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Abstract In this work, we make a distinction between the differential geometric notion of
an isometry relationship among two dimensional surfaces embedded in three-dimensional
point space and the continuum mechanical notion of an isometric deformation of a two
dimensional material surface. We illustrate the importance of separating the abstract theory
of surfaces in differential geometry and their related differential geometric features from the
physical notion of a material surface which is subject to a deformation from a given reference
configuration. In differential geometry, while two surfaces may be isometric, the mapping
between them that characterizes the isometry is simply a mapping between the points of the
surfaces and not necessarily between corresponding material particles of a single deformed
material surface.

We review two equivalent characterizations of a smooth isometric deformation of a flat
material surface into a curved surface, and emphasize the requirement that the referential
directrix and rulings, and their deformed counterparts, must provide a basis for establishing
a complete curvilinear coordinate covering of the material surface in both the reference and
deformed states. Because this covering requirement has been overlooked in recent publica-
tions concerning the isometric bending of ribbons, we illustrate its importance in properly
defining the deformation of a ribbon in the two examples of a flat rectangular material strip
that is isometrically deformed into either (i) a portion of a circular cylindrical surface, or
(ii) a portion of a circular conical surface. We then show how the accurate calculation of the
bending energy in these two examples is influenced by this oversight. In example (i), the
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curvature along the generators of the deformed surface, generally helical in form, is con-
stant. In this special circumstance overlooking the covering requirement, as has been done
in the literature by integrating the specific bending energy, dependent only on the curvature,
over a domain on the supporting circular cylindrical surface equal in area, though not equal
in geometric form, to that of the deformed ribbon, gives the correct bending energy result. In
example (ii), the curvature along a generator of the cone is not constant and the calculation
of the bending energy is, indeed, compromised by this oversight.

The historically important dimensional reductions that Sadowsky and Wunderlich intro-
duced to study the bending energy and the equilibrium configurations of isometrically de-
formed rectangular strips have gained classical notoriety within the subject of elastic ribbons
and Mobius bands. We show that the Sadowsky and Wunderlich functionals also overlook
the covering requirement and that the exact bending energy is underestimated by these func-
tionals, the Sadowsky functional being the lowest. We then show that the error in using these
functionals can be great for a rectangular strip of given length ¢ and width w, depending on
the form of the isometric deformation and the size of the half-length-to-width ratio w/2¢.
The Sadowsky functional is meant to apply to strips for which w/2¢ is sufficiently small, in
which case the covering requirement is of little consequence, and for such strips it yields an
acceptable approximation of the actual bending energy. In such cases the Wunderlich func-
tional shows only an incremental improvement over the Sadowsky calculation. While the
Waunderlich functional is meant to apply accurately for all strips, without restricting the size
of w/2¢, we show that in overlooking the covering requirement it greatly underestimates the
actual bending energy for many isometrically deformed ribbons. In particular, we show rela-
tive errors between the exact, the Wunderlich, and the Sadowsky calculations of the bending
energy as a function of w/2¢ for the case of a rectangular strip which is isometrically de-
formed into a portion of a right circular conical surface, and we observe that the error in
approximating the exact bending energy by the Wunderlich functional for reasonable ratios
w/2¢ is large and unacceptable. We then give an example of the isometric deformation of a
rectangular strip whose Wunderlich functional predicts zero bending energy but for which
the exact bending energy can be as large as one pleases.

Finally, contrary to suggestions in the literature, we argue that Kirchhoff rod theory does
not generally apply to the study of the isometric deformation of a thin rectangular strip
because for this class of problems the through thickness dimension of the strip is assumed
to be infinitesimal as compared to its width w. For Kirchhoff rod theory to apply, these
dimensions must be comparable.
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1 Introduction

In classical continuum mechanics, a body B may be viewed, geometrically, as a compact
three-dimensional Riemannian manifold endowed with a Riemannian metric. A configura-
tion of a body makes an identification between each body element x belonging to 5B and a
point x in a subset R, of three-dimensional Euclidean point space E*. In this setting, R, is
called the reference configuration of the body. A (smooth) deformation of the ‘body’ from
R to some other subset R of 3 is then a mapping x — y, where y denotes a generic el-
ement of R. In this setting, R is called the spatial (or deformed) configuration of the body.
A deformation is isometric if lengths between all points in R, and corresponding points in
R are preserved under the mapping. Because a body cannot generally be embedded in [E3,
a three-dimensional Euclidean observer cannot discern its geometrical structure without re-
course to special instruments.

An analogous level of clarity is absent from a significant portion of the literature con-
cerned with ribbons and sheets conceived of as two-dimensional bodies, which we refer to
as material surfaces. The difference between the abstract mathematical notion of a surface
in two-dimensional Euclidean point space E? and its embedding into E* and the physi-
cal notion of the configuration of a material surface as viewed in E> appears to have gone
unappreciated in much of the literature dealing with configurations of ribbons and sheets
in E3.

As an abstract mathematical entity, a material surface P may be considered, geomet-
rically, to be a compact two-dimensional manifold endowed with a Riemannian metric.
On this basis, an isometry between two distinct material surfaces can be defined and stud-
ied. A configuration of a material surface P rests on an identification between each ele-
ment x of P and a point x in a subset D of E?; D is called the reference configuration
of the material surface. A (smooth) deformation of the ‘material surface’ from D to S is
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then a mapping x > y, where y is an element of E3. In this setting, S is called the spa-
tial (or deformed) configuration of the material surface. A deformation from D to S is
isometric if the length of any curve of points in D is preserved under the mapping. This
stands in contrast to the prevailing view in classical differential geometry, where two sur-
faces are said to be isometric if they have the same Gaussian curvature at corresponding
points and, in particular, a curved surface that is isometric to a planar region must be devel-
opable.

What perhaps makes things confusing when considering material surfaces and three-
dimensional bodies is that, because of the embedding property, the Riemannian manifold
and configurations of a material surface can be discerned by a three-dimensional Euclidean
observer. Unless special care is taken in defining an isometry between two surfaces and an
isometric deformation of a material surface, the distinction may therefore be easily missed.
In particular, the pitfall of misconstruing the notion (and condition) of conservation of Gaus-
sian curvature as the constraint appropriate to characterizing an unstretchable (or inexten-
sional) two-dimensional body must be avoided.

We explain below, by analogy and at a reasonably fundamental level, our understanding
of why much of the literature on unstretchable material surfaces is marred by confusion
surrounding the distinction between the isometric deformation of a material surface and the
differential geometric idea of an isometry between two surfaces. Section 2 is devoted to
background. Drawing on the work of Chen, Fosdick and Fried [1], we define precisely what
we mean by a smooth isometric deformation of a flat material surface into a curved surface,
provide two equivalent conditions that are necessary and sufficient that a deformation of a
flat material surface to a curved surface is isometric, and highlight the roles of the geometric
objects central to our description. Most crucial among these are the referential and spatial
directrices and the referential rulings and the spatial generators, which together provide a
basis for establishing meaningful correspondences between parametrizations of the material
surface in its reference and deformed configurations. In Sect. 3, we study a class of map-
pings introduced by Dias and Audoly [2] and show that all such mappings are isometric
in the sense defined in Sect. 2. In Sect. 4, we consider issues that arise in connection with
parametrizations of the reference and deformed configurations of a material surface. These
issues hinge on the importance of ensuring a surjective correspondence between material
points and parameter pairs. Dias and Audoly [2] overlook this issue and we find that their
approach yields a complete covering of the referential and deformed surfaces only in the
simple degenerate case where the reference configuration of the material surface is rect-
angular and is deformed into a (not necessarily circular) right cylindrical ring. Moreover,
we discover that the “edge functions” of Dias and Audoly [2] fail to cure this difficulty. In
Sect. 5 we explore how calculations of bending energy may be affected by failing to ensure
a surjective correspondence between material points and parameter pairs. To illustrate our
point, we compute the bending energy for a rectangular material strip bent to conform to a
portion of a right circular conical surface. We then compare that energy to the analogous en-
ergy obtained by evaluating Wunderlich’s [3, 4] dimensionally-reduced energy functional,
proving that that functional is strictly bounded above by the bending energy. We also find
that Wunderlich’s [3, 4] functional provides an accurate estimate of the bending energy only
in the limit in which the half-width-to-length ratio of the strip is infinitesimal and that Sad-
owsky’s [5, 6] functional performs just as well as Wunderlich’s [3, 4] in that regime. This
stems from the absence of a surjective correspondence between material points and param-
eters that is inherent to the parametric approach employed by Wunderlich [3, 4] and those
who have emulated his work or utilized his functional. In Sect. 6, we consider the implica-
tions of a key assumption in the theory of Kirchhoff rods, namely the assumption that the
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cross sections of such a rod are rigid and, thus, in particular, cannot sustain in-plane de-
formations. Observing that the theory of Dias and Audoly [2] violates this assumption, we
argue that their theory applies only to strip-like bodies that have widths comparable to their
thicknesses and, thus, to Kirchhoff rods with infinitesimal cross sectional area or framed
curves. Finally, in Sect. 7, we discuss and summarize our findings.

2 Preliminaries

Consider a material surface that is identified with an open, connected subset D of two-
dimensional Euclidean point space E?. Suppose that D is deformed isometrically into a
surface S in three-dimensional point space [E*. Let {1}, 1} be a fixed, positively oriented, or-
thonormal basis for the translation space V? of E? and define 13 :=1; x 1, so that {1, 15, 13}
is a fixed, positively oriented, orthonormal basis for the translation space V> of E*.

2.1 Deformations

Following Chen, Fosdick and Fried [1], D can be represented in terms of a referential di-
rectrix Cy and a family of referential rulings that do not intersect in the interior of D. Let
X be an arclength parametrization of Cy. It is then useful to view Cy as a curve framed by a
moving orthonormal triad {l,, I5, I3} with elements

ll=l3 Xfé), lz=l3, l3=.§?6, (21)

where a prime denotes differentiation with respect to arclength, and to express the orienta-
tion of a generic referential ruling by a unit vector field

I +vls

where v measures the tangent of the angle between /; and the rulings. With the foregoing
provisions, each point x € D C E? can be expressed in terms of arclength o along Cy and
position B along the rulings through a relation x = X (a, 8) with & of the form'

x(a, B) =Xo(a) + Bb(a). 23)

The directrix Cy is not necessarily a subset of D. Indeed, for («, 8) to cover D, Cy must
generally contain segments that are disjoint from D.? It is therefore overly restrictive to
identify the referential directrix Cy with a material curve in D.

The surface S admits a representation analogous to that of the flat region D. In particular,
the spatial directrix C of S is the image of the referential directrix Cy and has arclength
parametrization ¥, satisfying

yo = Rxy, (2.4)

for some rotation field R. Additionally, the generators of S are determined simply by ro-
tating the rulings of D under R, so that the generator a of S corresponding to a referential
ruling with orientation b is given by

a=Rb. (2.5)

n the present work, we replace the coordinates (nl, 172) used by Chen, Fosdick and Fried [1] with (c, 8).

2Moreover, it is possible and sometimes even necessary to choose Cy to be disjoint from D.
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In view of (2.4) and (2.5), the point y on S corresponding to the point x = X(«, 8) on D is
determined by a relation y = y(«, B), with y being of the form

Y@, B) = yo() + Ba(a). (2.6)

Since, as observed earlier, Cy must generally include segments that are disjoint from D,
a continuity argument leads to the conclusion that C must generally contain segments that
are disjoint from S.

