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The classical procedure devised by Irving and Kirkwood in 1950 and completed slightly later by Noll
produces counterparts of the basic balance laws of standard continuum mechanics starting from an
ordinary Hamiltonian description of the dynamics of a system of material points. Post-1980 molecular
dynamics simulations of the time evolution of such systems use extended Hamiltonians such as those
introduced by Andersen, Nosé, and Parrinello and Rahman. The additional terms present in these
extensions affect the statistical properties of the system so as to capture certain target phenomenolo-
gies that would otherwise be beyond reach. We here propose a physically consistent application of
the Irving–Kirkwood–Noll procedure to the extended Hamiltonian systems of material points. Our
procedure produces balance equations at the continuum level featuring non-standard terms because
the presence of auxiliary degrees of freedom gives rise to additional fluxes and sources that influence
the thermodynamic and transport properties of the continuum model. Being aware of the additional
contributions may prove crucial when designing multiscale computational schemes in which informa-
tion is exchanged between the atomistic and continuum levels. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4984823]

I. INTRODUCTION

Whereas classical continuum mechanics rests on the
description of the deterministic evolution of macroscopic
quantities, classical statistical mechanics studies probabilistic
features of microscopic observables. Continuum mechanics
provides phenomenological descriptions typically aimed at
determining over a time interval and a matter-comprised space
region the values taken by a list of fields, such as mass den-
sity, motion, stress, and temperature. This is done by solving
initial/boundary-value problems governed by sets of partial-
differential evolution equations embodying such fundamental
laws as the balances of mass, linear momentum, and total
energy, specialized for a constitutive class of choice. Statis-
tical mechanics provides expressions for equations of state
and forces based on a chosen potential of internal interactions
in combination with the ensemble properties. Their different
natures notwithstanding, these edifices can supply consistent
and complementary information when applied to one and the
same physical system with the objective of building a multi-
scale method. When the statistical information retrieved at the
atomistic level is used to obtain deterministic predictions at
the continuum level, or vice versa, there are two main consis-
tency issues to settle: one concerning macroscopic constitu-
tive responses to deformations and microscopic interatomic
potentials; the other concerning the evolution equations in
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the two frameworks. In this paper, we deal with the latter
issue.

To close the atomistic-to-continuum scale gap to the extent
of associating a set of deterministic balances with a proba-
bilistic account of the Newtonian evolution of a system of
material points, we take the bottom-up path pioneered by
Irving and Kirkwood1 in a paper that appeared in 1950. Their
path was completed a few years later by Noll2 who derived
closed-form integral expressions relating microscopic observ-
ables to the continuum mechanical notions of stress and heat
flux.

The Irving–Kirkwood–Noll (IKN) procedure was derived
for the classical Hamiltonian dynamics of a collection of mate-
rial points. This represents a significant limitation because
the statistical information that can be retrieved via Molec-
ular Dynamics (MD) from a classical Hamiltonian system
refers only to the microcanonical ensemble (NVE), in which
the number of particles, the volume, and the energy is
conserved.

An innovative and effective technique for accessing dif-
ferent statistical ensembles was introduced by Andersen3 in
1980. Andersen’s idea was to view the MD computational
cell as a carrier of mesoscopic information, conveyed by an
extended Hamiltonian, in which the introduction of an addi-
tional dynamical variable—the volume of the cell in his case—
allows the system to explore the phase space along trajectories
for which the value of the extended Hamiltonian, but not the
physical energy, is conserved. As a consequence, while the
extended system retains statistics pertinent to the extended
microcanonical ensemble, the statistical ensemble induced on
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the physical degrees of freedom is modified to obtain the
conservation of two observables—the pressure applied to the
cell and the related enthalpy. Prompted by Andersen’s paper,
Parrinello and Rahman4 let not only the volume but also the
shape of the computational cells change. They showed that
the availability of shape-related degrees of freedom allows
for simulating stress-induced phase transitions in solids; to
paraphrase the words of Nosé,5 their papers revolutionized
the approach to investigating structural phase transitions. A
few years later, Nosé,6 inspired once again by Andersen’s
paper, conceived the idea of an extended Hamiltonian befitting
the MD simulations consistent with a constant-temperature
canonical ensemble (NVT), in the sense that “the canonical
distribution is realized in a physical system.”5 Simulations of
extended Hamiltonian dynamics were also considered within
the more general class of non-Hamiltonian MD in impor-
tant articles on their statistical properties.7 A development
that, to our knowledge, went unnoticed in the literature is
that Noll,2 whose treatment allows for the presence of non-
conservative external forces, actually considered the extension
to a special class of non-Hamiltonian evolutions in as early
as 1955.

