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A correlated material in the vicinity of an insulator-metal transi-
tion (IMT) exhibits rich phenomenology and variety of interesting
phases. A common avenue to induce IMTs in Mott insulators
is doping, which inevitably leads to disorder. While disorder is
well known to create electronic inhomogeneity, recent theoretical
studies have indicated that it may play an unexpected and much
more profound role in controlling the properties of Mott systems.
Theory predicts that disorder might play a role in driving a Mott
insulator across an IMT, with the emergent metallic state hosting
a power law suppression of the density of states (with exponent
close to 1; V-shaped gap) centered at the Fermi energy. Such V-
shaped gaps have been observed in Mott systems but their origins
are as yet unknown. To investigate this, we use scanning tunneling
microscopy and spectroscopy to study isovalent Ru substitutions
in Sr3(Ir1-xRux)2O7 (0≤x≤0.5) which drives system into an antifer-
romagnetic, metallic state. Our experiments reveal that many core
features of the IMT such as power law density of states, pinning
of the Fermi energy with increasing disorder, and persistence of
antiferromagnetism can be understood as universal features of a
disordered Mott system near an IMT and suggest that V-shaped
gaps may be an inevitable consequence of disorder in doped Mott
insulators.

correlated | disorder | gap

Metal-insulator transitions are observed in a range of mate-
rial systems from uncorrelated metals to correlated insulators1-3.
One could start from a non-interacting `good’ metal and turn it
into an insulator by adding disorder as in anAnderson transition4.
The single particle excitations in the resulting insulator remain
gapless. One could also start with an interacting system such as a
correlated insulator with a well-defined gap in the single particle
density of states (DOS) as described by theMott-Hubbardmodel5

and turn it into a `bad’ metal by doping. In the latter scenario,
disorder is an inevitable byproduct of doping and the interplay
between correlations2,6, doping7 and disorder pose fundamental
challenges for theory and experiment. While it is well established
that disorder can lead to a soft gap in the DOS of metals8 or
insulators9, 10 with long-range coulomb interactions, it is only
recently that theoretical studies have addressed the effect of
disorder on the DOS of Mott systems,11-18 with intriguing predic-
tions of insulator-metal transitions (IMT) and a power-law (V-
shaped) suppression of the density of states on the metallic side.
Experimentally, disorder is well known to create an inhomoge-
neous potential landscape.However, whether disordermight lead
to power law gaps in Mott systems, remains a key outstanding
question that has not yet been experimentally addressed. This
is a particularly important question since strikingly linear DOS
suppressions are ubiquitously observed in doped Mott systems,
e. g., various cuprate series19-22, iridium oxide23,24, Se doped 1T-
TaS2 (ref. 25) and Cu substituted iron pnictides26,27 (details shown
in supplementary information (SI) I), but their origins remain a
mystery.

The iridium oxide compounds (iridates) provide an ideal
platform to address the effect of disorder in Mott systems. The

parent compounds of the layered iridate Srn+1IrnO3n+1 (n=1, 2)
host novel Jeff=1/2 Mott ground states, where strong spin-orbit
coupling and crystal field effects split the 5d5 t2g manifold into
an occupied Jeff =3/2 and a narrow half-filled Jeff =1/2 band,
which in turn amplifies correlation effects and results in a Mott-
antiferromagnetic insulator28, 29. Electron doping these materials
has been shown to result in intriguing phenomena which par-
allel the hole-doped cuprates30, 31 Among the iridates, pristine
Sr3Ir2O7 (Ir327) exhibits a smaller charge gap (ΔE∼130meV)
and is ideally suited to scanning tunneling microscopy (STM)
studies32.

In this work we focus on Ru-substituted Ir327. One of the
biggest problems in studying disorder effects experimentally is
that doped Mott systems often host a variety of competing
phases, which makes it extremely difficult to isolate the effects
of disorder. Figure 1A depicts the electronic phase diagram of
Sr3(Ir1-xRux)2O7 which has been well established in our previous
study33. As seen in the phase diagram, other than antiferromag-
netism (AFM), there is a distinct absence of additional order
parameters. In addition, in current study, we constrain ourselves
to Ru concentrations far from the paramagnetic phase boundary
in the region where static AFM is robust and its fluctuations play
a minimal role. Furthermore, our STM data show that Ru acts as
a weak scatterer and unlikemost other impurities does not induce
in-gap impurity states. The lack of competing phases, and the role
of Ru as a weak perturbant make Sr3(Ir1-xRux)2O7 an ideal system
to study the effects of disorder on the DOS in Mott insulators.