Chen, Fosdick and Fried [1] emphasize that the mappings defined in (2.3) and (2.6) are
not meaningful unless each pair (¢, §) corresponds to a unique material point x in D and the
underlying correspondence between such coordinate pairs and points provides a complete
covering of D. Granted that these requirements are met, there exist scalar-valued mappings
@ and B defined on D and a mapping ¥ from D to itself such that

x=¥(x)=%(ax), f(x)) 2.7
for each x in D. Moreover, y defined by
y=5) =@, px) (2.8)

constitutes a deformation from D to S.
Let V denote the gradient with respect to position x in D and note that the dual basis
vectors g! and g? are given by

g'=va and g*=V§. (2.9)
Then, since
AR vA 'Q : 1 1 a'% "E 1 2 2 1 8‘2 : 2 2
(VE) Vi = g'®g +a_a'£(g g +g®eg')+ 9% g2®g? (210
and
STvs 35’21 1, 9y 3y 2 2 1 33’22 2
(VH)'Vy=|==lg'®g +£~£( Rg +g ®g)+£ g®g’, (211

we see that a deformation y from D to S defined through (2.3) and (2.6) in accord with (2.8)
is isometric—in the sense that it preserves the length of any material curve in D—only if
both of the following conditions hold:

e There exist mappings & and A such that each point x in D and its image y on S obey
(2.7) and (2.8), where x and y are as defined in (2.3) and (2.6).
e The partial derivatives of X and y defined in (2.3) and (2.6) satisfy

2 2 2 2

~

ay

o

ox ay oy _ ox
o

da 9B oo P

- (2.12)

)

ax y ax

. —_—, nd —_— _

ap ap

for each parameter pair (o, 8) corresponding to a point x in D or, equivalently, by (2.4)—
(2.6), R and b satisfy

R'b=0, (2.13)

for each admissible choice of the only argument & on which they depend.
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For all remaining subsections of the present section, we assume that the first of the above
bullet items holds and focus only on exploring the ramifications of the condition (2.13)
necessary and sufficient to ensure that the second bullet item holds. Later, in Sect. 4, we
consider the remaining bullet item.

2.2 Alternative Conditions for Isometry

Since R’b = R'R"Rb = R'R" a, it is convenient to introduce the axial vector
p=ax(R'R") (2.14)

of the skew tensor R'R " associated with the rotation R and to express the isometry condi-
tion (2.13) in the equivalent alternative form

pxa=0. (2.15)

As an immediate consequence of (2.4), we see that y defined by (2.8) is an isometric defor-
mation if and only if p and a are collinear. Thus, p must be tangent to S. Moreover, since
la] = |Rb| = |b| =1, (2.13) holds if and only if p satisfies p = (@ ® a) p and thus admits
the representation’

p=pa, with p=p-a. (2.16)

In accord with its definition (2.14) and representation (2.16), p is the rate of rotation of the
generators of S along the spatial directrix C. Moreover, that rate has magnitude | p| = p.

Recalling the definition (2.14) of p, we may rewrite (2.13) as a tensorial ordinary-
differential-equation

R = pAR 2.17)

for R, where A = ax is the skew tensor with axial vector the spatial generator a. To de-
termine the isometric deformation y from D to S, it is therefore necessary to first solve
(2.17) for the rotation tensor R subject to an initial condition R(0) = R, with R, being
a given rotation. This is no easy task. Indeed, (2.17) cannot be solved for R unless p and
a are given. Although it is known that a solution exists,* no general explicit closed-form
solution is available. The alternative is to use approximation schemes such as the classical
Magnus [7] expansion method. However, there may be issues related to the dimensions of
D and additional conditions which do not enter into the problem statement of (2.17) that are
necessary to assure that no self-intersection occurs. A general solution strategy that over-
comes these obstacles does not yet exist. A complete explicit treatment of the particular
example of the isometric deformation of a rectangular material strip onto a portion of a right
circular conical surface is provided by Chen, Fosdick and Fried [1, Sect. 9].

2.3 Framing of the Spatial Directrix

The orthonormal triad {e;, e>, e3} with elements

e=RIl;, i=1.273, (2.18)

3Here, we use p in place of the symbol A used by Chen, Fosdick and Fried [1].

4See, for example, Hartman [9].
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provides a framing of the spatial directrix C. From (2.1) and (2.18), we infer that e; is
tangent to S, e, is normal to S, and e; is tangent to C and, thus, also to S. Recalling that
{l1,1,,15} is also an orthonormal triad, we see from (2.18) that R entering (2.18) admits the
representation

3
R=Ze,-®li. (2.19)
i=1

Moreover, using (2.18) in the expression (2.5) for the generator a of S corresponding to the
ruling b of D defined by (2.2), we find that

a= ertves (2.20)

NS

Recalling (2.16), we therefore arrive at a representation,

p= pler +ves)
V1402

for the axial vector p of the skew tensor R'R" associated with the rotation R.

(221

2.4 Darboux Vector of the Spatial Directrix

From the theory of framed curves (Bishop [8]), it is known that the variation of the triad
{e1, e, e3} along C is completely described, modulo a rigid transformation, by the differen-
tial equation

e;=8xe, =123, (2.22)
where § is the Darboux vector of C. The components §; =8 - e;, i =1, 2, 3, of § relative to
{e1, e,, e3} can be found from (2.22) and are given by

51=—¢€}- e, 5h=¢€; e, S3=¢€|-e,=—¢) €. (2.23)

Since ej is tangent to C, its arclength derivative e} is the curvature vector of C. While §; and
8, measure the curvature of C about e, and e, respectively, §3 describes the precession of
{e1, e>, e5} about es.

Bearing in mind the relation (2.18) determining {e;, e;, e3} in terms of the referential
triad {l,, 5, I3} and the alternative version (2.15) of the isometry condition (2.13), we next
consider how the restrictions (2.1) on {l,, I, 13} influence the properties of the Darboux
vector & of C. Toward this objective, we first define the scalar curvature k of the referential
directrix Cy in accord with

xg =kl. (2.24)

Differentiating (2.1) with respect to arclength, we then find that
U=kl x1;, i=1,2,3. (2.25)
Then, using the respective consequences

RI,=RR'Rl;=pxe;, i=1,23, (2.26)
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and
R(I; x1;)=R((R"e;) x (R"e;))=e; xe;, i,j=1,2,3, (2.27)

of (2.14) and (2.18) to simplify the condition that ensues upon differentiating (2.18) with
respect to arclength, we arrive at a differential equation

¢ =(p+ke)xe, i=123, (2.28)

which, when compared with (2.22), leads to the conclusion that the Darboux vector § must
be of the form

§=p+ke. (2.29)

By (2.16), (2.20), and (2.29), the components of & relative to {e;, e>, e3} can now be
expressed as

14 pv
6 = —, § =k, § = ——. (2.30)
l V1402 ? ’ V1402
Moreover, by (2.23), the curvature vector jrg = ¢} of C takes the form
N/ pez
=ke — ———. (2.31)
Yo ! 142

Since {e,, e,, e3} is orthonormal with e, being normal to S and e3 being tangent to C, we
see from (2.30),, and (2.31) that, as a curve in the surface S, C has normal and geodesic
curvatures

p 53
ky=——F——==-06=—— d ke =k =25,. 2.32
Gire o Ty e sk (232

Lastly, from (2.30)3, we note that as {e, e;, e3} traverses C it rotates about e3 with “angular
velocity” 83 = pv/+/1+ V2.

Since k = k, by (2.32),, the representation (2.29) for the Darboux vector & of C can
be rewritten in the form p + k,e,. We thus see that the basic isometry condition (2.13) is
equivalent to the requirement that

(8 —kger) xa=0. (2.33)

Adapting calculations performed by Chen, Fosdick and Fried [1, Sect. 6] to the present
setting, we find that the curvature tensor L = —gradge, of S takes the explicit form

L=—pJ1+1v2at®at :kn(l +v2)al®al, (2.34)
where at is the unit vector field, orthogonal to a, defined by

- % (2.35)
v

Since a x a* =e,, {a, a', e,} provides an orthonormal basis for V3 on S.
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3 Interpretation of the Class of Mappings Considered by Dias and
Audoly [2]

To describe a strip-like material surface in a planar reference configuration and in an as-
sociated deformed configuration obtained by bending, Dias and Audoly [2, equation (5)]
introduce, in their notation, ruled parametrizations

Y =X(S)+ VO(S) 3.1)

and
y=x(8)+Vq($), (3.2)

where S measures arclength along the directrices parametrized by X and x and V deter-
mines position along the referential rulings and spatial generators that are respectively par-
allel to Q and g.° The vector quantities Q and g are taken to be of the form

Q=D +nDs, q=d, +nds, (3.3)

where {D, D,, D3} and {d,, d,, d3} are moving orthonormal triads for the referential and
spatial directrices, D3 and d satisfy the conditions®

D;=X, dy=x', 34

which are familiar from the description of framed curves (and Kirchhoff rods), and 7 is
the tangent of the shared angle between D, and Q and between d; and g. Here, and in
the remainder of this section, a superscripted prime is used to denote differentiation with
respect to the arclength parameter S. Since in differential geometry, the surfaces that are
isometric to planar regions are the special ruled surfaces that are developable, and these
surfaces are not necessarily isometric deformations of one another, and since the work of
Dias and Audoly [2] is based on this differential geometric concept of isometry, further
explanation of their work seems necessary.

Dias and Audoly [2] refer to S and V as “longitudinal” and “transverse” coordinates.
From (3.4), S provides a one-to-one correspondence between points on the referential di-
rectrix, which Dias and Audoly [2] identify as a locus of material points,” and their im-
ages on the spatial directrix. An analogous statement does not, however, apply to V. This
raises a need to properly characterize the inescapably material points that lie on the edges
of the material surface. To address this need, Dias and Audoly [2] introduce “edge func-
tions” Vi (n, S) and in this regard state that “S varies in the interval 0 < § < L, where L is
the curvilinear length of the center-line,” and that “V varies in a domain V_(n, S) <V <
Vi(n,S)”, where “Vi(n, S) encode the relative positions of the edges of the material surface
with respect to the center-line”.® However, they do not explain whether—or, if so, how—the
ordered pairs (S, V) correspond to material points.

5Dias and Audoly [2] refer to the directrices as “center-lines”.

SWhile (3.4) 1 appears in the penultimate sentence of the first paragraph in Sect. 2.1 in the paper of Dias and
Audoly [2], (3.4), is (2%) of that paper.

7See the third sentence in the first paragraph of Sect. 2.1 of Dias and Audoly [2].
8See the discussion beginning in the final paragraph on page 52 of Dias and Audoly [2].
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Because Dias and Audoly [2] require that the directrices are loci of material points, their
framework does not apply in situations where the directrices include segments that lie out-
side the boundaries of the referential and spatial manifestations of the material surface. For
this reason, only under special circumstances would the corresponding collection

{($,V):0<S<L, V-0, <V<=V,(n,9)} (3.5)

of all admissible combinations of S and V' cover the material surface in either of its config-
urations. The ramifications of this lapse are addressed in Sect. 4.

From (3.3), we see that {D, D,, D3} and {d,, d,, d;} are selected so that D, is nor-
mal to the plane occupied by the material surface in the reference configuration and that
d; is normal to the tangent space of the spatial surface occupied by the material surface
in the deformed configuration. This assumption leads to supplemental conditions of the
form’

D,-D =d,-d =k, d, dy=nd}-d;. (3.6)

While (3.6); expresses the requirement that the geodesic curvature of the spatial directrix
must equal the curvature of the (flat) referential directrix, (3.6), expresses the additional
requirement that, in the spatial configuration, the material surface can manifest only devel-
opable shapes.