In the present paper, we couple the IKN procedure—in
itself a microscopic-to-macroscopic scale-bridging procedure
—with two extended Hamiltonians. The first models the Nosé–
Hoover (NH) thermostat.5,6,8 The second is a Hamiltonian
of Andersen–Parrinello–Rahman (APR) type, which includes
a complete accounting of the kinetic energy. The extended
Lagrangian used by Parrinello and Rahman,4 which featured a
simplified accounting of the kinetic energy, was a generaliza-
tion of that previously devised by Andersen with the objective
of achieving an isobaric ensemble,3 whence our use of the
acronym APR.

As is well-known, the IKN procedure tells us what statis-
tical observables to associate with the continuum mechanical
notions of mass, linear momentum, and energy density. On
evolving these observables à la Liouville with respect to a
chosen Hamiltonian, three consequences of the Newtonian
motion of a system of material points are derived. These
can be associated with three balance laws basic to contin-
uum mechanics, namely, mass conservation, balance of linear
momentum, and balance of energy. The association involves
convenient identifications of other statistical observables with
the continuum mechanical notions of stress and heat flux. In
recent years, there has been a renewed interest in these mat-
ters; with no pretense to exhaustivity, we mention the works of
Murdoch9 (who proposes an identification procedure alterna-
tive to that used in the IKN procedure along lines anticipated
by Hardy10), Admal and Tadmor,11 Seguin and Fried,12 and
others.13–20

We remark that in the case of microstructured continua,
a microscopic definition of angular momentum is often nec-
essary and would significantly affect the continuum balance
of the density of angular momentum, as recently discussed
by Seguin and Fried12 and Davydov and Steinmann.20 Nev-
ertheless, in the present treatment, we restrict attention to the
continua associated with systems of material points that do not
possess rotational degrees of freedom. In such a context, the
continuum balance of angular momentum is equivalent to the

symmetry of the Cauchy stress tensor, a property guaranteed
under fairly general assumptions concerning the nature of the
internal interactions.

Our goal is to implement the IKN procedure for both the
NH and the APR Hamiltonians. Our main expectation is to
provide an indication as to which continuum equations (and
of what kind) should be coupled to MD simulations when
building consistent multiscale schemes. Our interest in the
NH thermostat is motivated by the assumption of isothermal
evolution, posited for many continuum mechanical models.
On the other hand, the APR approach has the peculiarity of
introducing a dynamic generalization of the Cauchy–Born
rule,21,22 which makes it directly relevant to certain recently
proposed multiscale computational schemes.23–25 A discus-
sion of how thermostatting techniques can affect the evaluation
of transport coefficients in linear response theory (which are
related to the balance of linear momentum) is presented by
Evans and Morriss.26 Our goal, however, is to obtain a full set
of continuum balances featuring a more accurate account of
the macroscopic effects induced by the extended Hamiltonian
dynamics.

When setting up the IKN procedure for an extended
Hamiltonian system, that is, to say, a particle system whose
Hamiltonian H is nonstandard, two key observations are that (i)
certain microscopic observables must be defined by combining
ordinary physical variables with other possibly “unphysical”
variables and that (ii) all macroscopic observables, whatever
their microscopic antecedents, consist of ensemble averages
weighted with respect to probability densities defined over
the extended phase space. This in itself guarantees a basic
statistical-continuum consistency in the derived balances of
macroscopic observables. However, we find that an extended
Hamiltonian evolution always entails the presence of new
terms in the balance of energy. This signals that the choice of a
peculiar probabilistic dynamics at the microscopic scale mod-
ifies the thermodynamic and transport properties of the system
at the macroscopic scale. Awareness of this denouement is cru-
cial when devising computational schemes in which informa-
tion is exchanged between the macroscopic and microscopic
levels.

Our paper is organized as follows. In Sec. II, we recall
a few well-known notions regarding Liouville’s evolution of
probability densities and observables for Hamiltonian particle
systems; we also specify the changes in a format necessary to
deal with extended Hamiltonian systems. In Sec. III, we dis-
cuss the application to extended Hamiltonian systems of the
IKN procedure for obtaining macroscopic balance equations,
in particular, we analyze in detail the cases of the NH thermo-
stat and of APR dynamics. The main results of our study, as
well as their relevance to multiscale computational schemes,
are finally summarized in Sec. IV.

II. LIOUVILLE’S EVOLUTION OF OBSERVABLES

Consider a system defined by a Hamiltonian H depending
on Lagrangian coordinates q and conjugate momenta p, with
z = (q, p) denoting a generic point in the phase space Z. The
evolution of the system is given by Hamilton’s equations

ζ̇(t) = {z, H }|z=ζ (t), (1)
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where {·, ·} denotes the Poisson bracket defined, for any pair
A and B of functions of (z, t) = (q, p, t), as

{A, B} :=
∂A
∂q
·
∂B
∂p
−
∂A
∂p
·
∂B
∂q

. (2)

A. Liouville’s theorem and Liouville’s equation

Given a Hamiltonian system, it is readily checked
that

divz{z, H } = 0, (3)

which is a statement of Liouville’s theorem. A geometrical
statement of Liouville’s theorem based on (1) and (3) is that
any Hamiltonian evolution of a region in the phase space Z is
locally volume-preserving.

