fluorescent Image 
Analyzer LAS-3000 (FujiFilm) using the chemiluminescence channel.  Mouse ANTI-FLAG 
M2 antibody (F3165, Sigma-Aldrich): 1:2000; alpha-tubulin Mouse mAb (DM1A) 
(Calbiochem):1:2000; Amersham ECL Mouse IgG, HRP-linked whole Ab (from 
sheep):1:1000. 

Co-immunoprecipitation (Co-IP) 
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~20,000 L1 FLAG::FUST-1 worms were seeded on a nutrition enriched plate with NA22 E. 
coli (NEP-NA22). After 4-day culture at 20oC, all bacteria were consumed and most of the 
progenies were at the L1 stage. Adult worms were removed by filtering through a 30 μm 
mesh. Three NEP-NA22 plates, which gave ~ 1 million L1 worms, were used for one 
replicate experiment. Worms were washed with 1 × 10 ml M9 buffer, 2 × 10 ml cold Buffer 
B70 (50 mM HEPES-KOH (pH 7.4), 70 mM potassium acetate (KAc), 1 mM sodium 
fluoride (NaF), 20 mM β-glycerophosphate, 5 mM magnesium acetate (MgOAc), 0.1% 
Triton X-100, 10% glycerol). Worms were then re-suspended in 0.4 ml Buffer B70 
supplemented with 2 × cOmplete Proteinase inhibitor cocktail (Roche) and dripped into 
liquid N2 with 1 ml pipette tips to form small pearls. Worm pearls were stored at -80oC. 
Worm pearls were ground into fine powder in a mortar containing liquid N2, which was 
suspended into 1 ml cold Buffer B70 supplemented with 2 × cOmplete Proteinase inhibitor 
cocktail (Roche) and 5 μl Murine RNase Inhibitor (NEB). Worm lysate was cleared by 
centrifugation at 20,000 × g for 20 min at 4oC. 50 μl worm lysate was taken as input samples, 
in which 40 μl was used for RNA extraction and 10 μl for western blot. 50 μl Dynabeads 
Protein G (Invitrogen) was coupled with or without 5 μg Anti-FLAG M2 antibody (Sigma-
Aldrich), which was then incubated with 400 μl lysate, rotating overnight at 4oC. On the next 
day, the lysate-beads slurry was cleared magnetically, and the supernatant was taken for 
western blot. With tubes on a magnetic tray, the beads were gently washed with 2 × 200 ul 
Buffer B70. To elute bound RBP complex, 50 μl 50 mM glycine, pH 2.8 was added to the 
washed beads. After mixing and incubating at RT for 3 min, the supernatant was transferred 
to another tube containing 5 μl 1 M Tris-HCl, pH 7.5 for pH neutralization. For the 55 μl 
elution, 44 μl was used for RNA extraction, 11 μl for western blot. 

RNA-seq  

For RNA-seq of samples from sorted neurons (the sort group) and whole worms (the whole 
group), libraries were prepared using KAPA RNA HyperPrep kit with RiboErase (HMR) 
(KAPA biosystems) according to the manufacturer’s protocol. The RNA input was 150 ng 
and fragmentation conditions were 85oC for 5 min.  Barcodes were introduced to each 
sample using KAPA duel-indexed adapters (KAPA biosystems). The length distribution of 
each library was determined by TapeStation 4200 (Agilent) using High Sensitivity DNA 
ScreenTape (Agilent). Libraries were quantified by KAPA library quantification kit (KAPA 
biosystems) and then multiplexed and sequenced on Illumina Hiseq 4000 platform to obtain 
150 nt paired-end reads. For RNA-seq of samples from the L1 stage of N2 and fust-1(csb21), 
rRNA depletion was performed using Ribo-Zero Plus rRNA Depletion kit (Illumina). 
Library preparation was conducted using NEBNext® Ultra II Directional RNA Library Prep 
Kit for Illumina (New England BioLabs) by SQC staff in OIST. Sequencing was performed 
on NovaSeq 6000 (Illumina) to obtain 150 nt paired-end reads.  

Worm sorting 

L1 worms of strains with extrachromosomal plasmids were obtained by bleaching and 
hatching for 17-20 hrs in M9 buffer at room temperature. Fluorescence-positive L1 worms 
were sorted by Large Particle Biosorter (Union Biometrica). Total RNA was extracted from 
sorted worms, which was used for RT-qPCR quantification. 

Droplet digital PCR (ddPCR) 

cDNA was reverse transcribed from 10 ng total RNA using an iScript Advanced cDNA 
synthesis kit (Bio-Rad). ddPCR was performed by using ddPCR EvaGreen Supermix kit 
(Bio-Rad) on a QX200 Droplet Reader (Bio-Rad) based on the manufacturer’s protocol. 
Results were analyzed using QuantaSoft software (Bio-Rad). 
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Real-time PCR 

Real-time PCR reactions were performed using soAdvanced Universal SYBR Green 
Supermix (Bio-Rad) with cDNAs synthesized from iScript Advanced cDNA synthesis kit 
(Bio-Rad). 20 μl reaction mix with 2 μl cDNA (~1-10 ng) were monitored on StepOnePlus 
Thermal Cycler (Applied Biosystems) in “fast mode”. Cycling conditions: 95oC, 30’, 40 or 
45 cycles of 95oC, 15’ and 60oC, 30’with plate reading, and a final melt curve stage using 
default conditions. The primers are listed in Table 5.10. 

RNase R treatment 

Total RNA was treated with or without (Mock) RNase R (2 U/μg) in the presence of 
Ribolock(2 U/μg) (ThermoFisher Scientific). The reaction was incubated at 37oC for 30 min. 
Then RNA was purified with an RNA Clean and Concentrator kit (ZYMO Research) 
according to the manufacturer’s protocol. For fold change quantification, RNA was 
quantified by Nanodrop and an equal amount of RNA input was used for cDNA synthesis. 
For northern blot, 20 μg total RNA with or without RNase R treatment was used for loading. 

Northern blot 

Northern blot was performed using NorthernMax kit (ThermoFisher Scientific), and the 
probes were labeled by α-32P-deoxycytidine 5'-triphosphate (PerkinElmer) using Random 
Primer DNA Labeling Kit Ver. 2 (Takara, #6045) according to the manufacturer’s protocols. 
Briefly, RNA samples (10 μg or 20 μg) were resolved in 1% agarose gel by electrophoresis 
at 5 V/cm in 1 × MOPS buffer for ~2 hours. Then RNA was transferred onto an Amersham 
Hybond-N+ membrane (GE Healthcare) by capillary blot for 2.5 hours using the transfer 
buffer supplied in the NorthernMax kit. Transferred RNA was crosslinked by 254 nm UV at 
1200 × 100 μJ/cm2(Analytik Jena CL-1000). Prehybridization was performed in 
ULTRAHybe buffer at 50oC for one hour, followed by hybridization with 32P labeled probes 
overnight at 50oC. The membrane was washed 2 × 5 min at room temperature using Low 
Stringency Washing Solution and 2 × 15 min at 50oC using High Stringency Washing 
Solution. The membrane was sealed in kitchen wrap and exposed to a phosphorscreen for 
several hours to overnight, and the signals were detected by Typhoon FLA7000 (GE 
Healthcare). Quantification of band intensities was performed using ImageQuant software 
(GE Healthcare). The average intensity of an area with no bands was used as background 
intensity. The average intensities of each band were subtracted by the background intensity 
before comparison. Primers used for probe amplification are listed in Table 5.10. 

circRNA prediction and RNA-seq data analysis 

The DCC pipeline (131) was used for the prediction of circRNAs with RNA-seq data. Briefly, 
raw reads were aligned to reference genome (WBcel235/ce11) using STAR (132) 
(https://github.com/alexdobin/STAR) with the following options: --outSJfilterOverhangMin 
15 15 15 15 –alignSJoverhangMin 15 –alignSJDBoverhangMin 15 --outFilterScoreMin 1 -
-outFilterMatchNmin 1 --outFilterMismatchNmax 2 --chimSegmentMin 15 --
chimScoreMin 15 --chimScoreSeparation 10 --chimJunctionOverhangMin 15. Then the 
output files from STAR, chimeric.out.junction, were used for circRNA annotation with DCC 
(https://github.com/dieterich-lab/DCC). Predicted circRNAs from DCC were filtered with 
at least three junction reads in each group. Differential expression analyses of mRNAs and 
circRNAs were performed using DESeq2 (133) package in R with the gene count output 
from STAR or the BSJ junction count output from DCC, respectively. The plots (PCA plots, 
boxplots, scatter plots) were generated using the ggplot2 package 
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(https://ggplot2.tidyverse.org/) and the ggpubr (http://www.sthda.com/english/rpkgs/ggpubr) 
package in R. The scripts of DESeq2 and plots are in section 7.3. 

RCM analysis 

RCM analysis in flanking introns of circRNAs or non-circular control exons was performed 
using IntronPicker and autoBLAST scripts (https://github.com/alexandruioanvoda/) 
described in (50). 

Microscopy 

Confocal images were obtained using a Zeiss LSM780 confocal microscope, and images 
were processed using ZEISS ZEN3.1 software. For quantification of GFP and mCherry 
signals of the fust-1 exon 5 splicing reporter, confocal images were used without further 
adjustments. Areas around the neck neurons were selected, and the average intensities of 
GFP and mCherry (given by ZEN3.1 software) in those selected areas were used for 
quantification.  

Gene ontology analysis 

Gene ontology enrichment analysis was performed using WormBase Enrichment Suite web 
server (134, 135) (https://wormbase.org/tools/enrichment/tea/tea.cgi).  

Chemotaxis assay 

Chemotaxis assays were performed on 10-cm square plates as described previously (136).  

Lifespan assay 

Lifespan assays were performed on NGM-OP50 plates with or without 0.1 mg/ml 5-
fluorodeoxyuridine (FUdR). If without FUdR, worms were transferred to new NGM-OP50 
plates the other day starting from day 1 adult. Worms were classified as dead and removed 
if not moving with gentle poking with a worm picker made of platinum wire. Worms bagged, 
dead with obvious body damage, or burrowed into agar were not considered. 

Aldicarb resistance assay 

Blank NGM plates containing 1 mM aldicarb (Wako) were used for assays. Young adult 
worms synchronized by egglaying were used. Worms were transferred to aldicarb plates, 
and every 30 min, paralysis was checked by gentle poking with a worm picker made of 
platinum wire. Worms were removed from plates if they were identified as fully paralyzed. 

Locomotion assay 

Locomotion analysis of day 3 adult worms was performed as described previously (137). 
Briefly, 15 synchronized day 3 adult worms were picked onto a blank NGM plate to get rid 
of food for ~1 min. The worms were then transferred to another empty NGM plate and 
locomotion images were recorded for 1 min with five frames per second with the lid on. 
Images were analyzed using ImageJ and wrMTrck plugin (138) 
(http://www.phage.dk/plugins/wrmtrck.html) to calculate the average speeds. More than 50 
worms were recorded. Worms that got lost during recording were not included. 

Single worm PCR 

Single worm PCR was performed based on an online protocol 
(https://theolb.readthedocs.io/en/latest/molecular-biology/c-elegans-single-worm-pcr.html).  
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Mutagenesis by CRISPR-Cas9 

Genome editing by CRISPR-Cas9 was achieved based on the protocol from Dokshin et al 
(139) with minor modification. Injection mix (20 μl) containing the following components: 
Cas9 protein (0.25 μg/μl, Sigma-Aldrich), tracrRNA(0.1 μg/μl, ThermoFisher), crRNA (0.2 
μg/μl for one, 0.1 μg/μl each for 2 crRNAs, ordered from ThermoFisher or IDT), injection 
marker plasmid (PRF4(rol-6), 40 ng/μl), KCl (25 mM) and HEPES (10 mM, pH 7.4) was 
injected to the gonads of young adult worms. After injection, F1 rollers were picked, and 
their genotypes were checked by single worm PCR to screen the target mutations. For 
homozygous F1, non-roller F2 progenies were kept as the target strain. For heterozygous F1, 
homozygous F2s were kept as target strains.  

Table 2.1 Injection mix of CRISPR-Cas9 mutagenesis. 

Component Concentration Solvent Injection mix Final concentration 

Cas9* 10 μg/μl 50% glycerol 0.5 μl 0.25 μg/μl 

tracrRNA* 0.4 μg/μl 10 mM Tris-HCl, pH7.5 5.0 μl 0.1 μg/μl 

crRNA1* 0.4 μg/μl 10 mM Tris-HCl, pH7.5 1.4 μl 0.1 μg/μl 

crRNA2* 0.4 μg/μl 10 mM Tris-HCl, pH7.5 1.4 μl 0.1 μg/μl 

ssDNA 1 μg/μl 10 mM Tris-HCl, pH7.5 2.2 μl 220 ng/μl 

Injection marker 300 ng/μl 10 mM Tris-HCl, pH7.5 2.7 μl ~40 ng/μl 

KCl 1 M  0.5 μl 25 mM 

HEPES 0.2 M, pH7.4  1.0 μl 10 mM 

H2O   5.3 μl  

  Total 20μl  

*  Incubate at 37oC for 10 min before adding the other components. 
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3. Results 

3.1 First neuronal circRNA profile from L1 worms 

Currently, there are no available neuronal circRNA data in C. elegans, mainly due to 
challenges in obtaining enough neuron samples from the tiny worms that have no obviously 
compartmentalized “brain” tissue. The most common method to obtain neuron cells from C. 
elegans is by the “labeling-dissociation-sorting” method (Figure 3.1A) (130, 140-145), in 
which target neurons are labeled by fluorescent protein and, after mild dissociation of the 
worms, labeled neurons are collected by fluorescence-activated cell sorting (FACS). This 
method can obtain target neurons in high purity and has been used to detect gene expression 
in single neurons to all the neurons (140-143). However, due to the low efficiency of the 
dissociation (130, 141), total RNA obtained from sorted cells is limited. Hence this method 
is only used for mRNA detection, either by microarray or RNA-seq (140, 141, 145-147). By 
optimization of previous protocols (130), I aim to improve the final total RNA yield to 
hundreds of nanograms for circRNA detection by whole-transcriptome RNA-seq. Worms at 
the first larval stage (L1) were used to minimize the potential accumulation effect of 
circRNAs during development. 

Of note, results in chapter 3.1 were from the author’s published paper with modifications 
(148). 

3.1.1 Successful large-scale neuron isolation from L1 worms 

Here, using a strain (NW1229) with pan-neuronal green fluorescent protein (GFP) 
expression, I found that by shortening the time of SDS-DTT treatment (from 2 min to 1.5 
min) and washing (from 5 × 1.0 min to 5 × 40 sec) as well as increasing the time of 
mechanical disruption (from 10 min to 15 min) (Figure 5.1A), cell yield could be improved. 
After dissociation, the cell suspension was stained with propidium iodide (PI) to label 
dead/damaged cells and then subjected to FACS. GFP positive singlet cells were sorted 
(Figure 3.1B). The majority of sorted cells showed GFP fluorescence when observed under 
a confocal microscope (Figure 3.1C). Some neuron cells kept short neurites after sorting 
(Figure 5.1B). Consistent with previous findings, neurites can grow out from sorted neuron 
cells after culturing (Figure 5.1C) (130, 141). To further confirm the effectiveness of sorting, 
the levels of two marker genes (myo-3 and unc-64) were quantified by digital droplet PCR 
(ddPCR). As expected, the neural syntaxin unc-64 was highly enriched in the sorted cells, 
whereas the muscle gene myo-3 was depleted (Figure 3.1D). 

Using this optimized protocol (see Methods), 200 - 500 ng total RNA was obtained from 
cells sorted from ~ 1.5 - 5 million L1 worms (the sort group). RNA samples from dissociated 
worms before sorting were also prepared for comparison (the whole group, Figure 3.1A). 
For RNA-seq, 150 ng total RNA from three independent trials of the sort group and the 
whole group was used as input for library preparation with ribosomal RNA removal and 
first-strand cDNA synthesis using random hexamers. More than 45 million 150 nt paired-
end reads were obtained for each sample. Differentially expressed genes between the two 
groups were analyzed by DESeq2 (133) (R scripts are in section 7.3.3). Consistent with the 
ddPCR results (Figure 3.1D), myo-3 was significantly depleted, while unc-64 was 
significantly enriched in the sort group compared with the whole group (Figure 5.1D). The 
significantly upregulated genes in the sort group were searched in WormExp (149) 
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(https://wormexp.zoologie.uni-kiel.de/wormexp/) to identify whether these genes overlap 
with previous results of neuronal genes. As expected, the resulted top three datasets were all 
pan-neural enriched genes determined by microarray analysis of sorted neurons (Figure 5.1E) 
(146, 147), indicating the RNA-seq results from the sorted samples successfully revealed the 
gene expression pattern in the neurons. 

 

 

Figure 3.1 Large-scale neuron isolation from C. elegans for circRNA detection. Modified from 
(148). (A) Workflow of neuron isolation and circRNA detection by RNA-seq. (B) Gating strategy for 
FACS: Forward scatter width (FSC-W) was plotted against forward scatter height (FSC-H) to select 
singlet cells (88.8%), which were then used for the selection of GFP-positive and PI-negative cells 
(14.6%) for sorting. (C) Confocal images of sorted GFP-positive neurons. Scale bar: 50 μm. (D) 
ddPCR results showing the relative levels of two genes (myo-3 and unc-64) in the sort group 
compared with those in the whole group. Error bars stand for standard deviations of three biological 
replicates. P values are ratio paired t-test. 
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3.1.2 circRNA annotation is of high accuracy 

circRNA annotation from the RNA-seq data was carried out using the DCC pipeline (131). 
Prior to filtering, 6475 circRNAs were identified with at least one back-spliced junction (BSJ) 
read across six samples, with 4786 novel circRNAs when compared with circRNAs of C. 
elegans in two databases: circBase (150) and CIRCpedia v2 (75) (Figure 5.2A). The results 
were filtered with a cutoff of at least three BSJ reads in each group, which gave 1452 
circRNAs derived from 1010 genes and 29 not-annotated loci (Figure 3.2A). Of the filtered 
circRNAs, the majority of the identified BSJ reads were from exon-to-exon joining (Figure 
5.2B). The filtered circRNAs were compared with a published dataset of circRNAs in aging 
worms (50), which showed 450 overlapped circRNA (Figure 5.2C). The novel circRNAs 
identified in my dataset were mainly from the sorted group, suggesting that sequencing from 
sorted neuron samples was helpful to identify circRNAs that may not be detected using 
whole-worm samples.  

Two strategies were used to validate the annotated circRNAs by DCC: 1) Amplification of 
BSJ sequences by RT-PCR using divergent primers followed by Sanger-sequencing (Figure 
3.2B). Eighteen out of 19 selected circRNAs, including seven novel circRNAs, were 
confirmed with the BSJ sequences (Figure 5.2D). 2) Enrichment quantification by RT-qPCR 
after RNase R treatment. Since there are no ends in circRNAs, they often show resistance to 
degradation after treatment with RNase R. As expected, while two linear mRNAs (pmp-3 
and cdc-42) were depleted after RNase R treatment, all the circRNAs were enriched (Figure 
3.2C). The resistance to RNase R was also confirmed by northern blot, which showed that 
while linear transcript was degraded after RNase R treatment, circRNA from Y20F4.4 was 
still detected (Figure 3.2D). Together, these results showed that circRNA annotation is of 
high accuracy. 
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Figure 3.2 circRNA annotation and validation. Modified from (148). (A) Overlap of circRNAs 
detected in the “sort group” and the “whole group.” (B) Scheme showing amplification of back-splicing 
junction of a circRNA from glr-2 using divergent primers. Amplified sequences are confirmed by 
Sanger sequencing. The red triangle denotes the joint site. (C) RT-qPCR results of the fold changes 
of circRNAs and two linear mRNAs (pmp-3 and cdc-42, inset) after RNase R treatment. RNA samples 
from L1 worms were used. The blue dashed line shows one-fold change. Error bars are the standard 
deviations of three biological replicates. (D) Northern blot detection of Y20F4.4 transcripts in total 
RNA (20 μg) without or with RNAse R treatment, using probes that hybridize to both linear and 
circular transcripts. RNA samples from L1 worms were used. Left: total RNA with or without RNase 
R treatment resolved on 1% Agarose gel, stained by EtBr. Right: detection of Y20F4.4 transcripts 
after membrane transfer. 
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3.1.3 circRNAs are highly expressed in the neurons of C. elegans 

Of the 1452 circRNAs, more circRNAs (1125/1452) were found in the sort group, with 539 
identified in both groups and 586 only in the sort group (Figure 3.2A). Gene ontology (GO) 
enrichment analysis of the circRNA-producing genes showed that terms related to the 
neuronal functions were significantly enriched, including neurogenesis, synaptic signaling, 
etc. (Figure 3.3A). Next, the abundances of circRNAs in the sort group and the whole group 
were compared to check whether circRNAs were highly expressed in the neurons of C. 
elegans or not. TPM (transcripts per million reads) values were used for comparison. The 
principal component analysis (PCA) plots of both linear mRNAs and circRNAs showed a 
clear separation between the two groups (Figure 5.3A and 5.3B), suggesting different 
expression profiles between them. For all the circRNAs in both groups, circRNAs in the sort 
group showed significantly higher TPM values than in the whole group (Figure 3.3B, p < 
2.2e-16, paired Wilcoxon test), indicating circRNAs were enriched in the sort group. The 
same trend was also observed for the shared 539 circRNAs in both groups (Figure 3.3C, p = 
4.7e-14, paired Wilcoxon test). 

Next, differentially expressed circRNAs between the sort and the whole group were analyzed, 
trying to identify neuron-enriched circRNAs. Using BSJ read numbers as input for DESeq2, 
differential expression analysis of circRNAs between the sort group and the whole group 
was performed (R scripts in section 7.3.4). With adjusted p value < 0.05, 31 circRNAs were 
found significantly enriched, and 35 circRNAs were significantly depleted in the sort group 
(Figure 3.3D). I then asked whether these circRNAs were also derived from neuronal genes 
or not. The fold changes of circRNAs between the sort and the whole group were plotted 
against the fold changes of their cognate linear mRNAs. Here, a cutoff of baseMean (given 
by DESeq2) bigger than 3 was used, which contained 268 circRNAs, including all the 
significantly differentially expressed circRNAs (Figure 3.3E). The results showed a strong 
positive correlation (Figure 3.3E, Pearson’s correlation coefficient R = 0.72, p < 2.2e-16), 
which indicated that at the L1 stage of C. elegans, neuronal circRNAs were more likely to 
be derived from neuronal genes. When all circRNAs were considered, a moderately strong 
positive correlation was still observed (Figure 5.3C, Pearson’s correlation coefficient R = 
0.51, p < 2.2e-16). 
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Figure 3.3 circRNA profile in the neurons of C. elegans. Modified from (148). (A) Top 10 enriched 
gene ontology (GO) terms of circRNA-producing genes. (B, C) TPM (transcripts per million reads) 
comparison of all circRNAs (B) and shared circRNAs (C) between the “sort group” and the “whole 
group”; p values are paired Wilcoxon test. (D) Differentially expressed (DE) circRNAs between the 
sort group and the whole group. Significantly DE circRNAs are highlighted by colors. Gene names 
of some circRNA genes are labeled. (E) Scatter plot showing the fold changes of 268 circRNAs with 
baseMean > 3 versus fold changes of their corresponding linear mRNAs. The Pearson correlation 
coefficient (R) and p value (p) are shown. Significantly differentially expressed circRNAs are shown 
by colored dots. Names of several circRNA genes are labeled. 
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3.2 RCMs promote both back-splicing and exon-skipping, simultaneously 
and directly 

Of note, except for results in Chapter 3.2.3, all results in Chapter 3.2 were from the author’s 
published paper with modifications (148). 

3.2.1 RCMs are abundant in circRNA-flanking introns 

Next, features of circRNA-flanking introns were analyzed. Basic local alignment search tool 
(BLAST) was used to identify RCMs between each pair of flanking introns using the 
autoBLAST scripts (50). Similar to previous findings (49, 50), introns that flank circRNA-
producing exons were much longer than average, and much more RCMs were identified 
when compared with flanking introns of non-circular exon controls (exon 2 and exon 8) 
(Figure 3.4A and B). I also defined best-matched RCM, which is the top one hit with the 
highest “bit score” in the BLAST results of each pair of introns. Lengths of the best-matched 
RCMs in circRNA introns were also much longer than those in introns flanking control 
exons (Figure 3.4C).  

 

Figure 3.4 RCM analysis of circRNA-flanking introns. Modified from (148). (A) Length 
distributions of introns flanking circRNA-producing exon(s), compared with the lengths of all introns. 
Average lengths were shown. (B, C) The average number of RCMs (B) and the average length of 
best-matched RCMs (C) in one pair of circRNA-flanking introns compared with those in non-circRNA 
control exons (exon 2 and exon 8). Values are shown as mean ± SEM. Numbers in the brackets are 
numbers of intron pairs used for analysis. p values are from the Kruskal-Wallis test with Dunn’s post-
hoc test for multiple comparisons. ****, p < 0.0001. 
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3.2.2 RCM-deletion is a good way to generate circRNA knockout mutant 

Although a previous study showed that RCMs could predict the existence of circRNAs (49), 
the role of RCMs in circRNA formation has not been experimentally confirmed in C. elegans. 
Here, six circRNA genes with RCMs in flanking introns were selected, and one RCM in 
each gene was deleted using CRISPR-Cas9 (Figure 3.5A). Which RCM is chosen for 
deletion depends on its position in that intron and the existence of highly specific gRNA 
sites around RCM sequences. Two guide RNAs (gRNAs) that bracket the target RCM were 
used for each deletion. A 60-nt single-stranded oligo DNA (ssODN) was used as the repair 
template, with 30 nt homologous sequences in each end. The gRNA sequences and 
recombinant single-strand oligo DNAs used for RCM deletions are listed in Table 5.11. For 
example, in glr-2, the downstream RCM extends to the 3’ splice site, so only the RCM in 
the upstream can be used for deletion (Figure 3.5B). RNA-protein complex containing Cas9 
protein, tracrRNA, two guide RNAs (gRNA1 and gRNA2) was injected into the gonad of 
wild-type worms, together with a 60 nt ssODN and an injection marker plasmid (Table 3.1). 
The injection marker-positive F1 worms were picked on separate plates, whose genotypes 
were checked by single worm PCR after laying eggs. Six out of the ten picked F1 worms 
showed different genotypes than wild-type N2 worms (Figure 3.5C), of which four showed 
the expected band sizes, either homozygous or heterozygous. In order to get heterozygous 
progeny with designed deletion, single F2 worms were picked from F1-6, which showed a 
heterozygous pattern, and their genotypes were checked again after egg-laying. As expected, 
two out of 10 picked F2 worms showed homozygous genotypes (Figure 3.5D). Their 
sequences were confirmed as the desired deletions precisely at the designed sites (section 
7.1 Sequence alignments). Using the same strategy, I deleted one of the RCMs in all the six 
circRNA genes (Figure 5.4A). The genotype screenings of F1 and F2 worms in the genome 
deletions of the other five circRNA genes were shown in Figure 5.5. The coordinates and 
lengths of deleted sequences are shown in Table 3.1.  

After obtaining these RCM-deleted strains, circRNA expression was checked.  As expected, 
all the circRNAs were either undetectable or reduced to a very low level after the removal 
of one RCM in the flanking introns (Figure 3.5E and Figure 5.4B), proving that RCMs in C. 
elegans vigorously promote, if not required for, circRNA formation. Of note, in some of the 
chosen genes, the linear mRNA levels were altered in RCM-deleted strains. 

 

Table 3.1 Positions and lengths of deleted sequences in circRNA genes. Adopted from (148). 

Gene name Coordinates Upstream/Downstream Deleted length (bp) 
glr-2 chrIII: 7142139 - 7142523 Upstream 385 
gpa-1 chrV: 11176808 - 11177313 Upstream 506 
unc-75 chrI: 11592753 - 11593798 Upstream 1046 
arl-13 chrI: 2066176 - 2066626 Upstream 451 
iglr-3 chrI: 2088411 - 2089756 Downstream 1276 
Y20F4.4 chrI: 2034765 - 2035642 Downstream 878 
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Figure 3.5 RCM deletion by CRISPR-Cas9 to disrupt circRNA formation. Modified from (148). 
(A) Schematic plot showing that RCMs promote circRNA production and the strategy to delete one 
of the RCMs by CRISPR-Cas9. (B) Upstream RCM deletion in glr-2. Positions of RCMs and gRNAs 
are shown. (C) Genotype screening of F1 progenies from injected P0 worms by single worm PCR. 
The red rectangle indicates the strain used for F2 screening. (D) Genotype screening of F2 progenies 
from F1-6. *: Kept as target strains. (E) Quantification of linear mRNA and circRNA in wild-type N2 
strain and RCM deletion mutant strains of six circRNA genes. Error bars are the standard deviations 
of three biological replicates. n.d.: not detected (Ct values not determined or bigger than those in no-
template controls). Two-tail student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns: not 
significant 
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3.2.3 circRNA knockout strains did not show any apparent phenotypes. 

After obtaining these circRNA knockout (KO) strains, a phenotype search was conducted, 
trying to identify potential functional circRNAs. Another circ-zip-2 KO strain, zip-2(ix270), 
was made by deleting the whole intron (intron 1, 130 nt) upstream of the circRNA-producing 
exons (Table 3.2). Two double circRNA KO strains were also prepared: gpa-1(ix265); zip-
2(ix270) and Y20F4.4(ix269); zip-2(ix270). The circRNA KO strains used for phenotype 
search are listed in Table 3.2. All these circRNAs are either significantly enriched or highly 
expressed in the neurons (Figure 3.3D). Hence the assays used for phenotype search were 
related to neuronal functions, like chemotaxis assay, locomotion assay, lifespan assay, and 
aldicarb resistance assay. 

Table 3.2 circRNA knockout strains used for phenotype search. 

Allele name Note 
arl-13(ix262) RCM deletion as designed site 

glr-2(ix264) RCM deletion as designed site 

gpa-1(ix265) RCM deletion as designed site 

unc-75(ix266) RCM deletion with random insertions, progeny from F1-4 

unc-75(ix267) RCM deletion as designed site, progeny from F1-6 

iglr-3(ix268) RCM deletion as designed site 

Y20F4.4(ix269) RCM deletion as designed site 

zip-2(ix270) Deletion of whole upstream intron (intron 1) 

gpa-1(ix265); zip-2(ix270) Double mutation 

Y20F4.4(ix269); zip-2(ix270) Double mutation 

 

I started with chemotaxis assays based on our lab’s previous experience (136). 10-cm square 
plates were used, where two spots of odor and control were put on the left side and right side 
symmetrically (Figure 3.6A). Synchronized worms were placed in the middle and left for 
10-min crawling, after which worms were killed by chloroform, and chemotaxis index (CI) 
was calculated by the numbers of worms on the order side and the control side (Figure 3.6A). 
1-propanol (20%) was first used as an attractive odor. However, none of the tested strains 
showed any significant differences compared with the wild-type N2 strain (Figure 3.6B, C, 
and D). 5% 1-propanol and 0.01% diacetyl were also tested, which did not show any 
difference, either (Figure 5.6A, B, and C).  

Next, I tried locomotion assays. Since circRNAs accumulate during aging (50), knocking 
them out may affect the locomotion ability when worms get old. The moving speeds of 
worms at different ages were measured using a previously reported protocol (137). In the 
first trial, two unc-75 strains, CB950 and RM2005 (obtained from CGC), with disturbed 
protein functions were used as positive controls for locomotion speeds. While CB950 and 
RM2005 showed significantly lower moving speed, both average speed and maximum speed, 
from day 1 adult stage to day 4 and day 7 adult stage, only unc-75(ix266) showed a slightly 
significant difference in average speed at day 7 adult stage (Figure 3.7A and B). However, 
in another independent trial with some other circRNA KO strains, unc-75(ix266) did not 
show any difference in either average speed or maximum speed (Figure 5.7A and B). 
Locomotion speeds of double circRNA KO strains were also tested together with single 
circRNA KO strains and wild-type N2 strain. None of them showed any significant 
difference in moving speed at day 7 adult stage (Figure 5.7C and D). 
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Figure 3.6 Chemotaxis index (CI) towards 20% 1-propanol comparisons between wild-type N2 
strain and circRNA KO strains. (A) Scheme showing the 10-cm plate used for chemotaxis assay. 
Positions of odor and control, the starting point of worms are labeled. (B, C, and D) Independent 
results performed on different days with different strains. Day 1 adult worms were used. Error bars 
are standard deviations. ns, not significant, one-way ANOVA with Dunnett’s multiple comparisons 
with N2 group. 

 

Further, aldicarb resistance assay and lifespan assay were also tested (Figure 5.8 and Figure 
5.9). In the aldicarb resistance assay, differences were observed in two independent trials 
between zip-2(ix270) and N2 (Figure 5.8A and B, Table 5.1 and 5.2). However, in another 
separate trial blind to the genotypes, no difference was observed (Figure 5.8C, Table 5.3). 
For lifespan results, no stable differences in lifespan were observed in the tested circRNA 
KO strains (Figure 5.9, Table 5.4, 5.5, and 5.6). 