Dias and Audoly [2] do not explicitly state how a ruling parallel to @ must be rotated to
obtain the corresponding generator . However, an implicit feature of their description is that
the spatial triad {d,, d,, d3} is obtained by transforming the referential triad {D, D,, D3}
by a counterpart rotation

3
©=>d®D; 3.7
i=1
of the rotation R defined in (2.19). A particular consequence of this is that, analogous to the
relation (2.5) between the referential rulings and spatial generators,

qg=00. (3.8)

In view of (3.8), there is an unmistakable correspondence between (3.1)—(3.2) and (2.3)—
(2.6). Indeed, (3.1)—(3.2) can be transformed into (2.3)—(2.6) by making the simple change
of variables'’

S —a, V> L 3.9)

V12

and introducing the identifications

X «— X9, {Diy, Dy, D3} <—{l;,1,,13},
(3.10)
X < ¥ {di,ds, d3} < {ey, e, e3},

9The conditions (3.6)1 and (3.6); are conveyed in constraints (10*) and (11*) of Dias and Audoly [2], where
their (7*) is used to express the components of their Darboux vector @ in terms of the triad {d,d», d3}.
Notice, however, that (3.6); involves the additional condition D’3 - Dy = kg which appears in the penultimate
sentence of the second paragraph in Sect. 2.3 of the paper of Dias and Audoly [2].

10From (3.9),, we see that, contrary to what Dias and Audoly [2] assume, it is the product v/ 1 4+ 52V, rather
than V alone, that measures distance along the referential rulings and spatial generators.
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from which it follows that
n<—v, kg <> kg, and w<—> 4, 3.11)

where @ is the Darboux vector entering (6)—(7*) of Dias and Audoly [2]. On this basis,
we see that the developability constraints (3.6); and (3.6), that they impose are implied by
(2.32), and (2.30), 3, respectively. Moreover, from the identity

®=wq+ked>, (3.12)
which arises from (7%), (10*), and (11%*) of Dias and Audoly [2], we deduce that
(w —K,dr) x q=0. (3.13)

Thus, with reference to (3.9)—(3.11), we infer that the condition (2.33) necessary and suf-
ficient to ensure isometry of the deformation is satisfied. Granted that the conditions (3.4)
and (3.6) apply, the mapping ¥ + y determined implicitly by (3.1) and (3.2) therefore satis-
fies the second of the bullet items entering the characterization of an isometric deformation
provided in the final paragraph of Sect. 2.1.

A more direct alternative to the foregoing argument hinges on showing that @' Q = 0 or,
equivalently, on demonstrating that the axial vector of the skew tensor @@ is collinear
with ¢. Specifically, calculating @ and @ from (3.7), using the orthonormality of the
triads {D,, D,, D3} and {d,, d,, d3}, the analog

d=wxd, i=123 (3.14)

of (2.22), and the constraints (3.6), we see that

3
00"=) (d;®D;+d; ®D;)(D;®d;)

ij=1

3 3
=Y d;®d;+) (D;-D;)D;®D,
i=1 i,j=1
3 3
=Z(0)Xd,)®d, +Kg Z((Dz X D,)D])d,®dj

i=1 i,j=1
3 3
= (&)X) Zd, ®dl +Kg Z (D2 . (D, X Dj))d, ®d7

i=1 i,j=1

3
=(@x) Y di®d; —k(d3®d, —d, ®d>)
i=1

= (0 — Kkgd>) %

=wiqx, (3.15)

from which we deduce that ax(@’® ") = w,q, confirming thereby that, granted (3.4) and
(3.6), the mapping Y +— y determined by (3.1) and (3.2) constitutes an isometric deforma-
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tion as defined by Chen, Fosdick and Fried [1] and recapitulated in Sect. 2.1 of the present
11
paper.

4 Importance of the Correspondence Between Curvilinear Coordinate
Pairs and Material Points

We next focus on the requirement that each coordinate pair («, 8) corresponds to a unique
material point x in D and, moreover, that the underlying correspondence between coordinate
pairs and points provides a complete covering of D.!? Together, these requirements ensure
that the relationship between coordinate pairs and material points is surjective.

4.1 General Considerations

Although Dias and Audoly [2] do not mention this requirement, an appreciation of its im-
portance is evident from their introduction of “edge functions” V. (7, S). For the particular
case in which the reference configuration of the material surface is a rectangular strip, Dias
and Audoly [2] choose V.. (n, S) so that the collection of parameter pairs (S, V) covers the
region occupied by the material surface in its reference configuration, but that choice re-
stricts the referential rulings to be perpendicular to the referential directrix, which they take
to be midway between the long edges of the strip, and consequently limits the parametriza-
tions (3.1) and (3.2) to describe only the bending of a rectangular material strip into a right
circular cylindrical form. It does not, for instance, encompass the bending of a rectangular
material strip into a helical ribbon coincident with a portion of a right cylindrical surface or
into a conical ribbon coincident with a portion of a right circular conical surface, wherein
the referential rulings must be inclined relative to the referential directrix (as discussed later
in this section).

Returning to the general difficulty raised in the second paragraph of Sect. 3, because
Dias and Audoly [2] stipulate that their longitudinal coordinate S satisfies 0 < § < L, the
measures that they introduce in connection with their edge functions V. (n, S) rarely suffice
to ensure that the collection (3.5) of (S, V) pairs completely covers the planar region oc-
cupied by the material surface in the reference configuration and, thus, the curved surface
it occupies in the spatial configuration. This difficulty is evident even in the first figure of
their paper, a partial counterpart of which appears in our Fig. 1. For the particular directri-
ces, rulings, and generators depicted in that image, two corners of the material surface in
the reference configuration go uncovered by rulings and the same is true of the associated
corners of the deformed material surface. No element (S, V') of (3.5) can describe a material
point in either of those corners. With reference to Fig. 1, this consequence of stipulating
that the referential and spatial directrices are loci of material points,'? can be rectified by
extending the range of the transverse coordinate S beyond 0 < § < L, resulting in directri-
ces that include nonmaterial segments outside the boundaries of the material surface. Again
making reference to Fig. 1, this must be accompanied by the introduction of corresponding

1I'The presentation of Dias and Audoly [2] is not convincing as it stands because it emphasizes the differential
geometric notion of isometry and does not clearly define the deformation of material points from a reference
form to a spatial form and explicitly distinguish and characterize the deformation as isometric.

125¢e the first bullet item in the final paragraph of Sect. 2.1.

13See Sect. 2.1 and, in particular, the statements in the final sentences of the paragraphs containing (2.3) and
(2.6).
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(a) (b) =
y

Fig. 1 Schematic of (a) a planar material surface and (b) an isometric deformation of that material surface.
(Inspired by Dias and Audoly [2, Fig. 1].) In the reference configuration, two corners of the material surface
go unruled unless the referential directrix includes segments that are disjoint from the referential region
occupied by the material surface. The corresponding corners of the surface identified with the material surface
in its deformed configuration do not possess generators unless the spatial directrix includes corresponding
segments that are disjoint from that surface. The segments of the directrices that lie on the material surface
and, thus, consist of material points, are indicated in white, as are the rulings and generators needed to fully
cover the material surface in the reference and deformed configurations. The segments of the directrices that
are disjoint from the material surface and, thus, do not contain material points, are indicated in red. The rulings
and generators that intersect those segments are red outside of the referential and spatial manifestations of
the material surface and white inside those manifestations

rulings and generators that reach from the nonmaterial portions of the directrices into the
previously uncovered portions of the material surface. It then remains to correctly delineate
the range of V for the rulings and generators corresponding to each point, whether material
or nonmaterial, on the directrices.

4.2 Example: Isometric Deformation of a Rectangular Material Strip to a Helical
Sector of a Cylindrical Surface

We consider the isometric deformation of a rectangular material strip D onto a helical sector
S of aright circular cylindrical surface ) of radius ry. To simplify the discussion, we identify
the spatial manifestation of D with S and refer to S as a ‘helical ribbon’.

Employing the definitions and notation introduced at the outset of Sect. 2, we identify
the reference configuration of the strip with the planar region

w w 2
D= (xl,Xz):OSMS&—ESXzSE Cc E-, 4.1)

where x; and x, serve as rectilinear coordinates for E? in the directions of ¢; and 1,. Each
ordered pair of (x;, x,) in D then corresponds to a unique material point x = 0+ x1; +x21,,
where o denotes the point at the origin. Moreover, we rule D with a family of parallel straight
lines inclined at an angle 6y, satisfying

0<6y<m/2 4.2)
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T
w/2
Co }
w/2
IQL i
11

P2 N
< 14 21

Fig. 2 A rectangular material strip D of length ¢ and width w identified with the planar region
{(x1,x2):0<x1; <¥,—w/2 <xp <w/2} and ruled by a family of parallel lines oriented at angle 6 satis-
fying 0 < 6y < /2 when measured clockwise from the line xp = 0. The strip is completely covered by the
collection P of («, B) coordinate pairs defined in (4.7). The curvilinear coordinates («, B) of a material point
x in D with rectilinear coordinates (x1, xp) are given by (4.4)

if measured counterclockwise from the z; direction, and take the referential directrix Cy to
be a closed subinterval of the line x, = 0, as illustrated in Fig. 2. Aside from rulings that
pass through the material points on the midline Co N D of D, there exist rulings that are
connected to nonmaterial points on the segments of Cy that lie on either side of Cy N D.
Without these nonmaterial segments of Cy, it is impossible to ensure that each coordinate
pair («, 8) corresponds to a unique material point x in D and, moreover, that the underlying
correspondence between coordinate pairs and points covers D completely.

Following Chen, Fosdick and Fried [1, Sect. 7.1], an isometric deformation y from D to
S can be expressed as

F(x) = Jo(@(x)) + B(x)s, 4.3)

where @ and B are given, for each x = x;1; in D and each 6, satisfying (4.2) by

a(x) =x; — xpcotb and B(x) = xycscy, “4.4)

and the parametrization y, of the spatial directrix C of S is defined according to

R o sin B . [ asin6,
Yo(o) = —rpcos + 6 )1, + rosin + 6y )1, + o cosOyis. 4.5)
ro ro

The spatial directrix C of S is a helix of lead angle 7 /2 — 6, and the generators of S are
parallel to the axis of ). Moreover, S is right-handed according to the direction of 73. An
image showing the shapes determined by using y defined through (4.3)-(4.5), for 8y = 7 /6
and 6y = 7 /3, to isometrically deform a rectangular strip of length ¢ = 5ry and width w =
ro/2 onto a right circular cylindrical surface ) of radius ry appear in Fig. 3.