The incompressibility condition expressed by (3) has an
important consequence: any probability density function ρ̃
defined on Z at the initial time t0 is convected along the
Hamiltonian trajectories in the sense that

˙̃ρ(ζ(t), t) = 0, (4)

whenever ζ(t) is a solution of (1). This can be equivalently
expressed by Liouville’s equation

∂

∂t
ρ̃(z, t) − {H(z, t), ρ̃(z, t)} = 0, (5)

where
`[·] := −{H(z, t), ·} (6)

is the Liouville operator for a system of Hamiltonian H. Liou-
ville’s equation evolves a given initial value ρ̃(z, t0) = ρ̃0(z)
of the probability measure at any given point of Z into its
current value ρ̃(z, t) at that same point. The kernel of the
Liouville operator ` consists of all the stationary probabil-
ity measures, that is, those which are independent of time t.
Notice that the discussion of the present section applies also to
time-dependent Hamiltonians, even though, in the applications
discussed subsequently, we only encounter time-independent
Hamiltonians.

B. Extended form of Liouville’s equation

If we consider a decomposition Z = Zs ×Ze of the phase
space Z, where Zs is associated with a subset of Hamiltonian
coordinates, denoted by (qs, ps), andZe is associated with addi-
tional degrees of freedom that extend the set of coordinates,
we can then define the restricted Poisson bracket for any pair
A and B of scalar functions of (z, t) by

{A, B}Zs :=
∂A
∂qs
·
∂B
∂ps
−
∂A
∂ps
·
∂B
∂qs

; (7)

the complementary bracket {A, B}Ze has an analogous expres-
sion. With such definitions, we obtain an additive decomposi-
tion of the Poisson bracket:

{A, B} = {A, B}Zs + {A, B}Ze . (8)

Moreover, we can exploit (8) to express Liouville’s evolution
of probability densities for an extended Hamiltonian system
as

∂ ρ̃

∂t
= {H, ρ̃}Zs + {H, ρ̃}Ze . (9)

C. Extended evolution of observables

A microscopic observable is a mapping z 7→ ô(z) defined
over the phase space Z. At this stage, the tensorial order of ô
can be left arbitrary. The corresponding macroscopic observ-
able is the expected value of ô at time t with respect to the
chosen probability density ρ̃(z, t), namely

〈o〉(t) :=
∫
Z
ρ̃(z, t)ô(z) dz. (10)

An important application of Liouville’s equation is to
compute the time derivative of the expected value 〈o〉 of a
microscopic observable ô, which is given by

∂〈o〉
∂t
=

∫
Z
{H, ρ̃}ô dz. (11)

For extended Hamiltonian systems, substituting the additive
decomposition (8) in (11) gives

∂〈o〉
∂t
=

∫
Z
{H, ρ̃}Zs ô dz +

∫
Z
{H, ρ̃}Ze ô dz. (12)

Irving and Kirkwood1 (in a footnote on their p. 822)
commented on the possible presence of additional degrees
of freedom, leading to (12). However, they considered only
observables that are independent of the additional degrees of
freedom. At variance with them, we will consider observ-
ables that depend also on such coordinates, entailing non-
vanishing contributions from both terms in the right-hand side
of (12).

III. THE IKN PROCEDURE FOR EXTENDED
HAMILTONIAN SYSTEMS

We begin by briefly recapping the classical IKN proce-
dure, which is applied to a collection of N material points mov-
ing in three-dimensional space. The Hamiltonian coordinates
are

q = (r1, . . . , rN ) and p = (m1ṙ1, . . . , mN ṙN ), (13)

where rk is the current position vector, with respect to a fixed
origin, of the k-th material point, the mass of which is mk . The
fundamental presumption is that all macroscopic properties of
matter are deducible from a microscopic discrete picture; the
idea is to exploit the similarity in format of continuum balance
equations and statistical Liouville flows.

The procedure consists of three steps: (i) The densities of
mass, linear momentum, kinetic energy, and internal energy are
associated with the ensemble averages of certain microscopic
observables, the common form of which is

ô(z, r) =
∑

k

ôk(z) δ(rk − r), (14)

where r is the position vector of the typical space point. (ii)
Each of the above ensemble averages is evolved, in the order
given, à la Liouville. (iii) The so-obtained Liouville flows
are identified term-by-term with their continuum mechani-
cal counterparts. An all important feature of the procedure is
that the representation (14) of each microscopic observable—
a finite sum of Dirac distributions, each supported at one of
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the material points constituting the system—implies that the
associated macroscopic observable

〈o〉(r, t) =
〈∑

k

ôk(z)δ(rk − r)
〉
=

∫
Z

ô(z, r) ρ̃(z, t) dz (15)

is a time-dependent spatial field.
When applying the IKN procedure to an extended Hamil-

tonian system, it is important that the basic macroscopic
observables maintain their physical meaning. This poses
restrictions on the definitions of the relative microscopic
observables, where possibly unphysical additional Hamilto-
nian coordinates inevitably enter. Moreover, the additional
Hamiltonian coordinates affect the structure of both the phase
space and the probability measure entering ensemble averages.
Altogether, it can happen that certain terms of the contin-
uum balances produced by the IKN procedure turn out to
have forms different from the usual ones. In the following, we
exemplify these developments for two paradigmatic extended
Hamiltonian systems.