Significance

Correlated electron systems often show unexpected behav-
ior that defies theoretical explanations. One such mystery
is the universal presence of V-shaped gaps with surprisingly
linear energy dependence, whose origins are as yet unknown.
Conventional wisdom implicates static order like charge den-
sity waves, or fluctuations of a nearby order parameter like
superconductivity or antiferromagnetism. However, adding
dopants to correlated systems inevitably leads to the opposite
of order—i.e., electronic disorder, which begs the question:
could disorder create well-defined signatures in electronic
properties? By carefully choosing a material with no additional
order, we show that order is not the only path to gaps, and
that disorder may play a surprising role in generating universal
signatures in the density of states of disordered correlated
systems.
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Submission PDFFig. 1. Insulator-metal transition inSr3(Ir1-xRux)2O7.(A)Phase diagram of
Sr3(Ir1-xRux)2O7 established by bulk susceptibility, neutron scattering and
transport measurements in ref. 33. CAF-I: insulating canted AF phase; PM-
I: paramagnetic insulating phase; AF-M: AF ordered metallic phase; PM-M:
paramagnetic metal. (B) Temperature-dependent resistivity for different Ru
concentrations. IMT takes place at the critical concentration of x∼0.37. (C)
Comparison of the Ru oxidation state in Sr3(Ir1-xRux)2O7 with other reference
samples using X-ray absorption spectroscopy. The oxidation states of Ru in
RuCl2, RuI3, RuCl3 and RuO4 are 2+, 3+, 3+ and 4+ respectively. (D) Topog-
raphy taken on 50% Ru-doped samples. Scanning conditions: Vb=200mV,
I=50pA. Vb: sample bias with respect to the tip; I: set point current.

Fig. 2. dI/dV line cuts across IMT in Sr3(Ir1-xRux)2O7. Line cuts and the
associated topographic images indicating where the line cuts were obtained
in: (A) 27%, (B) 35%, and (C) 50% Ru-substituted samples. The spectra in A
and B show the evolution from gapped and insulating line-shape (27%), to
relatively smaller gap and more metallic behavior (35%). The spectra of 50%
Ru-doped sample shown in C, however, exhibit V-shaped DOS almost along
the whole line. STM setup condition in all panels: Vb=-200mV, I=100pA. The
spectra have been shifted vertically for clarity.

While 5% of electron doping34 or 15% of hole doping35 is
sufficient to drive the layered iridates across Mott transition,
up to 37% in-plane Ru substitution is required to collapse the
parent Mott state (Fig. 1B). This then begs the question: do the
Ru substituents donate itinerant charge to Ir327 thereby acting
as dopants? The question of doping in a correlated system is a

complex one. It has been shown that substitutional atoms which
may naively be expected to dope a Mott system either by moving
the Fermi energy into the bands (rigid band shift) or by creat-
ing an impurity band, actually have a much more complicated
behavior36,37. Calculations for 3d and 4d substitutional dopants
in iron pnictides suggest that in some cases, any extra charge that
was supposed to have been responsible for doping, remains tightly
bound to the substituent atom, which therefore effectively acts
as an isovalent impurity. Similarly, we find that Ru goes into the
lattice with a 4+ valence state identical to Ir, making it an isovalent
substitutional impurity i.e., an ion with the same oxidation state
as Ir, with any added electrons or holes remaining localized.