In summary, none of these circRNA KO strains showed any obvious or stable phenotypes in 
the tested assays, suggesting these circRNAs were not involved in these processes. 
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Figure 3.7 Locomotion speed comparisons in different strains at different ages. (A) Average 
speed comparisons. (B) Maximum speed comparisons. Error bars are standard deviations. *, p < 
0.05; ****, p < 0.0001; ns, not significant, one-way ANOVA with Dunnett’s multiple comparisons with 
N2 group. 
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3.2.4 Transcripts that skip circRNA-forming exon(s) were identified in some circRNA 
genes 

circRNA production has been correlated with exon-skipping that skips the circularized 
exon(s) (35, 38-40) (Figure 3.8A). In the RNA-seq data of sorted neurons and whole worms, 
reads mapped to the skipped junctions can be identified in some circRNA genes (Figure 3.8B 
and Figure 5.10A), suggesting the existence of skipped transcripts. For zip-2 and Y20F4.4, 
RT-PCR using primers that bracket circRNA-producing exon(s) gave two bands, of which 
the longer ones were full-length transcripts, and the shorter ones were confirmed to be the 
skipped transcripts (Figure 3.8C and Figure 5.10C). For some other circRNA genes, the 
skipped transcripts could be amplified in two-round PCR cycles, in which the corresponding 
skipped transcripts were gel-cut purified after first-round PCR, which were used as the 
templates for a second-round PCR (Figure 5.10B and C). In total, skipped transcripts were 
confirmed in six out of seven chosen circRNA genes, in which only iglr-3 gave poor 
sequencing results of the amplified band (Figure 5.10C).  

 

Figure 3.8 Identification of skipped transcripts in circRNA genes. Modified from (148). (A) 
Illustration of three types of transcripts in a circRNA gene. Positions of primers used for amplification 
of both the full-length and the skipped transcript are shown. (B) Sashimi plot showing numbers of 
reads aligned to the skipped junction (exon-skipping), the back-spliced junction (back-splicing), and 
the canonical splicing junction between exon 4 and exon 5 (canonical splicing) in zip-2. Exons in the 
red rectangle are to form circ-zip-2. (C) Detection of both full-length and the skipped transcripts by 
RT-PCR in zip-2 and Y20F4.4. RNA samples from the L1 stage of N2 worms were used. Amplified 
bands were resolved on a 2% agarose gel.  
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3.2.5 RCMs simultaneously promote back splicing and exon skipping 

Previous studies have shown that complementary sequences in different introns regulate 
mutually exclusive splicing (151-153). Since the correlated exon-skipping and circRNA 
formation use the same pair of introns, it is possible that RCMs in these introns also affect 
exon-skipping. 

In Y20F4.4, deletion of the downstream RCM abolished circRNA formation and did not 
affect the splicing of the full-length transcript; however, the skipped transcript seemed to be 
affected (Figure 3.9A). Quantification of the three transcripts in Y20F4.4 showed that both 
the circRNA and the skipped transcript levels were strongly decreased after removing the 
downstream RCM sequences (Figure 3.9B). In arl-13, deletion of the upstream RCM 
eliminated circRNA formation, but the skipped transcript could still be detected (Figure 
3.9C). Quantification results showed that the skipped transcript was downregulated in the 
RCM-deleted strain (Figure 3.9D).  

In zip-2, two pairs of perfectly matched RCMs, 7 nt and 13 nt in length, respectively, were 
identified (Figure 3.9E and Figure 5.11A). The RCM sequences in intron 1 and intron 4 were 
referred to as RCM1 and RCM2, respectively. Deletions of the RCMs were achieved by 
CRISPR-Cas9, which gave two strains: zip-2(ix310) and zip-2(ix311) (Table 5.7, Figure 5.11 
and Figure 5.12B and C). Canonical splicing of intron 1 and intron 4 was not affected by 
RCM deletions (Figure 3.9F, Exon 1-2 & Exon 4-5). However, although the circRNA and 
skipped transcript can be detected in the RCM-deleted strains, their production seemed not 
as efficient as in the wild-type N2 strain (Figure 3.9F, circ & skip). Levels of the three 
transcripts of zip-2 (circular, skipped, full-length linear) were quantified by RT-qPCR. The 
results showed that while full-length linear zip-2 was only slightly affected, both the 
circRNA and the skipped transcript were dramatically reduced in both RCM-deleted mutant 
strains (Figure 3.9G and H).  

Together, these findings suggest that RCMs in the flanking introns of circRNA-producing 
exon(s) also promote the skipping of these exon(s). 
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Figure 3.9 RCMs promote both back-splicing and exon-skipping. Modified from (148). (A) RT-
PCR detection of Y20F4.4 transcripts in wild-type N2 strain (wt) and the RCM-deleted Y20F4.4(ix269) 
strain (mut). Positions of deleted RCM sequences are in red. (B) RT-PCR detection of arl-13 
transcripts in wild-type N2 strain (wt) and the RCM-deleted arl-13(ix262) strain (mut). (C) RT-qPCR 
quantification of Y20F4.4 transcripts in wild-type N2 strain and Y20F4.4(ix269) strain. (D) RT-qPCR 
quantification of arl-13 transcripts in wild-type N2 strain and arl-13(ix262) strain. (E) Illustration of the 
gene structure of zip-2. P1-P6: positions of primers. Black rectangles indicate coding regions and 
white parts are untranslated regions (UTRs). RCM areas are in red. (F) RT-PCR detection of 
transcripts from zip-2 gene in wild-type N2 strain and RCM-deleted strains. RCM1: zip-2(ix310), 
RCM2: zip-2(ix311). (G, H) RT-qPCR quantification of zip-2 transcripts in RCM-deleted strains (zip-
2(ix310) and zip-2(ix311)) compared with wildtype N2 strain. (C, D, G, H) Results are normalized to 
levels in N2 strain using pmp-3 as the reference gene. Error bars are the standard deviations of three 
biological replicates. ***, p < 0.001, ****, p < 0.0001, two-tail Student’s t-test. For all the RT-PCR and 
RT-qPCR results, RNA samples were from the L1 stage of the indicated strains.  
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3.2.6 RCM sequences in zip-2 are highly conserved across several nematode species 

Competing RNA secondary structures formed by base-pairing between introns that regulate 
mutually exclusive splicing are evolutionally conserved (154, 155). One study has also 
shown that conserved complementary sequences in introns are associated with exon-
skipping (156). I then checked whether RCM sequences in zip-2 are conserved or not. 
Ortholog genes of zip-2 exist in five nematode species (C. elegans, C. brenneri, C. briggsae, 
C. japonica, and C. remanei). These zip-2 genes have similar gene structures (Figure 5.13). 
Sequences in the upstream introns and downstream introns of these zip-2 genes were aligned. 
Of the two pairs of RCMs in zip-2 of C. elegans, the 13-nt RCMs are highly conserved across 
the five nematode species, both in the upstream introns and the downstream introns (Figure 
3.10A and B). From available splicing data on WormBase, transcripts that skip exons 
bracketed by the conserved RCMs were found in all these zip-2 genes (Figure 5.13, red 
arrows), suggesting the conserved RCMs possibly promote the conserved exon-skipping in 
all these zip-2 genes. 

 

 

Figure 3.10 The 13-nt RCM sequences in zip-2 are highly conserved in five nematode species. 
Modified from (148). Alignment of upstream (A) and downstream (B) intronic sequences in ortholog 
zip-2 genes in indicated nematode species. Red lines underline the 13-nt RCM sequences in zip-2 
of C. elegans. 
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3.2.7 RCMs do not promote exon-skipping through back-splicing, neither the other 
way 

Current knowledge suggests that RCMs promote circRNA formation by bringing the 
splicing sites for back-splicing in close proximity. Since the correlated back-splicing and 
exon-skipping use the same pair of introns, it is possible that RCMs also bring the splice 
sites for exon-skipping together. In principle, the y-shaped intermediate of back-splicing 
could be further spliced to form the corresponding skipped transcripts. Moreover, a previous 
study has shown that circRNA can be produced through a lariat intermediate produced by 
exon-skipping (36).  

Whether RCMs promote exon-skipping first or back-splicing first? There are three 
possibilities: 1). RCMs promote back-splicing first; 2). RCMs promote exon-skipping first; 
3). RCMs promote both back-splicing and exon-skipping directly at the same time (Figure 
3.12). In order to clarify the three possibilities, the four splice sites (ss) and two branch points 
(BP) in intron 1 and intron 4 of zip-2 were mutated one by one by CRISPR-Cas9 (Table 5.8 
and Figure 5.14). The 5’ss in intron 1, BP, and 3’ss in intron 4 are used for exon-skipping; 
hence these sites are named skip-5’ss, skip-BP, and skip-3’ss, respectively. Similarly, BP 
and 3’ss in intron 1 and 5’ss in intron 4 are named circ-BP, circ-3’ss, and circ-5’ss, 
respectively (Figure 3.11A). For ss mutation, the conserved AG or GT nucleotides were 
deleted, and some possible cryptic splice sites nearby were mutated (Figure 5.15A and B). 
For BP mutation, since there is little information about BP sites in C. elegans (157), all A 
nucleotides were changed to G nucleotides in the 3’ half of intron 1 and intron 4, without 
disturbing the RCM sequences. (Figure 5.15A and B). 

Then, zip-2 transcripts were detected by RT-PCR using different primer sets (Figure 3.11B 
and Figure 5.16B). Mutation of ss and BP for exon-skipping (skip-5’ss, skip-3’ss, or skip-
BP) sufficiently abolished zip-2-skip. However, circ-zip-2 was still produced in these strains 
(Figure 3.11B). For mutations of ss/BP required for back-splicing, circ-3’ss mutation 
produced a circRNA using a noncanonical AA site (158) (Figure 3.11B, Figure 5.15B, and 
Figure 5.16A). circ-5’ss and circ-BP mutation both blocked circRNA formation, but the 
skipped product can still be detected (Figure 3.11B). These results suggest that in zip-2, 
exon-skipping is not absolutely required for back-splicing and vice versa. RCMs can 
promote both exon-skipping and back-splicing directly at the same time. 
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Figure 3.11 Detection and quantification of zip-2 transcripts in ss/BP mutated strains. Modified 
from (148). (A) Gene structure of zip-2. P1-P6: positions of primers. Positions of splicing sites and 
branch points required for back-splicing and exon-skipping are labeled. Positions of RCMs are in red. 
(B) RT-PCR detection of zip-2 transcripts in wild-type N2 strain and strains with mutated ss or BP. 
Note the cryptic splicing in the circ-3’ss strain. RNA samples from L1 worms were used for reverse 
transcription. (C) RT-qPCR quantification of levels zip-2 circRNA (circ-zip-2), the skipped transcript 
(zip-2-skip), and the full-length linear transcript (L-zip-2) in the L1 stage of the indicated ss mutation 
strains and BP mutation strains. Results are normalized to levels in N2 strain using pmp-3 as 
reference gene. Error bars are the standard deviations of three biological replicates. n.d.: not 
detected. ***, p < 0.001, ****, p < 0.0001, Two-tail Student’s t-test. 
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Next, the levels of circ-zip-2, zip-2-skip, and L-zip-2 in these mutant strains were quantified 
by RT-qPCR (Figure 3.11C). For L-zip-2 quantification, primer set (P1 +P2) was used when 
mutated sites are in intron 4, and primer set (P3 + P4) was used when mutated sites are in 
intron 1. As expected, zip-2-skip was either undetectable or reduced to very low levels in 
strains with skip-5’ss, skip-3’ss, or skip-BP mutated. However, circ-zip-2 in these three 
strains was either increased or decreased. Similar things were observed in strains with circ-
BP, circ-3’ss or circ-5’ss mutated. Although circ-zip-2 could be produced using the cryptic 
AA site in the circ-3’ss strain, the efficiency was much lower (Figure 3.11C, lower middle). 
circ-zip-2 was sufficiently blocked in all these three strains. However, zip-2-skip showed 
increased levels in two strains (circ-BP and circ-3’ss) and a decreased level in the circ-5’ss 
mutated strain. 

Interestingly, when the mutated sites were in the upstream intron (intron 1: skip-5’ss, circ-
BP, and circ-3’ss), the transcripts that do not use the mutated sites, either circ-zip-2 or zip-
2-skip, were all increased (Figure 3.11C, intron 1). Also, the full-length linear mRNA was 
all increased in these mutants (Figure 3.11C, intron 1). Linear mRNA’s increase may be due 
to enhanced transcription or increased stability after mutations in intron 1. If the transcription 
of zip-2 is somehow enhanced by mutation of ss/BP in intron 1, it is reasonable that all the 
transcripts of zip-2 get increased. If the increase of L-zip-2 is not due to transcription 
enhancement, increased circ-zip-2 or zip-2-skip in these mutated strains may be due to the 
competition of back-splicing and exon-skipping with the canonical splicing of intron 1. Since 
splicing is always happening during transcription (159), mutation of ss or BP in intron 1, 
which results in the intron retention or low-efficient splicing (Figure 5.14B), could increase 
the possibility to use the splicing sites in downstream introns, which could be either exon-
skipping or back-splicing. 

When the mutated sites were in the downstream intron (intron 4: circ-5’ss, skip-BP, and 
skip-3’ss), the transcripts that did not use the mutated sites were all decreased (Figure 3.11C, 
intron 4). Levels of full-length linear mRNA of zip-2 did not change so much in these three 
strains. These results suggest that circ-zip-2 could be produced from the exon-skipping 
pathway through the lariat intermediate (Figure 3.12). Also, zip-2-skip could be formed from 
the y-shaped intermediate of the back-splicing pathway (Figure 3.12). 
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Figure 3.12 A proposed model that RCMs directly promote both back-splicing and exon-
skipping at the same time. Adopted from (148). (1) Canonical splicing to form full-length linear 
mRNA. (2) RCMs facilitate circRNA formation by bringing splice sites for back-splicing sites together. 
The y-shaped intermediate is further spliced to form the skipped transcript. (3) RCMs promote exon-
skipping by bringing splice sites for exon-skipping together. The lariat intermediate is further back-
spliced to form circRNA. RCMs in the y-shaped intermediate and the lariat intermediate may help the 
second splicing steps. 
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3.3 circRNA regulation by RNA-binding protein FUST-1 

Previous studies have shown that circRNAs are expressed in a tissue-specific and well-
regulated manner (52, 66, 68, 78, 127, 160), suggesting the existence of specific factors that 
regulate circRNA production. Here, taking advantage of the available RBP mutants in C. 
elegans, I aimed to identify potential circRNA regulators. 

Of note, except for results in Chapter 3.3.5 and 3.3.6, all results in Chapter 3.3 were from 
the author’s published paper with modifications (161). 

3.3.1 RBP screening identifies FUST-1 as a circRNA regulator 

Several previously identified circRNAs that were either neuron-enriched or highly expressed 
in neurons were selected as targets (Figure 3.3D) (148). Thirteen RBPs that are conserved 
and have expressions in the neurons were chosen as potential regulators (162). Using mutant 
strains of these RBPs, a screening by RT-qPCR was performed to check the level changes 
of selected circRNAs in these mutant strains compared with wild-type N2 strain at the L1 
stage (Figure 3.13A). As expected, levels of some circRNAs were altered in these mutant 
strains. Interestingly, most level changes of the selected circRNAs in these mutants were 
downregulations, suggestive of these RBPs’ beneficial roles in circRNA production. 
Moreover, multiple neuron-enriched circRNAs (circ-glr-2, circ-iglr-3, circ-arl-13, circ-
cam-1) were found to be downregulated in several strains (asd-1(csb32), tiar-3(csb35), fox-
1(csb39), mec-8(csb22), hrpf-1(csb26), and fust-1(csb21)), suggesting the regulation of 
these circRNAs by multiple RBPs. This is consistent with their roles in alternative splicing, 
where combinational regulation of one target by multiple RBPs is common in C. elegans 
(163). In line with this, no additive effect in circRNA regulation was found in fust-1(csb21); 
hrpf-1(csb26) double mutant strain compared with fust-1(csb21) single mutation (Figure 
5.17A), suggesting that these RBPs may function as parts of a whole RNA-protein complex. 

In these strains, fust-1(csb21) showed the most substantial downregulation of multiple 
circRNAs (Figure 3.13A). Hence it was chosen for further investigation. The fust-1(csb21) 
strain was made by replacement of fust-1 genomic sequences with a pharynx::GFP::NeoR 
fragment by CRISPR-Cas9 (162) (Figure 3.13B). The downregulation of these circRNAs 
was also found in another fust-1 mutant strain fust-1(tm4439), which has a 240-bp deletion 
in intron 2 and exon 3 (Figure 3.13B and C). To further confirm the role of fust-1 in circRNA 
regulation, a rescue strain (fust-1(csb21); Ex[fust-1::mRFP]) and an overexpression strain 
(Ex[fust-1::mRFP]) were made with extrachromosomal expression of the fust-1 genomic 
sequences, starting from the promoter (2181 bp upstream ATG) to just before the stop codon. 
Monomeric red fluorescent protein (mRFP) was fused to the C-terminal to check expression 
patterns. The expression of FUST-1 was mainly in the nuclei of neurons and intestinal cells 
(Figure 3.13D, Figure 5.17B and C). The mRFP-positive L1 worms from the rescue strain 
and the overexpression strain were sorted, and levels of the circRNAs were checked by RT-
qPCR. As expected, the levels of downregulated circRNAs were restored in the rescue strain, 
confirming fust-1’s role in promoting circRNA production (Figure 3.13E). The fust-1(csb21) 
strain also showed another phenotype of lower average moving speed at day three adult stage 
when cultured at 25oC, which was also recovered in the rescue strain (Figure 3.13F). 
Although multiple copies of fust-1 existed in the extrachromosomal arrays of the rescue and 
the overexpression strain (Figure 5.17D), these strains did not show much further 
improvement in circRNA levels or improvement in locomotion speed (Figure 3.13E and F). 
This may be because of post-transcriptional regulation of fust-1 or saturation of FUST-1 
protein.   
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Figure 3.13 RBP screening identifies FUST-1 as a circRNA regulator. Modified from (161). (A) 
Heatplot showing the fold changes of circRNAs in 13 RBP mutant strains compared with wild-type 
N2 strain. Foldchanges are quantified by RT-qPCR and normalized to the N2 strain using pmp-3 as 
the reference gene. RNA samples were from L1 worms of the indicated strains. Blue color means 
downregulation and red color means upregulation. (B) Gene structure of fust-1 in wildtype N2 strain, 
fust-1(csb21), and fust-1(tm4439) strain. (C) RT-qPCR quantification of circRNA levels at the L1 
stage of wild-type N2 strain and fust-1(tm4439) strain.  Levels are normalized to the N2 strain using 
pmp-3 as the reference gene. Results are shown as mean ± sd of three biological replicates. Two-
tailed Student’s t-test.  p<0.05, **p < 0.01, ***p < 0.001. (D) Representative images showing the 
expression pattern of mRFP-fused FUST-1 in fust-1(csb21) strain. Worm stage: day 1 adult. Note 
the pharyngeal GFP expression in fust-1(csb21). Scale bars: 50 μm. (E) RT-qPCR quantification of 
circRNAs at the L1 stage of the indicated strains. Levels are normalized to the N2 strain using pmp-
3 as the reference gene. Results are shown as mean ± sd of three biological replicates. (F) Average 
moving speed of day 3 adult worms raised at 25oC with the indicated genotypes. Numbers in brackets 
are numbers of worms used for moving speed measurement. Results are shown as mean ± sd. (E, 
F) One-way ANOVA, Tukey’s multiple comparisons. *p<0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; 
ns, not significant. 
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3.3.2 FUST-1 regulates circRNAs without affecting the cognate linear mRNAs 

Next, to clarify whether FUST-1 promotes circRNA production by transcription promotion 
or not, levels of circRNAs and their cognate linear mRNAs were compared between the N2 
strain and fust-1(csb21) strain at the L1 stage. While levels of these circRNAs were 
downregulated, their linear mRNA levels were not affected by the loss of FUST-1 (Figure 
3.14A), indicating that FUST-1’s role in circRNA production is not through promoting 
transcription. Using probes that hybridize to the circularized exons, which can detect both 
full linear and circular transcripts, I quantified L-zip-2 and circ-zip-2 between fust-1(csb21) 
and N2 strains by northern blot (Figure 3.14B and C). The results showed that while circ-
zip-2 was ~50% downregulated, L-zip-2 was not slightly affected (Figure 3.14B and C).  

To check the regulation of circRNA by FUST-1 globally, I performed RNA sequencing 
(RNA-seq) with ribosomal RNA depletion to compare differentially expressed circRNAs 
between fust-1(csb21) strain and wild-type N2 strain at the L1 stage. Similarly, circRNA 
annotation was performed using DCC (131), and differential expression was performed 
using DESeq2 (133). Both mRNAs and circRNA clustered separately in the PCA plots 
(Figure 5.18A and B). In total, 1266 circRNAs from 1199 annotated genes and 20 not-
annotated loci were annotated with at least three BSJ reads in either group, with 916 in N2 
strain and 849 in fust-1(csb21) strain (Figure 3.14D). TPM values of circRNAs were 
compared between the two strains. circRNAs in the N2 strain showed significantly higher 
TPM values than those in fust-1(csb21) strain (paired Wilcoxon test, p < 2.2e-16) (Figure 
3.14E), indicating general promotional roles of FUST-1 in circRNA production, although 
some circRNAs were upregulated without FUST-1 (Figure 3.14F). Then, to check whether 
level changes in circRNA correlate with their cognate linear mRNAs, the fold changes of 
circRNA were plotted against those of their cognate mRNAs . The results showed a weak 
correlation (Pearson’s correlation coefficient R = 0.27, p = 3.5e-05) of circRNAs with 
baseMean bigger than 3 (Figure 3.14F). The correlation was even weaker when all the 
circRNAs from annotated genes were considered (Figure 5.18C, Pearson’s correlation 
coefficient R = 0.14, p = 7.4e-07). These results were consistent with the finding that FUST-
1 regulates circRNAs without disturbing the cognate linear mRNA levels (Figure 3.14A).  

Next, I asked whether FUST-1 has preferences in the regulation of neuronal circRNAs. The 
circRNAs identified in the “N2-fust-1(csb21)” dataset were compared with the previous 
“sort & whole” dataset (section 3.1), which gave 726 overlapped circRNAs (Figure 5.18D). 
Fold changes of the 726 overlapped circRNAs between N2 and fust-1(csb21) were plotted 
against those between the sort group (sorted neuron samples) and the whole group (whole 
worm samples). The results showed no correlation (Figure 3.14G, Pearson’s correlation 
coefficient R = -0.038, p = 0.3), suggesting that FUST-1 has no preferences for neuronal 
circRNAs. 
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Figure 3.14 FUST-1 regulates circRNAs without affecting the cognate linear mRNAs. Modified 
from (161). (A) RT-qPCR quantification of circRNAs and their linear mRNAs at the L1 stage in the 
N2 strain and fust-1(csb21) strain. Levels are normalized to the N2 strain using pmp-3 as the 
reference gene. Results are shown as mean ± sd of three biological replicates. Two-tailed Student’s 
t-test. ***p < 0.001, ****p < 0.0001; ns, not significant. (B) Northern blot detection zip-2 transcripts, 
both linear and circular, and act-1 in the L1 stage of N2 strain and fust-1(csb21) strain. Total RNA 
samples (5 μg per lane) of 3 biologicla replicates from L1 worms were used. (C) Quantification of 
northern blot results in (B), normalized to N2 strain using act-1 as the reference gene. Results are 
shown as mean ± sd. Two-tailed Student’s t-test. **p < 0.01, *** p < 0.001. (D) Overlap of circRNAs 
detected in the RNA-seq results of N2 strain and fust-1(csb21) strain. (E) TPM (transcripts per million 
reads) comparison of all circRNAs between N2 and fust-1(csb21). P value indicates paired Wilcoxon 
test. (F) Scatter plot showing the log2 fold changes of 224 circRNAs with baseMean > 3 versus log2 
fold changes of their corresponding linear mRNAs. The Pearson correlation coefficient (R) and p 
value (p) are shown. Names of several circRNA genes are labeled. (G) Scatter plot showing the log2 
fold changes of 726 overlapped circRNAs between the “N2-fust-1(csb21)” dataset and the “sort-
whole” dataset. The Pearson correlation coefficient (R) and p value (p) are shown. 
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3.3.3 FUST-1 binds to pre-mRNAs of circRNA genes 

FUS binds to flanking introns of circRNA genes in N2a cells (61). I next checked whether 
FUST-1 in C. elegans recognizes pre-mRNAs of circRNA genes to regulate circRNA 
formation. Using CRISPR-Cas9 technology, I inserted the FLAG tag to the N terminal, just 
after the start codon, or to the C-terminal, just before the stop codon, respectively (Figure 
3.15A and Figure 5.19A). The effect of FLAG-tag insertion on FUST-1’s role in circRNA 
regulation was evaluated. While N-terminal FLAG insertion showed slight increases in 
circRNA levels, C-terminal FLAG tag fusion affected FUST-1’s function in circRNA 
regulation in multiple circRNAs (Figure 5.19B and C). Hence N-terminal FLAG fused 
FUST-1 strain was used for the co-immunoprecipitation (Co-IP) experiment. Dynabeads 
Protein G conjugated with anti-FLAG antibody (+Ab) were used for Co-IP. Beads only (-
Ab) were used as the negative control. As expected, the anti-FLAG antibody successfully 
enriched FLAG::FUST-1 after Co-IP (Figure 3.15B and Figure 5.19D). Then the levels of 
pre-mRNAs of circRNA genes were quantified by RT-qPCR. Threshold cycle (Ct) values 
were used for comparison. Lower Ct values indicate higher levels. While rRNA control (18S 
rRNA and 26S rRNA) was depleted after Co-IP, all the pre-mRNAs of circRNA genes were 
enriched compared with input samples (Figure 3.15C). Moreover, these pre-mRNAs showed 
significate lower Ct values than those of control groups without using of antibody (Figure 
3.15C), suggesting that FUST-1 binds to pre-mRNAs of the circRNAs genes to regulate 
circRNA formation. 

 

Figure 3.15. FUST-1 binds to pre-mRNAs of circRNA genes. Modified from (161). (A) Sequence 
confirmation for N-terminal fusion of the FLAG tag just after the start codon of FUST-1. Note the position of 
gRNA and the mutated PAM site (AGG>AGC). (B) Western blot showing the co-immunoprecipitation (Co-IP) 
of FLAG::FUST-1. (C) Ct value changes of pre-mRNAs of some circRNA genes before and after Co-IP of 
FLAG::FUST-1 with or without anti-FLAG antibody. Results from 3 biological replicates are shown. Paired 
two-tailed Student’s t-test. *p < 0.05, **p < 0.01, ns, not significant. 



 

48 
 

3.3.4 FUST-1 regulates both exon-skipping and back-splicing 

In section 3.2.4, transcripts that skip the exons to be circularized were identified in several 
circRNA genes. As the homolog of FUST-1 in humans and mice, FUS is involved in the 
regulation of AS of many genes by binding to their pre-mRNAs (164-166). Since FUST-1 
binds to the pre-mRNAs of these circRNA genes, I then checked whether FUST-1 regulates 
exon-skipping or not. In zip-2, reads aligned to the skipped junction were much less in fust-
1(csb21) strain (27.0 reads on average) than those in wild-type N2 strain (71.3 reads on 
average) (Figure 3.16A). The RT-qPCR quantification results also showed that both the 
circRNA and the skipped transcript in zip-2 were downregulated without FUST-1 (Figure 
3.16B). In arl-13, while the circRNA got downregulated in fust-1(csb21), the skipped 
transcript was weakly upregulated (Figure 3.16C). These results suggest that FUST-1 may 
function differently in different genetic environments.  

 

Figure 3.16 FUST-1 regulates both exon-skipping and back-splicing. Modified from (161). (A) 
Sashimi plot showing numbers of reads aligned to the canonical splice junction, the skipped junction, 
and the back-splice junction in zip-2. Exons in the red rectangle are circularized. (B, C) RT-qPCR 
quantification of levels of the circular, skipped, and full-length linear transcripts in zip-2 (B) and arl-
13 (C) between wild-type N2 strain and fust-1(csb21) strain. RNA samples were from L1 worms. 
Levels are normalized to the N2 strain using pmp-3 as the reference gene. Results are shown as 
mean ± sd of three biological replicates. Two-tailed Student’s t-test. *p < 0.05, **p < 0.01, *** p < 
0.001, ns, not significant. 
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3.3.5 The 5’ splice site of exon-skipping and back-splicing are important for FUST-1’s 
role in regulating back-splicing and exon-skipping, respectively 

Next, I asked whether FUST-1 regulates exon-skipping and back-splicing independently or 
not. Taking advantage of the zip-2 ss/BP mutant strains generated in section 3.2.7, I crossed 
them with fust-1(csb21) and obtained six ss/BP-fust-1 double mutation strains. 

Since mutation in circ-ss/BP and skip-ss/BP sufficiently blocked the production of circ-zip-
2 and zip-2-skip, respectively (Figure 3.11), I compared the levels of zip-2-skip between circ-
ss/BP single mutation strains and the corresponding circ-ss/BP-fust-1 double mutation 
strains. Similarly, levels of circ-zip-2 were compared between skip-ss/BP and the 
corresponding skip-ss/BP-fust-1 strains. In this way, we can tell whether FUST-1 still 
promotes back-splicing when exon-skipping is abolished and whether FUST-1 still promotes 
exon-skipping when back-splicing is blocked. Linear full-length zip-2 mRNA was also 
quantified. 

As shown in Figure 3.17B (middle and right panels), FUST-1 still promotes exon-skipping 
when circ-3’ss or circ-BP was mutated. However, when circ-5’ss was mutated, loss of 
FUST-1 has no effect on the level of zip-2-skip (Figure 3.17B, left panel), suggesting that 
the 5’ss of back-splicing (circ-5’ss) is important for FUST-1 to regulate exon-skipping. 
Similar results were found between skip-ss/BP and skip-ss/BP-fust-1 comparisons: while 
circ-zip-2 got downregulated in the absence of FUST-1 in the skip-3’ss or skip-BP 
background (Figure 3.17C, middle and right panels), its level did not change without FUST-
1 when skip-5’ss was mutated (Figure 3.17C, left panel), suggesting that skip-5’ss is 
involved in FUST-1’s role in back-splicing regulation. 

Since 5’ss is involved in the interaction with U1 snRNP, I then asked whether FUST-1 
interacts with components in U1 snRNP. Previous studies have shown that FUS in humans 
interacts with U1 snRNP (167, 168). Particularly, a recent paper showed that FUS in humans 
directly binds to stem-loop 3 of U1 snRNA and sequences in introns to regulate splicing 
(169). Hence, I checked whether FUST-1 could bind to U1 snRNA. As expected, U1 snRNA 
in C. elegans got significantly enriched after Co-IP of FLAG::FUST-1 (Figure 3.17D).  

Intron 1 and intron 4 in zip-2 are quite short, and secondary structures can be formed by base 
pairing between RCMs. Hence the spliceosome complexes formed for exon-skipping and 
back-splicing may be very close spatially. FUST-1 in the exon-skipping complex may 
interact with the back-splicing complex and promote back-splicing efficiency. Similarly, 
FUST-1 in the back-splicing complex may also interact with the exon-skipping complex and 
promote exon-skipping efficiency (Figure 3.17E). 
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Figure 3.17 zip-2 transcripts in ss/BP-fust-1 double mutant strains compared with ss/BP single 
mutant strains. (A) Gene structure of the zip-2 gene. (B, C) RT-qPCR quantification of zip-2 transcripts 
between the ss/BP single mutation strains and the corresponding ss/BP-fust-1 double mutation strains. RNA 
samples were from L1 worms. Levels are normalized to the ss/BP single mutation strains using pmp-3 as the 
reference gene. Results are shown as mean ± sd of three biological replicates. Two-tailed Student’s t-test. 
**p < 0.01, *** p < 0.001, ns, not significant. (D) Ct value changes of U1 snRNA before and after Co-IP of 
FLAG::FUST-1 with or without anti-FLAG antibody. Results from 3 biological replicates are shown. Paired 
two-tailed Student’s t-test. **p < 0.01. (E) A model showing that FUST-1 binding to the skip-5’ss promotes 
back-splicing, and FUST-1 binding to circ-5’ss promotes exon-skipping. 
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3.3.6 FUST-1 knock-in mutants affect circRNA levels 

Many naturally occurred mutations in FUS are found in the C-terminal nuclear localization 
signal (NLS) region, which cause cytoplasmic mislocalization and aggregation of FUS (170, 
171). Several residues in the C-terminal of FUST-1 are conserved to those in the NLS of 
human FUS (Figure 3.18A). The R446S and P447L mutations in FUST-1 have been used to 
mimic R524S and P545L in FUS and result in disrupted autophagy and neuronal dysfunction 
in C. elegans (172). Here, I designed the same mutated sites in FUST-1 and tagged them 
with mRFP to check whether these mutations affect nuclear localization and circRNA 
production (Figure 3.18B). The insertion of mutated sites and mRFP was achieved by 
CRISPR-Cas9, and the sequences were confirmed (Figure 5.20A).  

While R446S mutation did not obviously affect the nuclear localization of FUST-1, P447L 
mutated FUST-1 was found ubiquitously in the expressing cells (Figure 3.18C). At the egg 
stage, while wild-type FUST-1 and R446S FUST-1 were in the nucleus, P447L FUST-1 was 
absent from the nucleus, with expression only in the cytoplasm (Figure 5.20B). 