With reference to Fig. 2 and bearing in mind that, by (4.4);, x; = « if x, =0, a trigono-
metric exercise shows that the referential directrix Cy is given by

Co = {(x1,x2) : —wcotby/2 < x; < £+ wcothy/2, x, =0}. (4.6)

Consistent with the statements immediately after (4.2), the referential and spatial directrices
must therefore include segments that extend beyond the edges of D. Moreover, the collection
of (a, B) coordinate pairs needed to describe each material point x belonging to D can be
expressed as

A7

<B<
2 =p= 2

b 6
P:[(Ol,,B)2—ﬂCOS@ofoth—,Bcoseo,_wcsc 0 wcse 0}
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Fig. 3 Helical ribbons determined by using y defined through (4.3)-(4.5), with 6y = /6 and 6y = /3, to
isometrically deform a rectangular strip of length ¢ = 5r¢ and width w = r(/2 onto a right circular cylinder
Y with axis parallel to 13 and radius rq

In the current notation and with an essential correction of their edge functions,'* the
specialization of (3.5) that Dias and Audoly [2] would consider has the form (Fig. 4)

_ 0 6
P:{(a,ﬂ):OSaSE,—wC;cOSﬁSwC;CO} 4.8)
In view of (4.4), the subset of the (x;, x,)-plane covered by P is not D but rather
_ w w
D= {(XI,JCQ) 1 xpcotfy < x; < £+ x,cotby, —E <x; < E} 4.9)
Hence, P fails to cover the triangular subregions
w
{(xl,xz):Ole<x200t90,0§x2§§} (4.10)
and
|(x1,x2):£+xzcott90<x1<£,—%§x2§0} 4.11)

of D. Additionally, P contains ordered pairs (o, B) that correspond to nonmaterial points in
the triangular regions

{(xl,xz):xl §x2cot90<0,—% gngo} (4.12)

145ee the discussion in the second paragraph of Sect. 4. For a helical ribbon with spatial directrix being a helix
of lead angle 7 /2 — 6y, the referential rulings must be inclined at an angle 6y when measured counterclock-
wise from the referential directrix. In the present setting, the edge functions +w/2 that Dias and Audoly [2]
introduce in their discussion of rectangular material strips must therefore be replaced by £w csc6y/2.
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Fig. 4 The set D of (x|, x;) pairs determined by all combinations of (e, 8) pairs in the set 7_5 defined in
(4.8). Material points in the triangular subregions of (4.10) and (4.11) of D are missing from D; moreover,
D contains spurious nonmaterial points belonging to triangular regions (4.12) and (4.13) disjoint from D

and
{(xl,xz):2<x1§xzcot90<0,—%§x2§0}, (4.13)

both of which are disjoint from D but have areas equal to those of the missing regions (4.10)
and (4.11) respectively, (Fig. 4). The collection of coordinate pairs in 7 is therefore not only
insufficient to describe all material points in D but also includes spurious elements that are
not needed to describe material points in D.

In the bending of a rectangular material strip into a helical ribbon, we therefore conclude
that the parametric description of Dias and Audoly [2] fails to completely cover both the
planar subset D of E? occupied by the strip in its reference configuration and the curved
surface S in E? identified with the helical ribbon. Moreover, that description includes ex-
traneous coordinate pairs that do not correspond to material points of D. Although we have
exposed these drawbacks in the context of a special example, we emphasize that, as dis-
cussed in the previous section, their generic nature is evident from Fig. 1 of Dias and Au-
doly [2].

4.3 Example: Isometric Deformation of a Rectangular Strip to a Sector
of a Conical Surface

Now, let us consider the isometric deformation of a rectangular material strip D of length £
and width w to a ribbon coincident with a sector S of a right circular conical surface K.'
For convenience, we continue to employ the definitions and notation introduced at the outset
of Sect. 2 and, as in our treatment of the isometric deformation of a rectangular material strip
to a helical ribbon, we identify the reference configuration of D with the planar region

w w 2
D= (xl,xz):05x1§£,—§§x2§§ c E-. 4.14)

Additionally, we rule D with a family of straight lines that intersect at a point outside of D
and take the referential directrix Cy to be a closed subinterval of the line x, = 0, as illustrated
in Fig. 5. As with the bending of a rectangular material strip into a helical ribbon presented

I5For a complete description of that deformation and derivations of all kinematical objects used in the sub-
sequent calculations, we refer the reader to Chen, Fosdick and Fried [1, Sect. 9].
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7F
w/2
Co
2
> K A cos 6y %‘
2 I Y N
S >

Fig. 5 The rectangular material strip D of length ¢ and width w showing some members of the family
of intersecting straight lines which become the lines of zero principal curvature of the subset S of a right
circular conical surface /C. The corresponding referential rulings of D are the white segments of those lines.
The referential directrix Cy is indicated in red. The length of a generator of the portion of the right circular
conical surface K that lies above the plane spanned by 71 and 15 is denoted by A. The curvilinear coordinates
(a, B) = (@(x), B(x)) of the material point x € D with rectilinear coordinates (x1, x,) are given by (4.20)

in Sect. 4.2, there exist not only rulings that pass through material points on the portion
Co N D of the referential midline Cy that lies within D but also rulings that are connected to
nonmaterial points belonging to segments of Cy that lie on either side of Cy N D. Moreover,
these nonmaterial segments of C, are essential to ensure that each coordinate pair (¢, 8) cor-
responds to a unique material point x in D and that the underlying correspondence between
coordinate pairs and points covers D completely. Emulating our treatment of the example
considered in Sect. 4.2, we identify the spatial manifestation of the material surface with the
subset S of K and refer to S as a ‘conical ribbon’ (see Fig. 6).

4.3.1 Characterization of the Conical Surface

We assume that K opens downward from Hi; and intersects the (x;, x,)-plane to form a
circle of radius R, in which case it has tip angle 2¢, with

R
ang = — (4.15)

and the generators of the portion of K that is situated above the (x, x)-plane are of length

A=+R*+ H>. (4.16)

With reference to Fig. 5, we denote the angle between 1; and the referential ruling, with
orientation b(0), that passes through the left-hand end point (x;, x,) = (0, 0) of the midline
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Has

vz

Fig. 6 The right circular conical surface K and the rectangular material strip D shown attached at Rz and
tangent to K along the generator defined by a. Each point x of D is translated by the constant vector Rz| and
the vector between the origin and that point is then rotated about the point Rz by the linear transformation
Q) defined in (9.14) of Chen, Fosdick and Fried [1], the effect of which is to map the ruling of D parallel to
b(0) to the generator of S parallel to @ = Qb(0)

of D by 6y and without loss of generality require that
0<ty <7 4.17)

To ensure that for all lengths ¢ > A cos 8y, S is wrapped smoothly onto K without intersect-
ing with the tip of /C, we restrict the width w of D to satisfy the inequality w < 2 A sin 6.
To be definite in all subsequent calculations, we shall assume that £ > A cos 6y so that both
of the following inequalities hold:

> Acosby and w < 2Asin6,. (4.18)
4.3.2 Characterization of the Deformation
Following Chen, Fosdick and Fried [1, Sect. 9.1], the isometric deformation y that bends
the rectangular strip D onto the right circular conical surface K in such a way that the left-
hand endpoint of its midline lies on the circle of radius R along which I intersects the
(x1, x2)-plane, as depicted in Fig. 6 can be expressed as

y(x) = 570(5[(x)) — ﬁ(x)(singo(cosa)(&(x))tl — sina)(&(x))tz) — cosgot3), (4.19)

where & and B are given, for each (x1, x,) in (0, £) x (—w/2, w/2) and each 6, satisfying
(4.17), by
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- X1 8in6y — x, cos Gy ~ cosbty — x1/A 2
a(x) = - and Bx)=x/1+ ——m— | , (4.20)
sinfy — x,/A sinfy — x,/A

and the spatial directrix C of S is parametrized by y, defined according to

Yolo) = (R — /a(sinwcose(g)cosw(g) +sinf(¢) sinw(;‘)) d;’)zl
0
_ </a(sin¢c059(§)sinw(§) —sinf(¢) cosw(¢)) d;);z
0

+ <cosgo/a cose(;“)d;“)l3, “4.21)
0

in which 6 («) satisfying

sin 6y
cosfy —a/A’
is the angle formed by the referential ruling with orientation b(«) and the orientation 1, of
the referential directrix and w is related linearly to 6 through

w= (0 —6y)csco. (4.23)

tanf(x) = (4.22)

4.3.3 Coverage of the Strip by Curvilinear Coordinates

Referring to Fig. 5 and noticing that, by (4.20);, x; = « if x, =0, we find on the basis of
trigonometric exercises that the referential directrix Cy is given by

Co={(x1.x2) t_ <x; Sy, xp =0}, (4.24)
where «_ and o are defined according to

0 L/A —cos6
a,:—& and a+:g+w’ (4.25)
2(sinfy — w/2A) 2(sinfy — w/2A)

and, consistent with the restrictions (4.18) on £ and w and the observation that C, must
extend beyond D, obey

a_<0 and <oy (4.26)

We next determine the collection of («, ) coordinate pairs that belong to each edge of D.
For clarity, we label those edges as follows:

Lo={(x1.x2) :x1 =0, —w/2 < x, <w/2},
Lo={(rm) in =€ —w/2 < xy <w/2). 27)
Lo={(n,x):0<x < x=1w/2}.

Focusing first on £y and £,, we see from (4.20) that the values of the o coordinate at the
material points (x, x;) = (0, —w/2) and (x;, x2) = (¢, —w/2) at the lower left and lower
right corners of D are

w cos Gy w(l/A —cosby)

= and =40 ——— (4.28)
2(sinfy + w/2A)

Qo - - ,
2(sinfy + w/2A)
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respectively. Applying the restrictions (4.18) on £ and w to (4.28), we see further that oy
and o, must be such that

O<ap<ap <. 4.29)

Since the values of the o coordinate at the material points (x;, x;) = (0, w/2) and (x1, x2) =
(¢, w/2) at the upper left and right corners of D are o_ and o, respectively, we thus con-
clude from (4.20) that £y and £, can be described as

Lo={(a,B):a_ <a=<ayp=po)] (4.30)
and

Lo={(@B)ay<a<ap,B=PB))} (4.31)

where By and $, are defined according to

op (o) sin By € —a)p(a)sinby
= d = 4.32
Po(@) cosfy —a/A an pe(@) cosfy—aj/A (4.32)
with p given by
00— a/A\*
o) = \/1 n <M> . (4.33)
sin 6,

From (4.20), we next see that £ can be described as
Lo={(@B):ap<a<a,B=—Pr@) (4.34)

where B, are defined by

Bala) =+ 22 2(“). (4.35)

Each referential ruling connects two edges of D and lies on a straight line defined by

a point («,0), with ¢_ < o < a4, on the referential directrix and the nonmaterial point

(x1,x2) = (Acos6y, Asinéy) corresponding to the apex of the right circular conical sur-

face K. The point (o, 0) is material if 0 < o < £ and nonmaterial if «_ <o < 0 or
£ < o < a. The referential rulings

{(a, B) 1 =g, B-(atg) < B < Bi(ct0) } (4.36)
and

{(@, B) @ =0y, B() < B < By(ar)} (4.37)

connect the lower left and right corners (x1, x) = (0, —w/2) and (x1, x;) = (£, —w/2) of
D to the upper edge £, of D and naturally decomposes D into a union of three subregions,
each distinguished by the features of its rulings, as depicted in Fig. 7. This decomposition
consists of:'®

16These subregions are complementary to the extent that their interiors are disjoint.
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Fig. 7 Decomposition of the rectangular material strip D of length £ and width w into a trapezoidal subre-
gion and two triangular subregions. The strip D is completely covered by the collection of («, 8) coordinate
pairs in the union 7o U 7 U T, of the sets defined in (4.38)—(4.40). The values o and «y of « that determine
the inclinations of the rulings that emanate from the lower left and lower right corners of D appear in (4.28)

e A trapezoid within which all rulings extend from the lower edge £_ of D and the upper
edge £ of D. This subregion of D consists of all coordinate pairs (o, B) belonging to

Te={@ B rag<a<a,f(0)<p<pi(0)} (4.38)

e A triangle within which all rulings extend from the left edge £, of D and the upper edge
L of D. This subregion of D consists of all coordinate pairs (¢, §) belonging to

To={(@.B):a- <a=<ap fol@) < < Bi@). (4.39)

e A triangle within which all rulings extend from the right edge £, of D and the upper edge
L of D. This subregion of D consists of all coordinate pairs (c, 8) belonging to

Te={(.p):ar <a<ay, (@) < B <Bi(@)} (4.40)
4.3.4 Incomplete Coverage of the Strip by Curvilinear Coordinates

In the current notation and with a necessary correction of their edge functions, the special-
ization of (3.5) that Dias and Audoly [2] would consider has the form