The strongest evidence of this comes from our X-ray absorp-
tion spectroscopy (XAS) studies. In XAS measurements, shifts
in white-line peaks (strong sharp peaks in absorption spectra)
indicate a well-defined chemical shift that is proportional to the
valence of the absorbing ion. As an example, Rh substitutions
in Sr2IrO4 which should naively be isovalent, have instead been
shown to have a valance of 3+ using the L3 edge in XAS spectra
which arises from the 2p3/2 to 4d transition35,38. The role of
Rh as a hole dopant in this system was also confirmed by the
corresponding change in the valence state of Ir from 4+ to a
mixture between 4+ and 5+ (ref.38). A similar analysis can be
carried out for our samples. Comparison of the L3 peaks in
Sr3(Ir1-xRux)2O7 with reference samples are shown in Fig. 1C. The
position of the L3 peaks in Ir327 indicates that Ru is in the 4+

state across all concentrations from x=0.2 to x=0.5. Moreover,
the width of the white-line also does not change which indicates
no significant change in the distribution of Ru valences in this
doping range (SI II). A similar result can be observed at the
Ru L2 edge (2p1/2 to 4d states) as well, as shown in SI II. These
observations imply that Ru acts as an isolavent substituent in
this system. This finding is corroborated by recent x-ray data,39,40

which additionally show that Ir retains a formal valence of 4+

even at high Ru substitutions. Taken together with our STM
measurements where the Fermi energy does not move into the
valence band with increasing Ru doping, we conclude that the Ru
does not significantly change the itinerant carrier concentrations
at these dopings, which explains the large amount of Ru needed
to make the system metallic.

Ir327 is composed of alternating IrO6 bilayers separated by
rock-salt SrO spacers. Cleavage occurs easily between two adja-
cent SrO layers, resulting in a charge-balanced surface. Figure 1D
depicts a typical STM topograph obtained on a x=0.5 sample. The
Sr atoms form a square lattice with lattice constant a=3.9Å. It
is difficult to see the individual Ru atoms in this image because
Ru substitutes on the Ir sites, which lie 2.0 Å below the SrO
plane. However, at higher Ru concentrations we observe patches
of bright regions in the topography, which as we will see later
represent areas with a smaller gap magnitude caused by the Ru
substitution. A comparison of the topographies for samples with
different Ru doping levels can be found in SI III.

Local electronic structure can be probed by a differential
conductance (dI/dV ) measurement which is proportional to the
local DOS. We start with the parent compound which has been
discussed in detail in our earlier paper32. The spatially averaged
dI/dV spectrum obtained on defect-free regions of the undoped
sample is shown in SI IV. The DOS in an energy range from -
10meV to +120meV is suppressed to zero, resulting in a hard
Mott gap ∼130meV with Fermi level positioned close to the top
of the lower Hubbard band. To study the effect of Ru substitution,
we first examine spatially resolved dI/dV spectra collected along
a line (linecut) in samples with varying Ru concentration across
the IMT. At x∼27% Ru doping, transport properties indicate an
insulating behavior, with neutron scattering showing robustAFM,
confirming that the compound is still in theMott phase. Figure 2A
displays a linecut across dark and bright regions of the topography
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Fig. 3. Spatial evolution of dI/dV spectra for a wide range of Ru substitution. (A-C) Gap maps showing the spatial inhomogeneity. The metallic regions expand
(red) as the Ru concentration increases, indicating the trend towards an IMT. (D) dI/dV conductance map at +30mV for x=0.5 Ru- substituted sample. (E-G)
Averaged dI/dV spectra for x∼27%, x∼35% and x∼38%, respectively. To create these averages, spectra in the dI/dV maps were sorted by the gap magnitude
into bins and then each bin was averaged. The spectra were split into ∼20 bins with equal population, ranging from the ones with the largest gap (blue/purple)
to the ones with zero gap (red). The colors for the spectra at each doping depict the spectra in the same color regions of the gap maps at that doping. (H)
Averaged spectra which are classified by the conductance value at +30mV. At this Ru concentration, all spectra are gapless. The color scale indicates the
conductance value (see section VIII). (I) Histograms of the spectral gap magnitude. The average gap size shrinks as the Ru substitution increases.