Next, circRNA levels in these strains were compared. The mutations did not significantly 
affect fust-1 mRNA levels (Figure 3.18D). Although R446S mutation did not change nuclear 
localization, all tested circRNA levels were affected (circ-zip-2, circ-arl-13, circ-iglr-3, 
circ-gpa-1) (Figure 3.18D), suggesting some other functions of the C-terminal of FUST-1. 
The P447L mutation also dramatically affected almost all the checked circRNA levels, with 
some circRNA (circ-iglr-3 and circ-gpa-1) levels even lower than those of the fust-1(csb21) 
strain (Figure 3.18D), indicating nuclear localization of FUST-1 is critical for its regulation 
on circRNA.  
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Figure 3.18. FUST-1 knock-in mutants affect circRNA levels. (A) C-terminal alignments of FUST-
1 in C. elegans and FUS in humans. (B) Scheme showing the mutated sites and position of mRFP 
tagging. (C) Confocal images showing the expression patterns of indicated strains. Note the loss of 
nuclear localization of P447L mutated FUST-1. Worm stage: day 1 adult. A: Anterior, D: Dorsal. Scale 
bar: 50μm. (D) RT-qPCR results of circRNA levels in the indicated strains at the L1 stage. Levels are 
normalized to the N2 strain using pmp-3 as the reference gene. Results are shown as mean ± sd of 
three biological replicates. n.d.: not detected. One-way ANOVA, Tukey’s multiple comparisons. **p 
< 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant. 
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3.4 An autoregulation loop in fust-1 for circRNA regulation 

The overexpression of FUST-1 genomic sequences in the N2 strain did not show much 
further enhancement in either circRNA levels or the locomotion speed (Figure 3.13E and F). 
These results suggest that there may be post-transcriptional mechanisms to regulate FUST-
1 protein functions. Of note, results in Chapter 3.4 were from the author’s published paper 
with modifications (161). 

3.4.1 An autoregulation loop in fust-1 

FUST-1 protein has two isoforms: FUST-1, isoform a (FUST-1a) is from the full-length 
transcript, and FUST-1, isoform b (FUST-1b) is from the transcript with skipped exon 5 
(Figure 3.19A). Moreover, FUST-1b is translated using a downstream AUG and a different 
reading frame (+1) compared with isoform a. The reading frame in FUST-1b becomes the 
same as in FUST-1a after the skipping of exon 5 (38 nt in length), which results in a shorter 
isoform with different N-terminal sequences. Still, the RNA recognition motif (RRM), zinc-
finger (ZnF) domain, and the nuclear localization signal (NLS) domain in FUST-1b are the 
same as in FUST-1a (Figure 3.19A). To check how these two isoforms are expressed, two 
plasmids with different colors and a nonsense mutation in the reading frame of either isoform 
a (fust-1a-mut::mRFP) or isoform b (fust-1b-mut::GFP) were constructed so that only the 
other isoform can be expressed (Figure 3.19A and Figure 5.21A). Co-injection of the two 
plasmids in wild-type N2 strain showed that the two isoforms of FUST-1 were co-expressed 
in the nuclei of the same cells: neurons and intestinal cells (Figure 3.19B and Figure 5.21B). 
Interestingly, in early eggs, FUST-1a was expressed earlier than FUST-1b (Figure 3.19C). 
Furthermore, the fust-1a-mut::GFP plasmid was poorly expressed in fust-1(csb21) strain, 
and co-injection with fust-1b-mut::mRFP can increase the GFP intensity (observation during 
transgenic strain preparation). These results gave a hint that FUST-1a may promote the 
production of FUST-1b.  

To prove this hypothesis, I constructed a dual-color splicing reporter (173, 174) of the 
skipping of exon 5 in fust-1 with a neuronal promoter (Figure 5.21), in which no skipping 
gives GFP expression while skipping of exon 5 results in mCherry expression. As expected, 
two colors were co-expressed in almost all the neurons in the wild-type strain (Figure 3.19D), 
suggesting that exon-skipping of exon 5 is happening in all the neurons. However, when the 
reporter plasmid was crossed into two fust-1 mutation strains, fust-1(csb21) and fust-
1(tm4439) (Figure 3.13B), the expression of mCherry was dramatically reduced (Figure 
3.19D and Figure 5.21D), indicating FUST-1 was involved in the exon-skipping of its own 
pre-mRNA. Since fust-1(csb21) strain has pharyngeal GFP expression (162) (Figure 3.13B 
and Figure 3.19D), neurons in the ventral nerve cord around the neck were used to quantify 
the mCherry-to-GFP intensity ratios (Figure 3.19D). The mCherry-to-GFP ratios were 
significantly reduced in both two fust-1 mutants, and they did not change in the mec-8(csb22) 
strain (Figure 3.19E and Figure 5.21D).  

Next, to prove that FUST-1a promotes the skipping of exon 5 of fust-1 pre-mRNA, I tried 
the rescue of mCherry expression of the splicing reporter in fust-1(csb21) by co-injection of 
the reporter plasmid with FUST-1a cDNA or FUST-1b cDNA, driven by the fust-1 original 
promoter (2181 bp upstream the ATG of FUST-1a). One more construct with truncated N-
terminal (FUST-1-ΔN) was also used (Figure 5.22A). Tail-expressing plasmid lin-
44p::mRFP was used as an injection marker. As expected, isoform a cDNA restored the 
mCherry expression of the splicing reporter, while isoform b cDNA did not (Figure 3.19F, 
Figure 5.22B and C), which confirms that FUST-1a promotes the skipping of exon-5 to 
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produce FUST-1b. Consistent with this, fust-1 pre-mRNA, detected by primers in intron 4 
of fust-1, was significantly enriched after Co-IP with FLAG::FUST-1, which only tagged 
FUST-1a (Figure 3.19G). To my surprise, the FUST-1-ΔN construct also rescued the 
mCherry expression, just as efficient as FUST-1a (Figure 3.19F and Figure 5.22D). Since 
the three isoforms have identical functional domains (RRM, ZnF, and NLS) with different 
N-terminal sequences (Figure 5.22A), these results suggest that the N-terminal sequences in 
isoform a may not be so crucial for its function, and the N-terminal in FUST-1b may prevent 
its domains from functioning normally.  

Taken together, I characterized an autoregulation loop in fust-1, in which FUST-1a promotes 
the skipping of exon 5 of fust-1 pre-mRNA, resulting in the production of FUST-1b. 

 

Figure 3.19. An autoregulation loop in fust-1. Modified from (161). (A) Gene structure of fust-1 
and the domains in FUST-1a and FUST-1b. Note the positions where nonsense mutations were 
introduced (Red asterisks). Lengths of amino acids in each isoform were labeled. RRM: RNA-
recognition motif; ZnF: Zinc-figure; NLS: nuclear localization signal. (B, C) Confocal images showing 
expression of FUST-1a and FUST-1b in the nuclei of neuron cells (B) and eggs (C). Worm stage: 
day 1 adult. Note that in early eggs, FUST-1a was expressed earlier than FUST-1b (white arrows). 
A: Anterior, D: Dorsal. Scale bars: 50 μm. (D) Representative confocal images showing the 
expression patterns of splicing reporter of fust-1 exon 5 in N2 strain and fust-1(csb21) strain. Inset 
squares show the enlarged neck neurons used for mCherry-to-GFP ratio quantification. Worm stage: 
day 1 adult. A: Anterior, D: Dorsal. Scale bars: 50 μm. (E, F) Quantification of mCherry-to-GFP ratios 
of the fust-1 exon5 splicing reporter in the indicated strains. Young adult to day 1 adult worms were 
used. One-way ANOVA, Tukey’s multiple comparisons. **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, 
not significant. (G) Ct value changes of fust-1 pre-mRNA before and after Co-IP of FLAG::FUST-1 
with or without anti-FLAG antibody. Primer positions are in intron 4 of fust-1 pre-mRNA. Results from 
3 biological replicates are shown. Paired two-tailed Student’s t-test. **p < 0.01. 
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3.4.2 FUST-1a is the functional isoform in circRNA regulation 

Next, to check which isoform of FUST-1 is functional in circRNA regulation, I tried to 
rescue the downregulated circRNAs in fust-1(csb21) with extrachromosomal expression of 
FUST-1 isoform cDNA with C-terminal mRFP fusion, in which either FUST-1a or FUST-
1b or FUST-1-ΔN is expressed (Figure 5.23). The mRFP-positive L1 worms were sorted, 
from which total RNA was extracted, and then circRNA levels were quantified by RT-qPCR. 
Same with their roles in exon-skipping, FUST-1a successfully rescued the downregulated 
circRNAs, whereas FUST-1b did not improve the downregulated circRNA levels at all, 
indicating that FUST-1a is the functional protein in circRNA regulation (Figure 3.20A). 
Although not as efficient as FUST-1a, FUST-1-ΔN fully rescued the downregulated circ-
zip-2 and circ-iglr-3 and partially restored circ-arl-13 level (Figure 3.20A).  

In an effort to generate strains with C-terminal mRFP tagging of FUST-1 isoforms, I 
achieved C-terminal mRFP insertion in fust-1 (fust-1::mRFP, section 3.3.6). Another 
obtained strain, in which intron 3 to intron 6 of fust-1 were removed, cannot use the 
autoregulation pathway, resulting in the expression of only FUST-1a (fust-1a::mRFP) 
(Figure 3.20B). I failed to obtain a strain that can only express mRFP tagged FUST-1b. 
Consistent with the extrachromosomal expression pattern of FUST-1 (Figure 3.13D, Figure 
5.17B and C), mRFP-tagged FUST-1 was mainly expressed in the nuclei of neurons and 
intestinal cells (Figure 3.20C). Moreover, FUST-1 was also found in the nuclei of gonads 
(Figure 3.20D), which was not observed in extrachromosomal expression, probably due to 
silencing of the multicopy transgenes in the germline (175). 

Levels of circRNAs were compared between the two strains. Out of the five checked 
circRNA, the levels of four circRNAs were altered in the strain only FUST-1a can be 
expressed (Figure 3.20E), suggesting the autoregulation loop is critical for FUST-1’s role in 
circRNA regulation.  

Some results from chapter 3.3 and chapter 3.4 have been published with modifications (161). 
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Figure 3.20 FUST-1a is the functional isoform in circRNA regulation. Modified from (161). (A) 
Rescue of circRNA levels by FUST-1 isoforms, quantified by RT-qPCR. cDNA samples from L1 
worms of indicated strains were used. (B) Illustration of the gene structures of fust-1 in wild-type N2 
strain, C-terminal mRFP fused fust-1 (fust-1::mRFP) strain, and the strain can only express FUST-
1a (fust-1a::mRFP). (C) Representative images showing expression patterns of FUST-1 in the 
indicated strains. Worm stage: young adult. A: Anterior, D: Dorsal. Scale bars: 50 μm. (D) Confocal 
images showing that FUST-1 is expressed in the gonad. Scale bar: 20 μm. (E) RT-qPCR 
quantification of circRNA levels at the L1 stage of indicated strains. (A, E) Levels are normalized to 
N2 strain using pmp-3 as the reference gene. Results are shown as mean ± sd of three biological 
replicates. One-way ANOVA, Tukey’s multiple comparisons. **p < 0.01, ***p < 0.001, ****p < 0.0001; 
ns, not significant.
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4. Discussion 

4.1 Large-scale neuron sorting 

In this study, I optimized a method for large-scale neuron isolation from L1 worms. The 
amount of obtained RNA from sorted neurons was increased for the first time to hundreds 
of nanogram scale, making the detection of circRNA by RNA-seq more reliable. This 
method can be readily expanded to the sorting of other types of cells for cell- or tissue-
specific transcriptome profiling. The “labeling-dissociation-sorting” method has been used 
to isolate specific cells from different developmental stages, from dissociated egg cells to 
adult cells (130, 140-145). One limitation of this method to isolate neuron cells is that 
neurites can get lost after dissociation and sorting. Unlike structured shapes of neuron cells 
in the worm body, most neurons show sphere shapes with little neurites after dissociation 
(Figure 3.1C and Figure 5.1B). The neurite structures may get broken during dissociation 
and sorting, or they may retract to the cell body after getting rid of their surrounding cells. 
In the former case, the RNA molecules in the neurite cannot be captured. Adding propidium 
iodide (PI) or other nuclear staining dyes can be used to label dead/broken cells, which can 
be helpful to exclude damaged neuron cells.  

4.2 Neuronal circRNA profile 

Using this method, I provided the first neuronal circRNA profiles in C. elegans and found 
that circRNAs were abundant in the neurons. Interestingly, circRNAs showing higher levels 
in the neurons tend to be derived from genes that also show higher expression in the neurons. 
Similar findings were reported in cultured neuron cells, where the increase in circRNA 
expression is often coupled to upregulation of their linear mRNAs during neuron 
differentiation (52). The time between egg to L1 is the first main period of neuron 
development in C. elegans. At the time of hatching, the majority of neurons (222/302) are 
already formed (176). The high levels of these circRNAs may be due to the active expression 
of their parental genes for neuron development at the L1 stage. However, there are 
exceptions. For example, the gene tbc-17 is a neuronal gene and produces two circRNAs 
from different exons. One of the two circRNA shows a positive correlation with its mRNA, 
but the other is depleted in the neurons (Figure 5.3C). Another example circ-pig-1, whose 
cognate mRNA is depleted in sorted samples, is enriched in the neurons (Figure 5.3C). 

4.3 RCMs’ roles in back-splicing and exon-skipping 

Intronic sequences are important for circRNA formation. Especially, Alu repeats in humans 
are abundant in circRNA-flanking introns (37). In Drosophila, there is no enrichment of 
complementary sequences in circRNA-flanking intron pairs (68). Rather, long flanking 
introns are strongly biased for circRNA formation (68). In C. elegans, circRNA-flanking 
introns have both features: much more RCM sequences and much longer lengths.  

For the first time, I validated that RCMs are required for circRNA formation in multiple 
circRNA genes. This provides a good method to knock out or knock down circRNAs in C. 
elegans. Particularly, RNAi in C. elegans produces secondary siRNAs that recognize 
sequences other than the primary targets in the same genes (177). The only difference in 
sequences between circRNAs and circRNA-producing exons in their linear mRNAs is the 
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BSJ sequences. Hence, even though siRNAs specific to the BSJ sequences are used, the 
secondary siRNAs produced will target the other sequences shared by the circRNAs and 
their cognate mRNAs, probably making circRNA-specific knockdown (KD) by RNAi not 
working in C. elegans. Except for developing the Cas13-based KD method (178, 179), 
disrupting RCMs sequences may be the only choice to disturb circRNA expression in C. 
elegans. Fortunately, CRISPR-Cas9 based genome editing is quite versatile and highly 
efficient in C. elegans (180). In the trials to make RCM deletions in the six circRNA genes, 
the ratios of picked F1 progeny that showed different genotypes than wild-type were between 
33% (5/15, unc-75) to 62% (10/16, gpa-1) (Figure 5.5), which means that there is a high 
probability of obtaining edited strains in less than five picked F1 progenies. Sometimes, only 
one injected P0 worm was needed to obtain the target genome editing, making screening 
much less labor-intensive. 

In zip-2, two short pairs of RCMs, 7 nt and 13 nt in length, were identified. To my best 
knowledge, they are the shortest identified cis elements that promote circRNA formation. 
These RCMs were filtered off in the autoBLAST algorithm (50), which was used for global 
RCM analysis in all circRNA introns (Figure 3.4B and C). This reminds us that special care 
is needed to identify cis elements that regulate circRNA formation when dealing with 
specific circRNA genes because short RCMs can also be crucial. Moreover, the 13-nt RCMs 
are highly conserved in the zip-2 ortholog genes in five nematode species, suggesting their 
roles in promoting exon-skipping and back-splicing could be conserved. 

The level changes of zip-2 transcripts in the ss/BP strains reflected some interesting results 
(Figure 3.11C). These results do not affect the conclusion that RCMs directly promote both 
back-splicing and exon-skipping at the same time. However, further experiments may be 
worth trying to check whether the increased levels of L-zip-2 after mutation of ss/BP in intron 
1 are due to transcription enhancement or stability enhancement. Many examples in plant or 
mammalian cells have shown that upstream introns near promoter regions can enhance 
transcription, which is known as the intron-mediated enhancement (IME) (reviewed in (181, 
182)). However, here in zip-2, disturbance of ss/BP in intron 1 resulted in increases in L-zip-
2 and the skipped or circular transcript, not decrease.  Moreover, deletion of RCM sequences 
in intron 1 did not increase L-zip-2 (Figure 3.9G), which suggests that the sites involved in 
splicing (ss/BP) are important, not the other sequences in intron 1.  

4.4 A new explanation to the correlation between exon-skipping and back-
splicing 

Currently, two models have been proposed to explain the correlation between exon-skipping 
and circRNA formation (37, 43): 1). RCM-promoted back-splicing produces circRNAs and 
y-shaped intermediates, which are further spliced to form skipped transcripts; 2). Exon-
skipping produces skipped transcripts and lariat intermediates, which are further back-
spliced to form circRNAs (Figure 3.12). The former is used for RCM-driven circRNA genes, 
and the latter pathway is for circRNA genes that lack RCM sequences. Here, for the first 
time, I show that RCM sequences in circRNA introns can simultaneously promote both 
back-splicing and exon-skipping. I further delineated that RCMs are not promoting exon-
skipping through back-splicing, neither the other way. Instead, the two pathways are 
happening together, directly promoted by RCM sequences. I propose that RCMs in the 
introns not only bring the splice sites for back-splicing to proximity but also bring the sites 
for exon-skipping together, facilitating both processes simultaneously. Since the RCMs still 
exist in the intermediates of back-splicing and exon-skipping, they may function twice to 
promote further splicing/back-splicing in these intermediates (Figure 3.12).  
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Previous studies of RCMs’ roles in circRNA regulation (31, 48) or splice sites required for 
back-splicing (29) were mainly based on plasmids in cultured cells. In this thesis, I show 
that C. elegans is a valuable model for in vivo investigation of circRNA biogenesis. 

4.5 Function of neuronal circRNAs 

The initial idea of obtaining the neuronal circRNA profile was to identify potentially 
functional circRNAs in the neurons. However, the circRNA-KO strains generated in this 
thesis did not show any obvious or stable phenotypes in several assays related to neuronal 
functions, like locomotion, chemotaxis, lifespan, and aldicarb resistance. The criterion used 
for circRNA selection was merely based on expression levels, which may not be reasonable 
enough. Currently identified functional circRNAs are more based on phenotype-driven 
screening, or reverse screening, where circRNAs related to a specific phenotype are defined 
first, which are further screened to identify the functional ones. This approach always 
requires circRNA profile comparison between assays with minimal differences in genetic 
background. For example, focusing on differentially expressed and potentially translatable 
circRNAs between glioblastoma and normal neuron samples, Zhang Nu’s lab reported 
multiple functional short proteins/peptides encoded by circRNAs involved in glioblastoma 
tumorigenicity (55, 112-115). Based on circRNA profile during aging in C. elegans (50), 
researchers in Dr. Pedro Miura and Dr. Alexander Van der Linden’s lab found a circRNA 
(circ-crh-1) regulating the lifespan (personal communication). Forward screening may be 
approachable if Cas13-based circRNA KD works well in C. elegans, making high-
throughput screening possible.  

Moreover, even if some phenotypes were observed in some circRNA-KO strains, they 
should be carefully interpreted because the linear mRNA levels could also be changed 
(Figure 3.5E). In such cases, rescue of observed phenotypes by re-expression of circRNAs 
in the KO strains should be necessary.  

4.6 Trans elements involved in circRNA regulation 

Many RBPs are involved in the regulation of splicing. Back-splicing is another choice in 
alternative splicing (AS). Hence, any factors that regulate other types of AS (exon-skipping, 
alternative 5’ss or alternative 3’ss, etc.) can be involved in back-splicing regulation. With 
this logic in mind and using circRNAs in the neurons as targets, I performed a small-scale 
in vivo screening of thirteen conserved RBP genes in their roles of circRNA regulation. Most 
of these RBPs showed promotional roles in circRNA production, suggesting that the 
involvement of RBPs in back-splicing may be common in C. elegans.  

Currently, the only methods to quantify circRNA levels in C. elegans are by RT-qPCR or 
Northern Blot (NB). There are several limitations in these methods: 1).Low throughput. Due 
to the multiple steps needed in RT-qPCR and NB, it is very difficult for high throughput 
screening. 2). Inability to check cell-specific circRNA levels. RT-qPCR or NB only 
quantifies average levels of specific targets in the whole worm. One of the advantages of AS 
investigation in C. elegans is that single-cell resolution can be achieved using specific 
genetic tools (173, 174, 183, 184). Fluorescent back-splicing reporter plasmids have been 
reported in culture cells using IRES-driven translation of circular reading frame of 
fluorescent proteins (34, 59, 60). Using this fluorescent back-splicing reporter, Li, et al. 
performed genome-wide RNAi screening of factors involved in circRNA regulation (59). 
This fluorescent back-splicing reporter requires efficient circRNA expression and IRES-
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dependent translation, neither of which have been investigated in C. elegans. It can be worth 
trying for a future direction. 

4.7 circRNA regulation by both cis and trans elements 

When cis elements are disturbed, circRNA levels become undetectable (circ-glr-2, circ-gpa-
1, circ-unc-75, circ-arl-13, and circ-iglr-3) or extremely low (circ-Y20F4.4 and circ-zip-2, 
< 0.1% remaining) (section 3.2.2). For these circRNAs, their levels can be either upregulated 
or downregulated by RBPs, which are trans elements. The level changes caused by loss of 
RBPs were quite limited, ranging from 0.2- to 2.2-fold changes (Figure 3.13A). These results 
suggest a theory for circRNA formation, where cis elements such as RCM sequences 
determine whether one circRNA can be produced (yes or no), and trans elements, mainly 
RBPs, fine-tune the levels of circRNAs, rendering the cell-specific expression of circRNAs 
possible (less or more). 

4.8 Mechanism of FUST-1 in back-splicing and exon-skipping regulation 

FUST-1 can regulate both exon-skipping and back-splicing in the same genes (Figure 3.16). 
In zip-2, the 5’ss of exon-skipping and back-splicing are important for FUST-1’s role in 
back-splicing and exon-skipping, respectively (Figure 3.17). U1 snRNA could be involved 
in the interaction between FUST-1 and the spliceosome complex (Figure 3.17). It is helpful 
to understand the mechanisms of FUST-1 regulation if the binding sites in each gene can be 
mapped. CLIP-seq data on FUS suggest that rather than recognizing specific sequences, FUS 
tends to bind to stem-loop secondary structures (164, 165, 185, 186). In cultured mouse 
neuroblastoma N2a cells, FUS binds to the flanking introns of circularized exons (61). For 
FUST-1, although it is homologous to FUS, its binding sites in C. elegans may show 
different patterns. Mapping the binding sites of FUST-1 in vivo using CLIP-seq technologies, 
iCLIP (187) or eCLIP (188, 189), can be used for further understanding of the mechanisms 
of  FUST-1 in regulating exon-skipping and back-splicing. 

4.9 FUST-1 knock-in models 

To further investigate the relationship between natural mutations in FUS and circRNA 
regulation, two FUST-1 mutations (R446S and P447L) were used to mimic two types of 
mutations in the NLS region (R524S and P525L) of FUS. Of these two FUST-1 mutations, 
only P447L dramatically affected nuclear localization. However, circRNAs were 
significantly affected in both strains, indicating some other functions by the NLS in the C-
terminal of FUST-1.  

Consistent with the findings that P525L-mutated FUS could not rescue altered circRNAs in 
FUS-knockdown N2a cells (61), P447L-mutated FUST-1 showed malfunction in circRNA 
regulation, suggesting that the mutation of conserved sites in FUST-1 can somehow reflect 
the role of the mutations in FUS. Hence, other than knock-in of human FUS (wild-type or 
mutated isoforms) in C. elegans (190-195), the conserved residues in FUST-1 can be used 
as targets to generate C. elegans models to investigate FUS mutations (172). 

4.10 The autoregulation loop in fust-1 
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Self-regulation has been reported in FUS, where FUS promotes skipping of exon 7 of its 
pre-mRNA, which results in NMD (186). Unlike the previous example, FUST-1a-promoted 
exon skipping of fust-1 pre-mRNA produces FUST-1b that contains exactly the same 
functional domains, but with different N-terminal sequences. While FUST-1a is capable of 
promoting exon-skipping and circRNA regulation, FUST-1b is not functional in either of the 
two aspects (Figure 3.19F and Figure 3.20A). I first hypothesized that N-terminal sequences 
in FUST-1a might be important for its function. However, the FUST-1- ΔN construct, which 
has no N-terminal sequences, seemed functional in both exon-skipping promotion and 
circRNA regulation, although not as efficient as FUST-1a. These results suggest that N-
terminal in FUST-1b may interfere with the functional domain(s), possibly RRM, so that 
FUST-1b cannot bind to the target mRNAs recognized by FUST-1a.  

The frameshifting in FUST-1b dramatically changes the N-terminal amino acid contents 
compared with FUST-1a. The isoform a-specific N-terminal has high ratios of glycine 
(53/164, 32.3%) and glutamine (22/164, 13.4%). However, isoform b-specific N-terminal 
contains more valine (18/106, 17.0%) and glutamic acid residues (18/106, 17.0%), which 
are very few in isoform a-specific N-terminal: 0/164 and 2/164, respectively. High valine 
content may make the N-terminal of FUST-1b more hydrophobic and high glutamic acid 
content can add more negative charges, which may cause the folding of FUST-1b different 
from FUST-1a. Further in vitro RNA binding experiments or structural analysis may be 
worth trying to investigate the detailed mechanisms that dictate different function potentials 
in the two FUST-1 isoforms. 

4.11 Summary 

In this thesis, I investigated the regulation of circRNAs by both cis elements and trans 
elements in C. elegans. Starting from large-scale neuron sorting from L1 worms, I obtained 
the first neuronal circRNA profile in C. elegans, where circRNA levels showed a strong 
positive correlation to their cognate mRNA levels. For cis elements, using identified 
circRNAs with high expression levels in the neurons, I validated that RCM sequences are 
required for circRNA formation. Moreover, RCMs also promote correlated skipping events 
in multiple circRNA genes. Using zip-2 as a model gene with explicit expressions of both 
circular and skipped transcripts, I showed that RCMs directly promote both exon-skipping 
and back-splicing simultaneously, which provides a new explanation to the correlation 
between exon-skipping and circRNA formation. 

Regarding trans elements involved in circRNA regulation, I identified FUST-1 as a circRNA 
regulator by screening thirteen conserved RBPs. When recognizing the pre-mRNAs of 
circRNA genes, FUST-1 can regulate the correlated exon-skipping and back-splicing at the 
same time. In zip-2, the 5’ splice sites for back splicing and exon skipping are important for 
FUST-1 to regulate exon-skipping and back-splicing, respectively. I also showed that 
circRNAs were dysregulated in two FUST-1 knock-in strains with a mutation in the NLS 
region (R446S and P447L). 

Finally, I identified a new autoregulation loop in fust-1 that is important for its role in 
circRNA regulation. FUST-1a promotes the skipping of exon 5 of its own pre-mRNA, which 
produces FUST-1b. I confirmed that FUST-1a is functional in circRNA regulation. Although 
with the same functional domains (RRM, ZnF, and NLS), FUST-1b cannot promote exon-
skipping of fust-1 pre-mRNA; neither can it promote circRNA formation.  

This thesis provides new perspectives in the understanding of circRNA regulation in vivo, 
where RCM sequences (cis elements) determine whether circRNA can be formed or not, and 
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RBPs (trans elements) regulate how much they can be produced. Further, the circRNA 
regulation network can be integrated with pathways involved in the production of functional 
RBP isoforms. 

I hope the results in this thesis can attract people in the circRNA field to use C. elegans as 
an in vivo model for circRNA investigation, and promote people in the C. elegans field to 
develop tools for circRNA study, like Cas13-based system for circRNA-specific KD, 
fluorescent back-splicing reporter system, etc.
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5. Supplementary data 

 

Figure 5.1 Worm dissociation and neuron sorting. Modified from (148). (A) Steps of L1 worm 
preparation and dissociation for FACS. Optimized conditions are in bold. (B) Representative confocal 
image of sorted cells. Note the short neurites (red rectangles) of some cells. Scale bar: 20 μm. (C) 
Confocal images showing sorted neurons after five-day culture at 20oC. Scale bars are 5 μm. (D) 
Volcano plot showing differentially expressed genes between the sort group and the whole group. 
myo-3 and unc-64 are labeled. (D) Output from WormExp for gene set enrichment search using 
upregulated genes in the neurons in our dataset. The red rectangle highlights the top 4 hits. 
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Figure 5.2 circRNA annotation and validation. Modified from (148). (A) Overlap of circRNAs 
identified in this work and circRNAs of C. elegans in two databases (CIRCpedia V2 and circBase). 
(B) Ratios of junction types of filtered circRNAs. (C) Overlap of filtered circRNAs in this work and 
filtered circRNAs in work of Cortés-López et al (50). (D) Sanger sequencing results of the BSJ 
sequences of selected circRNAs. Red triangles denote the joint sites.  
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Figure 5.3 circRNA expression analysis. (A, B) PCA plot of mRNAs (A) and circRNAs (B) in the 
sort group and the whole group. (C) Scatter plot showing the correlation of log2 fold change of 
circRNAs and their cognate linear RNAs in the sort group and whole group. Gene names of some 
circRNAs were labeled. The Pearson correlation coefficient (R) and p value (p) are shown. 
Significantly DE circRNAs are shown by colored dots. 
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Figure 5.4 RCM deletion by CRISPR-Cas9. Modified from (148). (A) Position of deleted RCMs in 
six circRNA genes. (B) RT-PCR detection of circRNAs in wild-type N2 strain and the RCM-deleted 
(mutant) strains. Note that all circRNAs cannot be amplified in the mutant strains. 
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Figure 5.5 Genotype screening of F1 and F2 worms in the deletion of RCMs in the other five 
circRNA genes. Red rectangles show the strains used for F2 screening. Asterisks indicate strains 
with the target deletions, which were kept as circRNA knockout strains.
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Figure 5.6 Comparisons of chemotaxis index towards 5% propanol or 0.01% diacetyl between 
wild-type N2 strain and circRNA KO strains. A, B and C show independent trails on different days. 
(A, C) ns, not significant, one-way ANOVA with Dunnett’s multiple comparisons with N2 group. (B) 
ns, not significant, two-tailed Student’s t-test. 

 

 

 

Figure 5.7 Locomotion speed comparisons between wild-type N2 strain and circRNA KO 
strains. (A, C) Average speed of indicated strains at day-7 adult stage. (B, D) Maximus speed of 
indicated strains at day-7 adult stage. (A, B, C, D) ns, not significant, one-way ANOVA with Dunnett’s 
multiple comparisons with the N2 group. 
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Figure 5.8 Results of aldicarb resistance assays. (A, B) Independent trials without being blind to 
phenotypes. zip-2(ix270) seemed to be less resistant to 1 mM aldicarb. (C) A trail being blind to the 
genotypes of tested strains. No difference between the two strains was observed. 
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Table 5.1 Raw data of aldicarb resistance assay shown in Figure 5.8A. 

Time 
(min) 

N2 gpa-1 
(ix265) 

unc-75 
(ix266) 

Y20F4.4 
(ix269) 

iglr-3 
(ix268) 

arl-13 
(ix262) 

zip-2 
(ix270) 

glr-2 
(ix264) 

0 25 22 21 23 22 18 20 17 

30 25 22 21 23 22 18 20 17 

60 25 22 21 23 22 18 20 17 

90 22 21 19 18 22 14 14 15 

120 15 5 15 5 15 8 4 4 

150 1 0 2 1 3 0 1 1 

180 0 
 

0 0 0 
 

0 0 

 

Table 5.2 Raw data of aldicarb resistance assay shown in Figure 5.8B. 

Time (min) N2 zip-2(ix270) arl-13(ix262) gpa-1(ix265) 

30 27 28 25 27 

40 27 28 25 27 

50 27 28 25 27 

60 27 28 25 27 

70 27 28 25 27 

80 27 28 25 27 

90 27 28 25 27 

100 27 25 25 27 

110 25 22 23 24 

120 19 17 18 23 

130 16 16 11 20 

140 13 10 11 18 

150 12 8 11 14 

160 11 4 7 12 

170 9 1 4 7 

180 7 1 3 7 

190 3 1 3 5 

200 3 1 2 3 

 

Table 5.3 Raw data of aldicarb resistance assay shown in Figure 5.8C. 

Time (min) N2 zip-2(ix270) 

60 26 22 

70 25 22 

80 23 22 

90 17 16 

100 11 9 

110 5 3 

120 2 2 

130 1 1 

140 1 1 
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Figure 5.9 Results of lifespan assays. (A) Lifespan comparisons in the indicated strains. 50 μM 
FUdR (5'-fluorodeoxyuridine) was used. (B) Lifespan comparisons without FUdR. 

Table 5.4 Raw data of lifespan assay shown in Figure 5.9A. 

Strain Rep. Days after L4 Sum 

6 8 10 11 12 13 14 15 

N2 1 0 0 16 6 2       24 

2 0 0 13 6 4 1 1   25 

3 0 1 14 5 3 2     25 

Y20F4.4(ix269); 
zip-2(ix270) 

1 1 0 7 7 8 2     25 

2 0 0 9 6 5 3     23 

3 0 0 11 5 5 2 1   24 

gpa-1(ix265); 
zip-2(ix270) 

1 0 0 15 5 3 0 1   24 

2 0 1 10 9 2 1     23 

3 0 0 9 9 4 3     25 

glr-2(ix264) 1 0 0 11 7 3 3     24 

2 0 1 13 8 2 1     25 

3 0 1 13 5 4 0 1   24 

zip-2(ix270) 1 0 1 8 8 4 4     25 

2 0 1 7 11 5 1     25 

3 0 3 6 9 5       23 

iglr-3(ix268) 1 0 2 12 7 3 1 0 1 26 

2 2 1 15 4 0 2 1   25 

3 1 3 11 6 1 0 2   24 

Y20F4.4(ix269) 1 0 0 7 4 9 3 1   24 

2 0 1 11 5 7 1     25 

3 0 3 7 5 2 6 1   24 

gpa-1(ix265) 1 0 2 17 2 1 2 1   25 

2 0 1 15 5 3 1 1   26 

3 0 1 20 2 2       25 

unc-75(ix267) 1 0 0 18 6 1       25 

2 0 0 17 3 4 0 0 1 25 

arl-13(ix262) 1 0 0 9 8 4 1 1   23 

2 0 1 13 9 1       24 
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Table 5.5 Raw data of lifespan assay shown in Figure 5.9B. 