A. Application to the NH thermostat

The first system to which we apply the IKN procedure
is the extended Hamiltonian system introduced by Nosé,5,6

which forms the basis for the thermostatting strategy pro-
posed by Hoover.8 We shall see that a physically sound def-
inition of observables produces macroscopic balances that
are consistent with classical results. Nevertheless, additional
source terms that stem from the extended Hamiltonian are
present both in the mass balance and in the energy bal-
ance. At the continuum level, those additional terms can
alter the spatial and temporal distributions of the fields.
At the microscopic level, it is, however, the ensemble that
changes.

1. The extended Hamiltonian

Nosé’s extended Hamiltonian can be written as

HNH(q′, p′; Q, T ) :=
∑

k

|pk |
2

2mks2
+

p2
s

2Q
+ V (q)

+ (3N + 1)kBT (ln s − 1), (16)

the underlying coordinates being

q′ = (q, s) and p′ = (p1, . . . , pN , ps). (17)

The string q′ is the standard string of Lagrangian coordinates
in (13)1, augmented by a dimensionless scalar coordinate s;
ps, the momentum conjugate to s, augments a string of virtual
momenta pk , k ∈ {1, . . . , N }. For the physical velocity vk of
the k-th material point, the relationship between the virtual
momentum pk and the physical momentum mk vk is mediated
by s as follows:

pk

s
= mk vk . (18)

The role assigned by Nosé to s is to scale the physical time
t in terms of the virtual time τ involved in the Hamiltonian
evolution associated with HNH according to

t =
∫ τ

0

dα
s(α)

. (19)

This interpretation of s, which depends on the virtual time, is
consistent with Nosé’s intention to achieve temperature control
by controlling particle velocities and granted the understand-
ing that the temperature of a system is related to the average
of its kinetic energy.5 For this formulation to make sense, s
must be positive. Consistent with this observation, we stipulate
that the probability density function ρ̃(q′, p′, τ) must vanish
identically for s ≤ 0.

The expression of HNH in (16) features two parameters: Q,
which enters the new kinetic term; and T, which enters the new
potential energy, where N is the number of material points and
kB is Boltzmann’s constant. Specifically, Q modulates the new
kinetic term proportional to p2

s and plays the role of an effective
thermal inertia, associated with the characteristic frequency of
thermal fluctuations, and T is the target temperature. The role
of the “entropic” potential (3N +1)kBT (ln s−1) is to induce the
constant-temperature ensemble characterizing the equilibrium
properties of the system.

Finally, in (16) the potential energy, V has the standard
form V = V i + V e, where the internal contribution

V i(q) :=
1
2

∑
j,k

Vjk(|rj − rk |), (20)

accounts for pairwise interactions between material points and

V e(q) :=
∑

k

V e
k (rk) (21)

is the unary potential of external forces.

2. Definition of the observables

We now identify the statistical counterparts of the fields
entering the basic continuum balances as macroscopic observ-
ables under the form of ensemble averages of suitable physi-
cally relevant microscopic observables. We do so by applying
the general IKN prescription recalled in the introductory para-
graph of this section. By construction, such ensemble averages
depend on the virtual time τ; in what follows, the inversion
of relation (19) is implied. Specifically, we define the mass
density

ρ(r, t) ≡
〈∑

k

mkδ(rk − r)
〉
, (22)

the linear momentum density

ρv(r, t) ≡
〈∑

k

pk

s
δ(rk − r)

〉
=

〈∑
k

mk vkδ(rk − r)
〉
, (23)

the kinetic energy density

εK (r, t) ≡
〈∑

k

|pk |
2

2mks2
δ(rk − r)

〉
=

〈∑
k

mk

2
|vk |

2δ(rk − r)
〉
,

(24)
and the potential energy density

εV (r, t)≡
〈∑

j,k

1
2

Vjk(|rj − rk)|) δ(rk − r)
〉
+
〈∑

k

V e
k (rk)δ(rk − r)

〉
.

(25)

The presence of additional degrees of freedom and energy
terms in HNH calls for the definition of further observables.
Since the additional degrees of freedom are not explicitly
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ascribable to individual material points, it is not immedi-
ately obvious whether the corresponding observables should
be given the form (14), entailing generally nontrivial varia-
tions with spatial position. These observables could also be
viewed as collective properties of the system and be described
by uniform spatial fields. To investigate the implications of
those two perspectives, we define both collective observables,
which are independent of the space point r, and corresponding
distributed observables (indicated with superposed bars) of the
IKN form.