Fig. 4. Characterizing the V-shape gap. (A) Fit to
the most metallic dI/dV spectra shown in Fig. 3 for
x=0.27, 0.35 and 0.38 , and the most V- shaped one in
Ru=0.5, with . The spectra have been shifted vertically
for clarity, and the dashed lines denote the position of
zero conductance for each curves. (B) Range of fitting
parameter p for the data shown in Fig. 3E-H. The index
numbers label the bins described in Fig. 3. A smaller
power corresponds to a more metallic spectrum.

at this doping. The tunneling spectra show pronounced spatial
variations: in the dark region, the DOS is zero for the energy
range from -10 to +100 meV, yielding a gap size of ∼110 meV;
This gap becomes much narrower when approaching a bright
region. Although the connection between Ru substitutions and
bright areas is not at first obvious, the local electronic structure
shows a clear trend with increasing Ru doping. In the x∼35%
sample which lies near the IMT (Fig. 2B), the insulating gap ob-
tained in the dark areas diminishes (∼80meV), and even vanishes
in the bright area, changing into a V-shaped gap. Note that the
term `V-shape’ is used in this paper to describe the power law
(almost linear) dependence of theDOS on energy. This particular
spectral shape will be discussed in further detail later. The sample
with x∼50% is on the metallic side of the IMT and the linecut
shown in Fig. 2C reveals that spatial inhomogeneity persists into
this nominal metal. However, other than some extremely Ru-rich
regions where the spectra are similar to that of Sr3Ru2O7 (ref.41),
the data now predominantly show a V-shaped gap.

While spectra in line cuts provide a glimpse into the evolving
spectral features across the IMT, to obtain a more complete
picture, we acquire dI/dV (r, V) spectra on a densely-spaced 2D
grid (dI/dV map) for each doping (SI V). The magnitude of the
charge gap is then extracted at each location in the grid (SI VI)
and we plot the 2D gapmaps in Fig. 3A-C. To understand the

range of spectra within each sample and to see how the spectral
shapes evolve with doping, we sort the spectra for each map into
bins defined by the gap magnitude, and display the averaged
spectrum for each bin (Fig. 3E-H). Further details of the sorting
procedure are in SI VII. The gap maps are color coded to match
the spectra; i.e., red/blue/green areas of the map for a particular
doping, correspond to the red/blue/green dI/dV spectral shapes
shown for that doping.

At x∼27%, consistent with the insulating behavior of the
resistivity, the sample shows gapped spectra in most areas (Fig.
3A and E) with an average gap of 72meV (as shown by the
histogram in Fig. 3I). Very close to the IMT, at x∼35%, the
gap histogram shifts to lower energies and the average gap is
∼40 meV. Clear V-shaped gap features can now be seen that
cover about 20% of the sample (red areas). We associate these
V-shaped areas with metallic regions. Eventually at the IMT at
x∼37.5% (Fig. 3C and G), the regions showing V-shaped spectra
become predominant. The metallic regions have grown in spatial
extent and nowmutually connect (red and yellow in the gapmap),
in agreement with a quantum percolation driven IMT transition
proposed in transport studies42. Finally, we turn to the metallic
x∼50% compound. To obtain a visual sense of the variation of the
spectra in this gapless 50% sample, a dI/dV conductance map at
30meV is plotted in Fig. 3D and the associated spectra are shown
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in Fig. 3H. We see that the sample on the metallic side contin-
ues to remain inhomogeneous. The metallicity is represented by
the pervasive V-shape of the spectra, and the inhomogeneity is
represented by the variation in spectral lineshapes. We note here
that while the spectral shapes differ with location and doping, the
Fermi level is always pinned close to the top of lower Hubbard
band.

Discussion and Summary
The question we seek to address is: how do we understand

striking V-shaped gap observed in Sr3(Ir1-xRux)2O7? Similar gaps
have been seen in other Mott systems and are often attributed
to the emergence or fluctuations of an order parameter. This is
however an unlikely explanation for the V-shaped gap seen in our
data. Unlike hole doped cuprates19, 21, 22 and the electron doped
single layer iridates23, and consistent with the phase diagram es-
tablished in earlier studies (Fig. 1A), no sign of additional charge
order is observed either in real or momentum space in this system
(SI IX). Combined with the absence of superconductivity in this
phase diagram, we rule out new order parameters or preformed
pairs as the cause of this gap. Another possibility suggested by
calculations is that the soft gap arises from AFM fluctuations.
However, in our case, it is clear from neutron scattering data33

that static AFM persists deep into the metallic phase where the
V-shape gap is pervasive. In fact, the phase transition into the
paramagnetic state occurs at much higher percentages of Ru
(>65%). As shown in SI X, near IMT, the coherence length of
AFM order is larger than 200 Å in real space and one order of
magnitude larger than that of V-shaped DOS region. Since we
observe a pervasive V-shaped gap in the metallic sample with
robust long-range AFM, it is unlikely that AFM fluctuations are
the cause of this gap.