Strain Rep
. 

Dead/ 
Censored 

Days after L4  

7 8 9 10 11 12 13 14 15 16 17 18 Sum 

N2 1 D 0 3 1 6 6 2 3 4     25 

C 0 0 0 0 0 0 1 0     1 

2 D 2 8 3 3 4 2 0 0 1 1   24 

C 2 1 0 0 0 1 0 0 0 0   4 

3 D 4 4 5 2 1 2 1 0 2 0 1 
 

22 

C 0 0 1 0 0 0 0 0 0 0 0  1 

gpa-
1(ix2
65); 
zip-
2(ix2
70) 

1 D 2 5 7 4 3 1 3 1     26 

C 1 0 0 1 0 0 0 0     2 

2 D 3 5 6 2 2 3 1 0 1 2   25 

C 2 2 0 0 0 0 0 0 0 0   4 

3 D 3 2 6 7 5 0 0 2 0 0 0 1 26 

C 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y20F
4.4(ix
269); 
zip-
2(ix2
70) 

1 D 3 2 6 4 2 1 3 1 5 0 1  28 

C 2 1 0 0 0 0 0 0 0 0 0  3 

2 D 2 1 3 4 1 1 1 4 2 5 1 1 26 

C 0 1 0 2 0 0 0 0 0 0 0 0 3 

3 D 0 6 7 8 0 1 1 1 2 1   27 

C 0 0 1 1 0 0 0 0 1 0   3 

zip-
2(ix2
70) 

1 D 0 5 4 2 5 0 2 1 0 0 0 1 20 

C 1 0 0 1 0 0 0 0 0 0 0 0 2 

2 D 0 3 7 10 4 0 0 3 2 0 1  30 

C 0 0 0 0 0 0 0 0 0 0 0 
 

0 

3 D 0 8 7 1 5 0 0 1 3 0 0  25 

C 1 1 0 0 0 0 0 0 0 0 1  3 

gpa-
1(ix2
65) 

1 D 2 2 8 4 4 1 2 3 1 0 0 0 27 

C 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 D 1 2 8 3 2 1 2 3 0 4 0 1 27 

C 1 0 0 0 0 0 0 0 0 0 0 0 1 

3 D 2 1 6 3 3 3 2 3 0 3   26 

C 0 0 0 0 0 0 0 0 0 0   0 

Y20F
4.4(ix
269) 

1 D 1 6 3 3 4 0 0 5 3 1 1  27 

C 0 1 0 0 0 1 0 0 0 0 0  2 

2 D 1 8 3 4 2 2 3 2 0 2 0 1 28 

C 2 1 1 0 0 0 0 0 0 0 0 0 4 

3 D 0 9 1 2 3 2 2 2 2 2 1  26 

C 0 0 0 0 0 0 0 0 0 0 0  0 
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Table 5.6 Log-Rank test of results in Figure 5.9B, produced from Oasis web server 

(https://sbi.postech.ac.kr/oasis/). 

Condition 
Statistics 

Chi^2 P-value Bonferroni P-value 

N2 vs. gpa-1(ix265); zip-2(ix270) 0.88 0.3493 1 

N2 vs. Y20F4.4(ix269); zip-2(ix270) 5.83 0.0158 0.079 

N2 vs. zip-2(ix270) 0.12 0.7264 1 

N2 vs. gpa-1(ix265) 2.07 0.1507 0.7535 

N2 vs. Y20F4.4(ix269) 3.27 0.0707 0.3533 
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Figure 5.10 Skipped transcripts in circRNA genes. Modified from (148). (A) Sashimi plot showing 
numbers of reads aligned to the skipped junction (exon-skipping), the back-spliced junction (back-
splicing), and the canonical splicing junction between exon 4 and exon 5 (canonical splicing) in 
Y20F4.4.The exon in the red rectangle is to form circ-Y20F4.4. (B) Amplification of the skipped 
transcripts from several circRNA genes by two-round PCRs. Red rectangles mark the gel areas to 
be cut. (C) Confirmation of sequences of the skipped transcripts in six circRNA genes. 
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Table 5.7 Enzyme digestion patterns of wild-type and RCM-deleted sequences for genotype 
screening in zip-2. 

Target Enzyme wt mutation 
intron1-RCM-del DraI 173 + 114 bp 256 bp (-31 bp) 
intron4-RCM-del DraI 80 + 162 bp 227 bp (-15 bp) 

 

 

 

 

Figure 5.11 Genotype screening of F1 and F2 worms in the deletion of RCMs in zip-2. Red 
rectangles show the F1 strains used for F2 screening. Asterisks indicate strains with the target 
deletions. 
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Figure 5.12 RCMs in circRNA-flanking introns of zip-2. Modified from (148). (A) Folding prediction 
of intron 1 and intron 4 of zip-2 by Mfold (http://www.unafold.org/mfold/applications/rna-folding-
form.php). RCM sequences are highlighted. (B, C) Deleted RCM sequences in intron 1 and intron 4 
of zip-2.  
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Figure 5.13 Gene structures of zip-2 ortholog genes. Modified from (148). Gene structures of 
ortholog zip-2 genes in indicated nematode species are shown. The splicing patterns of these genes 
are also shown (from WormBase: https://wormbase.org/). Red arrows indicate the splice junctions of 
the skipped transcripts. 
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Figure 5.14 Genotype screening of F1 and F2 worms in ss/BP mutations in zip-2. Red 
rectangles show the F1 strains used for F2 screening. Asterisks indicate strains with the designed 
mutations. 
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Table 5.8 Enzymes and the expected digestion patterns of wild-type and ss/BP-mutated 
sequences. 

Mutation site Enzyme wt Mutation 
skip-5’ss MfeI 287 bp 82 + 203 bp 

skip-3’ss SspI 400 bp 264 + 133 bp 

skip-BP TaqI 242 bp 158 + 84 bp 

circ-5’ss HindIII 265 +136 bp 400 bp 

circ-3’ss DraI 341 + 114 bp 114 + 91 +248 bp 

circ-BP HpaII 287 bp 151 + 136 bp 

 

 

 

Figure 5.15 Sequence confirmation of mutated ss and BP sites in zip-2. Modified from (148). (A, 
B) Sanger sequence results of splicing sites and branch points mutation in intron 1 and intron 4 of 
zip-2. The enzyme digestion sites used to distinguish wild-type sequences and mutated sequences 
are labeled. The position of the cryptic 3’ss in circ-3’ss strain is labeled. 
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Figure 5.16 Detection of zip-2 transcripts in ss/BP mutated strains. Modified from (148). (A) 
Sanger sequence of circ-zip-2 produced from the zip-2(circ-3’ss) strain. Note that amplified 
sequences are 2 nt shorter than the predicted BSJ sequences. (B) Splicing patterns between exon 
1 and 2 and between exon 4 and 5 in zip-2 in indicated strains. The asterisk indicates the use of the 
cryptic splice site in circ-BP mutated strain. The red rectangle highlights the retention of intron 1 in 
strains with mutation of circ-BP or skip-5’ss.  
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Figure 5.17 Identification of FUST-1 as a circRNA regulator. Modified from (161). (A) RT-qPCR 
quantification of circRNA levels at the L1 stage of indicated strains. Note that there is no additive 
effect in fust-1(csb21); hrpf-1(csb26) double mutant strain compared with fust-1(csb21) strain. (B) 
Confocal images showing the nuclear localization of mRFP-tagged FUST-1 in wildtype N2 strain. 
DAPI (4’,6-diamidino-2-phenylindole) was used to stain nuclei. Note the colocalization of mRFP and 
DAPI signal. Worm stage: L1. A: Anterior, D: Dorsal. Scale bar: 20 μm.  (C) Confocal images showing 
mRFP-tagged FUST-1 in fust-1(csb21) strain. The same worm as in Figure 3.13D with a different 
focal plane. White arrows indicate the nuclei of intestinal cells. Scale bar: 20 μm. (D) RT-qPCR 
quantification of fust-1 mRNA levels at the L1 stage of indicated strains. (A, D) Levels are normalized 
to the N2 strain using pmp-3 as the reference gene. Results are shown as mean ± sd of three 
biological replicates. n.d.: not detected. One-way ANOVA, Tukey’s multiple comparisons. *p<0.05, 
**p < 0.01; ns, not significant. 
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Figure 5.18 Bioinformatic analysis of circRNAs between N2 and fust-1(csb21). Modified from 
(161). (A, B) Principal component analysis (PCA) of linear mRNAs (A) and circRNAs (B) between 
wildtype N2 strain and fust-1(csb21) strain. (C) Scatter plot showing the log2 fold changes of all 
circRNAs versus log2 fold changes of their cognate linear mRNAs. The Pearson correlation 
coefficient (R) and p value (p) are shown. (D) Venn diagram showing overlapped circRNAs between 
the “N2 & fust-1(csb21)” dataset and the “sort & whole” dataset.  
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Figure 5.19 FLAG::FUST-1 and FUST-1::FLAG evaluation. Modified from (161). (A) Sequence 
confirmation of C-terminal fusion of FLAG tag just before the stop codon of FUST-1. Note the position 
of gRNA and the mutated PAM site (TGG>TCG). (B, C) RT-qPCR quantification of circRNA levels 
between wildtype N2 strain and N-terminal FLAG fusion of FUST-1 strain (B) and between wildtype 
N2 strain and C-terminal FLAG fusion of FUST-1 strain (C). Levels are normalized to the N2 strain 
using pmp-3 as the reference gene. Results are shown as mean ± sd of three biological replicates. 
(D) Western blot of the other two biological replicates of FLAG::FUST-1 Co-IP with or without FLAG 
antibody. 
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Figure 5.20 Sequence confirmation and expression pattern of FUST-1 knock-in mutant strains. 
(A) Sequence confirmation of the two knock-in strains. (B) Representative confocal images showing 
the expression patterns of mRFP-tagged wild-type FUST-1 and mutated FUST-1. Note the absence 
of mRFP signal in the nuclei in P447L mutation. Scale bars: 20 μm. 

 

 

 

Figure 5.21 Alternative splicing of fust-1 exon 5. Modified from (161). (A) Sequence confirmation 
of fust-1a-mut::mRFP plasmid and fust-1b-mut::GFP plasmid. The mutated sites are in yellow 
shadows. Note the introduction of the stop codons in the read frame of isoform a and isoform b. (B) 
Confocal images showing expression of FUST-1 isoform a and isoform b in the tail. (C) Illustration of 
the dual-color splicing reporter of fust-1 exon 5. The rgef-1 promoter is used for pan-neuronal 
expression. (D) Representative images showing the expression patterns of splicing reporter of fust-
1 exon 5 in fust-1(csb21) strain and fust-1(tm4439) strain. Inset squares show the enlarged neck 
neurons. (B, D) Worm stage: young adult. A: Anterior, D: Dorsal. Scale bars: 50 μm. 
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Figure 5.22 Rescue of the alternative splicing reporter of fust-1 exon 5. Modified from (161). (A) 
Domains in three FUST-1 constructs. The lengths of the constructs are labeled. (B, C, and D) 
Representative confocal images showing the rescue of fust-1 exon 5 splicing reporter in the fust-
1(csb21) strain by FUST-1a (B), FUST-1b (C), and by FUST-1-ΔN (D). Worms were at the young 
adult stage. Inset squares show the enlarged neck neurons in indicated strains. A: Anterior, D: Dorsal. 
Scale bars: 50 μm. 

 

 

Figure 5.23 Expression patterns of FUST-1 isoforms in the fust-1(csb21) strain. Modified from 
(161). Representative confocal images of rescue strains with extrachromosomal expressions of 
mRFP fused cDNA of FUST-1 isoforms in the fust-1(csb21) strain. Note the expression of pharyngeal 
GFP. Worms were at the L1 stage. Scale bars: 50 μm.  
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Table 5.9 C. elegans strains used in this thesis. 

Strains Genotype Source Note 

NW1229 dpy-20(e1362) IV; evIs111 
[F25B3.3::GFP + dpy-
20(+)] 

CGC Pan-neuronal GFP expression 

OF1387 arl-13(ix262) This work arl-13 (RCM) 

OF1389 glr-2(ix264) This work glr-2 (RCM) 

OF1390 gpa-1(ix265) This work gpa-1 (RCM) 

OF1391 unc-75(ix266) This work unc-75 RCM deletion #1 

OF1392 unc-75(ix267) This work unc-75 RCM deletion #2 

OF1393 iglr-3(ix268) This work iglr-3 (RCM) 

OF1394 Y20F4.4(ix269) This work Y20F4.4 (RCM) 

OF1395 zip-2(ix270) This work Deletion of whole upstream intron 
(intron 1) 

OF1471 gpa-1(ix265); zip-2(ix270) This work Double mutation 

OF1472 Y20F4.4(ix269); zip-
2(ix270) 

This work Double mutation 

RM2005 unc-75(md1344) CGC 
 

CB950 unc-75(e950) CGC  

0F1440 zip-2(ix310) This work zip-2, RCM deletion in intron 1 

OF1441 zip-2(ix311) This work zip-2, RCM deletion in intron 4 

OF1396 zip-2(ix271) This work zip-2 (skip-5'ss) 

OF1401 zip-2(ix275) This work zip-2 (skip-3'ss) 

OF1449 zip-2(ix313) This work zip-2 (skip-BP) 

OF1399 zip-2(ix274) This work zip-2 (circ-5'ss) 

OF1398 zip-2(ix273) This work zip-2 (circ-3'ss) 

OF1451 zip-2(ix315) This work zip-2 (circ-BP) 
 

unc-75(csb20) Adam 
Norris 

myo-2::GFP 

 
fust-1(csb21) Adam 

Norris 
myo-2::GFP 

 
mec-8(csb22) Adam 

Norris 
myo-2::GFP 

 
msi-1(csb24) Adam 

Norris 
myo-2::GFP 

 
hrpf-1(csb26) Adam 

Norris 
myo-2::GFP 

 
exc-7(csb29) Adam 

Norris 
myo-3::GFP 

 
mbl-1(csb30) Adam 

Norris 
myo-2::GFP 

 
asd-1(csb32) Adam 

Norris 
myo-2::GFP 

 
tiar-3(csb35) Adam 

Norris 
myo-3::GFP 

 
Y57G11C.9(csb36) Adam 

Norris 
myo-3::GFP 

 
tdp-1(csb37) Adam 

Norris 
myo-2::GFP 

 
fox-1(csb39) Adam 

Norris 
myo-2::GFP 
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C25A1.4(csb40) Adam 

Norris 
myo-2::GFP 

 
fust-1(tm4439) Alex Parker 

 

OF1401 fust-1(csb21); 
ixEx276[fust-1p::fust-
1::mRFP] 

This work fust-1 rescue strain (genomic 
sequences) 

OF1402 N2; ixEx277[fust-1p::fust-
1::mRFP] 

This work fust-1 overexpression strain (genomic 
sequences) 

OF1434 fust-1(csb21); hrpf-
1(csb26) 

This work double mutant 

OF1405 fust-1(ixIs280) This work FUST-1::FLAG (C terminal FLAG 
insertion) 

OF1406 fust-1(ixIs281) This work FLAG::FUST-1 (N terminal FLAG 
insertion) 

OF1435 zip-2(ix271); fust-1(csb21) This work zip-2 (skip-5'ss) crossed with fust-
1(csb21) 

OF1436 zip-2(ix273); fust-1(csb21) This work zip-2 (circ-3'ss) crossed with fust-
1(csb21) 

OF1437 zip-2(ix274); fust-1(csb21) This work zip-2 (circ-5'ss) crossed with fust-
1(csb21) 

OF1438 zip-2(ix275); fust-1(csb21) This work zip-2 (skip-3'ss) crossed with fust-
1(csb21) 

OF1453 zip-2(ix315); fust-1(csb21) This work zip-2 (circ-BP) crossed with fust-
1(csb21) 

OF1454 zip-2(ix313); fust-1(csb21) This work zip-2 (skip-BP) crossed with fust-
1(csb21) 

OF1455 N2; ixEx[fust-1p::fust-1a-
mut::mRFP; fust-1p::fust-
1b-mut::GFP] 

This work expression of FUST-1, 2 isoforms in 2 
colors 

OF1416 N2; ixEx291[rgef-1p::fust-
1(E4-
6)::GFP::mCherry::unc-54 
3'UTR] 

This work fust-1 exon 5 splicing reporter in N2 

OF1417 fust-1(csb21); 
ixEx292[rgef-1p::fust-1(E4-
6)::GFP::mCherry::unc-54 
3'UTR] 

This work fust-1 exon 5 splicing reporter in fust-
1(csb21) 

OF1418 fust-1(tm4439); 
ixEx293[rgef-1p::fust-1(E4-
6)::GFP::mCherry::unc-54 
3'UTR] 

This work fust-1 exon 5 splicing reporter in fust-
1(tm4439) 

OF1419 mec-8(csb22); 
ixEx294[rgef-1p::fust-1(E4-
6)::GFP::mCherry::unc-54 
3'UTR] 

This work fust-1 exon 5 splicing reporter in mec-
8(csb22) 

OF1424 fust-1(csb21); 
ixEx299[rgef-1p::fust-1(E4-
6)::GFP::mCherry::unc-54 
3'UTR; fust-1p::fust-
1a(cDNA)::unc-54 3'UTR; 
lin44p::mRFP] 

This work Rescue of fust-1 exon 5 splicing 
reporter by FUST-1, isoform a cDNA 

OF1425 fust-1(csb21); 
ixEx300[rgef-1p::fust-1(E4-
6)::GFP::mCherry::unc-54 
3'UTR; fust-1p::fust-
1b(cDNA)::unc-54 3'UTR; 
lin44p::mRFP] 

This work Rescue of fust-1 exon 5 splicing 
reporter by FUST-1, isoform b cDNA 

OF1426 fust-1(csb21); 
ixEx301[rgef-1p::fust-1(E4-

This work Rescue of fust-1 exon 5 splicing 
reporter by FUST-1, ΔN cDNA 
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6)::GFP::mCherry::unc-54 
3'UTR; fust-1p::fust-1-
ΔN(cDNA)::unc-54 3'UTR; 
lin44p::mRFP] 

OF1408 fust-1(csb21); 
ixEx283[fust-1p::fust-
1a(cDNA)::mRFP] 

This work circRNA level rescue by mRFP fused 
FUST-1, isoform a cDNA 

OF1409 fust-1(csb21); 
ixEx284[fust-1p::fust-
1b(cDNA)::mRFP] 

This work circRNA level rescue by mRFP fused 
FUST-1, isoform b cDNA 

OF1410 fust-1(csb21); 
ixEx285[fust-1p::fust-
1a(ΔN)::mRFP] 

This work circRNA level rescue by mRFP fused 
FUST-1, ΔN cDNA 

OF1407 ixIs282[fust-1::mRFP] This work FUST-1::mRFP (C-terminal mRFP 
insertion of FUST-1) 

OF1429 ixIs304[fust-1a::mRFP] This work FUST-1a::mRFP (Only FUST-1, isform 
a is expressed) 
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Table 5.10 Primers used in this thesis. 

Target Strand Sequences (5'-3') 

pmp-3 
Forward TGGCCGGATGATGGTGTCGC 

Reverse ACGAACAATGCCAAAGGCCAGC 

circ-nab-1 
Forward GAGGCCTGACGTGGATTTAA 

Reverse GATGATTGGATCCGATCGAG 

circ-unc-75 
Forward CAAAGGCTGCGCATTTCTCA 

Reverse TCTCTTCCAAGTTTCGGGGG 

circ-shw-1 
Forward AGTTTGGGTGGGAAGATGACT 

Reverse GGATACCGCCTACGTTCAGG 

circ-crh-1 
Forward GTCCAATCAGCCACTCGTCT 

Reverse TGTTGCTGCAGAGGTAGGTG 

circ-Y47H9A.1 
Forward CAGTGGAAAAAGTGGTGATCCG 

Reverse TTTCCTCCTCCGTTGAGTGTC 

circ-pig-1 
Forward GCGACACAGGAGACTGTTCA 

Reverse CCGTTCTGGAACCACTTGGA 

circ-gpa-1 
Forward GCGGACAAAGGAGTTCAGTG 

Reverse CAGCACGGTACTTTTTCCACTC 

circ-dmsr-3 
Forward TTGCACAGCTCTCTAGCGTC 

Reverse AGGAGAAGAAGAACGGCTGAC 

circ-mgl-3 
Forward ATTCTGCACAAAGACCGAGG 

Reverse GGCACGCAAAAATGAAGAGT 

circ-Y17G7B.22 
Forward CTGGCGTTGCCCTCATAGAT 

Reverse TCAGCGTGAAAGGCACTCAT 

circ-sma-9 
Forward AACGTGAAAACAGTCCCGAC 

Reverse GACCACTAGTCAAGCTGCCC 

circ-Y20F4.4 
Forward CGACGCCTGGAACAAGAGAA 

Reverse CGATTAGAAGTGCAGCACCG 

circ-glr-2 
Forward TCATGGAACCACTTGGAATGAC  

Reverse TTGATCTTCATGAGGACGGCA  

circ-cam-1 
Forward AGCCTCGGTTAACACGACAA  

Reverse TTGAGTGGTGGGGTTCCAAG  

circ-marc-4 
Forward TCGCGTACACCTGTCTCATC  

Reverse CGAGTCGACATTTCCAGCCA  

circ-iglr-3 
Forward CTGTACGGCCTCGAATGCTT 

Reverse TGAAGTGTCAACGAGGCACA  

circ-arl-13 
Forward ACGGATGAGACATTCACCGAG  

Reverse GAGAACCCGTTGGTACGGAG  

circ-unc-68 
Forward ATGAAAACTGGAAAGGCGGC  

Reverse GAGCACCGGAACGATCATTTG  

circ-ctbp-1 
Forward CGTACTCAAAGAAGAGCCGG  

Reverse CACGATACCGAGAGCGAAAT  
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circ-zip-2 
Forward ACATTTCTCCTCCAGCGTCG 

Reverse AGAAATCTTCGGGAAGGCCG 

L-iglr-3 
Forward CTGTACGGCCTCGAATGCTT 

Reverse TCTCGGCCCAAGTGACAAAA 

L-gpa-1 
Forward TTACTGAGTTGTGGGCGGAC 

Reverse TTGGGAGTGTGAACCCTTGC 

L-unc-75 
Forward GCTTTTTGTCGGGCAGATCC 

Reverse AGAAATGCGCAGCCTTTGTG 

L-arl-13 
Forward GGCGGGGATAAGGGAATACG 

Reverse GAGAGCCTCAATCGACTCGG 

L-zip-2#1 
Forward AGGGACCAGTTTCAAGGTCC 

Reverse AGAAATCTTCGGGAAGGCCG 

L-zip-2#2 
Forward ACATTTCTCCTCCAGCGTCG 

Reverse AGTTTTGCGCCCACGTGTTA 

L-glr-2 
Forward CCCAGGAGAGAGAACGAGCA 

Reverse CCAGGACACGAGGAAAATCGT 

L-Y20F4.4 
Forward CGACGCCTGGAACAAGAGAA 

Reverse GTCTCGCGTAGCTTGTCGAT 

zip-2-skip 
Forward TCGCCTTCTCCAGTTCAATCA 

Reverse TTTTGGCTTGGCGCTTTTGA 

arl-13-skip 
Forward CGTAGAAAGTGAGAAGAAATGACCG 

Reverse GGAGTGGAGAGCCGTCTGAT  

Y20F4.4-skip 
Forward TATTCGTCCACAACCCGTCC 

Reverse GAGGAGAGTTCACGTGCAAT  

Y20F4.4-NB-
probe 

Forward GCGGTGCTGCACTTCTAATC 

Reverse ATTTGTGGAGGTCGACGGTT 

act-1-NB-probe 
Forward GAGGTTGCCGCTCTTGTTGTA 

Reverse AAGGTGTGATGCCAGATCTTCTC 

zip-2-NB-probe 
Forward GACGGCCTTCCCGAAGATTT 

Reverse AATAACGGTCCGCTTTCGGT 

fust-1 
Forward ATGAAGCCTACATCGCCGAC 

Reverse TTTTGGTTCTCCGGTGTTGC 

zip-2-skip 
Forward TCGCCTTCTCCAGTTCAATCA 

Reverse TTTTGGCTTGGCGCTTTTGA 

arl-13-skip 
Forward CGTAGAAAGTGAGAAGAAATGACCG 

Reverse GGAGTGGAGAGCCGTCTGAT  

zip-2-pre-mRNA 
Forward TCATCGCCTTCTCCAGgtttg 

Reverse gatcgccacgtcatcgtcata 

gpa-1-pre-mRNA 
Forward ACGCGGCGAACATTTTTCTT 

Reverse GCTACAGCTGTGGTGCTTTC 

arl-13-pre-mRNA 
Forward GCAAGTTTCCGCATCTGAGC 

Reverse CCGATGCCAAAACATCCGAG 

18S rRNA Forward ACGAGATTGAGCGATAACA 
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Reverse CTGACTCCACCAGTGTAG 

26S rRNA 
Forward TGAACTCAGTCGTGATTACC 

Reverse CACTCGCCGTTACTAAGG 

fust-1-pre-mRNA 
Forward ATGGCCCGGTTTCCTTCAAA 

Reverse ACGCTCGAAGTCGTTTGGTA 

 

  



 

92 
 

Table 5.11 Guide RNA sequences used for CRISPR-Cas9 mutagenesis. 

Target 
gene 

crRNA1 
(5'-3') 

crRNA2 (5'-
3') (optional) 

Recombinant oligo (5'-3') validation primers 
(5'-3') & enzyme 

gpa-1 
(RCM) 

gccgatacc
agaatgaa
atg 

ttgatagcattga
tgcacca 

acatttttcttacaaataggtggtgacaacctc
atCCATGGAAATGCGATTACTA
ATCAAACATCATTCG 

AACGCGGCGAAC
ATTTTTCT + 
TTTCCACTCTCTC
CAGCTCCT 

iglr-3 
(RCM) 

acggcaaa
tcagcaaat
tgg 

AAGGTGGA
GCTTTCTC
ATTG 

tgccgaatatccggaaaaacggcaaatcag
caaatTTGAGGCTAAAATTTTTAG
ATTTTTCAAGATTTTC 

TAGGTCCTGGAA
CGAACACA + 
AGCCAGCTTCTG
ATCCAAGT 

unc-75 
(RCM) 

GACGCC
GGGAGA
TATCCG
CG 

TTAAAACG
GTTCGAAG
TTGG 

aaatttgctcttttccctccccctctacaccacg
cACTTCGAACCGTTTTAAAAATT
ACAAATGTAATAG 

GCTTTTTGTCGG
GCAGGTTG + 
CCAAGTTTCGGG
GGATCTGA 

arl-13 
(RCM) 

ACTAATT
TCAGGC
TTGTCG
T 

TGCTCAGA
TGCGGAAA
CTTG 

aaaggcgtaaaactgtaaaattatgatttccg
acgGTTTCCGCATCTGAGCAAT
ATTTTTAGTTTGATGA 

GACCGAAAAGTC
GTGGTTCG + 
GTCTCGGCACGA
TCTATGGG 

Y20F4.4 
(RCM) 

GTAAAG
TTACGA
TTTTGG
CA 

GAAAATATA
ATTGTTTCT
TG 

gagagttcacctggaaaatataattgtttcTT
GAGCACTTCAGATAGTTAAAG
GTGTAGTAGAACCAAAATCGTA
ACTTTACAAAACTATAAAAACG
ACC 

CAGAAGGGTACG
GGTCGTTT + 
GTCTCGCGTAGC
TTGTCGAT 

glr-2 
(RCM) 

tttttgcttca
acggacac
g 

ggcattatgcac
atagtggg 

tttcaactaaatctttttgcttcaacggacGG
GCGGAGTTAAAAAATATATGTC
TAGAAG 

TGATAAGTGAGT
AGCACGGAAAC + 
ACGGCAATATAAT
CCTTTTCTCCCA 

zip-2 
(intron 1 
whole 
del) 

GTATAT
GACAAA
CCTGGA
GA 

AGCTAGCT
TCTAGCTA
GGTG  

aaacgtccatcagttcgctttcatcgccttctcc
aAAAAGTTTTCCCCACCTAGCT
AGAAGCTAGCTCGTTTGTCACT
AGATTTC 

AGGGACCAGTTT
CAAGGTCC + 
AGAAATCTTCGG
GAAGGCCG 

zip-2 
(RCM1) 

GTATAT
GACAAA
CCTGGA
GA 

AGCTAGCT
TCTAGCTA
GGTG  

TCAAAACGTCCATCAGTTCGCT
TTCATCGCgTTCTCCAGgtttgtcat
atacaaataataattaccttcgatcaccaatat
aaaaaatcaatacaattcaaattaaaacga
ataaaatcgataattaatatatttcagAAAA
GTTTTCgCCACCTAGCTAGAAG
CTAGCTCGTTTGTCACTAGATT
TCG 

AGGGACCAGTTT
CAAGGTCC + 
AGAAATCTTCGG
GAAGGCCG 

zip-2 
(RCM2) 

TTATTAT
TGTGCA
CAAGCT
G 

TGTCGTTT
CAACTGTT
GAGG 

CGGACATTGATCCAGTTGACG
AGTTCTTTCCACAGCTTGTGCA
CAATAATAAAAGTAAGCTTAAG
ACAGTATCACACTAATTAGGAA
AATTGAACCCATTTATATATTCT
TTAACTCAGCTCTTT +  
TAGGAAAATTGAACCCATTTAT
ATATTCTTTAACTCAGCTCTTT
GTTCAATAAACATTAAAAACCA
TTTCAGTTCAATCATCTTCCTC
CTCAACAGTTGAAACGACAATA
ACACGTGGGCGCAAA 

ACATTTCTCCTCC
AGCGTCG + 
AGTTTTGCGCCC
ACGTGTTA 

zip-2 
(skip-
5'ss) 

GTATAT
GACAAA
CCTGGA
GA 

 
ATCAAAACGTCCATCAGTTCGC
TTTCATCGCgTTCTCCAAttgtcat
atacaaataataattacctttttaaatc 

AGGGACCAGTTT
CAAGGTCC + 
AGAAATCTTCGG
GAAGGCCG (MfeI) 
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zip-2 
(skip-
3'ss) 

TGTCGT
TTCAAC
TGTTGA
GG 

 
taactcaCctctttgttcaatttaaacattaaaa
accatttcTTCAATCATCTTaCTCC
TCAata-
TTGAAACGACAATAACACGTG
GGCGCAAAACTTCA 

ACATTTCTCCTCC
AGCGTCG + 
AGTTTTGCGCCC
ACGTGTTA (SspI) 

zip-2 
(skip-
BP) 

TGTCGT
TTCAAC
TGTTGA
GG 

 
aagcttaagacagtatcacactaattaggaa
aatccacgtcatcgtctgGGcccGtttGtGt
GttctttGG-
ctcGgctctttgttcGatttaaacGttGGGG
GccGtttcagTTCAATCATCTTCaT
CCTCAACAGTTGAAACGACAAT
AACACGTGGGCGCAAAACTTC 

ACATTTCTCCTCC
AGCGTCG + 
AGTTTTGCGCCC
ACGTGTTA (TaqI) 

zip-2 
(circ-
5'ss) 

TTATTAT
TGTGCA
CAAGCT
G 

 
CCAGCGTCGGACATTGATCCA
GTTGACGAGTTCTTTaCACAGC
TTGTGCACAATAATAAAAtagctta
agacagtatcacactaattaggaaaatcc 

AGGGACCAGTTT
CAAGGTCC + 
AGAAATCTTCGG
GAAGGCCG (DraI) 

zip-2 
(circ-
3'ss) 

AGCTAG
CTTCTA
GCTAGG
TG  

 
AAACGAATAAAATCGATAATTA
ATATAtttAAAActtttcAccacCTAcC
TAcAAGCTAcCTCGTTTGTCACT
AcATTTCGACGGCCTTCCCGAA
GATTT 

AGGGACCAGTTT
CAAGGTCC + 
AGAAATCTTCGG
GAAGGCCG (DraI) 

zip-2 
(circ-
BP) 

AGCTAG
CTTCTA
GCTAGG
TG  

 
AATAATAATTACCTTTTTAAATC
ATTATCTTATGACGATGACGTG
GCGGTCGCCGGTGTGGGGGG
TCGGTGCGGTTCGGGTTGGGG
CGGGTGGGGTCGGTGGTTGG
TGTGTTTCAGAAAAGTTTTCGC
CACCTAGCTAGAAGCTAGCTC
GTTTGTCACTAGATTTCGACGG 

AGGGACCAGTTT
CAAGGTCC + 
AGAAATCTTCGG
GAAGGCCG 
(HpaII) 

flag::fust
-1 

TTTTGTC
GATATT
CAAGTC
G 

 
tcaacgcatcgacacgtagcgagtgGctcg
acttgaatatcgacaaaaatgGATTACA
AGGATGACGATGACAAGggttagt
ttcttttttaatagtcgt 

GGACAGCGTTCT
CCGTCTTC + 
GTCGTAAGCCGC
TGAAATCG 

fust-
1::flag 

TTTATG
GGGAGA
CGAGTT
GA 

 
ggaccaccaggaggtgaccgataccgtcc
atatGATTACAAGGATGACGATG
ACAAGtgagcGatcaactcgtctccccat
aaattttaacatctaattt 

 
CCCGAGACCAGA
TGGAGGAT + 
GATGGGTAGGGA
AATGCGGA 

fust-
1::mRF
P 

TTTATG
GGGAGA
CGAGTT
GA 

 
dsDNA fragment amplified from 
plasmid fust-1p::fust-1::mRFP 
(GAGGATCCGGAGGTGGTG + 
agaatttaaattagatgttaaaatttatgggga
gacgagttgatcgctcaTTAGGCGCC
GGTGGAGTGGC) 

 

fust-
1a::mRF
P 

TTTTGTC
GATATT
CAAGTC
G 

TTTATGGG
GAGACGAG
TTGA 

dsDNA fragment amplified from 
plasmid containing fust-
1a(cDNA)::mRFP 
(taaatttcagtcaacgcatcgacacgtagcg
agtgGctcgacttgaatatcgacaaaaatg 
+agaatttaaattagatgttaaaatttatgggg
agacgagttgatcgctcaTTAGGCGCC
GGTGGAGTGGC) 
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7.2 List of circRNAs showing miRNA sponge functions 

Table 7.1 Summary of circRNAs showing miRNA sponge functions. 