A={(@.B):0<a <l p (@) <p=<pi@) 4.41)
We immediately see that all pairs (e, 8) in the subsets
{(@. ) o <a <0, fo(@) < B < f:(a)) 4.42)
and
{@B):l<a<ap f@)<p<pi) (4.43)
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Fig. 8 Covering of the (xy, xp)-plane provided by the set A of («, B) pairs defined in (4.41). In addition
to missing all material points belonging to the triangular subregions (4.44) and (4.45) of D, A contains
pairs («, B) that correspond to spurious nonmaterial points in the triangular regions (4.47) and (4.48) disjoint
from D

of 7y and 7, are absent from .4; hence, A fails to cover the triangular subregions

{(xl,xz):Ole <x200t00,0<x2§%} (4.44)
and
£/A — cosB
rroxy) b= LAZCS 0 < (4.45)
sin 6y 2

of D, as illustrated in Fig. 8. Additionally, since for each choice of «, satisfying 0 < o, < v
or oy < o, <, the ruling

(@, B) e =0, f-(@) < B < Br()] (4.46)

extends beyond the boundary of D, A contains ordered pairs (, B) that correspond to spu-
rious nonmaterial points in the triangular regions

{(xl,xz):xzcoteofxl <0,—%§x2<0} 4.47)
and
L/A — 6
(xl,xz)iﬁfxl<f—&x2,—zf)€2<0 ) (4.48)
sin 6, 2

both of which are disjoint from D, as illustrated in Fig. 8. Importantly, the areas of the
spurious regions (4.47) and (4.48) are the same as those of the missing subregions (4.44)
and (4.45), respectively.
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5 Bending Energies

In a tradition that traces back at least to Sadowsky’s [5, 6] formulation of a variational
problem for determining the equilibrated shape of a Mobius band in the absence of external
loading, it is common to take the bending energy E stored in bending an unstretchable
material surface with planar rectangular reference shape D in E? into a curved surface S in
IE3 to be given by

EZZM/ H*(y)da(y), .1
S

where p > 0 is the bending modulus of the material surface and H and da denote the mean
curvature and area element of S. In (5.1), E is evaluated in the deformed configuration of
the material surface. Alternatively, it is possible to parametrize E using the rectilinear or
curvilinear coordinates of the material points of D. For the second of these options, it is
however essential to ensure that the limits of integration are determined consistent with the
need to ensure that the curvilinear coordinates completely cover D!

To illustrate the importance of the foregoing statement, we next consider three particular
examples involving isometric deformations of rectangular material strips.

5.1 Example 1: Bending Energy of a Rectangular Strip Isometrically Deformed
to a Ribbon Coincident with a Sector of a Conical Surface

In this first example, we consider the calculation of the stored energy for a rectangular strip
that is isometrically deformed into a portion of a right circular conical surface and compare
this calculation to those predicted by the related Sadowsky and Wunderlicht functionals.

5.1.1 Rectilinear Parametrization of the Bending Energy

Since the deformation y defined by (4.19) is isometric, the mean curvature H of the conical
ribbon S is equal to one half the nonvanishing principal curvature of S. Moreover, the area
element da(y) of S obeys da(y) = da(x) = dx;dx;. Using (9.59) of Chen, Fosdick and
Fried [1], which gives the nonvanishing principal curvature of S as a function of the recti-
linear coordinates (x, x,) of the material points in D, we thus find that the bending energy
E of S obtained by specializing (5.1) to the deformation y defined by (4.19)—(4.23) can be
expressed as

/Lcot2 /“’/2/ dx; dx, 52)
o242 [ nto (cos@y —x1/A)? + (sinfy — x2/A)? '

Evaluating the innermost integral in (5.2), which is elementary for each x; in (—w/2, w/2),
introducing the change of variables

cos by

=, (5.3)
sinfy — x, /A

and defining
cos b L/A —cosby

=— and a=—" 5.4
sinfy F w/2A cos b
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we see that

_H cot’ ¢ /‘”* (arctanu + arctanau) du ' (5.5)

2 u

The integral (5.5) is not elementary but can be expressed in terms of the inverse tangent
integral Ti,, as defined by (Lewin [10, Chap. II])

) ¢ arctanu du
Tiy (&) =/ _— (5.6)
0 u

Specifically, using (5.6) and recalling the definitions (5.4) of uy and a, we arrive at the
representation

E:ucotzgo Ti( - cos 6 T .Z/A—coseo
2 sinfy —w/2A sinfy —w/2A

S 6 £/A — cos6,
(08 ) gy, (Aot ) (5.7)
sinfy + w/2A sinfy + w/2A

Using the definitions (4.25) of o and (4.28) of ¢y and o in (5.4), we see that (5.2) takes
the alternative form

peot? (/“"6(“‘) arctan u du N /C"w(“‘) arctan u du )
2 o o

E

ot6 (o) u ot6 () u

. //ycot2 )

(Tiz(cotO(ar—)) — Tir(cotf(ay)) — Tia(cotO(erg)) + Tir(cotO(ar))). (5.8)

Modulo the scale factor u cot? ¢/2 determined by the bending modulus 1 of the material
surface and the opening angle 2¢ of the right circular conical surface /C, the bending energy
E stored in isometrically deforming a rectangular material strip D of length £ and width w
into aribbon S on K is therefore completely determined by the angles of the lines formed by
the four corners of D and the point (x, x;) = (A cos 8y, Asinfy) corresponding to the apex
of the right circular conical surface K. The alternative representation (5.8) for E can also
be derived directly from (5.7) on the basis of (4.25), (4.28), the periodicity of the cotangent,
and the observation that Ti, is an odd function of its argument.

5.1.2 Curvilinear Parametrization of the Bending Energy

Using (9.58) of Chen, Fosdick and Fried [1], which gives the nonvanishing principal curva-
ture of S, we obtain the mean curvature of S as a function H of the curvilinear coordinates
(at, B) of the form

coty
2Asinfy(p(a) — B/ Asinby)’
where p is defined as in (4.33). Additionally, referring to (9.59) of Chen, Fosdick and

Fried [1], the Jacobian J of the transformation underlying the correspondence between ma-
terial points in D and curvilinear coorindates (o, §) is given by

H(a, B)=— (5.9)

p(a) — B/Asinby

)=

(5.10)
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Taking advantage of the decomposition of D into a trapezoidal subregion and two tri-
angular subregions described in Sect. 4.3.3 and invoking the definitions (4.38), (4.39), and
(4.40) of the corresponding collections 7., 7y, and 7, of coordinate pairs (¢, 8), we see that
the bending energy E of S can also be expressed as

w cot? @ LON| B () dg
E=_"" . —_)da
2A%sin" 6y Joo 02 (@) \Jgy@ (o) —B/Asinby
m cot? 7 L7 | B+ () dg
+ ) 2 preeryypnwll LU
2A%sin* 0y Jo, 0*(@) \Jp_ @) p(a) —B/Asinby

2 ar B+ () d
+ cho. 2(0 / - (/ —ﬁ.>da, (5.11)
2A2%sin° 6y Jo, 0% (@) \Jp,) p(@)— B/Asiné,

where a4, g, ¢, Po, B, and Bi are defined by (4.25), (4.28);, (4.28),, (4.32)1, (4.32),,
and (4.35), respectively. Each of the innermost integrals in (5.11) can be evaluated in closed
form and identities connecting the integrals over « that remain can be expressed in terms
of the dilogarithm Li, (Lewin [10, Chap. I]). A well-established identity (Lewin [10, equa-
tion (2.3)]) connecting Li; to the inverse tangent integral Ti, can then be used to recover
(5.7) or, equivalently, (5.8) from (5.11).

5.1.3 Wunderlich’s Functional

Waunderlich’s [3, 4] functional is a dimensionally reduced version of the bending energy E
defined in (5.1), with its domain of integration being the midline of the spatial manifestation
S of the material surface. We next specialize that functional to the problem of isometrically
deforming the rectangular material strip D to the conical ribbon S and compare the resulting
expression with the bending energy E of S in either the form (5.7) determined by the recti-
linear parametrization or its equivalent alternative form (5.11) determined by the curvilinear
parametrization.

With reference to the material in the first two paragraphs on page 279 of Wunderlich’s [3]
original paper, we gather identifications of the form

w T sin® 6,
L «— ¢, b<—>§, D <«— 0, —<«—cotd, and V «— g
K
(5.12)

where « and t denote the curvature and torsion of C. In particular, from (4.21), we see that
2 takes the form

2
K :|y0| =, (513)

with p as defined in (4.33). Moreover, from (9.52), of Chen, Fosdick and Fried [1], the
relation (4.22) defining the angle 6 between the referential rulings and the referential direc-
trix Cp, and (4.33), we see that

1 , 1 1
— and 0 (5.14)

)
sin“ 6 = = —.
0?2 Asinéy p?
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Multiplying (6) of Wunderlich [3, 4] by a factor of 1+/2 to ensure a meaningful comparison
to E and invoking (5.12)—(5.29), we thus find that, for the conical ribbon S, Wunderlich’s
[3, 4] functional specializes to'’

ﬁ/‘f k2(a)(1 + cot? 6(a))? sin® 6 () o <sin29(a)+w9’(a)/2>da
0

Ew=73 0 (@) sin?0(ar) — wh' () /2

_ peot? g o (sin@o—i—w/ZA)/e do (5.15)
0

" 2Asiné, sinfy — w/2A p2(c)”
Recalling the definition (4.33) of p, we notice that the remaining integral in (5.15) is ele-

mentary and, since arctan(cotfy) = /2 — 6y for 0 < 6 < m, we arrive at the closed-form
representation

t? £/A —cos8 in 6, 24
Ew = peore (T _ 6y + arctan w log w . (5.16)
2 2 sin 6, sinfy — w/2A

Since (5.16) is predicated upon integrating over the collection of («, 8) coordinate pairs that
belong to .4 instead of the union 7_ U 7. U 7. that ensures complete coverage of D, we an-
ticipate that Ew will underestimate the correct bending energy, as we will see in Sect. 5.1.5.

5.1.4 Sadowsky’s Functional

Prior to Wunderlich [3, 4], Sadowsky’s [5, 6] derived a dimensional reduced version of the
general bending energy E defined in (5.1) under the assumption, w <« £, that the width of
the rectangular material strip is negligible in comparison to its length. Using (5.12)4 and
(5.13), the Sadowsky [5, 6] functional takes the form

L
Eg= %/ k(@) (1+ cot’ (@) der, (5.17)
0

where, to facilitate comparisons with E and Ey, we have again introduced a factor of 1¢/2.
Following steps analogous to those leading from (5.15) to (5.16), we find that, for the prob-
lem of isometrically deforming the rectangular material strip D to the conical ribbon S,
Sadowsky’s [5, 6] functional takes the form

£ cot? 2/A —cos
Fg— LU P (T o+ arctan( LAZ 8% )Y 2 (5.18)
Asinfy \ 2 sin 6, 20

171t is also possible to directly obtain (5.16) from the version of Wunderlich’s [3, 4] functional that appears
in (30*) of Dias and Audoly [2]. To do that, we require the appropriate specializations of their quantities n
and 1. With this in mind, we recall from (3.11) that the quantity v introduced in (2.2) is equal to n of Dias
and Audoly [2]. Since v = cot@ for the deformation y of D to S defined in (4.19), we thus see from (4.22)
that n of Dias and Audoly [2] is given by

n =-cotf. (t)

From (3.11),, we find moreover that our Darboux vector § is equal to the Darboux vector @ of Dias and
Audoly [2]. Thus, by (2.30)1, (4.23), and (9.22) of Chen, Fosdick and Fried [1], we determine that w; of Dias
and Audoly [2] is given by

_ p _ cotyp 1 1
- /1+n2_ASin00 1_’_,72,02.
Using (7) and (&) in (30*) of Dias and Audoly [2], we obtain (5.15) and, therefore, upon integration with
respect to «, arrive at (5.16).