The collective observables associated with the extra
kinetic energy density and the entropic energy density are

εps (t) ≡
〈 1
ωref

p2
s

2Q

〉
, (26)

ε s(t) ≡
〈 A
ωref

(ln s − 1)
〉
, (27)

where we have introduced A:= (3N + 1)kBT and ωref is used
to denote the volume of the computational cell.

The construction of an IKN observable for a collective
quantity can always be achieved by multiplying that quantity
by the microscopic precursor∑

k

1
N
δ(rk − r) (28)

of the number density

n(r, t) ≡
〈∑

k

1
N
δ(rk − r)

〉
. (29)

Following that prescription, we define the distributed observ-
ables

ε̄ps (r, t) ≡
〈 p2

s

2Q

∑
k

1
N
δ(rk − r)

〉
, (30)

ε̄ s(r, t) ≡
〈
A(ln s − 1)

∑
k

1
N
δ(rk − r)

〉
. (31)

The foregoing definitions and the corresponding evolu-
tion terms represent an important novelty of the continuum
theory associated with an extended Hamiltonian system via
the IKN procedure. We anticipate that the main difference in
choosing collective or distributed observables is that the col-
lective ones, being spatially uniform, are not convected with
the motion of material points. For this reason, they produce
only uniform source terms in the energy balance, whereas
distributed observables produce both convective and diffusive
terms in that balance.

3. The mass and momentum balances

By applying Liouville’s equation (9), which in this case
takes the form

∂ ρ̃

∂τ
=

∑
k

(
∂HNH

∂rk
·
∂ ρ̃

∂pk
−
∂ ρ̃

∂rk
·
∂HNH

∂pk

)
+
∂HNH

∂s
∂ ρ̃

∂ps
−
∂ ρ̃

∂s
∂HNH

∂ps
, (32)

we can deduce the macroscopic balances of the defined
observables.

The time derivative of the mass density is

∂ρ

∂t
=

∫
Z

s
∂ ρ̃

∂τ

∑
k

mkδ(rk − r) dz

= − divr

∫
Z
ρ̃
∑

k

pk

s
δ(rk − r) dz

+
∫
Z
ρ̃

ps

Q

∑
k

mkδ(rk − r) dz

= − divr(ρv) + σρ, (33)

where the source term is given by

σρ(r, t) ≡
〈ps

Q

∑
k

mkδ(rk − r)
〉
. (34)

As for the linear momentum density, we find that

∂(ρv)
∂t

= −

∫
Z
ρ̃
∑

k

∂V
∂rk

δ(rk − r) dz

− divr

∫
Z
ρ̃
∑

k

mk vk ⊗ vkδ(rk − r) dz

= − divr(ρv ⊗ v − T) + f e, (35)

where the Cauchy stress tensor T is the sum of the kinetic
stress tensor

TK (r, t) ≡ −
〈∑

k

mk(vk − v) ⊗ (vk − v)δ(rk − r)
〉

(36)

and the stress tensor associated with internal interactions,
namely,

TV (r, t) ≡
1
2

∑
j,k

∫
R3

x ⊗ x
|x|

V ′jk(|x|)J(x, r, t) dx, (37)

with

J(x, r, t) :=
∫ 1

0

〈
δ(rj − r − αx)δ(rk − r + (1 − α)x)

〉
dα, (38)

and where the external force field is

f e(r, t) ≡ −
〈∑

k

∂V e
k

∂rk
δ(rk − r)

〉
. (39)

The detailed derivation of formulae (37) and (38) was
provided originally by Noll,2 who more recently general-
ized and refined his calculations.27 Note that the very pres-
ence of the source term σρ in the mass balance, a term
that has no classical counterpart, is dictated by the form
(16) of the extended Hamiltonian HNH, which however does
not give rise to specific new terms in the balance of linear
momentum.

4. Energy balances

In view of our previous definitions of collective and dis-
tributed energy observables, we must balance two energy
densities, namely

ε = εK + εV + εps + ε s (40)

and
ε̄ = εK + εV + ε̄ps + ε̄ s. (41)
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In both instances, the time derivatives of εK and εV produce the
counterpart of the continuum mechanical heat flux q, which
involves the sum of a kinetic contribution

qK (r, t) ≡
〈∑

k

mk

2
|vk − v |2(vk − v)δ(rk − r)

〉
, (42)

an interaction contribution

qV (r, t) ≡ −
1
2

∑
j,k

∫
R3

[ x
|x|

V ′jk(|x|)x ·
∫ 1

0

〈1
2

(vj + vk)

× δ(rj − r − αx)δ(rk − r + (1 − α)x)
〉

dα
]

dx, (43)

and a transport contribution

qT (r, t) ≡
〈∑

j,k

1
2

Vjk(|rj − rk |)(vk − v)δ(rk − r)
〉

+
〈∑

k

V e
k (rk)(vk − v)δ(rk − r)

〉
. (44)

a. Energy balance with collective observables. The time
derivatives of the collective energy densities ε s and εps defined
in (26) and (27) are

dεps

dt
=

〈 p3
s

2Q2ωref

〉
+

〈 ps

Qωref

[ ∑
k

mk |vk |
2 − A

]〉
≡ σ

ps
ε

(45)

and
dε s

dt
=

〈 ps

Qωref
A ln s

〉
≡ σs

ε ; (46)

these derivatives induce two uniform source terms, σps
ε and

σs
ε .