Name Tissues or related diseases miRNA Target Ref. 
circRNA.2837 Rat sciatic nerve from the rat 

SNI model 
miR-34 - (196) 

hsa_circ_0025039 Human malignant melanoma miR-198 CDK4  (197) 
hsa_circ_0000993 Human gastric cancer cells miR-214-5p - (198) 
hsa_circ_0052112 Human breast cancer miR-125-5p VEGF-A (199) 
circ-VANGL1 Human bladder cancer miR-605-3p VANGL1 (200) 
circRNA_0046367 Human liver miR-33 ABCA1 (201) 
circZfp609 mouse myoblast cell line 

(C2C12) 
miR-194-5p BCLAF1 (202) 

circRNA-000911 Human breast cancer miR-499a NF-B (203) 
hsa_circ_0020123 Human non-small cell lung 

cancer cell 
miR-144 ZEB1, EZH2 (204) 

circRNA_0084043 Human melanoma miR-153-3p Snail (205) 
circRNA_100284 Arsenite-transformed human 

hepatic epithelial (L-02) cells 
microRNA-217 EZH2 (206) 

hsa_circ_0032462, 
hsa_circ_0028173, 
hsa_circ_0005909 

Human osteosarcoma miR-338-3p; 
miR-142-5p 

CADM1 (207) 

hsa_circ_100395 Human lung cancer miR-1228 TCF21 (208) 
circDLGAP4 Mouse brain miR-143 HECTD1 (209) 
circRNA_100269 Human gastric cancer miR-630 - (210) 
circ_0026344 Human colorectal cancer miR-21, miR-31 - (211) 
circNFIX Human glioma cell miR-34a-5p NOTCH1 (212) 
circCEP128 Human bladder carcinoma miR-145-5p SOX11 (213) 
circDOCK1 Human oral squamous cell 

carcinoma  
miR-196a-5p BIRC3 (214) 

circRNA_104670 Human nucleus pulposus (NP) 
tissues 

miR-17-3p MMP-2 (215) 

circVMA21 Human nucleus pulposus (NP) 
tissues 

miR-200c XIAP (216) 

circSVIL Chicken miR-203 c-JUN, 
MEF2C 

(217) 

has_circ_0015758 
(circ-CFH) 

Human glioma miR-149  AKT1 (218) 

circFBLIM1 Human hepatocellular cancer 
tissue 

miR-346 FBLIM1 (219) 

circSMAD2 Human hepatocellular 
carcinoma 

miR-629 - (220) 

circ-ITCH Human bladder cancer 
Human ovarian cancer 

miR-17, miR-
224; 
miR-145 

p21, PTEN; 
RASA1 

(221), 
(222) 

circIRAK3 Human breast cancer miR-3607 FOXC1 (223) 
hsa_circ_0001564 Human osteosarcoma miR-29c-3p - (224) 
circRNA-000284 Human cervical cancer cells miR-506 Snail-2 (225) 
circRNA8924 Human cervical cancer cells miR-518d-5p, 

miR-519-5p 
CBX8 (226) 

hsa_circ_0000977 Human pancreatic ductal 
adenocarcinoma 

miR-874-3p PLK1 (227) 

circRNA_0046366 Human hepatic steatosis miR-34a PPAR alpha (228) 
circEPSTI1 
(hsa_circRNA_000479) 

Human triple-negative breast 
cancer 

miR-4753,  
miR-6809 

BCL11A (229) 

circGFRA1  Human triple-negative breast 
cancer 

miR-34a GFRA1 (230) 

circRNA_010567 Mice myocardial fibrosis miR-141 TGF-beta 1 (231) 
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circBIRC6 undifferentiated human 
embryonic stem cells (hESCs) 

miR-34a, miR-
145 

multiple (83) 

circRNA_000203 Human cardiac fibroblasts miR-26b-5p Col1a2, CTGF (232) 
circZNF609 Hirschsprung's disease miR-150-5p AKT3 (233) 
circRNA-100338 Human hepatocellular 

carcinoma 
miR-141-3p  (234) 

circMFACR Mice cardiomyocyte miR-652-3p MTP18 (235) 
circMTO1 Human hepatocellular 

carcinoma 
miR-9 p21 (236) 

circMTO1 Glioblastoma miR-630 - (237) 
circMTO1 Bladder cancer miR-221 E-cadherin/N-

cadherin 
(238) 

circRNA_100290 Human oral squamous cell 
carcinomas 

miR-29 CDK6 (239) 

circTCF25 Human bladder carcinoma miR-103a-3p; 
miR-107 

CDK6 (240) 

hsa_circ_001569 Human colorectal cancer miR-145 E2F5, BAG4 , 
FMNL2 

(241) 

circHIPK3 Human tissues miR-124 IL6R, DLX2 (82) 
has_circ_101280 Human hepatocellular 

carcinoma cells 
miR-375 JAK2 (242) 

BCRC3(circPSMD1) Human bladder cancer miR-182-5p p27 (243) 
circASAMTS14 Human hepatocellular 

carcinoma 
miR-572 RCAN1 (244) 

circYAP1 Human gastric cancer miR-367-5p p27(Kip1) (245) 
circUBXN7 Bladder cancer miR-1247-3p B4GALT3 (246) 
circ104075 Human hepatocellular 

carcinoma 
miR-582-3p YAP (247) 

circUVRAG Bladder Cancer miR-233 FGFR2 (248) 
circ_0067934 Cervical cancer miR-545 EIF3C (249) 
circPAN3 acute myeloid leukemia 

(AML) cell line 
miR-153-5p/miR-
183-5p 

X-linked 
inhibitor of 
apoptosis 
protein 
(XIAP) 

(250) 

circFGFR2 Chicken embryo skeletal 
muscle development 

miR-133a-5p; 
miR-29b-1-5p 

- (251) 

circLARP4 Gastric cancer miR-424-5p large tumor 
suppressor 
kinase 1 
(LATS1) 

(252) 

circABCB10 Non-small cell lung cancer cell miR-1252 Forkhead box 
2 (FOXR2) 

(253) 

circFAT1(e2) Gastric cancer miR-548g RUNX1 (95) 
hsa_circ_0074362 Glioma miR-1236-3p HOXB7 (254) 

circDYM Major depressive disorder 
patient and CUS & LPS mouse 
model  

miR-9 HECTD1 (255) 

circFNDC3B Human bladder cancer miR-1178-3p G3BP2 (256) 
circANKS1B Breast cancer miR-148a-3p; 

miR-152-3p 
USF1 (257) 

has_circ_0078710 
(circTHBS2) 

Human hepatocellular 
carcinoma 

miR-31 - (258) 

circZNF609 Renal carcinoma miR-138-5p FOXP4 (259) 
circZNF609 Retinal neurodegeneration miR-615 METRN (260) 
hsa_circ_0000488(circ
RNA-DLEU2) 

Human acute myeloid 
leukemia cell 

miR-496 PRKACB (261) 

circNT5E Glioblastoma miR-422a - (262) 
circMMP9 Glioblastoma multiforme miR-124 - (263) 
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circPCNXL2 Clear cell renal cell carcinoma miR-153 ZEB2 (264) 
hsa_circ_0136666 Colorectal cance miR-136 SH2B1 (265) 
hsa_circ_0076248 Glioma miR-181a SIRT1 (266) 
circFAT1 Human osteosarcoma  miR-375 Yes-associated 

protein 1 
(YAP1) 

(267) 

circUVRAG Bladder cancer miR-223 FGFR2 (268) 
hsa_circ_0004015 
(circCDK14) 

Non-small cell lung cancer miR-1183 PDPK1 (269) 

circ_0034642 Glioma miR-1205 BATF3 (270) 
Hsa_circ_0060060, 
circEIF6 

Human thyroid carcinoma miR-144-3p TGF-α (271) 

circPVT1 Non-small cell lung cancer miR-125b E2F2 (272) 
circPVT1 Non-small cell lung cancer miR-497 Bcl-2 (273) 
circNF1 Gastric carcinoma miR-16 MAP7, AKT3 (274) 
circ_Lrp6 Vascular smooth muscle cell miR-145 ITGβ8, 

FASCIN, 
KLF4, Yes1, 
Lox 

(275) 

circZKSCAN1 Bladder cancer miR-1178-3p p21 (276) 
circHIPK3 Chiken myoblast cells miR-30a-3p MEF2C (277) 
circTP63 Lung squamous cell carcinoma miR-873-3p FOXM1, 

CENPA, 
CENPB 

(278) 

circFOXP1 Mesenchymal stem cell miR-17-3p; 
miR-127-5p 

WNT5A; 
WNT3A 

(279) 

hsa_circ_0001073 
(circACVR2A) 

Bladder cancer cell miR-626 EYA4 (280) 

hsa_circ_0000199 
(circAKT3) 

Gastric cancer miR-198 PIK3R1 (281) 

circRNA CBL.11 Colorectal cancer miR-6778-5p p53 (282) 
cPWWP2A Vascular pericytes and 

endothelial cells 
miR-579 angiopoietin 1, 

occludin, 
SIRT1 

(283) 

circRAPGEF5 Papillary thyroid cancer miR-198 FGFR1 (284) 
circSL8A1 Bladder cancer miR-130b; 

miR-494 
PTEN (285) 

cTFRC Bladder cancer miR-107 TFRC (286) 
circTADA2A Osteosarcoma miR-203s-3p CREB3 (287) 
circTADA2A-E6 Triple-negative breast cancer miR203a-3p SOCS3 (288) 
circAnks1a Rat spinal cord miR-324-3p VEGFB (289) 
circNRIP1 Gastric cancer miR-149-5p AKT1/mTOR (290) 
circNHSL1 Gastric cancer miR-1306-3p SIX1/vimentin (291) 
circ-MALAT1 Hepatocellular cancer stem cell miR-6887-3p JAK2 (64) 
circ-ERBIN Colorectal cancer miR-125a-5p; 

miR-138-5p 
4EBP1 (292) 

cRAPGEF5 Renal cell carcinoma miR-27a-3 TXNIP (293) 
circSnx5 Dendritic cell miR-544 SOCS1 (294) 
circ-ADAM9 Endothelial progenitor cells miR-20a-5p PTEN; ATG7 (295) 
circSEMA5A Bladder cancer miR-330-5p ENO1 (296) 
circEYA1 Cervical adenocarcinoma miR-528-3p CXCL14 (297) 
circNR3C2 Triple-negative breast cancer miR-513a-3p HRD1 (298) 
circNEIL3 Pancreatic ductal 

adenocarcinoma 
miR-432-5p ADAR1 (299) 

circST6GALNAC6 Bladder cancer miR-200a-3p STMN1 (300) 
circPGR Estrogen receptor-positive 

breast cancer 
miR-301-5p - (301) 

circPARP4 Glioblastoma miR-125a-5p FUT4 (302) 
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7.3 Code scripts 

7.3.1 Sequence alignment by STAR 

Joint map, mate1 map and mate2 map by STAR, using whole_3 data as an example 

###DCC_jointMap 

#!/bin/bash 

#SBATCH --job-name=whole_3_joint_map 

#SBATCH --partition=compute 

#SBATCH --time=2:00:00 

#SBATCH --mem-per-cpu=4G 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=12 

#SBATCH --mail-user=dong.cao@oist.jp 

#SBATCH --mail-type=FAIL,END 

 

"/work/MaruyamaU/dongcao/apps/STAR/bin/Linux_x86_64/STAR" --runThreadN 24 \ 

       --genomeDir /work/MaruyamaU/dongcao/RNAseq/starindex/starindex_cel235/ \ 

       --outSAMtype BAM SortedByCoordinate \ 

       --readFilesIn "/work/MaruyamaU/dongcao/RNAseq/1-
1_MaruyamaU_ID361/ce_whole_3_R1.fastq.gz" "/work/MaruyamaU/dongcao/RNAseq/1-
1_MaruyamaU_ID361/ce_whole_3_R2.fastq.gz" \ 

       --readFilesCommand zcat \ 

       --outFileNamePrefix whole_3_ \ 

       --outReadsUnmapped Fastx \ 

       --outSJfilterOverhangMin 15 15 15 15 \ 

       --alignSJoverhangMin 15 \ 

       --alignSJDBoverhangMin 15 \ 

       --outFilterMultimapNmax 20 \ 

       --outFilterScoreMin 1 \ 

       --outFilterMatchNmin 1 \ 

       --outFilterMismatchNmax 2 \ 

       --chimSegmentMin 15 \ 

       --chimScoreMin 15 \ 

       --chimScoreSeparation 10 \ 

       --chimJunctionOverhangMin 15 \ 

 

###DCC_mate1 
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#!/bin/bash 

#SBATCH --job-name=whole_3_mate1 

#SBATCH --partition=compute 

#SBATCH --time=2:00:00 

#SBATCH --mem-per-cpu=4G 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=12 

#SBATCH --mail-user=dong.cao@oist.jp 

#SBATCH --mail-type=FAIL,END 

 

"/work/MaruyamaU/dongcao/apps/STAR/bin/Linux_x86_64/STAR" --runThreadN 24 \ 

       --genomeDir /work/MaruyamaU/dongcao/RNAseq/starindex/starindex_cel235/ \ 

       --outSAMtype None \ 

       --readFilesIn "/work/MaruyamaU/dongcao/RNAseq/1-
1_MaruyamaU_ID361/ce_whole_3_R1.fastq.gz" \ 

       --readFilesCommand zcat \ 

       --outFileNamePrefix whole_3_mate1_ \ 

       --outReadsUnmapped Fastx \ 

       --outSJfilterOverhangMin 15 15 15 15 \ 

       --alignSJoverhangMin 15 \ 

       --alignSJDBoverhangMin 15 \ 

       --seedSearchStartLmax 30 \ 

       --outFilterMultimapNmax 20 \ 

       --outFilterScoreMin 1 \ 

       --outFilterMatchNmin 1 \ 

       --outFilterMismatchNmax 2 \ 

       --chimSegmentMin 15 \ 

       --chimScoreMin 15 \ 

       --chimScoreSeparation 10 \ 

       --chimJunctionOverhangMin 15 \ 

 

###DCC_mate2 

#!/bin/bash 

#SBATCH --job-name=whole_3_mate2 

#SBATCH --partition=compute 

#SBATCH --time=2:00:00 
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#SBATCH --mem-per-cpu=4G 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=12 

#SBATCH --mail-user=dong.cao@oist.jp 

#SBATCH --mail-type=FAIL,END 

 

"/work/MaruyamaU/dongcao/apps/STAR/bin/Linux_x86_64/STAR" --runThreadN 24 \ 

       --genomeDir /work/MaruyamaU/dongcao/RNAseq/starindex/starindex_cel235/ \ 

       --outSAMtype None \ 

       --readFilesIn "/work/MaruyamaU/dongcao/RNAseq/1-
1_MaruyamaU_ID361/ce_whole_3_R2.fastq.gz" \ 

       --readFilesCommand zcat \ 

       --outFileNamePrefix whole_3_mate2_ \ 

       --outReadsUnmapped Fastx \ 

       --outSJfilterOverhangMin 15 15 15 15 \ 

       --alignSJoverhangMin 15 \ 

       --alignSJDBoverhangMin 15 \ 

       --seedSearchStartLmax 30 \ 

       --outFilterMultimapNmax 20 \ 

       --outFilterScoreMin 1 \ 

       --outFilterMatchNmin 1 \ 

       --outFilterMismatchNmax 2 \ 

       --chimSegmentMin 15 \ 

       --chimScoreMin 15 \ 

       --chimScoreSeparation 10 \ 

       --chimJunctionOverhangMin 15 \ 
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7.3.2 circRNA annotation by DCC 

### DCC_annotation 

#!/bin/bash 

#SBATCH --job-name=DCC_test 

#SBATCH --partition=compute 

#SBATCH --time=10:00:00 

#SBATCH --mem-per-cpu=4G 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=12 

#SBATCH --mail-user=dong.cao@oist.jp 

#SBATCH --mail-type=FAIL,END 

 

module load python/2.7.10 

DCC @samplesheet -mt1 @mate1 -mt2 @mate2 -T 24 -O ./testforNroption -D -R 
ce11_repeat_file.gtf -an /work/MaruyamaU/dongcao/WBcel235/Annotation/Archives/archive-2015-
07-17-14-28-46/Genes/genes.gtf -Pi -F -M -Nr 1 1 -fg -G -A 
/work/MaruyamaU/dongcao/WBcel235/Sequence/WholeGenomeFasta/genome.fa 
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7.3.3 Differential expression analysis of mRNAs using DESeq2 

library(ggplot2) 
library(dplyr) 

library(DESeq2) 

library(readr) 
library(pheatmap) 
library(tibble) 
library(ggrepel) 
library(ggpubr) 
 
#setwd(~/) 
setwd("~/RNA-seq analysis") 
 
genecounts_with_names <- read_csv("genecounts with names.csv") 

## Parsed with column specification: 
## cols( 
##   X1 = col_character(), 
##   gene = col_character(), 
##   sort_1 = col_double(), 
##   sort_2 = col_double(), 
##   sort_3 = col_double(), 
##   whole_1 = col_double(), 
##   whole_2 = col_double(), 
##   whole_3 = col_double(), 
##   gene_name = col_character(), 
##   sequence_name = col_character(), 
##   sort_sum = col_double(), 
##   whole_sum = col_double() 
## ) 

read_counts <- data.frame(genecounts_with_names[, 3:8], row.names = 
genecounts_with_names$gene) 
 
condition <- c("sort","sort","sort", "whole", "whole", "whole") 
batch <- c("b1","b2","b3","b1","b2","b3") 
NW1229_metadata <- data.frame(condition, batch) 
rownames(NW1229_metadata)<- c("sort_1","sort_2","sort_3","whole_1","whole_2","whole_3") 
 
# check if rownames of metadata are consistant with colnames of readcounts table 
all(rownames(NW1229_metadata) == colnames(read_counts)) 

## [1] TRUE 

# Creating DESeq2 object 
 
dds<- DESeqDataSetFromMatrix(countData = read_counts, 
                             colData = NW1229_metadata, 
                             design = ~ condition) 

## converting counts to integer mode 

# Counts normalization 
 
dds <- estimateSizeFactors(dds) 
sizeFactors(dds) 
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##    sort_1    sort_2    sort_3   whole_1   whole_2   whole_3  
## 1.1241306 1.1509995 1.4451648 0.7039952 0.9837595 0.7715272 

normalized_read_counts <-counts(dds, normalized = T) 
 
# log transformation: variance stabilizing transformation(VST) 
 
vsd <- vst(dds, blind = TRUE) 
 
# Extract the vst matrix from the object 
vsd_matrix <- assay(vsd) 
# Compute pairwise correlation values 
vsd_cor <- cor(vsd_matrix) 
vsd_cor 

##            sort_1    sort_2    sort_3   whole_1   whole_2   whole_3 
## sort_1  1.0000000 0.9897823 0.9880901 0.9038740 0.9076862 0.8855246 
## sort_2  0.9897823 1.0000000 0.9893364 0.9084163 0.9149492 0.8913440 
## sort_3  0.9880901 0.9893364 1.0000000 0.9259891 0.9324742 0.9102163 
## whole_1 0.9038740 0.9084163 0.9259891 1.0000000 0.9864594 0.9636024 
## whole_2 0.9076862 0.9149492 0.9324742 0.9864594 1.0000000 0.9701827 
## whole_3 0.8855246 0.8913440 0.9102163 0.9636024 0.9701827 1.0000000 

# Plot heatmap 
pheatmap(vsd_cor, annotation = select(NW1229_metadata, condition)) 

 

# Plot PCA 
plotPCA(vsd, intgroup="condition") 
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##modify PCA plot using ggplot 
pcaData <- plotPCA(vsd, intgroup="condition", returnData=TRUE) 
percentVar <- round(100 * attr(pcaData, "percentVar")) 
 
ggplot(pcaData, aes(PC1, PC2, color=condition)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar[2],"% variance")) + 
  theme_bw() 

 

plotPCA(vsd, intgroup="batch") 
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## Run analysis 
 
dds <- DESeq(dds) 

## using pre-existing size factors 

## estimating dispersions 

## gene-wise dispersion estimates 

## mean-dispersion relationship 

## final dispersion estimates 

## fitting model and testing 

## mean-variance relationship 
 
# Syntax for apply():  apply(data, rows/columns, function_to_apply) 
# Calculating mean for each gene (each row) in sort group 
mean_counts_sort <- apply(read_counts[, 1:3], 1, mean) 
# Calculating variance for each gene (each row) 
variance_counts_sort <- apply(read_counts[, 1:3], 1, var) 
 
# Plotting relationship between mean and variance of sort group 
 
df_sort <- data.frame(mean_counts_sort, variance_counts_sort) 
ggplot(df_sort) + 
geom_point(aes(x=mean_counts_sort, y=variance_counts_sort)) + 
scale_y_log10() + 
scale_x_log10() + 
xlab("Mean counts per gene") + 
ylab("Variance per gene") 



 

127 
 

 

# Calculating mean for each gene (each row) in whole group 
mean_counts_whole <- apply(read_counts[, 4:6], 1, mean) 
# Calculating variance for each gene (each row) 
variance_counts_whole <- apply(read_counts[, 4:6], 1, var) 
 
# Plotting relationship between mean and variance of sort group 
 
df_whole <- data.frame(mean_counts_whole, variance_counts_whole) 
ggplot(df_whole) + 
geom_point(aes(x=mean_counts_whole, y=variance_counts_whole)) + 
scale_y_log10() + 
scale_x_log10() + 
xlab("Mean counts per gene") + 
ylab("Variance per gene") 

 

## Plot dispersion estimates 
plotDispEsts(dds) 
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# Results extraction 
result <- results(dds, 
                  contrast = c("condition", "sort", "whole"), 
                  alpha = 0.05) 
 
plotMA(result, ylim = c(-8,8)) 

 

### LFC shrinkage with "ashr" (Stephens, M. (2016) False discovery rates: a new deal. 
Biostatistics, 18:2.    https://doi.org/10.1093/biostatistics/kxw041) 
result <- lfcShrink(dds, 
                    type = "ashr", 
                    contrast = c("condition", "sort", "whole"), 
                    res = result) 

## using 'ashr' for LFC shrinkage. If used in published research, please cite: 
##     Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2. 
##     https://doi.org/10.1093/biostatistics/kxw041 

plotMA(result, ylim = c(-8,8)) 
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# check result table 
mcols(result) 

## DataFrame with 5 rows and 2 columns 
##                        type                                      description 
##                 <character>                                      <character> 
## baseMean       intermediate        mean of normalized counts for all samples 
## log2FoldChange      results log2 fold change (MMSE): condition sort vs whole 
## lfcSE               results            posterior SD: condition sort vs whole 
## pvalue              results       Wald test p-value: condition sort vs whole 
## padj                results                             BH adjusted p-values 

summary(result) 

##  
## out of 33552 with nonzero total read count 
## adjusted p-value < 0.05 
## LFC > 0 (up)       : 7550, 23% 
## LFC < 0 (down)     : 6646, 20% 
## outliers [1]       : 214, 0.64% 
## low counts [2]     : 7644, 23% 
## (mean count < 1) 
## [1] see 'cooksCutoff' argument of ?results 
## [2] see 'independentFiltering' argument of ?results 

### set fold-change threshold(0.585, 1.5-fold) 
 
result <- results(dds, 
                  contrast = c("condition", "sort", "whole"), 
                  alpha = 0.05, 
                  lfcThreshold = 0.585) 
result <- lfcShrink(dds, 
                    type = 'ashr', 
                    contrast = c("condition", "sort", "whole"), 
                    res = result) 

## using 'ashr' for LFC shrinkage. If used in published research, please cite: 
##     Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2. 
##     https://doi.org/10.1093/biostatistics/kxw041 

# check result table after setting fold-change threshold 
mcols(result) 
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## DataFrame with 5 rows and 2 columns 
##                        type                                      description 
##                 <character>                                      <character> 
## baseMean       intermediate        mean of normalized counts for all samples 
## log2FoldChange      results log2 fold change (MMSE): condition sort vs whole 
## lfcSE               results            posterior SD: condition sort vs whole 
## pvalue              results       Wald test p-value: condition sort vs whole 
## padj                results                             BH adjusted p-values 

summary(result) 

##  
## out of 33552 with nonzero total read count 
## adjusted p-value < 0.05 
## LFC > 0 (up)       : 5023, 15% 
## LFC < 0 (down)     : 4178, 12% 
## outliers [1]       : 214, 0.64% 
## low counts [2]     : 8918, 27% 
## (mean count < 2) 
## [1] see 'cooksCutoff' argument of ?results 
## [2] see 'independentFiltering' argument of ?results 

### Results extraction 
 
res_all <- data.frame(result) %>% rownames_to_column(var = "WBgene") 
res_all$gene_name <- genecounts_with_names$gene_name 
 
res_sig <- subset(res_all, padj < 0.05) 
 
## Subset normalized counts to significant genes 
sig_norm_counts <- normalized_read_counts[res_sig$WBgene, ] 
## Choose a color palette from RColorBrewer 
library(RColorBrewer) 
heat_colors <- brewer.pal(6, "YlOrRd") 
 
##Plot heatmap using pheatmap 
pheatmap(sig_norm_counts, 
         color = heat_colors, 
         cluster_rows = T, 
         show_rownames = F, 
         annotation = select(NW1229_metadata, condition), 
         scale = "row") 
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### Volcano plot 
 
#Obtain logical vector regarding whether padj values are less than 0.05 
res_all <- mutate(res_all, threshold = padj<0.05) %>% mutate(updown = ifelse(threshold == F, 0, 
ifelse(log2FoldChange > 0, 1,2))) 
 
 
ggplot(res_all) +  
  geom_point(aes(x = log2FoldChange, y = -log10(padj), color = as.factor(updown))) + 
  xlab("log2 fold change") +  
  ylab("-log10 adjusted p-value") +  
  scale_color_manual(values = c("grey","#FC8D62", "#66C2A5")) + 
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5), 
        axis.title = element_text(size = rel(1.25))) 

##adjust ylim 
ggplot(res_all) +  
  geom_point(aes(x = log2FoldChange, y = -log10(padj), color = as.factor(updown))) + 
  xlab("log2 fold change") +  
  ylab("-log10 adjusted p-value") +  
  ylim(c(0,60)) + 
  scale_color_manual(values = c("grey","#FC8D62", "#66C2A5")) + 
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5), 
        axis.title = element_text(size = rel(1.25))) 

## highlight some genes 
library(ggrepel) 
gene <- c("unc-64", "myo-3", "glr-2", "gpa-1", "iglr-3","unc-75", "zip-2", "arl-13", "Y20F4.4", "crh-1") 
gene2<-c("unc-64", "myo-3") 
RBP<- c("C25A1.4", "exc-7", "Y27G11C.9", "mbl-1", "msi-1", "tdp-1", "unc-75", "asd-1", "tiar-3","fox-
1", "mec-8", "hrpf-1", "fust-1") 
 
##choose which gene list to be labeled(gene_name %in% ?) 
subdata = filter(res_all, gene_name  %in% gene2) 
p<- ggplot(res_all, aes(x = log2FoldChange, y = -log10(padj)), label = gene_name) +  
  geom_point(aes(color = as.factor(updown))) +  
  geom_point(data = subdata, aes(x = log2FoldChange, y = -log10(padj)),shape = 1, color = 
"black") + 
  geom_text_repel(data = subdata, size = 6, label = subdata$gene_name, fontface = "italic") +  
  scale_color_manual(values = c("grey","#FC8D62", "#66C2A5")) + 
  xlab(expression(log["2"]*"(fold change)")) +  
  ylab(expression(-log["10"]*"(adjusted p-value)")) +  
  scale_y_continuous(limits = c(0,55), breaks = seq(0,50,10)) + 
  theme_pubr()+ 
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5),  
        axis.title = element_text(size = rel(1.7))) 
 
p 
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##results export 
 
write.csv(res_all,"./linearDE.csv", quote = F, row.names = F) 
 
write.csv(res_all,"./linearDE.txt", quote = F, row.names = F) 

  



 

133 
 

7.3.4 circRNA differential expression analysis using DESeq2 

library(ggplot2) 
library(tidyr) 
library(dplyr) 
library(DESeq2) 
library(readr) 
library(pheatmap) 
library(tibble) 
library(ggrepel) 
library(ggpubr) 
 

#setwd(~/) 
setwd("~/RNA-seq analysis/circDE/") 
 
circCount <- read_csv("./DCC_output.csv") 

## Parsed with column specification: 
## cols( 
##   circ_ID = col_character(), 
##   Chr = col_character(), 
##   Start = col_double(), 
##   End = col_double(), 
##   Gene = col_character(), 
##   sort_1 = col_double(), 
##   sort_2 = col_double(), 
##   sort_3 = col_double(), 
##   whole_1 = col_double(), 
##   whole_2 = col_double(), 
##   whole_3 = col_double() 
## ) 

circCount$sort_sum <- circCount$sort_1 + circCount$sort_2 + circCount$sort_3 
circCount$whole_sum <- circCount$whole_1 + circCount$whole_2 + circCount$whole_3 
 
##minimum 3 reads in either group 
circCount_3 <- filter(circCount, sort_sum >=3 | whole_sum >=3) 
circReads_3 <- data.frame(circCount_3[, 6:11], row.names = circCount_3$circ_ID) 
 
 
condition <- c("sort","sort","sort", "whole", "whole", "whole") 
batch <- c("b1","b2","b3","b1","b2","b3") 
metadata <- data.frame(condition, batch) 
rownames(metadata)<- c("sort_1","sort_2","sort_3","whole_1","whole_2","whole_3") 
 
# check if rownames of metadata are consistant with colnames of readcounts table 
all(rownames(metadata) == colnames(circReads_3)) 

## [1] TRUE 

# Creating DESeq2 object 
 
dds_3<- DESeqDataSetFromMatrix(countData = circReads_3, 
                             colData = metadata, 
                             design = ~ condition) 

## converting counts to integer mode 

## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in 
## design formula are characters, converting to factors 
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# Counts normalization 
 
dds_3 <- estimateSizeFactors(dds_3) 
sizeFactors(dds_3) 

##    sort_1    sort_2    sort_3   whole_1   whole_2   whole_3  
## 1.1157003 1.0815636 1.2950062 0.8437458 1.2698120 0.7202728 

normalized_circCounts <-counts(dds_3, normalized = T) 
 
# log transformation: variance stabilizing transformation(VST) 
 
vsd_3 <- varianceStabilizingTransformation(dds_3, blind = T) 
 
# Extract the vst matrix from the object 
vsd_matrix_3 <- assay(vsd_3) 
# Compute pairwise correlation values 
vsd_cor_3 <- cor(vsd_matrix_3) 
vsd_cor_3 

##            sort_1    sort_2    sort_3   whole_1   whole_2   whole_3 
## sort_1  1.0000000 0.6990687 0.6988317 0.5099201 0.5168932 0.4850869 
## sort_2  0.6990687 1.0000000 0.6778302 0.4944525 0.5287449 0.4849661 
## sort_3  0.6988317 0.6778302 1.0000000 0.5529481 0.5577008 0.5178015 
## whole_1 0.5099201 0.4944525 0.5529481 1.0000000 0.7393289 0.6801907 
## whole_2 0.5168932 0.5287449 0.5577008 0.7393289 1.0000000 0.7037190 
## whole_3 0.4850869 0.4849661 0.5178015 0.6801907 0.7037190 1.0000000 

# Plot heatmap 
pheatmap(vsd_cor_3, annotation = select(metadata, condition)) 

 

# Plot PCA 
plotPCA(vsd_3, intgroup="condition") 
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plotPCA(vsd_3, intgroup="batch") 

 

## Run analysis 
 
dds_3 <- DESeq(dds_3) 

## using pre-existing size factors 

## estimating dispersions 

## gene-wise dispersion estimates 

## mean-dispersion relationship 

## -- note: fitType='parametric', but the dispersion trend was not well captured by the 
##    function: y = a/x + b, and a local regression fit was automatically substituted. 
##    specify fitType='local' or 'mean' to avoid this message next time. 