(€3]

1
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L

Fig. 9 Covering of the coordinate pairs (¢, 8) on S which represent the collection A defined in (4.41).
Triangular-like regions of S above the midline of S are not covered and triangular-like regions on X below
the midline of S, not part of S, are covered. The areas of these regions are equal, but their associated bending
energies are not

Granted that A is of the same order as £, (5.18) can also be obtained as the leading-order
term in the Taylor expansion, about w/2¢ = 0, of either the rectilinear parametrization (5.2)
of E or the closed-form expression (5.16) for Ey.

Like Wunderlich’s [3, 4] functional (5.15), Sadowsky’s [5, 6] functional (5.17) involves
integrating only over the material portion of the spatial directrix Cy, namely the midline of
S. However, granted that w < £, the portions of the directrices that extend beyond the strip
and its image are of negliglible length. In this sense, the range of integration in (5.17) is con-
sistent with the hypothesis w < £. An analogous statement does not apply to Wunderlich’s
[3, 4] functional, which is meant to provide an accurate approximation for the bending en-
ergy in situations where w need not be infinitesimal small in comparison to £. We anticipate
that, for w < £, the error incurred by using Sadowsky’s [5, 6] functional should be compara-
ble to that incurred by using Wunderlich’s [3, 4] functional. Granted that these observations
are accurate, Wunderlich’s [3, 4] functional would appear to be of negligible utility. For
w K ¢, Sadowsky’s [5, 6] functional should suffice and otherwise—the error associated
with failing to completely cover D—neither of the functionals in question is generally fit to
provide a good approximation to the bending energy.'®

I81f the nonvanishing principal curvature of S is uniform along the generators, so that S lies on a cylin-
drical surface, then Wunderlich’s [3, 4] functional correctly determines the bending energy. However, this
exceptional case is of little or no interest.
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5.1.5 Bounds on the Wunderlich and Sadowsky Functionals

We now demonstrate that Evy and Eg given by (5.16) and (5.18) obey the bounds
O<Es<Ew<E, (5.19)

with E being the bending energy defined in (5.2) or, equivalently, (5.11). The upper bounds
on Es and Ew in (5.19) are consistent with intuitive expectations. It seems plausible that a
finite contribution to Ew is lost passing from Eyw to Egs under the assumption that w < £,
in which case the bound Eg < Ew should follow. The rationale in support of the bound
Ew < E hinges on the observation that Ey involves integration not over the entire referen-
tial directrix Cy but, rather, integration only over the portion of Cy that coincides with the
midline of D. More precisely, Ew results from integrating over a collection A of («, 8)
coordinate pairs that fails to completely cover D while the triangular corners of D that A
fails to cover are above the referential directrix and the spurious triangular regions outside
of D that A covers instead are below the referential directrix (Fig. 9). Since the areas of the
missing and spurious triangular regions are identical and the curvature of the conical surface
K on any generator increases monotonically as B increases, we anticipate that Eyw should
underestimate E.

The lower and upper bounds 0 < Es and Es < Ew on Eg follow directly from the con-
sequences

b4 £/ A — cos By
6y < — + arctan| —— (5.20)
2 sin 6,
and
14 1 2 A sin 6,
; L w <lo _rw/eAsiney w/ S%n 0 (5.21)
2Asinfy £ 2 A sin b, 1 —w/2Asinb,

of the inequalities 0 < 6y < /2, £ > Acosby, and w < 2Asinf, recorded in (4.17),
(4.18)1, and (4.18),.

Toward verifying the strict upper bound Ew < E, it is first convenient to express Ew as
an iterated integral over « and B. Since, by the definitions (4.33) and (4.35) of p and B,

Brl@)  pla) (. w
P~ Ksinty ~ sinfl (Sme i 2A>7 (5.22)

we consequently see that

1 B @) dg sinfy + w/2A
: - =log| ———~— (5.23)
Asing Jg_) p(a) — B/Asing, sinfy — w/2A

and, thus, notice from (5.15) that Ey can also be expressed as a double integral:

"W cot? 7 ¢t B+ (@) dp
Ew= — - —  )da. (5.24)
2A%sin" 6y Jo p*(@) \Jp_(@) p(a) — B/Asinb

Comparing (5.24) to the curvilinear parametrization (5.11) of E, we recognize that Evw
and each of the terms on the right-hand side of (5.11) share the same essential structure.
Moreover, Ey differs from the middle term on the right-hand side of (5.11) only by the
limits of integration of the outermost integral.

To simplify the study of the difference E — Ew, it is convenient to introduce U defined by
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cot? @ A2 By (a) dp
U(Ay, Ay; By, By) = — - da.  (5.25)
2A2sin* 0y Ja, p*(@) \Jp@ p(o) —B/Asinb,
Thus, using (5.25) in (5.11) and (5.24), we obtain succinct expressions,
E=U(a-,ao; Bo, B+) + Ulao, og; B, By) + U, a; Be, B+) (5.26)
and
Ew=U(Q,¢;B_,By) (5.27)

for the bending energy and the Wunderlich [3, 4] functional of the ribbon S obtained by
isometrically deforming the rectangular strip D to conform to the right circular conical sur-
face KC. Referring to the definitions (4.38), (4.39), and (4.40) of 7., Ty, and 7,, we find that
the difference E — Ew can be expressed as

E— Ew=U(a_,ap; Bo, B+) — U, ap; B, By) + Ulae, ay; Be, B) — Uy, &5 B, By)

=U(a_,0; Bo, B+) — U0, ap; B—, Bo) + UL, ay; Be, By) — Ulay, £; B, Be).
(5.28)

To make further progress, we employ changes of variables that convert each integral
contributing to the second expression for E — Ey in (5.28) to an integral over the rectilinear
coordinates (x1, x,). Toward this, we first introduce U, U, and U defined by

U(xy,xfs x5, x7) “C()tz(p/ﬁ/%+ do d, (5.29)
xXxixy,x) = . , )
L 2L2 oty (cosy — x1/A)? + (sinBy — x5/ A)?

U(x xTixy xJr peot'y / / dxz dxy (5.30)
) 202 (cosBy + x1/A)?2 + (sinfy + x,/A)2"

and

U(xf,xfr;xg,x;)

_ [LCOtz / / dx, dxg (5.31)
2L v Jay (€A —cosf+ (£ — x1)/A)? + (sinfy + x, /A2

Next, recalling the relations (4.20) determining the curvilinear coordinates (o, 8) corre-
sponding to the rectilinear coordinates (x;, x,) of each material point x in D, we write, with
a slight abuse of notation,

a=ax)=ax,x), p=p) =pHx,x). (5.32)

With the change of variables («, 8) — (@ (x1, x2), B (x1, x2)), the first and third terms in the
ultimate expression for E — Evw on the right-hand side of (5.28) transform to

U(a_,0, Bo, B1) = U0, wcoty/2; x; tan by, w/2) (5.33)
and

Ut ay, B ) = U (0, 6:C (), w)2), (5.34)
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where ¢_ and ¢ are defined by

w(f/A — cosby) and ) = (€ — x1) sin 6y

_=0— - = AU
2sin 6y /A —cosby

(5.35)

Similarly, with the change of variables («, 8) — (@(—x1, —x3), /§(—x1, —X»)), the second
term in the ultimate expression for E — Ew on the right-hand side of (5.28) transforms to

U0, ao; B, Bo) = U (0, w cot6/2; x; tan by, w/2), (5.36)

while, with the change of variables (¢, 8) — (@(2¢ — x1, —x3), ,3(2( — X1, —X2)), the final
term in the ultimate expression for E — Ey on right-hand side of (5.28) transforms to

Ulate, & B—, B) = U (€_, ;¢ (x1), w/2). (5.37)
Next, since, by (4.18), x;tanfy < w/2 if 0 < x, < wcotfy/2 and
(cos By + x1/A)? + (sinfy + x2/A)? > (cos by — x1/A)?> + (sinfy — x2/A)*  (5.38)

f9r any choice of (xy, x,) in the region of integration of U (0, weotby/2; x1 tanby, w/2) and
U (0, wcotby/2; x; tan6y, w/2), we find that

U(O{,, 0’ :80’ ﬂ+) - U(Os op; ﬂf’ ﬂO)

=U(0, wcotby/2; x; tan by, w/2) — U(O, wcotfy/2; xytanby, w/2) > 0. (5.39)
Similarly, since, by (4.18), £(x;) <w/2 for £_ < x; < { and

(£/A = cos b + (€ — x1)/A)’ + (sinfy + x2/A)?
> (cosfy — x1/A)? + (sinfy — x2/A)* (5.40)

f9r any choice of (xj,x,) in the region of integration for U £_,¢;¢(x1),w/2) and
UM_,2;¢(x1),w/2), we find that

U, ay, B, B+) — Ulaw, £ B, Be)
=U(0-, 8 ¢(x), w/2) = U(€-, € ¢(xp), w/2) > 0. (5.41)

Finally, using (5.39) and (5.41), we conclude that the second inequality, namely Ew < E, in
(5.19) holds.

Our analysis demonstrates that Wunderlich’s [3, 4] functional Ew underestimates the
bending energy E of a conical ribbon S obtained by applying the isometric deformation
y defined in (4.19) to the rectangular material strip D for all admissible choices of the
length and width, £ and w, of D, the angle 6, determining the inclination of the referential
ruling that emanates from the left-hand endpoint of the midline of the strip, and the length
A of the generator of the portion of the right circular conical surface /C that lies above
the (x;, x,)-plane. Additionally, Sadowsky’s [5, 6] functional underestimates Wunderlich’s
[3, 4] functional in an analogous fashion.
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5.1.6 Illustrative Comparisons

To highlight the implications of the bounds established in Sect. 5.1.5, we restrict atten-
tion to situations where the isometric deformation of D to S is such that the distance
A between the left-hand endpoint (x;,x;) = (0,0) of the midline of S and the apex
(x1,x2) = (Acosby, Asinby) of K is comparable to the length £ of D, so that

14

—=0(). 5.42

1 ey (5.42)
Granted this provision, we first determine how E and Eg behave for w <« ¢ and w —
2 A sin6, corresponding, respectively, to situations in which the width of D is significantly
smaller than its length £ and in which the width of D approaches the maximum value dic-
tated by (4.18),, in which case a point on the upper edge of S closely approaches the apex
of K.

Treating £ and Ew as functions of w/2¢, we compute their Taylor expansions about

w/2¢ = 0. Truncating these expansions at O ((w/2£)°) and invoking the expression (5.18)
for Eg, we obtain

2EZES) _(re/a,0 gaan(2Y 5.43
ooy (fe/A,60)+ gt/ ’0))<ﬂ> (5.43)
and

2(Ew — Es) w)®

ooy g@ﬂ‘ﬂo)(g) , (5.44)

with f and g defined according to
3 2(£/A — cosfy) sin b

(£/A — cosby)? + sin’ 6,

F /A, 0) = 3

m <sin 290 +

(/A — cos )’ sin 6y
((£/ A — cos 6p)? + sin’® 6p)>

— sin6y cos® 6y —

) (5.45)

and
2(L/A, 0y = LG —90+arctan<w>>. (5.46)
3A3sin* 6, \ 2 sin 6y
Eliminating Es between (5.43) and (5.44), we also see that

2(E — Ew)

3
oo ~f(£/A,90)(%) . (5.47)

We therefore infer from (5.43), (5.44), and (5.47) that, for w < ¢, each of the differences
E — Ew, E — Es, and Ew — Es increases with the cube of w/2¢. Although the expansions
of E and Ew about w/2¢ = 0 have the same leading-order term—the Sadowsky [5, 6]
functional Eg, we also see from (5.47) that the coefficients of the cubic terms in those
expansions differ. We may use trigonometric identities in conjunction with the restrictions
(4.17) and (4.18); on 6y and £/ A to show that the coefficient f(£/A, 6y) defined in (5.45) is
positive and thus, with reference to (5.47), confirm that, consistent with the bound Ew < E
established in Sect. 5.1.5, E > Ew for w < £.