All in all, the balance of the energy density ε defined in
(40) takes the form

∂ε

∂t
= −divr(q + εK v + εV v − TTv) + σε , (47)

where q and σε are given by

q = qK + qV + qT , (48)

σε = σ
0
ε + σK

ε + σV
ε + σps

ε + σs
ε . (49)

In addition to the time-dependent but spatially uniform sources
σ

ps
ε and σs

ε , σε features the classical term

σ0
ε (r, t) ≡

〈∑
k

∂V e
k

∂rk
· vkδ(rk − r)

〉
(50)

and two other new terms, namely

σK
ε (r, t) ≡

〈
−

ps

Q

∑
k

mk

2
|vk |

2δ(rk − r)
〉

(51)

and

σV
ε (r, t) ≡

〈ps

Q

∑
j,k

1
2

Vjk(|rj − rk)| ) δ(rk − r)
〉

+
〈ps

Q

∑
k

V e
k (rk)δ(rk − r)

〉
. (52)

While the time evolution of εK and εV produces spatially
dependent diffusive fluxes, convective terms, and sources, the
time evolution of εps and ε s generates only uniform sources.

b. Energy balance with distributed observables. To deduce
the balance of the energy density ε̄ defined in (41), we compute
the time derivatives of the distributed observables ε̄ps and ε̄ s

defined in (30) and (31). Specifically, we find that

∂ε̄ps

∂t
= −divr(qps

+ ε̄ps v) + σps
ε̄ , (53)

with

qps
(r, t) ≡

〈 p2
s

2Q

∑
k

1
N

(vk − v)δ(rk − r)
〉

(54)

and

σ
ps
ε̄ (r, t) ≡

〈 p3
s

2Q2

∑
k

1
N
δ(rk − r)

〉
+
〈ps

Q

[ ∑
j

mj |vj |
2 − A

] ∑
k

1
N
δ(rk − r)

〉
. (55)

Additionally, we find that

∂ε̄ s

∂t
= −divr(qs + ε̄ sv) + σs

ε̄ , (56)

with

qs(r, t) ≡
〈
A(ln s − 1)

∑
k

1
N

(vk − v)δ(rk − r)
〉

(57)

and

σs
ε̄ (r, t) ≡

〈ps

Q
A ln s

∑
k

1
N
δ(rk − r)

〉
. (58)

All in all, the balance of the energy density ε̄ reads

∂ε̄

∂t
= −divr(q + ε̄ v − TTv) + σε̄ , (59)

where q and σε̄ are given by

q = qK + qV + qT + qps
+ qs, (60)

σε̄ = σ
0
ε + σK

ε + σV
ε + σps

ε̄ + σs
ε̄ . (61)

In this case, each of the energy densities produces flux and
convective terms influencing the energy balance (59).

B. Application to the APR extended Hamiltonian

In this section, we apply our generalized IKN procedure
to an extended Hamiltonian system akin to but more gen-
eral than that considered by Parrinello and Rahman4 whose
successful predictions of stress-induced displacive phase tran-
sitions in certain crystalline materials initiated an irreversible
change in format in the MD simulation of such phenomena.
We reiterate that we chose this application not only for its
intrinsic importance but also stimulated by recently proposed
multiscale numerical schemes24,25 for coupling atomistic and
continuum models. Importantly, those numerical schemes are
based on an APR approach, and we view determining the form
of the implied continuum balances to be an endeavor of par-
ticular importance and interest. In a departure from previous
treatments, we do so by employing the general and exact form
of the kinetic energy, a form which reduces to that postulated
by Parrinello and Rahman under specific conditions analyzed
by Podio-Guidugli.21 We regard maintaining this level of gen-
erality as important for obtaining a consistent and unprejudiced
physical description at different scales.
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In what follows, we denote by a simple juxtaposition, the
contraction of a single tensorial index between a tensor and a
vector or between two tensors. For both tensors and vectors, we
denote by A · B, with a single centered dot, the scalar product
defined through the trace operator by tr(ATB).