## final dispersion estimates 

## fitting model and testing 
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## Plot dispersion estimates 
plotDispEsts(dds_3) 

 

# Results extraction 
result <- results(dds_3, 
                  contrast = c("condition", "sort", "whole"), 
                  alpha = 0.05) 
 
plotMA(result, ylim = c(-8,8)) 

 

### LFC shrinkage 
result <- lfcShrink(dds_3, 
                    type = "ashr", 
                    contrast = c("condition", "sort", "whole"), 
                    res = result) 

## using 'ashr' for LFC shrinkage. If used in published research, please cite: 
##     Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2. 
##     https://doi.org/10.1093/biostatistics/kxw041 

plotMA(result, ylim = c(-8,8)) 
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# check result table 
mcols(result) 

## DataFrame with 5 rows and 2 columns 
##                        type                                      description 
##                 <character>                                      <character> 
## baseMean       intermediate        mean of normalized counts for all samples 
## log2FoldChange      results log2 fold change (MMSE): condition sort vs whole 
## lfcSE               results            posterior SD: condition sort vs whole 
## pvalue              results       Wald test p-value: condition sort vs whole 
## padj                results                             BH adjusted p-values 

summary(result) 

##  
## out of 1454 with nonzero total read count 
## adjusted p-value < 0.05 
## LFC > 0 (up)       : 31, 2.1% 
## LFC < 0 (down)     : 35, 2.4% 
## outliers [1]       : 0, 0% 
## low counts [2]     : 986, 68% 
## (mean count < 2) 
## [1] see 'cooksCutoff' argument of ?results 
## [2] see 'independentFiltering' argument of ?results 

### Results extraction 
 
res_all_3 <- data.frame(result) %>% rownames_to_column(var = "circID") 
 
 
res_all_3<- cbind(res_all_3, circCount_3[,2:5]) 
 
res_all_3<- mutate(res_all_3, ce11_loci = paste0("chr",Chr,":",Start-1,"-",End)) 
 
res_sig_3 <- subset(res_all_3, padj < 0.05) 
 
#result export 
write.table(res_all_3, "./circDE_sortwhole_3.txt", quote = F, row.names = F) 
 
## Subset normalized counts to significant genes 
sig_norm_counts <- normalized_circCounts[res_sig_3$circID, ] 
## Choose a color palette from RColorBrewer 
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library(RColorBrewer) 
heat_colors <- brewer.pal(6, "YlOrRd") 
 
##Plot heatmap using pheatmap 
pheatmap(sig_norm_counts, 
         color = heat_colors, 
         cluster_rows = T,  
         show_rownames = F, 
         annotation = select(metadata, condition), 
         scale = "row") 

 

### Volcano plot 
 
#Obtain logical vector regarding whether padj values are less than 0.05 
res_all_3 <- mutate(res_all_3, threshold = padj<0.05) %>% mutate(updown = ifelse(threshold == 
F, 0, ifelse(log2FoldChange > 0, 1,2))) 
 
ggplot(res_all_3) +  
  geom_point(aes(x = log2FoldChange, y = -log10(padj), color = threshold)) + 
  xlab("log2 fold change") +  
  ylab("-log10 adjusted p-value") +  
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5), 
        axis.title = element_text(size = rel(1.25))) 

## Warning: Removed 986 rows containing missing values (geom_point). 
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##adjust ylim 
ggplot(res_all_3) + 
  geom_point(aes(x = log2FoldChange, y = -log10(padj), color = threshold)) +  
  xlab("log2 fold change") +  
  ylab("-log10 adjusted p-value") +  
  ylim(0, 40) +  
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5),  
        axis.title = element_text(size = rel(1.25))) 

## Warning: Removed 986 rows containing missing values (geom_point). 

 

## highlight some genes 
library(ggrepel) 
#choose genes to label 
gene <- c("glr-2", "gpa-1", "iglr-3","unc-75", "zip-2", "arl-13", "Y20F4.4", "unc-89", "sma-9", "nab-1", 
"tbc-17","lin-1") 
 
gene<-c("glr-2", "gpa-1", "iglr-3","unc-75", "zip-2", "arl-13", "Y20F4.4","cam-1") 
subdata = filter(res_all_3, Gene  %in% gene) %>% filter(baseMean>10) 
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p3<- ggplot(res_all_3, aes(x = log2FoldChange, y = -log10(padj)), label = Gene) +  
  geom_point(aes(color = threshold)) +  
  geom_vline(xintercept = 0, lty = 8) +  
  geom_hline(yintercept = 1, lty = 8) + 
  geom_point(data = subdata, aes(x = log2FoldChange, y = -log10(padj)), color = "red") + 
  geom_text_repel(data = subdata, size = 6, label = subdata$Gene, fontface = "italic") +  
  scale_color_manual(values = c("grey", "#00BFC4")) + 
  xlab("log2 fold change") +  
  ylab("-log10 adjusted p-value") +  
  theme_pubr()+ 
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5),  
        axis.title = element_text(size = rel(1.7))) 
   
## Draw MAplot by ggplot2 
 
#replace_na is to convert NA values in threashold to FALSE  
 
MA_circ_3 <- ggplot(replace_na(res_all_3, list(updown = FALSE)), 
                    aes(x = baseMean, y = log2FoldChange), label = Gene) +  
  geom_point(aes(color = as.factor(updown))) +  
  scale_x_log10() + 
  geom_hline(yintercept = 0, lty = 8) + 
  geom_point(data = subdata, aes(x = baseMean, y = log2FoldChange), color = "black", shape = 
1) + 
  geom_text_repel(data = subdata, size = 5, label = subdata$Gene, fontface = "italic") +  
  scale_color_manual(values = c("grey","#FC8D62", "#66C2A5")) + 
  xlab("mean of normalized BSJ reads") +  
  ylab(expression(log["2"]*"FC(sort vs. whole)")) +  
  theme_pubr()+ 
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5),  
        axis.title = element_text(size = rel(1.7)), 
        panel.grid.major = element_blank(),  
        panel.grid.minor = element_blank(), 
        panel.background = element_rect(fill = "transparent",colour = NA), 
        plot.background = element_rect(fill = "transparent",colour = NA) 
        ) 
 
MA_circ_3 
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7.3.5 circDE vs linear DE 

library(dplyr) 

library(ggpubr) 

#import circDE results from "DE analyisis of circRNAs using DESeq2.Rmd", filter out circRNAs 
from not annotated loci 
 
setwd("~/RNA-seq analysis/") 
circ_DE <- read.table("./circDE/circDE_sortwhole_3.txt", header = T) %>% filter (Gene != 
"not_annotated") %>% dplyr::rename(gene_name = Gene)  
 
 
#import linearDE results from "DE analysis using DESeq2.Rmd" 
 
linear_DE <- read.csv("./linearDE.csv") %>% filter(gene_name %in% circ_DE$gene_name) 
 
#merge 2 dataframes by gene_name 
 
merged<- merge(circ_DE, linear_DE, by = "gene_name") 
 
write.csv(merged, "circDE_linearDE.csv", quote = F, row.names = F) 
 
##filter with baseMean.x>3 
 
pCL<-ggscatter(filter(merged, baseMean.x>0), x = "log2FoldChange.x", y = "log2FoldChange.y", 
size = 2, , fill = NA, shape = 21, color = "#619CFF", title = "1354 circRNAs from annotated genes") 
+  
  stat_cor(method = "pearson") + 
  labs(x = expression(circ_log["2"]*"FC(sort vs. whole)"), 
       y=expression(linear_log["2"]*"FC(sort vs. whole)" )) +  
  geom_hline(yintercept = 0, linetype = "dashed") + 
  geom_vline(xintercept = 0, linetype = "dashed") + 
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0),  
        axis.title = element_text(size = rel(1.25))) 
 
 
pCL3<-ggscatter(filter(merged, baseMean.x>3), x = "log2FoldChange.x", y = "log2FoldChange.y", 
size = 2, , fill = NA, shape = 21,  color = "#619CFF", title = "268 circRNAs with baseMean>3") +  
  stat_cor(method = "pearson") + 
  labs(x = expression(circ_log["2"]*"FC(sort vs. whole)"), 
       y=expression(linear_log["2"]*"FC(sort vs. whole)" )) +  
  geom_hline(yintercept = 0, linetype = "dashed") + 
  geom_vline(xintercept = 0, linetype = "dashed") + 
  theme(legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0),  
        axis.title = element_text(size = rel(1.25))) 
pCL3 
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#label some genes 
 
library(ggrepel) 
gene <- c("glr-2", "gpa-1", "iglr-3", "arl-13", "gtl-2  ", "K11H12.5", "lin-1",  "unc-89" ) 
gene1<- c("tbc-17", "pig-1") 
subdata = filter(merged, gene_name  %in% gene) %>% filter(baseMean.x >10) 
subdata1= filter(merged, gene_name  %in% gene1) 
#highlight significantly DE circRNAs 
sig_circ<- filter(merged, padj.x <0.05) %>% mutate(updown.x = ifelse(log2FoldChange.x>0, 1, 2)) 
 
# No labeling 
pCL + geom_point(data = sig_circ, aes(x = log2FoldChange.x , y = log2FoldChange.y, color = 
as.factor(updown.x)), size = 2) + scale_fill_manual(values = c("#FC8D62", "#66C2A5")) + 
  geom_text_repel(data = subdata, size = 4,color = "red", label = subdata$gene_name, fontface = 
"italic", 
                   point.padding = unit(0.25, "lines"), 
                  box.padding = unit(0.25, "lines"), 
                  min.segment.length = 0) 

 

#label tbc-17 and pig-1 
pCL +  
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  geom_point(data = sig_circ,  
             aes(x = log2FoldChange.x , y = log2FoldChange.y, color = as.factor(updown.x)),  
             size = 2) +  
  scale_fill_manual(values = c("#FC8D62", "#66C2A5")) + 
  geom_point(data = subdata1, 
             aes(x = log2FoldChange.x , y = log2FoldChange.y),  
             shape = 1, size = 2 , color = "black", stroke = 1) + 
  geom_text_repel(data = subdata1, size = 4,color = "red", label = subdata1$gene_name, fontface 
= "italic", 
                   point.padding = unit(0.25, "lines"), 
                  box.padding = unit(0.25, "lines"), 
                  min.segment.length = 0) 

 

pCL3 + geom_point(data = sig_circ, aes(x = log2FoldChange.x , y = log2FoldChange.y, color = 
as.factor(updown.x)), size = 2) + scale_fill_manual(values = c("#FC8D62", "#66C2A5")) + 
  geom_text_repel(data = subdata, size = 4,color = "red", label = subdata$gene_name, fontface = 
"italic", 
                   point.padding = unit(0.25, "lines"), 
                  box.padding = unit(0.25, "lines"), 
                  min.segment.length = 0) 
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7.3.6 Heatplot in Figure 3.13A 

## heatmap plot for circRNA fold change in RBP mutants 
 
##import result data 
 
library(readxl) 
library(dplyr) 

library(gplots) 

##select(-5) to remove circ-nab-1 
qPCR_RBP <- read_excel("./assaydata/qPCR_RBP.xlsx") %>% select(-5) %>% 
tibble::column_to_rownames( var = "Sample") 
df<- as.matrix(qPCR_RBP) 
df  

##           circ-glr-2  circ-unc-75 circ-gpa-1 circ-zip-2 circ-Y20F4.4 circ-cam-1 
## asd-1      0.5629325 0.7564200759  0.7056788  0.6490386    1.3077674  0.6873996 
## C25A1.4    0.6614507 0.9931094050  1.0233464  0.8764090    1.6980375  0.9513217 
## exc-7      0.6209584 1.0250390768  0.9159197  0.7785423    1.4593503  0.8080969 
## fox-1      0.3614715 0.6710472107  0.4681549  0.7978907    1.0357271  0.6954612 
## fust-1     0.1864776 0.7965794802  0.2632979  0.2881918    0.9629277  0.5699885 
## hrpf-1     0.3032248 0.7677495480  0.4812411  0.4875642    0.9689784  0.5665971 
## mbl-1      0.4060341 0.6965837479  0.5667545  1.0038055    1.6789204  0.8228701 
## mec-8      0.5964758 0.6441518664  0.6586121  0.9665455    0.7695940  0.4371135 
## msi-1      0.7444817 0.9873660803  1.0662857  1.0379319    2.2009530  0.8733109 
## tdp-1      0.9199061 1.0200546980  1.5474802  0.9433300    1.1806319  0.7566001 
## tiar-3     0.3900975 0.7530415058  0.5452510  0.7709072    1.3460126  0.8563417 
## unc-75     0.7942670 0.0001382712  1.1851201  0.8360450    1.2393516  1.1219867 
## Y57G11C.9  0.5795485 0.8175869584  0.9954058  1.0906332    1.2850699  0.7013251 
## N2         1.0000000 1.0000000000  1.0000000  1.0000000    1.0000000  1.0000000 
##           circ-iglr-3 circ-arl-13 
## asd-1       0.7122107   0.5804671 
## C25A1.4     0.8731043   0.8531640 
## exc-7       0.8302661   0.6134149 
## fox-1       0.3936984   0.6655200 
## fust-1      0.2011604   0.3070552 
## hrpf-1      0.3709424   0.4826933 
## mbl-1       0.5184013   0.9553524 
## mec-8       0.5085844   0.5053511 
## msi-1       1.0622433   0.7505279 
## tdp-1       1.2507206   0.8299862 
## tiar-3      0.5244303   0.7049152 
## unc-75      1.0800723   0.9048862 
## Y57G11C.9   0.6471557   0.8312083 
## N2          1.0000000   1.0000000 

heatmap.2(df, scale = "none", col = bluered(240), trace = "none", density.info = "none",  
          breaks = seq(-0.2,2.2,0.01), margins = c(10,10), dendrogram = "none",  
          lwid = c(2,8), lhei = c(2,8), key.xlab = "Fold Change", 
          labCol=as.expression(lapply(colnames(df), function(a) bquote(italic(.(a))))), 
          labRow=as.expression(lapply(rownames(df), function(a) bquote(italic(.(a))))), 
          cexRow = 1.5, 
          cexCol = 1.8 
          ) 
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7.4 Plasmid sequences 

 fust-1p::fust-1::mRFP (9059 bp) 

fust-1 genomic sequences (from promoter to before stop codon) 

mRFP  

Ampicillin resistance  

AAGCttgcatgcctgcaggtcgactctagaggatccccTAGATCGGGCCCTCTTCGTACATTGCGTGGTATGAT
ATCAGCAGGGTATCATCCATTACTCCACATTGAGCCATTTTGTATCGTACCACCTTGTTTGCAT
CTTCTGATGGGATTGGTAAATGACTATATCTTGGCTTCACTTTTGGCACTTGCCAATCAAATCG
ACTTCCCTGGACAGGATCTTCCAGACTCTATGAACGAACAGAGAATGGAATTGGGAATAGTTC
AGAAAGAAGAAAAATTTTGCCAAAAAGTGGTTGAAAGTCTGCAAAACGCCCTTGTGCTCACGA
CGAAAATCAAGGAAGTTTATGAGAGTCGACTAAAGCAGAATAATATCAAACGTTCGTCGATATC
TTGTGGATCTCCAACATGCTGCGTCAGTGATATGCCAAAAAGCCAACAGGATCAAGATATCTT
CTTCTGCGTTGCTTGTCCATTTGCAATTCATATGGTGTGTGCTGGTAGATATACGGAGGATCAA
CGCCAGGCAGCTAAACATCATCCGACTGCTTGTTTAAAATGTCAAGAAAAACATATTCTTTCTA
ATGAGGAAATGATTGAACATGCTAATGAGGCACTTGATGAGCTTGCCAGGCGCTTACAACACG
AGACAAGCCATCTTAGTAACTTGAAAGCTGCTCGCCAAGACATGACAACGGCTATTTCGACTC
GAACTGGGCCAACAAAACAGAAACTCGAGGAAGTTTTGGATTATATTGGCTGTAGTCAAAAAA
TTAACTATCAGGGATTAACCGGAAATCAAGTAAATTTGTGATTTTCGGTATTTGAAAATATTCTA
ATCTTTAGGTTCGCCAACTACTAAGGACAGAAAACATTGACAAAGTACTAAAAGTCTTCACGGA
CTGTAGTTGGATCCAGAATATGAGAAACTTCATGAATGATTTGGCGTCACTCATGTCAGCAAG
CAATAACGCAGTCTTCACAGATGATGATTTGAATGATTTCGCTAAAACTTTGAAGAACTTGAAG
AGAAACATCAGAATTCTTCATCCTTCGATGGGAGTCACTCCTAAACTTCACATCCTCTGTACTC
ACCTCGAGCCTTACATTAGAGCAAAAAGAACTTGGGGTCGTACTTCAGAACAAGGGATGGAAG
CGTTTCATGTGCTCTTCAGGACAACAGAGACGCGATTTTCTTCTGTGATGTCTCTCAAGCTAC
GCGCTGAGTTGATGATCGACTATTTCGCTAACATCAACTATATTTCCGATAAAAGAAACTAGTG
ACAGCAAACATTTCTAGGAAACCGTTTTTATAGTACAtctctctctctctctctcactcACATGtttttttttCGATTA
AATCAATTAAACGAGCAGAAAAGCCATGAATGATCTCTAAATTCCGACTTACAAAGTGTTTTGA
GTTGATGATAAGCGTGAATCCTAATTTTCAATTGCCTAAACTAACAAACGGGTTGTGAATGGGT
TCAGATTGGGGTACAGCATGAAAATatttcaaaagaagtgaatacaattttagaaaaaccgaatacaaGCAATGTA
AACATGaaaatgaaacaaaaaaacgaaaaaaaaaTCAACCTTGTTCGAAGAAAATGATGAGAATTAGAAT
GAGCAAGGAAATGCGAGAGACTTGGAAATGTGAGAGACGCAGCATTTCACGCGAAACGCGCC
AGCAATCGTCGCGCTTGCGCATTTCGAGACGAGGATACTGTGTAAAATTGTAATCATTTGTTG
CAATTTTTGTTCTTGAGTTAACTTTATTTTTCATTTTCCTCGACCTAATTTCTCAAAATTGTTAAA
ATGTATACTATTTATTACCCTGCAGTGCTCAAATCTTGTGATGAGCACTATCAAAGTTTTAGATG
GAGttttttaaaaagtattttttttagtataattgtttttttcagtaaatttagttttttGGAGCAGAACGCTGAAATCTGCCAAGGT
TCGCTACAACCAGATATATCTAGATATAACTGCAAATGTGCGCGCTCCATTGAGACTACACGC
GACGCACAACCGCGACGCGTATTGGACAGCGTTCTCCGTCTTCTTTGAACAGCATCTGTCCTC
AACCATTCTCTTCTCGTTTCTCTTTTAATTTTAAGATATATTTGCTCTTCAAAGGATAAATTTCAG
TCAACGCATCGACACGTAGCGAGTGCCTCGACTTGAATATCGACAAAAATGGGTTAGTTTCTT
TTTTAATAGTCGTTTTCTTATTGGAATATCGAAATCCGAGTGTCCACTGAAAGTATTTTATTTAT
CCTCCTAACACCATTCATGTTTTATAAATTAGGTTAATGCGTGAATTTGTGGGAGCTCCCGAAT
ACAAATCACGGGCGTTGCCATTTCTGTTTCCCGGTTATTTGAAAACATTATCGATTTCAGCGGC
TTACGACCAAAGTCAACCCGACTACAGCACACCCGAAGGGCAGCAGGCGTATTGGGCCTATT
ATcaacagcaacaacaacaacaacCAGGAGGTCAACCTGATGTAAGTATATGAGATTTTGTGGGCTGA
TCGCCTCACTATCATGGCTTTGCTCAGAATTGTTCAGGAGCATAGTTCTGCTGTTGAATACCAC
CAGGCTCACAGACGTTTCATAGTTTAAATTTCAGCAGGATCCGTACGCCGCTGCTGCTTATGG
AGGCCACGACCAAGCACAACAACCGCAAAATCCATATGCACCACCACCACCAGGAGCGGATC
CATACGGCCAAGGATCCGGAGGCCAATCCGGAGGATCTGACCCCTACGGGCAAAGTAGAGG
TGGCGGCCGTGGAGGATTCGGAGGCAGTCGTGGAGGAGGTGGATATGATGGTGGACGTGGC
GGAAGTCGTggaggatacgacggaggacgcggaggttacggcggtgatcgcggaggaCGTGGTGGTGGTAGAGG
TTTGTTCTTGTTTGATTAATGTATTCATAATAAACCATGTTTTTCAGGTGGCTACGACGGAGAAC
GCCGAGGTGGGAGCCGATGGGATGACGGAAACTCTGATCGGTAGGTAAACATCTGAATGTTT
CGTTAGCAATATGCGGTATTTCCAAATTCGTTTGCTTAACCATCCAAAAATTGTTGTGTTGTGTT
GAAAATCGAAACTGCTACAGAGTTCAGAGTATTCAGTGTTCATATACAAAATCTATTCACTATTA
AAAACTTGCGAAGAGTAATGTATTGTGTCCGTCATTGTAAGTTTCATGAAAAAAGGTCAGTGTC
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CGCAATGAAGCACAAATTCATTGTGCTTTATCGATTTGTAGGGCTATGGCCCGGTTTCCTTCAA
AATATTATGCAGTTCAGCTATTATTACGTGTGTTCGGTATCAAAACGAGTCAAGAGTGAAGAAC
AAATGAAGTCTACCAAACGACTTCGAGCGTGCAGGAGATGCTTCTGTCTGAAATCTCTCATGC
TTGAAAAATCTTAAAATCTAAATGATCGTGTTTGTGCGTACaaaaaaaaaTCAATTGAAGGTGTAT
TATTGCGCGGTCGAAATCTGAAAACATTTTACTGTGGTGTTAGCATGAGAGAAGAAGACAGAA
GACTCCATTCAAGAATGATGTTTTGCAGACAGGGCGGACCTCCAGGAGGAAGAGGAGGTTAT
CAAGGTATTGAATACGTAAATTGCTTTATCTTTCGTACCACAACGAGTTTATTACCAAAATTaaaa
aaaaaTGGGTATCCTACCGAGTTTATCATCGAAATTCAAAAACAAAAAACATTAAACGAATATAA
AAATACTTGTTCCTGTGCTTTATATTATTGACAGTTGGACGAAAAAATTGTTTGTAAAAGTTTTC
ATATTTTCATTGCAGACAGAGGACCCCGACGTGACGGACCACCAAGTGGAGGAGGATACGGA
GGCGGTGGTGCTGCTTCAGGAAACCGCGAATTCGGATCCGATGGGCGAGTTGAGTTGAAGG
AGACCGTCTTTGTGCAGGGAATTTCCACCACGTATGTTTTGTAATCGCCCAATTAAAAAATGTA
TCTATATTTCAGTGCAAATGAAGCCTACATCGCCGACGTCTTCAGTACCTGCGGAGATATTGC
AAAGAACGATCGCGGACCGAGAATCAAGATTTACACCGATCGCAACACCGGAGAACCAAAAG
GAGAATGCATGATAACATTCGTCGATGCTTCTGCAGCTCAACAAGCTATAACTATGTACAATGG
GCAACCATTCCCTGGCGGCTCAAGCCCGATGAGTATTTCACTAGCCAAGTTCCGCGCTGATG
CAGGAGGTGAACGAGGTGGTCGTGGTGGACGAGGCGGTTTCGGAGGTGGTCGTGGTGGTCC
TATGGGAGGACGTGGTGGCTTTGgcggtgatcgtggaggatatggcggcggcggtggtcgtggaggattcgatggtggtc
gcggtggtggcggtggattccgtggcggagaccgaggaggattccgaggtggtgatagaggaggcttccgcggaggagatcgtggag
gattccgaggcggcgaccgtggtggcgatcgtggaggattcagaggaggCCGTGGAGTAGGTGGCGGAAATGCTAA
TATGGAACAAAGGAAGAATGACTGGCCATGTGAGCAGTGCGGAAATAGCAACTTCGCTTTCAG
AAGAGTTAGTTAATTTTgttttttcaaaaaaaaaacacgggttttctTCTAGGAATGCAATCAATGCCAAGCCC
CGAGACCAGATGGAGGATCCGGAGGTGGTGGTGGCGAGCGACGAGGAGGACCACCAGGAG
GTGACCGATACCGTCCATATgggattggCCAAAGGACCCAAAGGTATGTTTCGAATGATACTAACA
TAACATAGAACATTTTCAGGAGGACCCTTGCTTGGAGGGTACCGGTAGAAAAAATGGCCTCCT
CCGAGGACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCGTGAACGG
CCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGC
CAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAG
TTCCAGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCT
GTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTG
ACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCG
GCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTC
CACCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGATGAGGCTGAAG
CTGAAGGACGGCGGCCACTACGACGCCGAGGTCAAGACCACCTACATGGCCAAGAAGCCCG
TGCAGCTGCCCGGCGCCTACAAGACCGACATCAAGCTGGACATCACCTCCCACAACGAGGAC
TACACCATCGTGGAACAGTACGAGCGCGCCGAGGGCCGCCACTCCACCGGCGCCTAAGAAT
TCCAACTGAGCGCCGGTCGCTACCATTACCAACTTGTCTGGTGTCAAAAATAATAGGGGCCGC
TGTCATCAGAGTAAGTTTAAACTGAGTTCTACTAACTAACGAGTAATATTTAAATTTTCAGCTCT
CGCGCCCGTGCCTCTGACTTCTAAGTCCAATTACTCTTCAACATCCCTACATGCTCTTTCTCCC
TGTGCTCCCACCCCCTATTTTTGTTATTATCAAAAAAACTTCTTCTTAATTTCTTTGTTTTTTAGC
TTCTTTTAAGTCACCTCTAACAATGAAATTGTGTAGATTCAAAAATAGAATTAATTCGTAATAAA
AAGTCGAAAAAAATTGTGCTCCCTCCCCCCATTAATAATAATTCTATCCCAAAATCTACACAAT
GTTCTGTGTACACTTCTTATGTTTTTTTTACTTCTGATAAATTTTTTTTGAAACATCATAGAAAAA
ACCGCACACAAAATACCTTATCATATGTTACGTTTCAGTTTATGACCGCAATTTTTATTTCTTCG
CACGTCTGGGCCTCTCATGACGTCAAATCATGCTCATCGTGAAAAAGTTTTGGAGTATTTTTGG
AATTTTTCAATCAAGTGAAAGTTTATGAAATTAATTTTCCTGCTTTTGCTTTTTGGGGGTTTCCC
CTATTGTTTGTCAAGAGTTTCGAGGACGGCGTTTTTCTTGCTAAAATCACAAGTATTGATGAGC
ACGATGCAAGAAAGATCGGAAGAAGGTTTGGGTTTGAGGCTCAGTGGAAGGTGAGTAGAAGT
TGATAATTTGAAAGTGGAGTAGTGTCTATGGGGTTTTTGCCTTAAATGACAGAATACATTCCCA
ATATACCAAACATAACTGTTTCCTACTAGTCGGCCGTACGGGCCCTTTCGTCTCGCGCGTTTC
GGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTA
AGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCG
GGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTG
AAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGGCCTTAAGGGCCTCGTGAT
ACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTC
GGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCT
CATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAA
CATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAG
AAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATG



 

148 
 

AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAA
CTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAG
CATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAAC
ACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCAC
AACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACC
AAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAA
CTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAG
TTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAG
CCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCG
TATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGC
TGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTT
TAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTC
ATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATC
AAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCAC
CGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTG
GCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACT
TCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTG
CCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCG
CAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACA
CCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAG
GCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCA
GGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG
ATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTT
TACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTC
TGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCG
AGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCC
CGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCA
GTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTA
TGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCT
ATGACCATGATTACGCCAAGCTgtaagtttaaacatgatcttactaactaactattctcatttaaattttcagAGCTTAAAA
ATGGCTGAAATCACTCACAACGATGGATACGCTAACAACTTGGAAATGAAAT 
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fust-1 exon 5 splicing reporter: 

rgef-1p::fust-1::GFP::mCherry::unc-54 3’UTR (10128 bp) 