@ Springer



Issues Concerning Isometric Deformations of Planar Regions. ..

Next, to obtain information about the behavior of E as w — 2Asin6f, we apply the
asymptotic relation (Lewin [10, equation (2.6)])

Ti (£) ~ %log& as £ 400 (5.48)

to (5.7) and thereby deduce that

L cot? @ o <sin90 +w/2A

2Asin6y. 5.49
2 sin@o—w/2A> as wmsasmi (549)

Specializing the expression (5.16) for Ev to incorporate the assumption (5.42) and recalling,
from (4.17) and (4.18), that 0 < 6y < /2 and A cosfy < £, we see that

/A — cos6,
T 6 + arctan(w) < (5.50)
2 sin 6y

and thus that £ and Ew exhibit identical divergent behavior as w — 2¢sin6,. However,
consistent with the bound Ew < E established in Sect. 5.1.5, Ew underestimates E even
for values of w less than but approaching 2 A sinfy. Since Sadowsky’s [5, 6] functional is
meaningful only for w < ¢, it would be unreasonable to expect that Es would share the
behavior of E and Ew on passing to the limit w — 2¢sin#,. Indeed, the value of Eg as
w — 2 sin 6 is finite.

For illustrative purposes, we hereafter confine attention to the particular situation in
which the generators of the portion of the right circular conical surface K that lie above
the plane spanned by #; and 1, and the rectangular material strip D are of equal length, so
that

A={. (5.51)

Granted that (5.51) holds and recalling again from (4.17) that 0 < 6y < /2, we notice that
the restrictions (4.18) involving ¢, w, and A simplify to a single requirement:

% < siné. (5.52)

Using (5.51) in the expressions (5.7) and (5.16) for E and Ey, we thus have that

2(E — Eyw) . cos by . 1 —cos 8y . cos 6,
=Tio| — +To| ———— )| —To| —F—
ucot? g sinfy — w/2¢ sinfy — w/2¢ sinfy + w/2¢

1-— & — b, in 6, 20
_qiy( LCost ) m b, (sinbotw/2t) (5.53)
sin6y + w/2¢ 2 sinfy — w /24

Similarly, using (5.51) in the expressions (5.16) and (5.18) for Ew and Eg while bearing in
mind that arctan(cot8y) = 6y/2 for 0 < 6y < 7, we have that

Ew—FE — 6 in 6 20
woBs (S0t w/2E)  w) (5.54)
ucot? @ 2 sinfy — w/2¢ V4

Taking note of the asymptotic expression (5.47) for the small w/2¢ behavior of 2(E —
Ew)/qtcot? @ and its precursor (5.44) for 2(Ew — Es)/ 1 cot? ¢, we consider the dimension-
less measures

2(E — Ew) Ew — Es

_ —_ W= 5.55
wf(1,60)cot? ¢ ug (1, 6p) cot? ¢ -39
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Fig. 10 Plots of the scaled absolute error I =2(E — Ew)/f (6, 1) cot? ¢ fora rectangular material strip D,
of length ¢ and width w, isometrically deformed to coincide with a sector S of a right circular conical
surface /C, with tip angle 2¢ which opens downward from Hi3 and intersects the (x1, xp)-plane to form a
circle of radius R = £csc g, for 0 < w/2¢ < sinby, 6 =7 /33, 7/27, /21, 7 /15, 7 /9, and 7 /3

of the differences (5.53) and (5.54), where, by (5.45) and (5.46),

6 sin O, 7 sin 26y — sin 46, — 6,
£, 0= SRATIITO TN g6 =
sin” 6, 65in’ 6y

(5.56)

Since E > Ew > Es, I and J respectively represent scaled measures of the absolute errors
incurred in approximating E by Ew and Eyw by Es.

In Fig. 10, we provide plots of I versus w/2¢ for six representative values of 6. For each
choice of 6y, we take 1072 < w /2¢ < sin6y. In accord with the analytical bounds established
in Sect. 5.1.5, we see that I increases monotonically with w/2¢ for each choice of 6, and
clearly exhibits the asymptotic characteristics dictated by (5.47) and (5.49) for w « £ and
w /24 — sin 6. For the values of 6, considered, the growth rate of / deviates from the cubic
scaling that applies for w < £ at a value of w/2¢ no greater than 3.0 x 1072 and above that
threshold it grows very rapidily with w/2¢. It is also evident that, for each fixed value of
w/2¢, the value of I increases monotonically as the angle 6, decreases. This property of
I is entirely consistent with intuitive expectations: For fixed values of ¢ and 6y, consider
increasing w from a value small relative to ¢ toward its supremum 2¢ sin6,. This should
be accompanied by the emergence of a zone in which the splay between the referential
rulings increases continuously as w increases. Any such increase would be accompanied by
a concomitant concentration of curvature and, thus, bending energy. Alternatively, if £ and
w are fixed, rotating the left-hand edge of S about the left-hand endpoint of the midline of S

@ Springer



Issues Concerning Isometric Deformations of Planar Regions. ..

102 1 T T T 1] I —
—_— /33
—_— /27
00 || — w2 i
w/15
/9
1072 |- /e =
ﬁ
1074 |- ] 1
3
i 0t E
P T
107° - T TEERTE s
10 10 10 10 10
w/20
L Ll R B

1072 1071 10°
w/2¢0

Fig. 11 Plots of the scaled absolute error J =2(Ew — Es)/1g(0p, 1) cot? ¢ for a rectangular material strip
D of length ¢ and width w isometrically deformed to coincide with a sector S of a right circular conical
surface KC for 0 < w/2¢ < sinfy, Oy = /33, /27, /21, /15, /9, and 7 /3

would increase 6y and the opposite effect, a decrease of the bending energy, would thereby
occur.

The developments leading to the expression (5.2) for the energy E stored in bending the
rectangular material strip D into the conical ribbon S coincident with a portion of the right
circular conical surface K do not rest on assuming that the half-width-to-length aspect ra-
tio w/2¢ of D is small. Indeed, even granted (5.51), the conditions (4.18) require only that
w < 2¢tan6, for each 0 < 6y < /2, from which we see that w/2¢ may take any positive
value. Since Sadowsky’s [5, 6] derivation is based on the presumption that w < ¢, it would
in contrast be decidedly unreasonable to expect that the expression (5.18) for Eg should
accurately estimate E for finite values of w/2¢. It is, however, interesting to explore how
accurately Eg approximates Wunderlich’s [3, 4] functional Ew. In Fig. 11, we provide plots
of J versus w/2¢. To facilitate comparisons, these plots are for the same values of 6, used in
Fig. 10. Although the qualitative behavior of J closely resembles that of I for each choice of
6y considered, important quantitative differences are evident. On the qualitative side, since
the limit of Eys is finite at w/2¢ — sin6, for all §, satisfying (4.17), the transition between
the cubic scaling that prevails for w/2¢ < 1 and the asymptotic divergence that occurs for
w/2¢ — sinfy is more rapid than that exhibited by /. On the quantitative side, for values
of w/2¢ small enough to ensure that both / and J scale with the cube of w/2¢ the curves
for J are shifted downward relative to their counterparts for /. From the values of / and J
at w/2¢ = 1.0 x 1072 listed in Table 1, this shift amounts to a factor of approximately 2/3.
For sufficiently small half-width-to-length aspect ratios, the absolute error incurred by us-
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Table 1 Values of the scaled relative errors I and J defined in (5.55) at w/2¢ = 1.0 x 1072 and w /20 =
3.5 x 1072 and for 0p=m/33,00=m/27, /21, /15, /9, and 7w /3

6o w/20=1.0x 1072 w/20=3.5x%x10"2
1(x10%) J(x107) 1(x10%) J (x10%)

7/33 1.01003 6.71129 6.09847 3.11603
/27 1.00669 6.69650 4.89521 3.02511
7/21 1.00403 6.68473 3.78157 2.95680
z/15 1.00205 6.67594 2.73486 2.90794
7/9 1.00074 6.67009 1.74625 2.87643
/3 1.00012 6.66720 0.78801 2.86114

ing Eg to approximate Ew is therefore slightly smaller than that incurred by using Ew to
approximate E.

A more significant quantitative distinction between I and J is apparent from the insets
of Figs. 10 and Fig. 11, from which we see that, for each value of 8, considered, / begins to
deviate from the cubic scaling (5.47) at a lower value of w/2¢ than that at which J begins to
deviate from (5.44). In particular, whereas the values of I for the given choices of 6, at the
left-hand endpoint of the inset interval span nearly an order of magnitude, the corresponding
values of J are graphically indistinguishable. The values of I and J at w/2¢ = 3.5 x 1072
appear in Table 1. For each choice of 6, the threshold of w/2¢ above which Ejg fails to
afford an accurate approximation to Eyw thus exceeds the threshold of w/2¢ which fails to
afford an accurate approximation to E.

Although the foregoing observations are specific to the particular problem of isometri-
cally bending a rectangular material strip D of length £ and width w to coincide with a
conical ribbon, they demonstrate that within the context of that problem Wunderlich’s [3, 4]
functional Ew does not provide an accurate approximation to the bending energy E unless
the half-width-to-length ratio w/2¢ is surprisingly small. Moreover, if w/2¢ is sufficiently
small to ensure that Eyw provides an accurate approximation to E, our findings show that
Sadowsky’s [5, 6] functional Eg provides an accurate approximation to Ew and, thus, a
reasonably accurate approximation to E. With reference to the discussion in Sects. 4.3.3
and 4.3.4, this difficulty stems from a failure to ensure a complete covering of the refer-
ence region. Only for rectangular material strips of sufficiently small half-width-to-length
aspects ratios is it possible to neglect the presence of unruled corners of the strip without
compromising accuracy.