1. The extended Hamiltonian

The additional degrees of freedom that extend the ordi-
nary Lagrangian within an APR framework are those used
to describe the deformations of the computational cell; they
comprise an invertible second-order tensor F, with posi-
tive determinant, which maps the referential position vec-
tor sk of the k-th material point into its current position
vector rk :

rk = Fsk . (62)

Accordingly, the Lagrangian coordinates of this system are
given by q = ((sk)N

k=1, F). The time-dependence of F renders
(62) a generalization of the Cauchy–Born rule, from which it
follows that

ṙk = Fṡk + Ḟsk = vk . (63)

As we shall see, (63) is crucial for a correct definition of phys-
ical observables. Importantly, it must be used to compute the
Lagrangian form of the kinetic energy:

KL :=
1
2

∑
k

mk |Fṡk + Ḟsk |
2

=
1
2

FTF ·
∑

k

mk ṡk ⊗ ṡk +
1
2

Ḟ
T

Ḟ ·
∑

k

mksk ⊗ sk

+
1
4

(Ḟ
T

F + FTḞ) ·
∑

k

mk(ṡk ⊗ sk + sk ⊗ ṡk). (64)

The Lagrangian kinetic energy KL is a symmetric and posi-
tive semi-definite quadratic form in the variables ((ṡk)N

k=1, Ḟ),
which depends parametrically on q. The corresponding Hamil-
tonian kinetic energy K is the Legendre–Fenchel transform of
KL. Although KL depends on sk and ṡk , it is independent of rk

and, therefore, so is K. We thus have

pk =
∂KL

∂ṡk
, G =

∂KL

∂Ḟ
, ṡk =

∂K
∂pk

, and Ḟ =
∂K
∂G

. (65)

The conjugate momentum pk and the physical momen-
tum mk vk of the k-th material point are linked by the
transformation

pk = mkFTṙk = mkFT(Fṡk + Ḟsk), (66)

from which we deduce the alternative expression F−Tpk for
the physical momentum of the k-th material point.

The APR extended Hamiltonian that we consider is

HAPR(q, p) = K(q, p) + V (q) − ωref P · F, (67)

with p = ((pk)N
k=1, G). Here, as usual, the potential energy

depends on the pairwise interactions of material points in the
positions they currently occupy:

V (q) :=
∑
j,k

1
2

Vjk(|F(sj − sk)|). (68)

Given our present purposes, the addition of an external poten-
tial would not add anything of importance. What makes an

approach of APR type interesting is the last term of (67),
−ωref P · F, which is of an enthalpic character. In that term,
ωref > 0 denotes the constant reference volume of the compu-
tational cell, while the time-independent control parameter P
specifies the prescribed macroscopic Piola stress in the refer-
ential configuration of the computational domain throughout
the MD simulation.

In this extended Hamiltonian system, the evolution of
any probability density ρ̃(q, p, t) is determined by Liouville’s
equation (9), which takes the following explicit form:

∂ ρ̃

∂t
=

∑
k

(
∂HAPR

∂sk
·
∂ ρ̃

∂pk
−
∂ ρ̃

∂sk
·
∂HAPR

∂pk

)
+
∂HAPR

∂F
·
∂ ρ̃

∂G
−
∂ ρ̃

∂F
·
∂HAPR

∂G
. (69)

2. Definition of the observables

The discussion in Sec. III B 1 provides us with pre-
cise indications about the appropriate form for the various
observables. We define the mass density

ρ(r, t) ≡
〈∑

k

mkδ(Fsk − r)
〉
, (70)

the linear momentum density

ρv(r, t) ≡
〈∑

k

F−Tpkδ(Fsk − r)
〉

=
〈∑

k

mk vkδ(Fsk − r)
〉
, (71)

the kinetic energy density

εK (r, t) ≡
〈∑

k

1
2mk
|F−Tpk |

2δ(Fsk − r)
〉

=
〈∑

k

mk

2
|vk |

2δ(Fsk − r)
〉
, (72)

and the potential energy density

εV (r, t) ≡
〈∑

j,k

1
2

Vjk(|F(sj − sk)|)δ(Fsk − r)
〉
. (73)

In keeping with the treatment of Nosé’s extended Hamiltonian
(16), we can further define the collective observable

εP(r, t) ≡ −〈P · F〉 = −P · 〈F〉, (74)

and its distributed counterpart

ε̄P(r, t) ≡ −
〈
ωref(P · F)

∑
k

1
N
δ(Fsk − r)

〉
. (75)

3. The continuum balances

In the case of the APR extended Hamiltonian, the classical
form of the mass balance is preserved, as is the form of the
linear momentum balance, in which the stress tensor T = TK

+ TV is obtained from (36)–(38) modulo the substitutions

rk 7→ Fsk , (76)

pk

s
7→ mk(Fṡk + Ḟsk) = F−Tpk = mk vk . (77)
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Choosing the collective form (74) for the enthalpic energy
density generates the energy balance

∂ε

∂t
= −divr(q + εK v + εV v − TTv) + σε , (78)

with

ε = εK + εV + εP, (79)

q = qK + qV + qT , (80)

and
σε ≡ ε̇P. (81)