rgef-1 promoter 

fust-1 exon 4 to exon 6 

GFP 

mCherry 

Ampicillin resistance 

cgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccg
gtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgcca
cctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggc
cttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgc
agccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggc
cgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcatta
ggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccat
gattacgaattcgaatggccatgggacgtcgacgcttgcatgcctgcagcgtttccgatacccccttatatcagcacacattcagtcatcata
ccacaaaatgttgtgatagtgataggcaaaactaccgtatttcctctattaatcttgcatgcaagactaattttcgattaacccgtaggggtgca
agactaatagagactgcaagactattagaggctgaaatactaattttcgtatgctcaataattttggaaattggcctattttttgtagaaacttgat
accgtttaaacaaggaaaaatacacactttttaatatttcatcaataatttgaacgattttgtgattttaagttcaatttgcccaaaaaaagacaa
tttttctgacgttaccgcaaagtaatgctggtcaggcaaaaagagcggtgcaaaaatataagagactgcaatactaatagaggaaatacg
gtaattgaattttagtgaaacttgcgacagttttcctcatttttttgttattccggcatacgagtgtggcatacgagtgaggtcatcttttgtttcttccgt
ttcttcatcgcttttgaaaaaaaatgttgaagaaaacttcgtagccgatagccggataatgtttggcacggcgttccaacatatatcattggaa
attttttaagatttttgcgaaaaatcacattcttcacgatgagaacacgttattgaaggaatataaatcaagaataacatatagttatatttctctat
tactttaacgttaaatatgagcaaatttgagcattttgattgcgatgaaaagcagaatcgagtcaactgaaatccgttcaaaaacctaagctc
ggttcgcccgaaagtcgatttttccaatagccgaacagcactgcttctttattttccaggtatttttggggtgtaagaattatatcttctttgtttgggt
atttacgtttccgaattccctttcttgatctgtcgctatttttcagaaaccagaacagtttatcctttttcatgagaacctgaatagctcaaaaaccc
gtttaatttcttttcatcatctcatttgaaactttcctagtcttcttaatgatttccaggctcctcctacatttgtatctcaagatgcatacactttatttccg
ctccaattcgaatcatctacttctcttttttcttcaactttctacttttttccattcttttctttcaaatgttcgacgtcttcaagtgactgctcttcattctcctc
atttttctcgaatttcattcttgtctcttttttgctcaaaaatggaaaatgaaagtgacgtgagatttggacggcgggacacgggggcagtagaa
gcagcaaaaaggagagaaagaggacacaaataagaagaacgaattcaaaaataagcggagaggagctatttccgtcaattctacctc
cccaatcttcatcaattcggctcaattgaatgacgtcacagggagataaaccgtttggatgagcgccgtccatcactgacgccatcccgtttg
ggacaagaaaagagaaaaaagagcacaaagtttttggtgacggatcttgtcaatcatatgaaagttgttctgattgattgtcagtttttttccta
cttttttggattctatccacttctgaacttttgacaagtttcaaactttctgaatcattttctatgcattttcctggaattctttttatgtaaaatatgaaata
gaatgtttttgaattcaagttctgcttttttcttcttttttgttctgttcgggcttgggtatgctttttttaaaaattattttgcacatcgaccaataagtgcgc
aacttataaaattaatttatttttgttaatttttgaaatacttgtattgctttaagtgatctgacctcgccctgagctttccacgtagttatcaaatacaa
atcctccaagggtaacgtacctatattactgatctttataataactttatcacctgtccagttccagaggaattctgttaagcttataggcacaga
aggagtcatttctgctggtttttaatgatccaaatctttatttcaagtaaaaaactgaacacttgcgaataaaactatcagattaaccattcacca
aaaatgtgtttgaatctaaaactttctcagtattccaaatatagaaataaataaccacgacattgctaaaatctgtctgaattgtgtactccttac
cgtgaagtaataatggatataatgaatcgtttgaaatgaatgatcagcacatttttggtgaaagatcacaaataaggaataagcgacggaa
aataaaacgattatttcggatcaaaaatttgttgaagatcatatacactcgagaccaagattattctagacaattttcaaattggcttctttgtttgc
aaatcttcataataatctgtgaagtttggaaatttgaatttttaatcttttttcatagattatagtttttatttctttgcaaaactatattaaaaaccgatgc
attgttttagggaaattaatgagccttttgttcaacactaaaaacaataaaattaaaattttggcttcatcatttgaccttttttaagttcgaaaacttt
tctcgtatttctgaaccgccaattttttcacacatctctagacttttggtgcccgttccagaaagttaagtaattgctattctaagaaagttctcaac
attgttttttagttctgattgaattctgatgttccaggaatatattttaaatttaatattctttgcactatttctatactaactaaataataaatagtctaagt
atgttcaatgagaacaaaaaagctctatctatatttttctatcctatttcatttatatccttttcattttgaactcaccagcttctcttcttcttcttgtccat
atacttcttaaaagtctcgaacttctctctctcactctccatcaatttctttatggctaccgcttgcgctctgccgcttccgaagaaagaaggcgtt
ggcagagctctcaattctattttttctcgccgtaggctatcgatttctcagcttctcttctctcttcctcactccaccaccaccacttcgggcttcttcttt
tcttcattttcgtcttcttcttcatcctcttctttttttttcagttccccctcactcctccccttatatgcgcgtgcgagaggggtgcaaaagcagcgcgc
atccgagaattgaaacgagaaaacggagacgcagcagcagttcgtcctcagaaaaatagccagtaaaaagagaaaaagatagaga
gagacctatcgcattttattttcaaattgcaattcctgcaattcatgtgtgcgtgtgcccattttcaattcttcccgttatttttcagaccattaccaacg
ttctttctagatcttgagacaatcttccttctgctcaatcgttcgtcgtgaagacggcatcgacgacgacgacgatcagcagtaaaggatcatc
ggggacaagtttgtacaaaaaagcaggctaccATGGATTACAAGGATGACGATGACAAGGGGGTACCTGCC
CCAAAAAAAAAACGCAAAGTGGAGGACCCAGTACCCGGATCTGAATTCATATATctcgagGTTAA
CTACGCTACGACGGAGAACGCCGAGGTGGGAGCCGATGGGATGACGGAAACTCTGATCGGT
AGGTAAACATCTGAATGTTTCGTTAGCAATATGCGGTATTTCCAAATTCGTTTGCTTAACCATC
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CAAAAATTGTTGTGTTGTGTTGAAAATCGAAACTGCTACAGAGTTCAGAGTATTCAGTGTTCAT
ATACAAAATCTATTCACTATTAAAAACTTGCGAAGAGTAATGTATTGTGTCCGTCATTGTAAGTT
TCATGAAAAAAGGTCAGTGTCCGCAATGAAGCACAAATTCATTGTGCTTTATCGATTTGTAGGG
CTATGGCCCGGTTTCCTTCAAAATATTATGCAGTTCAGCTATTATTACGTGTGTTCGGTATCAA
AACGAGTCAAGAGTGAAGAACAAATGAAGTCTACCAAACGACTTCGAGCGTGCAGGAGATGC
TTCTGTCTGAAATCTCTCATGCTTGAAAAATCTTAAAATCTAAATGATCGTGTTTGTGCGTACaa
aaaaaaaTCAATTGAAGGTGTATTATTGCGCGGTCGAAATCTGAAAACATTTTACTGTGGTGTTA
GCATGAGAGAAGAAGACAGAAGACTCCATTCAAGAATGATGTTTTGCAGACAGGGCGGACCT
CCAGGAGGAAGAGGAGGTTATCAAGGTATTGAATACGTAAATTGCTTTATCTTTCGTACCACAA
CGAGTTTATTACCAAAATTaaaaaaaaaTGGGTATCCTACCGAGTTTATCATCGAAATTCAAAAAC
AAAAAACATTAAACGAATATAAAAATACTTGTTCCTGTGCTTTATATTATTGACAGTTGGACGAA
AAAATTGTTTGTAAAAGTTTTCATATTTTCATTGCAGACAGAGGACCCCGACGTGACGGACCAC
CAAGTGGAGGAGGATACGGAGGCGGTGGTGCTGCTTCAGGAAACCGCGAATTCGGATCCGA
TGGGCGAGTTGAGTTGGTAtgcggccgcagtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgag
ctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttc
atctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgac
cacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaacta
caagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggca
acatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtga
acttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggcccc
gtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctgg
agttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaaaccgcggtgtgagcaagggcgaggaggataacatg
gccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgagatcgagggcgagggcgagg
gccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttcgcctgggacatcctgtcccctca
gttcatgtacggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagctgtccttccccgagggcttcaagtgggag
cgcgtgatgaacttcgaggacggcggcgtggtgaccgtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaagct
gcgcggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgggctgggaggcctcctccgagcggatgtaccccga
ggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacgacgctgaggtcaagaccacctac
aaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcccacaacgaggactacaccatc
gtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtacaagtaaacccagctttcttgtacaaagt
ggtccccgatgatcccccgggctgcaggaattcgatatgcagaagctgatctcagaggaggacctgcttcagaagcttatctcagaggag
gaccttcgacctcgagggggggcccggtaccatggtattgatatctgagctccgcatcggccgctgtcatcagatcgccatctcgcgcccgt
gcctctgacttctaagtccaattactcttcaacatccctacatgctctttctccctgtgctcccaccccctatttttgttattatcaaaaaaacttcttct
taatttctttgttttttagcttcttttaagtcacctctaacaatgaaattgtgtagattcaaaaatagaattaattcgtaataaaaagtcgaaaaaaat
tgtgctccctccccccattaataataattctatcccaaaatctacacaatgttctgtgtacacttcttatgttttttttacttctgataaattttttttgaaa
catcatagaaaaaaccgcacacaaaataccttatcatatgttacgtttcagtttatgaccgcaatttttatttcttcgcacgtctgggcctctcatg
acgtcaaatcatgctcatcgtgaaaaagttttggagtatttttggaatttttcaatcaagtgaaagtttatgaaattaattttcctgcttttgctttttgg
gggtttcccctattgtttgtcaagagtttcgaggacggcgtttttcttgctaaaatcacaagtattgatgagcacgatgcaagaaagatcggaa
gaaggtttgggtttgaggctcagtggaaggtgagtagaagttgataatttgaaagtggagtagtgtctatggggtttttgccttaaatgacaga
atacattcccaatataccaaacataactgtttcctactagtggccacgtgggccgtgcaccttaagcttggcactggccgtcgttttacaacgt
cgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgc
accgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacacc
gcatacgtcaaagcaaccatagtacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacac
ttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccc
tttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatttgggtgatggttcacgtagtgggccatcgccctgatagacg
gtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcgggctattcttttgatt
tataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaa
ttttatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccccgacacccgccaacacccgctgacgcgccctgacg
ggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaac
gcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcgggga
aatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatatt
gaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctg
gtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttc
gccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcg
gtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaatta
tgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgc
acaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgat
gcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggag
gcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgc
ggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacga
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aatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaactt
catttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagacc
ccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtgg
tttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccg
tagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataag
tcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccag
cttggagcgaa 
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fust-1p::fust-1a(cDNA)::mRFP (7882 bp) 

isoform a cDNA 

mRFP 

Ampicillin resistance 

AAGCttgcatgcctgcaggtcgactctagaggatccccTAGATCGGGCCCTCTTCGTACATTGCGTGGTATGAT
ATCAGCAGGGTATCATCCATTACTCCACATTGAGCCATTTTGTATCGTACCACCTTGTTTGCAT
CTTCTGATGGGATTGGTAAATGACTATATCTTGGCTTCACTTTTGGCACTTGCCAATCAAATCG
ACTTCCCTGGACAGGATCTTCCAGACTCTATGAACGAACAGAGAATGGAATTGGGAATAGTTC
AGAAAGAAGAAAAATTTTGCCAAAAAGTGGTTGAAAGTCTGCAAAACGCCCTTGTGCTCACGA
CGAAAATCAAGGAAGTTTATGAGAGTCGACTAAAGCAGAATAATATCAAACGTTCGTCGATATC
TTGTGGATCTCCAACATGCTGCGTCAGTGATATGCCAAAAAGCCAACAGGATCAAGATATCTT
CTTCTGCGTTGCTTGTCCATTTGCAATTCATATGGTGTGTGCTGGTAGATATACGGAGGATCAA
CGCCAGGCAGCTAAACATCATCCGACTGCTTGTTTAAAATGTCAAGAAAAACATATTCTTTCTA
ATGAGGAAATGATTGAACATGCTAATGAGGCACTTGATGAGCTTGCCAGGCGCTTACAACACG
AGACAAGCCATCTTAGTAACTTGAAAGCTGCTCGCCAAGACATGACAACGGCTATTTCGACTC
GAACTGGGCCAACAAAACAGAAACTCGAGGAAGTTTTGGATTATATTGGCTGTAGTCAAAAAA
TTAACTATCAGGGATTAACCGGAAATCAAGTAAATTTGTGATTTTCGGTATTTGAAAATATTCTA
ATCTTTAGGTTCGCCAACTACTAAGGACAGAAAACATTGACAAAGTACTAAAAGTCTTCACGGA
CTGTAGTTGGATCCAGAATATGAGAAACTTCATGAATGATTTGGCGTCACTCATGTCAGCAAG
CAATAACGCAGTCTTCACAGATGATGATTTGAATGATTTCGCTAAAACTTTGAAGAACTTGAAG
AGAAACATCAGAATTCTTCATCCTTCGATGGGAGTCACTCCTAAACTTCACATCCTCTGTACTC
ACCTCGAGCCTTACATTAGAGCAAAAAGAACTTGGGGTCGTACTTCAGAACAAGGGATGGAAG
CGTTTCATGTGCTCTTCAGGACAACAGAGACGCGATTTTCTTCTGTGATGTCTCTCAAGCTAC
GCGCTGAGTTGATGATCGACTATTTCGCTAACATCAACTATATTTCCGATAAAAGAAACTAGTG
ACAGCAAACATTTCTAGGAAACCGTTTTTATAGTACAtctctctctctctctctcactcACATGtttttttttCGATTA
AATCAATTAAACGAGCAGAAAAGCCATGAATGATCTCTAAATTCCGACTTACAAAGTGTTTTGA
GTTGATGATAAGCGTGAATCCTAATTTTCAATTGCCTAAACTAACAAACGGGTTGTGAATGGGT
TCAGATTGGGGTACAGCATGAAAATatttcaaaagaagtgaatacaattttagaaaaaccgaatacaaGCAATGTA
AACATGaaaatgaaacaaaaaaacgaaaaaaaaaTCAACCTTGTTCGAAGAAAATGATGAGAATTAGAAT
GAGCAAGGAAATGCGAGAGACTTGGAAATGTGAGAGACGCAGCATTTCACGCGAAACGCGCC
AGCAATCGTCGCGCTTGCGCATTTCGAGACGAGGATACTGTGTAAAATTGTAATCATTTGTTG
CAATTTTTGTTCTTGAGTTAACTTTATTTTTCATTTTCCTCGACCTAATTTCTCAAAATTGTTAAA
ATGTATACTATTTATTACCCTGCAGTGCTCAAATCTTGTGATGAGCACTATCAAAGTTTTAGATG
GAGttttttaaaaagtattttttttagtataattgtttttttcagtaaatttagttttttGGAGCAGAACGCTGAAATCTGCCAAGGT
TCGCTACAACCAGATATATCTAGATATAACTGCAAATGTGCGCGCTCCATTGAGACTACACGC
GACGCACAACCGCGACGCGTATTGGACAGCGTTCTCCGTCTTCTTTGAACAGCATCTGTCCTC
AACCATTCTCTTCTCGTTTCTCTTTTAATTTTAAGATATATTTGCTCTTCAAAGGATAAATTTCAG
TCAACGCATCGACACGTAGCGAGTGCCTCGACTTGAATATCGACAAAAATGGCGGCTTACGA
CCAAAGTCAACCCGACTACAGCACACCCGAAGGGCAGCAGGCGTATTGGGCCTATTATcaaca
gcaacaacaacaacaacCAGGAGGTCAACCTGATCAGGATCCGTACGCCGCTGCTGCTTATGGAGG
CCACGACCAAGCACAACAACCGCAAAATCCATATGCACCACCACCACCAGGAGCGGATCCAT
ACGGCCAAGGATCCGGAGGCCAATCCGGAGGATCTGACCCCTACGGGCAAAGTAGAGGTGG
CGGCCGTGGAGGATTCGGAGGCAGTCGTGGAGGAGGTGGATATGATGGTGGACGTGGCGG
AAGTCGTggaggatacgacggaggacgcggaggttacggcggtgatcgcggaggaCGTGGTGGTGGTAGAGGTG
GCTACGACGGAGAACGCCGAGGTGGGAGCCGATGGGATGACGGAAACTCTGATCGACAGGG
CGGACCTCCAGGAGGAAGAGGAGGTTATCAAGACAGAGGACCCCGACGTGACGGACCACCA
AGTGGAGGAGGATACGGAGGCGGTGGTGCTGCTTCAGGAAACCGCGAATTCGGATCCGATG
GGCGAGTTGAGTTGAAGGAGACCGTCTTTGTGCAGGGAATTTCCACCACTGCAAATGAAGCC
TACATCGCCGACGTCTTCAGTACCTGCGGAGATATTGCAAAGAACGATCGCGGACCGAGAAT
CAAGATTTACACCGATCGCAACACCGGAGAACCAAAAGGAGAATGCATGATAACATTCGTCGA
TGCTTCTGCAGCTCAACAAGCTATAACTATGTACAATGGGCAACCATTCCCTGGCGGCTCAAG
CCCGATGAGTATTTCACTAGCCAAGTTCCGCGCTGATGCAGGAGGTGAACGAGGTGGTCGTG
GTGGACGAGGCGGTTTCGGAGGTGGTCGTGGTGGTCCTATGGGAGGACGTGGTGGCTTTGg
cggtgatcgtggaggatatggcggcggcggtggtcgtggaggattcgatggtggtcgcggtggtggcggtggattccgtggcggagaccg
aggaggattccgaggtggtgatagaggaggcttccgcggaggagatcgtggaggattccgaggcggcgaccgtggtggcgatcgtgga
ggattcagaggaggCCGTGGAGTAGGTGGCGGAAATGCTAATATGGAACAAAGGAAGAATGACTGG
CCATGTGAGCAGTGCGGAAATAGCAACTTCGCTTTCAGAAGAGAATGCAATCAATGCCAAGCC
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CCGAGACCAGATGGAGGATCCGGAGGTGGTGGTGGCGAGCGACGAGGAGGACCACCAGGA
GGTGACCGATACCGTCCATATgggattggCCAAAGGACCCAAAGGTATGTTTCGAATGATACTAA
CATAACATAGAACATTTTCAGGAGGACCCTTGCTTGGAGGGTACCGGTAGAAAAAATGGCCTC
CTCCGAGGACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCGTGAACG
GCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCG
CCAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCA
GTTCCAGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGC
TGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGT
GACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGC
GGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCT
CCACCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGATGAGGCTGAA
GCTGAAGGACGGCGGCCACTACGACGCCGAGGTCAAGACCACCTACATGGCCAAGAAGCCC
GTGCAGCTGCCCGGCGCCTACAAGACCGACATCAAGCTGGACATCACCTCCCACAACGAGGA
CTACACCATCGTGGAACAGTACGAGCGCGCCGAGGGCCGCCACTCCACCGGCGCCTAAGAA
TTCCAACTGAGCGCCGGTCGCTACCATTACCAACTTGTCTGGTGTCAAAAATAATAGGGGCCG
CTGTCATCAGAGTAAGTTTAAACTGAGTTCTACTAACTAACGAGTAATATTTAAATTTTCAGCTC
TCGCGCCCGTGCCTCTGACTTCTAAGTCCAATTACTCTTCAACATCCCTACATGCTCTTTCTCC
CTGTGCTCCCACCCCCTATTTTTGTTATTATCAAAAAAACTTCTTCTTAATTTCTTTGTTTTTTAG
CTTCTTTTAAGTCACCTCTAACAATGAAATTGTGTAGATTCAAAAATAGAATTAATTCGTAATAA
AAAGTCGAAAAAAATTGTGCTCCCTCCCCCCATTAATAATAATTCTATCCCAAAATCTACACAAT
GTTCTGTGTACACTTCTTATGTTTTTTTTACTTCTGATAAATTTTTTTTGAAACATCATAGAAAAA
ACCGCACACAAAATACCTTATCATATGTTACGTTTCAGTTTATGACCGCAATTTTTATTTCTTCG
CACGTCTGGGCCTCTCATGACGTCAAATCATGCTCATCGTGAAAAAGTTTTGGAGTATTTTTGG
AATTTTTCAATCAAGTGAAAGTTTATGAAATTAATTTTCCTGCTTTTGCTTTTTGGGGGTTTCCC
CTATTGTTTGTCAAGAGTTTCGAGGACGGCGTTTTTCTTGCTAAAATCACAAGTATTGATGAGC
ACGATGCAAGAAAGATCGGAAGAAGGTTTGGGTTTGAGGCTCAGTGGAAGGTGAGTAGAAGT
TGATAATTTGAAAGTGGAGTAGTGTCTATGGGGTTTTTGCCTTAAATGACAGAATACATTCCCA
ATATACCAAACATAACTGTTTCCTACTAGTCGGCCGTACGGGCCCTTTCGTCTCGCGCGTTTC
GGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTA
AGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCG
GGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTG
AAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGGCCTTAAGGGCCTCGTGAT
ACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTC
GGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCT
CATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAA
CATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAG
AAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAA
CTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATG
AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAA
CTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAG
CATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAAC
ACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCAC
AACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACC
AAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAA
CTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAG
TTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAG
CCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCG
TATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGC
TGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTT
TAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTC
ATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATC
AAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCAC
CGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTG
GCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACT
TCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTG
CCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCG
CAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACA
CCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAG
GCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCA
GGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG
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ATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTT
TACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTC
TGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCG
AGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCC
CGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCA
GTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTA
TGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCT
ATGACCATGATTACGCCAAGCTgtaagtttaaacatgatcttactaactaactattctcatttaaattttcagAGCTTAAAA
ATGGCTGAAATCACTCACAACGATGGATACGCTAACAACTTGGAAATGAAAT 
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fust-1p::fust-1b(cDNA)::mRFP (7648 bp) 

isoform b cDNA 

mRFP 

Ampicillin resistance 

AAGCttgcatgcctgcaggtcgactctagaggatccccTAGATCGGGCCCTCTTCGTACATTGCGTGGTATGAT
ATCAGCAGGGTATCATCCATTACTCCACATTGAGCCATTTTGTATCGTACCACCTTGTTTGCAT
CTTCTGATGGGATTGGTAAATGACTATATCTTGGCTTCACTTTTGGCACTTGCCAATCAAATCG
ACTTCCCTGGACAGGATCTTCCAGACTCTATGAACGAACAGAGAATGGAATTGGGAATAGTTC
AGAAAGAAGAAAAATTTTGCCAAAAAGTGGTTGAAAGTCTGCAAAACGCCCTTGTGCTCACGA
CGAAAATCAAGGAAGTTTATGAGAGTCGACTAAAGCAGAATAATATCAAACGTTCGTCGATATC
TTGTGGATCTCCAACATGCTGCGTCAGTGATATGCCAAAAAGCCAACAGGATCAAGATATCTT
CTTCTGCGTTGCTTGTCCATTTGCAATTCATATGGTGTGTGCTGGTAGATATACGGAGGATCAA
CGCCAGGCAGCTAAACATCATCCGACTGCTTGTTTAAAATGTCAAGAAAAACATATTCTTTCTA
ATGAGGAAATGATTGAACATGCTAATGAGGCACTTGATGAGCTTGCCAGGCGCTTACAACACG
AGACAAGCCATCTTAGTAACTTGAAAGCTGCTCGCCAAGACATGACAACGGCTATTTCGACTC
GAACTGGGCCAACAAAACAGAAACTCGAGGAAGTTTTGGATTATATTGGCTGTAGTCAAAAAA
TTAACTATCAGGGATTAACCGGAAATCAAGTAAATTTGTGATTTTCGGTATTTGAAAATATTCTA
ATCTTTAGGTTCGCCAACTACTAAGGACAGAAAACATTGACAAAGTACTAAAAGTCTTCACGGA
CTGTAGTTGGATCCAGAATATGAGAAACTTCATGAATGATTTGGCGTCACTCATGTCAGCAAG
CAATAACGCAGTCTTCACAGATGATGATTTGAATGATTTCGCTAAAACTTTGAAGAACTTGAAG
AGAAACATCAGAATTCTTCATCCTTCGATGGGAGTCACTCCTAAACTTCACATCCTCTGTACTC
ACCTCGAGCCTTACATTAGAGCAAAAAGAACTTGGGGTCGTACTTCAGAACAAGGGATGGAAG
CGTTTCATGTGCTCTTCAGGACAACAGAGACGCGATTTTCTTCTGTGATGTCTCTCAAGCTAC
GCGCTGAGTTGATGATCGACTATTTCGCTAACATCAACTATATTTCCGATAAAAGAAACTAGTG
ACAGCAAACATTTCTAGGAAACCGTTTTTATAGTACAtctctctctctctctctcactcACATGtttttttttCGATTA
AATCAATTAAACGAGCAGAAAAGCCATGAATGATCTCTAAATTCCGACTTACAAAGTGTTTTGA
GTTGATGATAAGCGTGAATCCTAATTTTCAATTGCCTAAACTAACAAACGGGTTGTGAATGGGT
TCAGATTGGGGTACAGCATGAAAATatttcaaaagaagtgaatacaattttagaaaaaccgaatacaaGCAATGTA
AACATGaaaatgaaacaaaaaaacgaaaaaaaaaTCAACCTTGTTCGAAGAAAATGATGAGAATTAGAAT
GAGCAAGGAAATGCGAGAGACTTGGAAATGTGAGAGACGCAGCATTTCACGCGAAACGCGCC
AGCAATCGTCGCGCTTGCGCATTTCGAGACGAGGATACTGTGTAAAATTGTAATCATTTGTTG
CAATTTTTGTTCTTGAGTTAACTTTATTTTTCATTTTCCTCGACCTAATTTCTCAAAATTGTTAAA
ATGTATACTATTTATTACCCTGCAGTGCTCAAATCTTGTGATGAGCACTATCAAAGTTTTAGATG
GAGttttttaaaaagtattttttttagtataattgtttttttcagtaaatttagttttttGGAGCAGAACGCTGAAATCTGCCAAGGT
TCGCTACAACCAGATATATCTAGATATAACTGCAAATGTGCGCGCTCCATTGAGACTACACGC
GACGCACAACCGCGACGCGTATTGGACAGCGTTCTCCGTCTTCTTTGAACAGCATCTGTCCTC
AACCATTCTCTTCTCGTTTCTCTTTTAATTTTAAGATATATTTGCTCTTCAAAGGATAAATTTCAG
TCAACGCATCGACACGTAGCGAGTGCCTCGACTTGAATATCGACAAAAATGGAGGCCACGAC
CAAGCACAACAACCGCAAAATCCATATGCACCACCACCACCAGGAGCGGATCCATACGGCCA
AGGATCCGGAGGCCAATCCGGAGGATCTGACCCCTACGGGCAAAGTAGAGGTGGCGGCCGT
GGAGGATTCGGAGGCAGTCGTGGAGGAGGTGGATATGATGGTGGACGTGGCGGAAGTCGTg
gaggatacgacggaggacgcggaggttacggcggtgatcgcggaggaCGTGGTGGTGGTAGAGGTGGCTACGAC
GGAGAACGCCGAGGTGGGAGCCGATGGGATGACGGAAACTCTGATCGACAGAGGACCCCGA
CGTGACGGACCACCAAGTGGAGGAGGATACGGAGGCGGTGGTGCTGCTTCAGGAAACCGCG
AATTCGGATCCGATGGGCGAGTTGAGTTGAAGGAGACCGTCTTTGTGCAGGGAATTTCCACC
ACTGCAAATGAAGCCTACATCGCCGACGTCTTCAGTACCTGCGGAGATATTGCAAAGAACGAT
CGCGGACCGAGAATCAAGATTTACACCGATCGCAACACCGGAGAACCAAAAGGAGAATGCAT
GATAACATTCGTCGATGCTTCTGCAGCTCAACAAGCTATAACTATGTACAATGGGCAACCATTC
CCTGGCGGCTCAAGCCCGATGAGTATTTCACTAGCCAAGTTCCGCGCTGATGCAGGAGGTGA
ACGAGGTGGTCGTGGTGGACGAGGCGGTTTCGGAGGTGGTCGTGGTGGTCCTATGGGAGGA
CGTGGTGGCTTTGgcggtgatcgtggaggatatggcggcggcggtggtcgtggaggattcgatggtggtcgcggtggtggcggt
ggattccgtggcggagaccgaggaggattccgaggtggtgatagaggaggcttccgcggaggagatcgtggaggattccgaggcggc
gaccgtggtggcgatcgtggaggattcagaggaggCCGTGGAGTAGGTGGCGGAAATGCTAATATGGAACAA
AGGAAGAATGACTGGCCATGTGAGCAGTGCGGAAATAGCAACTTCGCTTTCAGAAGAGAATG
CAATCAATGCCAAGCCCCGAGACCAGATGGAGGATCCGGAGGTGGTGGTGGCGAGCGACGA
GGAGGACCACCAGGAGGTGACCGATACCGTCCATATgggattggCCAAAGGACCCAAAGGTATG
TTTCGAATGATACTAACATAACATAGAACATTTTCAGGAGGACCCTTGCTTGGAGGGTACCGG
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TAGAAAAAATGGCCTCCTCCGAGGACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATG
GAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTAC
GAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGG
GACATCCTGTCCCCTCAGTTCCAGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACAT
CCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCG
AGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTA
CAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACC
ATGGGCTGGGAGGCCTCCACCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAG
ATCAAGATGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCCGAGGTCAAGACCACCT
ACATGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAAGACCGACATCAAGCTGGACAT
CACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAGCGCGCCGAGGGCCGCCAC
TCCACCGGCGCCTAAGAATTCCAACTGAGCGCCGGTCGCTACCATTACCAACTTGTCTGGTGT
CAAAAATAATAGGGGCCGCTGTCATCAGAGTAAGTTTAAACTGAGTTCTACTAACTAACGAGTA
ATATTTAAATTTTCAGCTCTCGCGCCCGTGCCTCTGACTTCTAAGTCCAATTACTCTTCAACAT
CCCTACATGCTCTTTCTCCCTGTGCTCCCACCCCCTATTTTTGTTATTATCAAAAAAACTTCTTC
TTAATTTCTTTGTTTTTTAGCTTCTTTTAAGTCACCTCTAACAATGAAATTGTGTAGATTCAAAAA
TAGAATTAATTCGTAATAAAAAGTCGAAAAAAATTGTGCTCCCTCCCCCCATTAATAATAATTCT
ATCCCAAAATCTACACAATGTTCTGTGTACACTTCTTATGTTTTTTTTACTTCTGATAAATTTTTT
TTGAAACATCATAGAAAAAACCGCACACAAAATACCTTATCATATGTTACGTTTCAGTTTATGAC
CGCAATTTTTATTTCTTCGCACGTCTGGGCCTCTCATGACGTCAAATCATGCTCATCGTGAAAA
AGTTTTGGAGTATTTTTGGAATTTTTCAATCAAGTGAAAGTTTATGAAATTAATTTTCCTGCTTTT
GCTTTTTGGGGGTTTCCCCTATTGTTTGTCAAGAGTTTCGAGGACGGCGTTTTTCTTGCTAAAA
TCACAAGTATTGATGAGCACGATGCAAGAAAGATCGGAAGAAGGTTTGGGTTTGAGGCTCAGT
GGAAGGTGAGTAGAAGTTGATAATTTGAAAGTGGAGTAGTGTCTATGGGGTTTTTGCCTTAAA
TGACAGAATACATTCCCAATATACCAAACATAACTGTTTCCTACTAGTCGGCCGTACGGGCCC
TTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGAC
GGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCG
GGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGT
GCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGGC
CTTAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGA
CGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACA
TTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGG
AAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTC
CTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCAC
GAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAA
GAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTG
ACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTAC
TCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCC
ATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGA
GCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGA
GCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAA
CGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTG
GATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTA
TTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCA
GATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGA
ACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCA
AGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAA
GATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCA
GACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCT
TGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTC
TTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGC
CGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCC
TGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGA
TAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCT
TGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGCGCCACG
CTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGC
GCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCAC
CTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGC
CAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCT
GCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGC
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CGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATA
CGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCC
CGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCAC
CCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAAT
TTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTgtaagtttaaacatgatcttactaactaactattctc
atttaaattttcagAGCTTAAAAATGGCTGAAATCACTCACAACGATGGATACGCTAACAACTTGGAAA
TGAAAT 
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fust-1p::fust-1-ΔN(cDNA)::mRFP (7240 bp) 

ΔN cDNA 

mRFP 

Ampicillin resistance 

AAGCttgcatgcctgcaggtcgactctagaggatccccTAGATCGGGCCCTCTTCGTACATTGCGTGGTATGAT
ATCAGCAGGGTATCATCCATTACTCCACATTGAGCCATTTTGTATCGTACCACCTTGTTTGCAT
CTTCTGATGGGATTGGTAAATGACTATATCTTGGCTTCACTTTTGGCACTTGCCAATCAAATCG
ACTTCCCTGGACAGGATCTTCCAGACTCTATGAACGAACAGAGAATGGAATTGGGAATAGTTC
AGAAAGAAGAAAAATTTTGCCAAAAAGTGGTTGAAAGTCTGCAAAACGCCCTTGTGCTCACGA
CGAAAATCAAGGAAGTTTATGAGAGTCGACTAAAGCAGAATAATATCAAACGTTCGTCGATATC
TTGTGGATCTCCAACATGCTGCGTCAGTGATATGCCAAAAAGCCAACAGGATCAAGATATCTT
CTTCTGCGTTGCTTGTCCATTTGCAATTCATATGGTGTGTGCTGGTAGATATACGGAGGATCAA
CGCCAGGCAGCTAAACATCATCCGACTGCTTGTTTAAAATGTCAAGAAAAACATATTCTTTCTA
ATGAGGAAATGATTGAACATGCTAATGAGGCACTTGATGAGCTTGCCAGGCGCTTACAACACG
AGACAAGCCATCTTAGTAACTTGAAAGCTGCTCGCCAAGACATGACAACGGCTATTTCGACTC
GAACTGGGCCAACAAAACAGAAACTCGAGGAAGTTTTGGATTATATTGGCTGTAGTCAAAAAA
TTAACTATCAGGGATTAACCGGAAATCAAGTAAATTTGTGATTTTCGGTATTTGAAAATATTCTA
ATCTTTAGGTTCGCCAACTACTAAGGACAGAAAACATTGACAAAGTACTAAAAGTCTTCACGGA
CTGTAGTTGGATCCAGAATATGAGAAACTTCATGAATGATTTGGCGTCACTCATGTCAGCAAG
CAATAACGCAGTCTTCACAGATGATGATTTGAATGATTTCGCTAAAACTTTGAAGAACTTGAAG
AGAAACATCAGAATTCTTCATCCTTCGATGGGAGTCACTCCTAAACTTCACATCCTCTGTACTC
ACCTCGAGCCTTACATTAGAGCAAAAAGAACTTGGGGTCGTACTTCAGAACAAGGGATGGAAG
CGTTTCATGTGCTCTTCAGGACAACAGAGACGCGATTTTCTTCTGTGATGTCTCTCAAGCTAC
GCGCTGAGTTGATGATCGACTATTTCGCTAACATCAACTATATTTCCGATAAAAGAAACTAGTG
ACAGCAAACATTTCTAGGAAACCGTTTTTATAGTACAtctctctctctctctctcactcACATGtttttttttCGATTA
AATCAATTAAACGAGCAGAAAAGCCATGAATGATCTCTAAATTCCGACTTACAAAGTGTTTTGA
GTTGATGATAAGCGTGAATCCTAATTTTCAATTGCCTAAACTAACAAACGGGTTGTGAATGGGT
TCAGATTGGGGTACAGCATGAAAATatttcaaaagaagtgaatacaattttagaaaaaccgaatacaaGCAATGTA
AACATGaaaatgaaacaaaaaaacgaaaaaaaaaTCAACCTTGTTCGAAGAAAATGATGAGAATTAGAAT
GAGCAAGGAAATGCGAGAGACTTGGAAATGTGAGAGACGCAGCATTTCACGCGAAACGCGCC
AGCAATCGTCGCGCTTGCGCATTTCGAGACGAGGATACTGTGTAAAATTGTAATCATTTGTTG
CAATTTTTGTTCTTGAGTTAACTTTATTTTTCATTTTCCTCGACCTAATTTCTCAAAATTGTTAAA
ATGTATACTATTTATTACCCTGCAGTGCTCAAATCTTGTGATGAGCACTATCAAAGTTTTAGATG
GAGttttttaaaaagtattttttttagtataattgtttttttcagtaaatttagttttttGGAGCAGAACGCTGAAATCTGCCAAGGT
TCGCTACAACCAGATATATCTAGATATAACTGCAAATGTGCGCGCTCCATTGAGACTACACGC
GACGCACAACCGCGACGCGTATTGGACAGCGTTCTCCGTCTTCTTTGAACAGCATCTGTCCTC
AACCATTCTCTTCTCGTTTCTCTTTTAATTTTAAGATATATTTGCTCTTCAAAGGATAAATTTCAG
TCAACGCATCGACACGTAGCGAGTGCCTCGACTTGAATATCGACAAAAATGCGAGTTGAGTTG
AAGGAGACCGTCTTTGTGCAGGGAATTTCCACCACTGCAAATGAAGCCTACATCGCCGACGT
CTTCAGTACCTGCGGAGATATTGCAAAGAACGATCGCGGACCGAGAATCAAGATTTACACCGA
TCGCAACACCGGAGAACCAAAAGGAGAATGCATGATAACATTCGTCGATGCTTCTGCAGCTCA
ACAAGCTATAACTATGTACAATGGGCAACCATTCCCTGGCGGCTCAAGCCCGATGAGTATTTC
ACTAGCCAAGTTCCGCGCTGATGCAGGAGGTGAACGAGGTGGTCGTGGTGGACGAGGCGGT
TTCGGAGGTGGTCGTGGTGGTCCTATGGGAGGACGTGGTGGCTTTGgcggtgatcgtggaggatatggc
ggcggcggtggtcgtggaggattcgatggtggtcgcggtggtggcggtggattccgtggcggagaccgaggaggattccgaggtggtga
tagaggaggcttccgcggaggagatcgtggaggattccgaggcggcgaccgtggtggcgatcgtggaggattcagaggaggCCGT
GGAGTAGGTGGCGGAAATGCTAATATGGAACAAAGGAAGAATGACTGGCCATGTGAGCAGTG
CGGAAATAGCAACTTCGCTTTCAGAAGAGAATGCAATCAATGCCAAGCCCCGAGACCAGATG
GAGGATCCGGAGGTGGTGGTGGCGAGCGACGAGGAGGACCACCAGGAGGTGACCGATACC
GTCCATATgggattggCCAAAGGACCCAAAGGTATGTTTCGAATGATACTAACATAACATAGAACA
TTTTCAGGAGGACCCTTGCTTGGAGGGTACCGGTAGAAAAAATGGCCTCCTCCGAGGACGTC
ATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCGTGAACGGCCACGAGTTCGA
GATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGT
GACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCCAGTACGGCT
CCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAG
GGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGG
ACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCC
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TCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGGATGT
ACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGATGAGGCTGAAGCTGAAGGACGGCG
GCCACTACGACGCCGAGGTCAAGACCACCTACATGGCCAAGAAGCCCGTGCAGCTGCCCGG
CGCCTACAAGACCGACATCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGG
AACAGTACGAGCGCGCCGAGGGCCGCCACTCCACCGGCGCCTAAGAATTCCAACTGAGCGC
CGGTCGCTACCATTACCAACTTGTCTGGTGTCAAAAATAATAGGGGCCGCTGTCATCAGAGTA
AGTTTAAACTGAGTTCTACTAACTAACGAGTAATATTTAAATTTTCAGCTCTCGCGCCCGTGCC
TCTGACTTCTAAGTCCAATTACTCTTCAACATCCCTACATGCTCTTTCTCCCTGTGCTCCCACC
CCCTATTTTTGTTATTATCAAAAAAACTTCTTCTTAATTTCTTTGTTTTTTAGCTTCTTTTAAGTCA
CCTCTAACAATGAAATTGTGTAGATTCAAAAATAGAATTAATTCGTAATAAAAAGTCGAAAAAAA
TTGTGCTCCCTCCCCCCATTAATAATAATTCTATCCCAAAATCTACACAATGTTCTGTGTACACT
TCTTATGTTTTTTTTACTTCTGATAAATTTTTTTTGAAACATCATAGAAAAAACCGCACACAAAAT
ACCTTATCATATGTTACGTTTCAGTTTATGACCGCAATTTTTATTTCTTCGCACGTCTGGGCCTC
TCATGACGTCAAATCATGCTCATCGTGAAAAAGTTTTGGAGTATTTTTGGAATTTTTCAATCAAG
TGAAAGTTTATGAAATTAATTTTCCTGCTTTTGCTTTTTGGGGGTTTCCCCTATTGTTTGTCAAG
AGTTTCGAGGACGGCGTTTTTCTTGCTAAAATCACAAGTATTGATGAGCACGATGCAAGAAAG
ATCGGAAGAAGGTTTGGGTTTGAGGCTCAGTGGAAGGTGAGTAGAAGTTGATAATTTGAAAGT
GGAGTAGTGTCTATGGGGTTTTTGCCTTAAATGACAGAATACATTCCCAATATACCAAACATAA
CTGTTTCCTACTAGTCGGCCGTACGGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGA
AAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGA
GCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTA
TGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGAT
GCGTAAGGAGAAAATACCGCATCAGGCGGCCTTAAGGGCCTCGTGATACGCCTATTTTTATAG
GTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGC
GGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACC
CTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCC
CTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAG
TAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGC
GGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTC
TGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATA
CACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGC
ATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTA
CTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCA
TGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTG
ACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTA
CTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTC
TGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGG
TCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTAC
ACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTC
ACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC
TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCT
TAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGA
GATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTG
GTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCG
CAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTA
GCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAA
GTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCT
GAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATA
CCTACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTAT
CCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCC
TGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCT
CGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGC
CTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGT
ATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGT
CAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCC
GATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACG
CAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCG
TATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTAC
GCCAAGCTgtaagtttaaacatgatcttactaactaactattctcatttaaattttcagAGCTTAAAAATGGCTGAAATCAC
TCACAACGATGGATACGCTAACAACTTGGAAATGAAAT 
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fust-1p::fust-1a(cDNA)::unc-54 3’UTR (7108 bp) 