5.2 Example 2: Bending Energy of a Rectangular Strip Isometrically Deformed
to a Helical Ribbon Coincident with a Portion of a Cylindrical Surface

For perspective, we now return to the example of a rectangular material strip D isometrically
deformed into a helical ribbon S coincident with a portion S of a right circular cylindrical
surface ) of radius ry discussed in Sect. 4.2. For that example, it is again most convenient
to parametrize the bending energy E using the rectilinear coordinates (x;, x) introduced in
(4.1). Since the mean curvature of )V, and, thus, S, is uniform and equal to r(/2, we see with

reference to (4.1), that
w/2 e ¢
E=i2/ / dyy de, = 22 (5.57)
21’0 —w/2J0 2}"0
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Fig. 12 Covering of the coordinate pairs («, 8) which represent the collection P defined in (4.8) for two
representative values of 6. Triangular-like regions of S above the midline of S are not covered and triangu-
lar-like regions on ) below the midline of S, not part of S, are covered. The areas of these regions and their
associated bending energies are equal

Using the transformation (4.4) between rectilinear coordinates (x;, x,) and curvilinear
coordinate pairs (o, ), recognizing that the Jacobian of that transformation is sin 6 for all
« and B, and bearing in mind that the collection of («, B) pairs needed to describe each
material point x in D is given by P defined in (4.7), we may of course represent E in the

alternative form

sin 6, weschy/2 £—pB cos by

_ K 0/ / da dg. (5.58)
21’0 —wescly/2 J —Bcosby

Evaluating the integrals on the right-hand side of (5.58), we immediately recover (_5.57).
If, instead of integrating over all (o, B) pairs in P, we integrate over the pairs in P defined
in (4.8), we arrive at Wunderlich’s [3, 4] functional

6, wescby/2 ¢
Ey = 15t / / da dB. (5.59)

2}’0 wescby/2

As with (5.58), we may evaluate (5.59) to once again recover (5.57). Thus, in contrast to
what occurs for the isometric deformation of a rectangular material strip to a conical ribbon,
Wunderlich’s [3, 4] functional determines the correct bending energy. This occurs for the
simple reason that the nonvanishing principal curvature of the helical ribbon is uniform
on each generator of the helical ribbon S. In Fig. 12 we show the portions of ) that are
determined by applying the mapping y,(«) + Bi3, with y, defined in (4.5), to P for two
representative values of 6. Although doing so leaves two corners of S uncovered, these are
compensated by two spurious nonmaterial regions each of which has the same area as the
missing corners. Since the nonvanishing principal curvature of Y is uniform, we therefore
see that the missing contributions to the bending energy that arise from using P instead
of P are compensated for perfectly by the spurious regions. If the nonvanishing principal
curvature is not uniform along the spatial generators, we conjecture that Wunderlich’s [3, 4]
functional will always underestimate the corresponding bending energy.
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As independent analytical support of the foregoing geometrical argument, we observe
that the expression (5.58) for the bending energy E can be written as

/’L sin 90 wescby/2 w cotby weschy/2 wescby/2
<f / dadp + / / dadp
2r0 —wecescly/2 J —pcosby —weschy/2 J —weschy/2
wescby/2 {—pBcosby/2
+ / / da dﬂ)
—wecscly/2 JL—wcotdy
sin 6 wesclp/2 0 wescty/2 4
_H 2°</ / dadﬂ—i—/ /dadﬂ
27‘0 —wcscby/2 J —pcosby —weseby/2 J0
wescly/2 t—pcosby/2
L )
—wescby/2 J L

sin 6, wescby/2 4
=870 / / dedp
2}’0 —wescy/2 J0

= Ew. (5.60)

5.3 Example 3: Bending Energy Resulting from Isometrically Deforming
a Triangular Corner of a Rectangular Material Strip

It is also possible to construct isometric deformations for which the bending energy can be
made to be as large as desired but Wunderlich’s [3, 4] functional vanishes. As a particular
example of this kind, consider a rectangular material strip D of length ¢ and width w with
parallel rulings that are inclined at an angle 0 < 6y < /2 measured counterclockwise from
the midline of D, as illustrated in Fig. 2. As we have observed previously, unless the ref-
erential directrix Cy is defined properly, then two triangular corners of D remain unruled
and no parametrization based on coordinates along the midline (i.e., that portion of the ref-
erential directrix Cp that consists only of material points of D) and the rulings covers D
completely. At the corners of each unruled triangle, place a cylinder of radius r with its
axis parallel to the rulings, as illustrated in the top left of Fig. 13. Next, roll each cylinder
toward the hypotenuse of the unruled triangle, ensuring that its axis remains parallel to the
rulings, as illustrated in the sequence in Fig. 13, stopping once its axis lies directly above
the hypotenuse of the triangle, as illustrated in the bottom right of Fig. 13. The bending
energy of the material strip deformed in this way is proportional to 1/r? and, thus, can be
made increasingly large by decreasing the radius r of the cylinders about which the triangles
are wrapped. At odds with this, however, Wunderlich’s [3, 4] functional vanishes because it
does not take into account the material points in the unruled triangles and, hence, the bend-
ing of those triangles. While an analogous statement applies to Sadowsky’s [5, 6] functional,
that functional is predicated on the assumption that the width-to-length aspect ratio of D is
infinitesimal.

The deformation required to roll up the unruled corners of D as described above is not
one-to-one and, thus, does not satisfy all conditions set forth in Sect. 2.1. Alternatively, it
is possible to define a deformation in which the unruled corners of D are rolled into spirals
that can be tightened to drive up the bending energy in a manner analogous to that achieved
by decreasing the radius r of the rods involved in the deformation described above.
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Fig. 13 A flat rectangular material strip shown in perspective from above with midline identified as the
intersection Cy = Cy N D of its referential directrix Cy and its reference configuration D, and rulings at the
angle 6. Also shown are two small cylinders, parallel to the rulings, about which the triangular corners of the
strip in their reference state (top left) are wrapped as shown in the sequence and, thus, isometrically deformed.
The central portion of the strip which contains all of the rulings remains flat and undistorted

@ Springer



Y.-c. Chen et al.

6 Applicability of Kirchhoff Rod Theory to the Modeling of Strip-Like
Material Surfaces

It is well known that the shape of a Kirchhoff rod endowed with a material frame
{d,,d,,ds}, as introduced in Sect. 3, is completely determined by its midline and the orien-
tations of its cross-sections, which are necessarily perpendicular to the directrix with tangent
d;, and that this geometrical information is completely encoded in the Darboux vector w de-
fined such that dl'. =w xd;, i =1,2,3. Although the directrix of a Kirchhoff rod may bend
and the cross sections of the rod may rotate about d3, those cross sections are by hypothesis
rigid and thus cannot change shape.!® In the present context, the cross sections of a sheet-like
object with midsurface S modeled as a rod with spatial material frame {d,, d,, d3} should
be rectangular with the sides parallel to d; being long (i.e., wide) in comparison to those
parallel to d, (i.e., through-thickness). Granted the interpretations of the components of the
Darboux vector of such a rod stated and supplied immediately after (2.23), it follows from
(2.30), that the cross sections of a rod remain rigid only in the presence of the highly re-
strictive requirement «, = 0, which, by (2.32) is met only if the referential directrix Cy of D
is straight. Otherwise, the rectangular cross sections bend about d; and consequently do not
remain rigid. This effect is evident in the sequence of deformations shown in Fig. 13. There,
the short ends of the material surface, which are at the ends of the material portion of the
referential directrix, are material lines and would represent the terminal cross sections of a
rod-based description. To describe the referential material surface depicted in the top left of
Fig. 13 as a Kirchhoff rod, it would be necessary to ensure that those terminal cross sections
be rigid and, thus, deform only to the extent that they would only be allowed to rotate about
the spatial directrix. This would be overly restrictive for any strip-like material surface and
in particular would not allow for a deformation of the kind depicted in, say, the sequence
shown in Fig. 13. This would drastically undermine any basis for modeling a sheet-like ob-
ject as a Kirchhoff rod unless, of course, the conventional slenderness hypothesis underlying
all rod theories known to the present authors were also in place. In the current setting, that
hypothesis amounts to restricting attention to situations with rulings of characteristic length
comparable to the through-thickness dimension of the sheet-like object. Although such a
hypothesis is met by certain polymer and biopolymer filaments, it is only relevant to a small
and not particularly significant class of problems involving thin unstretchable media like
paper.

Dias and Audoly [2] place considerable emphasis on a purported connection between
their approach to the description of strip-like material surfaces and the Kirchhoff theory of
rods. In view of the foregoing discussion, such a connection is possible only if the width and
the through-thickness of the ribbon are comparable. Since the through thickness of a ribbon
or sheet is assumed to be negligible, the approach of Dias and Audoly [2] is more aptly
connected to the theory of framed curves, which, as Giusteri and Fried [14] explain, can be
viewed as the specialization of Kirchhoff rod theory that arises on restricting attention to
rods of infinitesimally vanishing cross-sectional thickness.

197 geometrically exact rod model that carefully incorporates in-plane cross sectional deformation was re-
cently developed by Kumar and Mukherjee [11]. Previously, Hodges [12] proposed a constitutively based
strategy to account for cross sectional deformation and Gould and Burton [13] developed a rod theory in
which each cross section is itself viewed as a rod.
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7 Discussion and Summary

We have emphasized that in characterizing the representation of all isometric deformations
of a flat two-dimensional material region into a curved surface in three dimensional Eu-
clidean space it is important that the referential directrix and rulings, and the corresponding
deformed directrix and generatrices, provide for the establishment of material curvilinear
coordinates which completely cover the reference and distorted surfaces. Otherwise, the de-
formation of parts of the material surface is undefined. Also, we have discussed, by example,
the importance of distinguishing between the differential geometric notion of an isometry
between two or more two-dimensional surfaces embedded in three dimensional Euclidean
space and the continuum mechanical notion of the isometric deformation of a single material
surface.

The covering requirement noted above has not been fully appreciated in publications
which deal with the isometric deformation of ribbons and, as a result, the oversight has led to
misunderstandings and questionable claims. We have tracked the details of this issue in two
examples of a rectangular flat material strip that is deformed into (i) a portion of a circular
cylindrical surface, and (ii) a portion of a circular conical surface. We have observed that this
oversight also is prevalent in the important one-dimensional reductions of Sadowsky [35, 6]
and Wunderlich [3, 4] for representing the bending energy of a flat undistorted material
surface that is isometrically deformed into a bent shape.

We proceeded to determine, in complete detail, the bending energy E of a rectangular
material strip D of length £ and width w that is isometrically deformed to coincide with
a portion S of a right circular conical surface K. Further, we compared the results of that
calculation to energies obtained from the corresponding one-dimensional energy function-
als Ew and Es of Wunderlich [3, 4] and Sadowsky [5, 6], finding that Es < Ew < E for
all relevant choices of ¢, w, cone apex angle 2¢, and certain parameters associated with /C
and the placement of the bent strip on K. The discrepancy between Es and Ey arises sim-
ply because Sadowsky’s [5, 6] functional is supposed to apply only to situations in which
the half-width-to-length ratio w/2¢€ of D is vanishingly small whereas Wunderlich’s [3, 4]
functional is designed to apply to situations in which that ratio is finite. The discrepancy be-
tween Ew and E arises instead from failing to ensure a surjective correspondence between
material points and curvilinear coordinate parameter pairs and is, thus, far more relevant to
our concerns regarding the covering requirement.

In some cases the Wunderlich functional underestimates the exact bending energy by a
sizable and unacceptable amount. As an extreme example, we considered a rectangular ma-
terial strip whose midline is identified as the referential directrix, and we marked the strip
with parallel rulings at an angle 6, satisfying O < 6y < 7 /2 with the midline. In this case
there are two triangular regions, one in the upper right corner and one in the lower left cor-
ner of the rectangle, corners cut off by the far right and far left rulings which terminate at
the ends of the midline that are not covered by the coordinate system generated by the mid-
line and the set of rulings. We isometrically deformed the strip by rolling up the corners on
cylinders of equal and sufficiently small radii whose generators are parallel to the rulings,
as shown in Fig. 13. The remaining central portion of the strip was untouched and remained
flat in its undistorted state. For this deformation, the Wunderlich functional Ew records zero,
while the bending energy E of the deformed strip is as large as one pleases depending on the
radii of the cylinders over which the corners are wrapped. We concluded that the Wunderlich
functional does not account for the covering requirement and, therefore, contains a funda-
mental and potentially significant deficiency; for many situations it does not well-represent
the bending energy. As it turns out, for cases in which the half-width-to-length ratio w/2¢
of D is sufficiently small, it is only incrementally better than the Sadowsky functional.
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In the literature, Kirchhoff rod theory has been suggested as a possible theory for model-
ing the isometric deformation of material ribbons. In the last short section of this work, we
gave reasons why this approach is viable only if the width and the through-thickness dimen-
sions of the ribbon are comparable. An association of Kirchhoff rod theory with the study
of the deformation of strip-like surfaces is more aptly connected to the theory of framed
curves wherein a Kirchhoff rod is assumed to have infinitesimally vanishing cross-sectional
thickness.
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