In these relations, the terms with suffixes K, V, and T have
the form of the corresponding terms in the application of
the IKN procedure to the NH extended Hamiltonian. If the
computational cell is viewed as a homogeneously deforming
elastic body, then ωref F constitutes an extensive variable and
σε provides a reckoning of the power expenditure associated
with changing the shape of the computational cell under the
influence of the Piola stress P.28,29

If we choose instead the distributed form (75) for the
enthalpic energy density, the energy balance reads

∂ε̄

∂t
= −divr(q + ε̄ v − TTv), (82)

where
ε̄ = εK + εV + ε̄p (83)

and
q = qK + qV + qT + qP. (84)

The stress-related terms ε̄Pv and qP are both due to the
enthalpic term in the extended Hamiltonian. The former has a
convective nature; the latter, whose form is

qP ≡ −
〈
ωref (P · F)

∑
k

vk − v

N
δ(Fsk − r)

〉
, (85)

accounts for the heat flux generated by the action of the
prescribed macroscopic Piola stress P.

4. About the use of the Parrinello–Rahman
kinetic energy

The Lagrangian kinetic energy introduced by Parrinello
and Rahman4 is

KPR :=
1
2

FTF ·
∑

k

mk ṡk ⊗ ṡk +
1
2

W |Ḟ|2, W > 0. (86)

Since KPR is a symmetric and positive definite quadratic form
in the variables ((ṡk)N

k=1, Ḟ), the above analysis involving KL is
applicable also in this case, with similar results. What changes
is not the form of the resulting continuum balances but rather
is the physical significance of the terms in those balances
that depend directly on the microscopic evolution equations
derived from the choice of KPR for the kinetic energy.

It is worth observing that the inertial parameter W plays
a role akin to that of Q in the Nosé–Hoover Hamiltonian.
This marks an important distinction between the extension
pertinent to the Nosé–Hoover Hamiltonian, which would be
paralleled by one based on the Parrinello–Rahman Lagrangian,
and the extension realized in the APR Hamiltonian discussed
in this paper. When the physical kinetic energy is translated in
terms of the extended variables, the outcome is KL and there

is no need for inertial parameters, whose value is regarded as
adjustable in more than one way.3,4 In this connection, we also
observe that the difference between KL and KPR vanishes if
two constraints are imposed on the motion of the computa-
tional cell and the particles therein,21 one being holonomic
and of the form ∑

k

mksk ⊗ sk = WI, (87)

where I is the identity tensor, and the other being non-
holonomic and of the form

ḞF−1 = (ḞF−1)
T

. (88)

It would be of some interest to introduce an extended Hamil-
tonian in which ad hoc Lagrangian multipliers would mediate
the presence of these constraints.

IV. CONCLUSIONS

We discussed the application of the Irving–Kirkwood–
Noll procedure to extended Hamiltonian systems employed
in certain molecular dynamics simulations. This procedure
makes it possible to obtain macroscopic balance laws of con-
tinuum mechanics that can be regarded as specific collec-
tive counterparts of the extended Hamiltonian dynamics of
a system of material points.

Our analysis demonstrates that the presence of auxiliary
degrees of freedom, needed to control the statistical proper-
ties at the atomistic level, affects the structure of the balance
equations at the continuum level. Precisely, the modifications
induced at the microscopic scale influence the thermodynamic
and transport properties at the macroscopic scale by way of
novel source and flux terms in the continuum balances for the
mass and energy densities.

We considered in detail two important examples of
extended Hamiltonian systems. First, we discussed the
application of the Irving–Kirkwood–Noll procedure to the
extended Hamiltonian underlying the Nosé–Hoover thermo-
stat. Notably, the effective thermal inertia present in that model
produces source terms in the balances of both mass and energy,
source terms which do not feature in standard continuum mod-
els for isothermal processes. Second, we discussed the appli-
cation of the Irving–Kirkwood–Noll procedure to an extended
Hamiltonian that we designated after Andersen, Parrinello,
and Rahman because they were the first to introduce extended
Lagrangians to control the pressure and stress imposed on a
collection of material points during a molecular dynamics sim-
ulation. In this context, it is possible to identify a contribution
to the heat flux that is absent in the classical context. The term
in question encodes the effects on the macroscopic balance of
the energy needed to keep a constant the stress applied to the
system.

Our findings are particularly relevant when considering
computational schemes aiming at connecting the atomistic and
continuum scales. Indeed, we view it as essential to correctly
subsume the statistical properties imposed on the microscopic
model on the thermodynamic and transport properties of the
coupled continuum. When developing multiscale numerical
schemes that aim at coupling, in a physically consistent man-
ner, statistical information retrieved from MD with continuum
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modeling, this goal can be achieved by adopting continuum
mechanical balances of the type we derived. We surmise that
a failure to do so may lead to undesirable inconsistencies and
computational artifacts.
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