isoform a cDNA 

Ampicillin resistance 

AAGCttgcatgcctgcaggtcgactctagaggatccccTAGATCGGGCCCTCTTCGTACATTGCGTGGTATGAT
ATCAGCAGGGTATCATCCATTACTCCACATTGAGCCATTTTGTATCGTACCACCTTGTTTGCAT
CTTCTGATGGGATTGGTAAATGACTATATCTTGGCTTCACTTTTGGCACTTGCCAATCAAATCG
ACTTCCCTGGACAGGATCTTCCAGACTCTATGAACGAACAGAGAATGGAATTGGGAATAGTTC
AGAAAGAAGAAAAATTTTGCCAAAAAGTGGTTGAAAGTCTGCAAAACGCCCTTGTGCTCACGA
CGAAAATCAAGGAAGTTTATGAGAGTCGACTAAAGCAGAATAATATCAAACGTTCGTCGATATC
TTGTGGATCTCCAACATGCTGCGTCAGTGATATGCCAAAAAGCCAACAGGATCAAGATATCTT
CTTCTGCGTTGCTTGTCCATTTGCAATTCATATGGTGTGTGCTGGTAGATATACGGAGGATCAA
CGCCAGGCAGCTAAACATCATCCGACTGCTTGTTTAAAATGTCAAGAAAAACATATTCTTTCTA
ATGAGGAAATGATTGAACATGCTAATGAGGCACTTGATGAGCTTGCCAGGCGCTTACAACACG
AGACAAGCCATCTTAGTAACTTGAAAGCTGCTCGCCAAGACATGACAACGGCTATTTCGACTC
GAACTGGGCCAACAAAACAGAAACTCGAGGAAGTTTTGGATTATATTGGCTGTAGTCAAAAAA
TTAACTATCAGGGATTAACCGGAAATCAAGTAAATTTGTGATTTTCGGTATTTGAAAATATTCTA
ATCTTTAGGTTCGCCAACTACTAAGGACAGAAAACATTGACAAAGTACTAAAAGTCTTCACGGA
CTGTAGTTGGATCCAGAATATGAGAAACTTCATGAATGATTTGGCGTCACTCATGTCAGCAAG
CAATAACGCAGTCTTCACAGATGATGATTTGAATGATTTCGCTAAAACTTTGAAGAACTTGAAG
AGAAACATCAGAATTCTTCATCCTTCGATGGGAGTCACTCCTAAACTTCACATCCTCTGTACTC
ACCTCGAGCCTTACATTAGAGCAAAAAGAACTTGGGGTCGTACTTCAGAACAAGGGATGGAAG
CGTTTCATGTGCTCTTCAGGACAACAGAGACGCGATTTTCTTCTGTGATGTCTCTCAAGCTAC
GCGCTGAGTTGATGATCGACTATTTCGCTAACATCAACTATATTTCCGATAAAAGAAACTAGTG
ACAGCAAACATTTCTAGGAAACCGTTTTTATAGTACAtctctctctctctctctcactcACATGtttttttttCGATTA
AATCAATTAAACGAGCAGAAAAGCCATGAATGATCTCTAAATTCCGACTTACAAAGTGTTTTGA
GTTGATGATAAGCGTGAATCCTAATTTTCAATTGCCTAAACTAACAAACGGGTTGTGAATGGGT
TCAGATTGGGGTACAGCATGAAAATatttcaaaagaagtgaatacaattttagaaaaaccgaatacaaGCAATGTA
AACATGaaaatgaaacaaaaaaacgaaaaaaaaaTCAACCTTGTTCGAAGAAAATGATGAGAATTAGAAT
GAGCAAGGAAATGCGAGAGACTTGGAAATGTGAGAGACGCAGCATTTCACGCGAAACGCGCC
AGCAATCGTCGCGCTTGCGCATTTCGAGACGAGGATACTGTGTAAAATTGTAATCATTTGTTG
CAATTTTTGTTCTTGAGTTAACTTTATTTTTCATTTTCCTCGACCTAATTTCTCAAAATTGTTAAA
ATGTATACTATTTATTACCCTGCAGTGCTCAAATCTTGTGATGAGCACTATCAAAGTTTTAGATG
GAGttttttaaaaagtattttttttagtataattgtttttttcagtaaatttagttttttGGAGCAGAACGCTGAAATCTGCCAAGGT
TCGCTACAACCAGATATATCTAGATATAACTGCAAATGTGCGCGCTCCATTGAGACTACACGC
GACGCACAACCGCGACGCGTATTGGACAGCGTTCTCCGTCTTCTTTGAACAGCATCTGTCCTC
AACCATTCTCTTCTCGTTTCTCTTTTAATTTTAAGATATATTTGCTCTTCAAAGGATAAATTTCAG
TCAACGCATCGACACGTAGCGAGTGCCTCGACTTGAATATCGACAAAAATGGCGGCTTACGA
CCAAAGTCAACCCGACTACAGCACACCCGAAGGGCAGCAGGCGTATTGGGCCTATTATcaaca
gcaacaacaacaacaacCAGGAGGTCAACCTGATCAGGATCCGTACGCCGCTGCTGCTTATGGAGG
CCACGACCAAGCACAACAACCGCAAAATCCATATGCACCACCACCACCAGGAGCGGATCCAT
ACGGCCAAGGATCCGGAGGCCAATCCGGAGGATCTGACCCCTACGGGCAAAGTAGAGGTGG
CGGCCGTGGAGGATTCGGAGGCAGTCGTGGAGGAGGTGGATATGATGGTGGACGTGGCGG
AAGTCGTggaggatacgacggaggacgcggaggttacggcggtgatcgcggaggaCGTGGTGGTGGTAGAGGTG
GCTACGACGGAGAACGCCGAGGTGGGAGCCGATGGGATGACGGAAACTCTGATCGACAGGG
CGGACCTCCAGGAGGAAGAGGAGGTTATCAAGACAGAGGACCCCGACGTGACGGACCACCA
AGTGGAGGAGGATACGGAGGCGGTGGTGCTGCTTCAGGAAACCGCGAATTCGGATCCGATG
GGCGAGTTGAGTTGAAGGAGACCGTCTTTGTGCAGGGAATTTCCACCACTGCAAATGAAGCC
TACATCGCCGACGTCTTCAGTACCTGCGGAGATATTGCAAAGAACGATCGCGGACCGAGAAT
CAAGATTTACACCGATCGCAACACCGGAGAACCAAAAGGAGAATGCATGATAACATTCGTCGA
TGCTTCTGCAGCTCAACAAGCTATAACTATGTACAATGGGCAACCATTCCCTGGCGGCTCAAG
CCCGATGAGTATTTCACTAGCCAAGTTCCGCGCTGATGCAGGAGGTGAACGAGGTGGTCGTG
GTGGACGAGGCGGTTTCGGAGGTGGTCGTGGTGGTCCTATGGGAGGACGTGGTGGCTTTGg
cggtgatcgtggaggatatggcggcggcggtggtcgtggaggattcgatggtggtcgcggtggtggcggtggattccgtggcggagaccg
aggaggattccgaggtggtgatagaggaggcttccgcggaggagatcgtggaggattccgaggcggcgaccgtggtggcgatcgtgga
ggattcagaggaggCCGTGGAGTAGGTGGCGGAAATGCTAATATGGAACAAAGGAAGAATGACTGG
CCATGTGAGCAGTGCGGAAATAGCAACTTCGCTTTCAGAAGAGAATGCAATCAATGCCAAGCC
CCGAGACCAGATGGAGGATCCGGAGGTGGTGGTGGCGAGCGACGAGGAGGACCACCAGGA
GGTGACCGATACCGTCCATATGAATTCCAACTGAGCGCCGGTCGCTACCATTACCAACTTGTC



 

162 
 

TGGTGTCAAAAATAATAGGGGCCGCTGTCATCAGAGTAAGTTTAAACTGAGTTCTACTAACTAA
CGAGTAATATTTAAATTTTCAGCTCTCGCGCCCGTGCCTCTGACTTCTAAGTCCAATTACTCTT
CAACATCCCTACATGCTCTTTCTCCCTGTGCTCCCACCCCCTATTTTTGTTATTATCAAAAAAAC
TTCTTCTTAATTTCTTTGTTTTTTAGCTTCTTTTAAGTCACCTCTAACAATGAAATTGTGTAGATT
CAAAAATAGAATTAATTCGTAATAAAAAGTCGAAAAAAATTGTGCTCCCTCCCCCCATTAATAAT
AATTCTATCCCAAAATCTACACAATGTTCTGTGTACACTTCTTATGTTTTTTTTACTTCTGATAAA
TTTTTTTTGAAACATCATAGAAAAAACCGCACACAAAATACCTTATCATATGTTACGTTTCAGTT
TATGACCGCAATTTTTATTTCTTCGCACGTCTGGGCCTCTCATGACGTCAAATCATGCTCATCG
TGAAAAAGTTTTGGAGTATTTTTGGAATTTTTCAATCAAGTGAAAGTTTATGAAATTAATTTTCCT
GCTTTTGCTTTTTGGGGGTTTCCCCTATTGTTTGTCAAGAGTTTCGAGGACGGCGTTTTTCTTG
CTAAAATCACAAGTATTGATGAGCACGATGCAAGAAAGATCGGAAGAAGGTTTGGGTTTGAGG
CTCAGTGGAAGGTGAGTAGAAGTTGATAATTTGAAAGTGGAGTAGTGTCTATGGGGTTTTTGC
CTTAAATGACAGAATACATTCCCAATATACCAAACATAACTGTTTCCTACTAGTCGGCCGTACG
GGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCG
GAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGT
CAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACT
GAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCA
GGCGGCCTTAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTT
CTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTA
AATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAA
AAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTG
CCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGG
TGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCC
CGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGT
ATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGA
GTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAA
GGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACC
GGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAA
CAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA
CTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGG
TTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGG
GCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG
ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAG
ACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGG
TGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGC
GTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGC
TGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCA
ACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTG
TAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTA
ATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAG
ACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCC
AGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGCGC
CACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGA
GAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCG
CCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAA
ACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCT
TTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCG
CTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCC
CAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGG
TTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAG
GCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAA
CAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTgtaagtttaaacatgatcttactaactaac
tattctcatttaaattttcagAGCTTAAAAATGGCTGAAATCACTCACAACGATGGATACGCTAACAACTTG
GAAATGAAAT 
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fust-1p::fust-1b(cDNA)::unc-54 3’UTR  (6874 bp) 

isoform b cDNA 

Ampicillin resistance 

AAGCttgcatgcctgcaggtcgactctagaggatccccTAGATCGGGCCCTCTTCGTACATTGCGTGGTATGAT
ATCAGCAGGGTATCATCCATTACTCCACATTGAGCCATTTTGTATCGTACCACCTTGTTTGCAT
CTTCTGATGGGATTGGTAAATGACTATATCTTGGCTTCACTTTTGGCACTTGCCAATCAAATCG
ACTTCCCTGGACAGGATCTTCCAGACTCTATGAACGAACAGAGAATGGAATTGGGAATAGTTC
AGAAAGAAGAAAAATTTTGCCAAAAAGTGGTTGAAAGTCTGCAAAACGCCCTTGTGCTCACGA
CGAAAATCAAGGAAGTTTATGAGAGTCGACTAAAGCAGAATAATATCAAACGTTCGTCGATATC
TTGTGGATCTCCAACATGCTGCGTCAGTGATATGCCAAAAAGCCAACAGGATCAAGATATCTT
CTTCTGCGTTGCTTGTCCATTTGCAATTCATATGGTGTGTGCTGGTAGATATACGGAGGATCAA
CGCCAGGCAGCTAAACATCATCCGACTGCTTGTTTAAAATGTCAAGAAAAACATATTCTTTCTA
ATGAGGAAATGATTGAACATGCTAATGAGGCACTTGATGAGCTTGCCAGGCGCTTACAACACG
AGACAAGCCATCTTAGTAACTTGAAAGCTGCTCGCCAAGACATGACAACGGCTATTTCGACTC
GAACTGGGCCAACAAAACAGAAACTCGAGGAAGTTTTGGATTATATTGGCTGTAGTCAAAAAA
TTAACTATCAGGGATTAACCGGAAATCAAGTAAATTTGTGATTTTCGGTATTTGAAAATATTCTA
ATCTTTAGGTTCGCCAACTACTAAGGACAGAAAACATTGACAAAGTACTAAAAGTCTTCACGGA
CTGTAGTTGGATCCAGAATATGAGAAACTTCATGAATGATTTGGCGTCACTCATGTCAGCAAG
CAATAACGCAGTCTTCACAGATGATGATTTGAATGATTTCGCTAAAACTTTGAAGAACTTGAAG
AGAAACATCAGAATTCTTCATCCTTCGATGGGAGTCACTCCTAAACTTCACATCCTCTGTACTC
ACCTCGAGCCTTACATTAGAGCAAAAAGAACTTGGGGTCGTACTTCAGAACAAGGGATGGAAG
CGTTTCATGTGCTCTTCAGGACAACAGAGACGCGATTTTCTTCTGTGATGTCTCTCAAGCTAC
GCGCTGAGTTGATGATCGACTATTTCGCTAACATCAACTATATTTCCGATAAAAGAAACTAGTG
ACAGCAAACATTTCTAGGAAACCGTTTTTATAGTACAtctctctctctctctctcactcACATGtttttttttCGATTA
AATCAATTAAACGAGCAGAAAAGCCATGAATGATCTCTAAATTCCGACTTACAAAGTGTTTTGA
GTTGATGATAAGCGTGAATCCTAATTTTCAATTGCCTAAACTAACAAACGGGTTGTGAATGGGT
TCAGATTGGGGTACAGCATGAAAATatttcaaaagaagtgaatacaattttagaaaaaccgaatacaaGCAATGTA
AACATGaaaatgaaacaaaaaaacgaaaaaaaaaTCAACCTTGTTCGAAGAAAATGATGAGAATTAGAAT
GAGCAAGGAAATGCGAGAGACTTGGAAATGTGAGAGACGCAGCATTTCACGCGAAACGCGCC
AGCAATCGTCGCGCTTGCGCATTTCGAGACGAGGATACTGTGTAAAATTGTAATCATTTGTTG
CAATTTTTGTTCTTGAGTTAACTTTATTTTTCATTTTCCTCGACCTAATTTCTCAAAATTGTTAAA
ATGTATACTATTTATTACCCTGCAGTGCTCAAATCTTGTGATGAGCACTATCAAAGTTTTAGATG
GAGttttttaaaaagtattttttttagtataattgtttttttcagtaaatttagttttttGGAGCAGAACGCTGAAATCTGCCAAGGT
TCGCTACAACCAGATATATCTAGATATAACTGCAAATGTGCGCGCTCCATTGAGACTACACGC
GACGCACAACCGCGACGCGTATTGGACAGCGTTCTCCGTCTTCTTTGAACAGCATCTGTCCTC
AACCATTCTCTTCTCGTTTCTCTTTTAATTTTAAGATATATTTGCTCTTCAAAGGATAAATTTCAG
TCAACGCATCGACACGTAGCGAGTGCCTCGACTTGAATATCGACAAAAATGGAGGCCACGAC
CAAGCACAACAACCGCAAAATCCATATGCACCACCACCACCAGGAGCGGATCCATACGGCCA
AGGATCCGGAGGCCAATCCGGAGGATCTGACCCCTACGGGCAAAGTAGAGGTGGCGGCCGT
GGAGGATTCGGAGGCAGTCGTGGAGGAGGTGGATATGATGGTGGACGTGGCGGAAGTCGTg
gaggatacgacggaggacgcggaggttacggcggtgatcgcggaggaCGTGGTGGTGGTAGAGGTGGCTACGAC
GGAGAACGCCGAGGTGGGAGCCGATGGGATGACGGAAACTCTGATCGACAGAGGACCCCGA
CGTGACGGACCACCAAGTGGAGGAGGATACGGAGGCGGTGGTGCTGCTTCAGGAAACCGCG
AATTCGGATCCGATGGGCGAGTTGAGTTGAAGGAGACCGTCTTTGTGCAGGGAATTTCCACC
ACTGCAAATGAAGCCTACATCGCCGACGTCTTCAGTACCTGCGGAGATATTGCAAAGAACGAT
CGCGGACCGAGAATCAAGATTTACACCGATCGCAACACCGGAGAACCAAAAGGAGAATGCAT
GATAACATTCGTCGATGCTTCTGCAGCTCAACAAGCTATAACTATGTACAATGGGCAACCATTC
CCTGGCGGCTCAAGCCCGATGAGTATTTCACTAGCCAAGTTCCGCGCTGATGCAGGAGGTGA
ACGAGGTGGTCGTGGTGGACGAGGCGGTTTCGGAGGTGGTCGTGGTGGTCCTATGGGAGGA
CGTGGTGGCTTTGgcggtgatcgtggaggatatggcggcggcggtggtcgtggaggattcgatggtggtcgcggtggtggcggt
ggattccgtggcggagaccgaggaggattccgaggtggtgatagaggaggcttccgcggaggagatcgtggaggattccgaggcggc
gaccgtggtggcgatcgtggaggattcagaggaggCCGTGGAGTAGGTGGCGGAAATGCTAATATGGAACAA
AGGAAGAATGACTGGCCATGTGAGCAGTGCGGAAATAGCAACTTCGCTTTCAGAAGAGAATG
CAATCAATGCCAAGCCCCGAGACCAGATGGAGGATCCGGAGGTGGTGGTGGCGAGCGACGA
GGAGGACCACCAGGAGGTGACCGATACCGTCCATATGAATTCCAACTGAGCGCCGGTCGCTA
CCATTACCAACTTGTCTGGTGTCAAAAATAATAGGGGCCGCTGTCATCAGAGTAAGTTTAAACT
GAGTTCTACTAACTAACGAGTAATATTTAAATTTTCAGCTCTCGCGCCCGTGCCTCTGACTTCT
AAGTCCAATTACTCTTCAACATCCCTACATGCTCTTTCTCCCTGTGCTCCCACCCCCTATTTTT
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GTTATTATCAAAAAAACTTCTTCTTAATTTCTTTGTTTTTTAGCTTCTTTTAAGTCACCTCTAACA
ATGAAATTGTGTAGATTCAAAAATAGAATTAATTCGTAATAAAAAGTCGAAAAAAATTGTGCTCC
CTCCCCCCATTAATAATAATTCTATCCCAAAATCTACACAATGTTCTGTGTACACTTCTTATGTT
TTTTTTACTTCTGATAAATTTTTTTTGAAACATCATAGAAAAAACCGCACACAAAATACCTTATCA
TATGTTACGTTTCAGTTTATGACCGCAATTTTTATTTCTTCGCACGTCTGGGCCTCTCATGACG
TCAAATCATGCTCATCGTGAAAAAGTTTTGGAGTATTTTTGGAATTTTTCAATCAAGTGAAAGTT
TATGAAATTAATTTTCCTGCTTTTGCTTTTTGGGGGTTTCCCCTATTGTTTGTCAAGAGTTTCGA
GGACGGCGTTTTTCTTGCTAAAATCACAAGTATTGATGAGCACGATGCAAGAAAGATCGGAAG
AAGGTTTGGGTTTGAGGCTCAGTGGAAGGTGAGTAGAAGTTGATAATTTGAAAGTGGAGTAGT
GTCTATGGGGTTTTTGCCTTAAATGACAGAATACATTCCCAATATACCAAACATAACTGTTTCCT
ACTAGTCGGCCGTACGGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTG
ACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAA
GCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCAT
CAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGG
AGAAAATACCGCATCAGGCGGCCTTAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGT
CATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCC
TATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAAT
GCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCC
TTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATG
CTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATC
CTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTG
GCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCT
CAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTA
AGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACA
ACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCG
CCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGA
TGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTT
CCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCG
GCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGG
TATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGG
GGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTA
AGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTT
TAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA
GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTT
TTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTG
CCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCA
AATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCT
ACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTT
ACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGG
GTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGT
GAGCATTGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCG
GCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTA
TAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGG
GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGC
CTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTT
TGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAG
GAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATG
CAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGA
GTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTG
GAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTgta
agtttaaacatgatcttactaactaactattctcatttaaattttcagAGCTTAAAAATGGCTGAAATCACTCACAACGAT
GGATACGCTAACAACTTGGAAATGAAAT 

  



 

165 
 

fust-1p::fust-1-ΔN(cDNA)::unc-54 3’UTR  (6466 bp) 

ΔN cDNA 

Ampicillin resistance 

AAGCttgcatgcctgcaggtcgactctagaggatccccTAGATCGGGCCCTCTTCGTACATTGCGTGGTATGAT
ATCAGCAGGGTATCATCCATTACTCCACATTGAGCCATTTTGTATCGTACCACCTTGTTTGCAT
CTTCTGATGGGATTGGTAAATGACTATATCTTGGCTTCACTTTTGGCACTTGCCAATCAAATCG
ACTTCCCTGGACAGGATCTTCCAGACTCTATGAACGAACAGAGAATGGAATTGGGAATAGTTC
AGAAAGAAGAAAAATTTTGCCAAAAAGTGGTTGAAAGTCTGCAAAACGCCCTTGTGCTCACGA
CGAAAATCAAGGAAGTTTATGAGAGTCGACTAAAGCAGAATAATATCAAACGTTCGTCGATATC
TTGTGGATCTCCAACATGCTGCGTCAGTGATATGCCAAAAAGCCAACAGGATCAAGATATCTT
CTTCTGCGTTGCTTGTCCATTTGCAATTCATATGGTGTGTGCTGGTAGATATACGGAGGATCAA
CGCCAGGCAGCTAAACATCATCCGACTGCTTGTTTAAAATGTCAAGAAAAACATATTCTTTCTA
ATGAGGAAATGATTGAACATGCTAATGAGGCACTTGATGAGCTTGCCAGGCGCTTACAACACG
AGACAAGCCATCTTAGTAACTTGAAAGCTGCTCGCCAAGACATGACAACGGCTATTTCGACTC
GAACTGGGCCAACAAAACAGAAACTCGAGGAAGTTTTGGATTATATTGGCTGTAGTCAAAAAA
TTAACTATCAGGGATTAACCGGAAATCAAGTAAATTTGTGATTTTCGGTATTTGAAAATATTCTA
ATCTTTAGGTTCGCCAACTACTAAGGACAGAAAACATTGACAAAGTACTAAAAGTCTTCACGGA
CTGTAGTTGGATCCAGAATATGAGAAACTTCATGAATGATTTGGCGTCACTCATGTCAGCAAG
CAATAACGCAGTCTTCACAGATGATGATTTGAATGATTTCGCTAAAACTTTGAAGAACTTGAAG
AGAAACATCAGAATTCTTCATCCTTCGATGGGAGTCACTCCTAAACTTCACATCCTCTGTACTC
ACCTCGAGCCTTACATTAGAGCAAAAAGAACTTGGGGTCGTACTTCAGAACAAGGGATGGAAG
CGTTTCATGTGCTCTTCAGGACAACAGAGACGCGATTTTCTTCTGTGATGTCTCTCAAGCTAC
GCGCTGAGTTGATGATCGACTATTTCGCTAACATCAACTATATTTCCGATAAAAGAAACTAGTG
ACAGCAAACATTTCTAGGAAACCGTTTTTATAGTACAtctctctctctctctctcactcACATGtttttttttCGATTA
AATCAATTAAACGAGCAGAAAAGCCATGAATGATCTCTAAATTCCGACTTACAAAGTGTTTTGA
GTTGATGATAAGCGTGAATCCTAATTTTCAATTGCCTAAACTAACAAACGGGTTGTGAATGGGT
TCAGATTGGGGTACAGCATGAAAATatttcaaaagaagtgaatacaattttagaaaaaccgaatacaaGCAATGTA
AACATGaaaatgaaacaaaaaaacgaaaaaaaaaTCAACCTTGTTCGAAGAAAATGATGAGAATTAGAAT
GAGCAAGGAAATGCGAGAGACTTGGAAATGTGAGAGACGCAGCATTTCACGCGAAACGCGCC
AGCAATCGTCGCGCTTGCGCATTTCGAGACGAGGATACTGTGTAAAATTGTAATCATTTGTTG
CAATTTTTGTTCTTGAGTTAACTTTATTTTTCATTTTCCTCGACCTAATTTCTCAAAATTGTTAAA
ATGTATACTATTTATTACCCTGCAGTGCTCAAATCTTGTGATGAGCACTATCAAAGTTTTAGATG
GAGttttttaaaaagtattttttttagtataattgtttttttcagtaaatttagttttttGGAGCAGAACGCTGAAATCTGCCAAGGT
TCGCTACAACCAGATATATCTAGATATAACTGCAAATGTGCGCGCTCCATTGAGACTACACGC
GACGCACAACCGCGACGCGTATTGGACAGCGTTCTCCGTCTTCTTTGAACAGCATCTGTCCTC
AACCATTCTCTTCTCGTTTCTCTTTTAATTTTAAGATATATTTGCTCTTCAAAGGATAAATTTCAG
TCAACGCATCGACACGTAGCGAGTGCCTCGACTTGAATATCGACAAAAATGCGAGTTGAGTTG
AAGGAGACCGTCTTTGTGCAGGGAATTTCCACCACTGCAAATGAAGCCTACATCGCCGACGT
CTTCAGTACCTGCGGAGATATTGCAAAGAACGATCGCGGACCGAGAATCAAGATTTACACCGA
TCGCAACACCGGAGAACCAAAAGGAGAATGCATGATAACATTCGTCGATGCTTCTGCAGCTCA
ACAAGCTATAACTATGTACAATGGGCAACCATTCCCTGGCGGCTCAAGCCCGATGAGTATTTC
ACTAGCCAAGTTCCGCGCTGATGCAGGAGGTGAACGAGGTGGTCGTGGTGGACGAGGCGGT
TTCGGAGGTGGTCGTGGTGGTCCTATGGGAGGACGTGGTGGCTTTGgcggtgatcgtggaggatatggc
ggcggcggtggtcgtggaggattcgatggtggtcgcggtggtggcggtggattccgtggcggagaccgaggaggattccgaggtggtga
tagaggaggcttccgcggaggagatcgtggaggattccgaggcggcgaccgtggtggcgatcgtggaggattcagaggaggCCGT
GGAGTAGGTGGCGGAAATGCTAATATGGAACAAAGGAAGAATGACTGGCCATGTGAGCAGTG
CGGAAATAGCAACTTCGCTTTCAGAAGAGAATGCAATCAATGCCAAGCCCCGAGACCAGATG
GAGGATCCGGAGGTGGTGGTGGCGAGCGACGAGGAGGACCACCAGGAGGTGACCGATACC
GTCCATATGAATTCCAACTGAGCGCCGGTCGCTACCATTACCAACTTGTCTGGTGTCAAAAAT
AATAGGGGCCGCTGTCATCAGAGTAAGTTTAAACTGAGTTCTACTAACTAACGAGTAATATTTA
AATTTTCAGCTCTCGCGCCCGTGCCTCTGACTTCTAAGTCCAATTACTCTTCAACATCCCTACA
TGCTCTTTCTCCCTGTGCTCCCACCCCCTATTTTTGTTATTATCAAAAAAACTTCTTCTTAATTTC
TTTGTTTTTTAGCTTCTTTTAAGTCACCTCTAACAATGAAATTGTGTAGATTCAAAAATAGAATTA
ATTCGTAATAAAAAGTCGAAAAAAATTGTGCTCCCTCCCCCCATTAATAATAATTCTATCCCAAA
ATCTACACAATGTTCTGTGTACACTTCTTATGTTTTTTTTACTTCTGATAAATTTTTTTTGAAACA
TCATAGAAAAAACCGCACACAAAATACCTTATCATATGTTACGTTTCAGTTTATGACCGCAATTT
TTATTTCTTCGCACGTCTGGGCCTCTCATGACGTCAAATCATGCTCATCGTGAAAAAGTTTTGG
AGTATTTTTGGAATTTTTCAATCAAGTGAAAGTTTATGAAATTAATTTTCCTGCTTTTGCTTTTTG
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GGGGTTTCCCCTATTGTTTGTCAAGAGTTTCGAGGACGGCGTTTTTCTTGCTAAAATCACAAGT
ATTGATGAGCACGATGCAAGAAAGATCGGAAGAAGGTTTGGGTTTGAGGCTCAGTGGAAGGT
GAGTAGAAGTTGATAATTTGAAAGTGGAGTAGTGTCTATGGGGTTTTTGCCTTAAATGACAGAA
TACATTCCCAATATACCAAACATAACTGTTTCCTACTAGTCGGCCGTACGGGCCCTTTCGTCTC
GCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGC
TTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGC
GGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATAT
GCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGGCCTTAAGGGC
CTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTG
GCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATAT
GTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATG
AGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGC
TCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTT
ACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTC
CAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGC
AAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCA
CAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGA
GTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCT
TTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAA
GCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAA
ACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGC
GGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAA
ATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAG
CCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGA
CAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCA
TATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTT
GATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTA
GAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAA
AAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGA
AGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAG
GCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAG
TGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCG
GATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAA
CGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCCGAA
GGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGG
GAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTT
GAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGC
GGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCC
CCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG
AACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCG
CCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAA
AGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTT
TACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAG
GAAACAGCTATGACCATGATTACGCCAAGCTgtaagtttaaacatgatcttactaactaactattctcatttaaattttcag
AGCTTAAAAATGGCTGAAATCACTCACAACGATGGATACGCTAACAACTTGGAAATGAAAT 

 