To explain this phenomenology, we turn to the disordered
Hubbard model, which incorporates disorder as a random site
dependent potential variation. While this may be a simplistic
model for our system, it is fruitful to compare the theoretical
results with our experimental data to look for universal signatures
of a disordered Mott system. The disordered Hubbard model
has been numerically studied in the last decade both by Hartree-
Fock11,14 as well as quantum Monte Carlo techniques13 (SI XI).
We reproduced the Hartree-Fock calculations with a more realis-
tic disorder potential and the results show remarkable similarities
with our data (SI XII). First, with increasing disorder fraction,
the Mott gap gradually closes; second, the Fermi level is pinned
at the top of lower Hubbard band and the Mott gap fills up by
states being pulled in from the upper Hubbard band; and third,
after the IMT, the calculated spectra show a characteristic V-
shape similar to our data. Interestingly, the simulations also show
a pronounced spatial inhomogeneity ofDOS, whereMott-gapped
insulating regions coexist with -V-shape gapped metallic regions.
These multiple observations taken together suggest that the V-
shaped gap may be attributed to the effects of disorder on the
electronic structure of a Mott insulator.

To further establish the relationship between the observed
gap and a disordered Mott system, we look for a universal scaling
relationship of the density of states with energy . We find
that most of the numerical calculations using the Hubbard model
predict a power-law dependence12-14,43,44 for . We track the
power-law exponent in the experimental data across the IMT by
fitting the tunneling spectra shown in Fig. 3E-H with a power-law
function in energy range about [-50meV, 50meV].
The fitting parameter for each indexed spectrum is plotted in
Fig. 4B. Since each sample shows a range of spectral shapes, the
value of the exponent correspondingly varies. However, we see
a clear trend across the IMT. If we consider the most metallic
spectra for each doping for example, we find that the exponent
changes from a value around 2 (U-shaped) in the 27% samples

to about 1 in the inhomogeneous metallic samples, for both the
occupied and empty states, confirming the that the suppression
in the DOS is quite linear at low energies (Fig. 4A and B). The
fitting procedure applied on the individual spectra of Fig.2 gives
a similar trend, as shown in SI XIII. The change in exponent from
2 to 1 is a non-trivial occurrence in both theory and experiment
and a simple band closing picture due to either carrier doping or
reduced spin-orbit coupling, cannot capture the linear behavior
of the DOS. Interestingly, a heuristic statistical model can be
constructed to explain how a linear DOSmight arise in a standard
Anderson-Hubbard model in the highly disordered regime (SI
XIV).We note that while the heuristic relies on large values of on-
site repulsive potential U and disorder strength V, the parameters
used in the Hartree-Fock calculations in contrast are completely
within the expectations for the iridates. While simplistic, the
heuristic serves to motivate the general observations of the V-
shaped gaps in Mott systems.

On comparing our findings with otherMott systems (SI I), we
observe many common features including IMTs which proceed
through spatial inhomogeneity and V-shaped gap formation. In
SrRu1-xTixO3, for example, which is another candidate to reveal
the nature of disorder in strong correlated systems, a nearly linear
energy dependence of DOS has been found45. Gaps with similar
lineshapes have also been reported in many doped oxides in-
cluding other iridates23, 24, 35, underdoped cuprates19-22, 46, 47, and
manganites48, making it is essential to consider disorder effects in
these systems.While the complex phenomenology of the cuprates
and iridates cannot all be captured by disorder effects, disorder
may be implicated in the overall linear suppression of density of
states near the Fermi energy in these systems.

In correlated metals, it has been shown both theoretically and
experimentally that disorder can cause localization and decrease
conductivity by generating a soft gap. Here we approach the
problem from the opposite side of the phase diagram. Starting
with a correlated insulator we demonstrate experimentally that
a chemical disorder can also induce a power-law gap which does
not require any additional order parameter for its existence.

Materials and Methods
Sr327 single crystals used in our experiments were grown by the conventional
flux methods33, cleaved at ∼77 K in ultra-high vacuum and immediately
inserted into the STM head where they are held at ∼5 K during the process of
data acquisition. All dI/dV measurements were taken using a standard lock-
in technique with ∼5-10mV peak to peak modulation. Tungsten tips were
annealed and then prepared on Cu single crystal surface before using on
iridate samples.

X-ray absorption spectroscopy measurements were performed using the
Soft X-ray Microcharacterization Beamline (SXRMB) at the Canadian Light
Source. Measurements were carried out at the Ru L3 (2p3/2 to 4d) and L2
(2p1/2 to 4d) absorption edges, which occur at energies of 2838 eV and 2967
eV respectively. Data were collected using both Total Electron Yield (TEY)
and Fluorescence Yield (FY) detection modes. Energy calibration was verified
by a comparison of Ar K edge features observed at E = 3206 eV. In order
to improve counting statistics and verify the reproducibility of the data,
multiple scans were performed on each sample. Each dataset shown in Fig. 1C
or Fig. S2 consists of three or more individual scans which have been binned
together. Each scan has been normalized such that the edge jump associated
with the Ru absorption edge has been set to unity.
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Figure 1. Insulator-metal transition in Sr3(Ir1-xRux)2O7 . (A) Phase diagram of
Sr3(Ir1-xRux)2O7 established by bulk susceptibility, neutron scattering and transport
measurements in ref. 33. CAF-I: insulating canted AF phase; PM-I: paramagnetic insulating
phase; AF-M: AF ordered metallic phase; PM-M: paramagnetic metal. (B) Temperature-
dependent resistivity for different Ru concentrations. IMT takes place at the critical
concentration of x∼0.37. (C) Comparison of the Ru oxidation state in Sr3(Ir1-xRux)2O7
with other reference samples using X-ray absorption spectroscopy. The oxidation states of
Ru in RuCl2 , RuI3 , RuCl3 and RuO4 are 2+, 3+, 3+ and 4+ respectively. (D) Topography
taken on 50% Ru-doped samples. Scanning conditions: Vb=200mV, I=50pA. Vb : sample
bias with respect to the tip; I: set point current.
Figure 2. dI/dV line cuts across IMT in Sr3(Ir1-xRux)2O7. Line cuts and the associated
topographic images indicating where the line cuts were obtained in: (A) 27%, (B) 35%, and
(C) 50% Ru-substituted samples. The spectra in A and B show the evolution from gapped
and insulating line-shape (27%), to relatively smaller gap and more metallic behavior (35%).
The spectra of 50% Ru-doped sample shown in C, however, exhibit V-shaped DOS almost
along the whole line. STM setup condition in all panels: Vb=-200mV, I=100pA. The spectra
have been shifted vertically for clarity.
Figure 3. Spatial evolution of dI/dV spectra for a wide range of Ru substitution. (A-C)
Gap maps showing the spatial inhomogeneity. The metallic regions expand (red) as the Ru
concentration increases, indicating the trend towards an IMT. (D) dI/dV conductance map
at +30mV for x=0.5 Ru- substituted sample. (E-G) Averaged dI/dV spectra for x∼27%,
x∼35% and x∼38%, respectively. To create these averages, spectra in the dI/dV maps were
sorted by the gap magnitude into bins and then each bin was averaged. The spectra were split
into∼20 bins with equal population, ranging from the ones with the largest gap (blue/purple)
to the ones with zero gap (red). The colors for the spectra at each doping depict the spectra
in the same color regions of the gap maps at that doping. (H) Averaged spectra which are
classified by the conductance value at +30mV. At this Ru concentration, all spectra are
gapless. The color scale indicates the conductance value (see section VIII). (I) Histograms
of the spectral gap magnitude. The average gap size shrinks as the Ru substitution increases.
Figure 4. Characterizing the V-shape gap. (A) Fit to the most metallic dI/dV spectra shown in

Fig. 3 for x=0.27, 0.35 and 0.38 , and the most V- shaped one in Ru=0.5, with .
The spectra have been shifted vertically for clarity, and the dashed lines denote the position
of zero conductance for each curves. (B) Range of fitting parameter p for the data shown in
Fig. 3E-H. The index numbers label the bins described in Fig. 3. A smaller power corresponds
to a more metallic spectrum.
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