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Abstract

Coherent control of charged particle systems strongly interacting
with microwave photons

Coherent control of charged particle systems using electromagnetic field is an exciting
area of research that can lead to new elements for quantum technologies. However,
the choice of a suitable system to realize such applications is limited because of the
often unavoidable presence of dissipation and decoherence. One condensed matter
system where these problems are minimised is the system of surface electrons on liquid
helium. This thesis aims to contribute to achieving coherent control of the quantum
states of orbital motion of electrons on helium using quantized electromagnetic field
in an optical resonator. In particular, I have studied the strong coupling regime of
interaction between the cyclotron motion of electrons and the microwave photons in a
Fabry-Perot resonator and provided a detailed analysis of experiments carried out in
the Quantum Dynamics Unit at OIST using both classical and quantum formalisms.
The agreement between both formalisms demonstrated the mean-value nature of the
observed normal mode splitting phenomenon. As a theoretical proposal, I have studied
the generation of squeezed states and spin-squeezed states of a harmonic oscillator and
of an ensembles of two-level-systems, respectively, which is strongly coupled to a two-
level system. In this work I will discuss a special case of the Jaynes-Cummings model
driven by an external field and its analogue in which a two-level system is coupled to
a collective large spin. This can be seen as a relevant proposal for electrons on helium
with coupling between their cyclotron motion and the surface-bound states. Finally,
I have studied the surface electrons on helium with a coupling introduced by an in-
plane magnetic field. I have shown that this leads to a renormalization of the energy
spectrum of coupled orbital motion and have made a number of predictions which were
confirmed in a subsequent experiment. This work therefore opens doors to explore the
physics in the strong coupling regime between the electrons’ surface-bound states and
photons in microwave resonators.
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Abbreviations

2DEG two-dimensional electron gas
2DES two-dimensional electron systems
AMO Atomic, Molecular, and Optical physics

CP Circularly Polarized
CR Cyclotron Resonance
CSS Coherent Spin State
EM ElectroMagnetism
FB Fabry-Pérot

JCM Jaynes-Cummings model
HO Harmonic Oscillator

LHCP Left-Hand-Circularly-Polarized
QED Quantum ElectroDynamics
cQED cavity Quantum ElectroDynamics
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LLs Landau Levels
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MW MicroWave
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RWA Rotating Wave Approximation

SE Surface State Electrons
TEM Transverse Electro-Magnetic
TLS Two Level Systems
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Nomenclature

c Speed of light (2:997 924 58� 108 ms�1)
h Planck constant (6:626 070 04� 10�34 Js)
~ Reduced Planck constant (1:054 572 66� 10�34 Js)
kB Boltzmann constant (1:380 658� 10�23 JK�1)
Z0 Impedance of free space (376:730 313 461 
)
�0 Permeability of free-space (4� � 10�7 Hm�1)
�0 Permittivity of free-space (8:854 187 82Fm�1)
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Introduction

Highly controllable synthetic quantum systems designed from the bottom up have
been an active and exciting area of research in the recent decades. In these systems,
the interaction between different components can often be precisely controlled by the
experimentalist. By performing experiments with such systems, we can deepen our
understanding towards, for example, light-matter interactions, quantum entanglement,
many body physics, and unconventional phases of matter. This is not only interesting
from the fundamental physics’ point of view, but can also lead to applications based
on the principles of quantum mechanics.

Being able to prepare and manipulate quantum states beyond the time scale of
dissipation and decoherence is crucial for the development of many real-world quan-
tum applications. This includes but is not limited to quantum computing[1–3] and
quantum communication [4], quantum entanglement enhanced metrology[5–7], quan-
tum simulations [8–11], etc. Coherent control of quantum states can be implemented
in a wide variety of physical systems. In earlier years, researchers have realized it in
cold atoms and ions [12–16], superconducting circuits [17, 18], semiconductor quantum
dots (QDs) [19] and nano-mechanical structures [20]. In recent years, hybrid quan-
tum systems which combine, for example, microscopic atomic systems with solid-state
quantum devices, have been of considerable interest[21–24, 24, 25].

In addition to the synthetic quantum systems mentioned above, some condensed
matter systems which were traditionally used to study other phenomena, have been
introduced into this field of study. In particular, the surface electrons (SEs) on liquid
helium, the first two-dimensional electron system (2DES) realized in the laboratory
environment, has been discussed recently in the context of quantum information [26–
29]. This system gains attention because of its extreme purity, thus long coherence
time, as well as convenience to manipulate charged particles using an electrostatic field.
Therefore, it is an attractive idea to apply some theoretical models and experimental
methods similar to ones, for example, used for the Rydberg atoms or spins in QDs, to
SEs on liquid helium. However, while the governing principles are universal for different
systems, it is still a non-trivial task to implement the same ideas in different physical
systems because they differ greatly in energy scales, interaction strength, noise levels
and available experimental methods which can be applied to them.

This thesis aims at contributing to achieving coherent control of charged particle
states in the electrons-on-helium system. In particular, we are interested in the coupling
of the states of electron orbital motion to an optical resonator and control of this states
using light. In this work, we are inspired by the cavity Quantum Electrodynamics
(cQED) approach which uses the regime of strong coupling between, on the one hand,
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2 Introduction

an atom or an ensemble of atoms and, on the other hand, the electromagnetic (EM)
field of a cavity mode. Our purpose is to establish some basic experimental techniques
for this kind of experiments, as well as to formulate necessary theoretical models for
their adequate description. In addition, we consider some abstract theoretical models
which potentially can be realized in the electrons-on-helium system.

In the following, we will introduce the basic physics behind 2DES formed on the
surface of liquid helium and, in particular, emphasize some similarities of this system
with Rydberg atoms.

Electrons hovering above liquid helium

SEs on the free surface of liquid helium were theoretically introduced by Cole and
Cohen [30, 31] and, independently, by Shikin[32]. Soon after that, SEs were detected
in an experiment by Sommer and Tanner [33]. Such electrons are trapped near the
surface of a liquid by, on the one hand, an attractive potential from an ‘image charge’
under the surface due to the weak polarizability of helium atoms which constitute
the liquid and, on the other hand, a potential barrier at the vapor-liquid interface
due to hard-core repulsion from the helium atoms, see Fig. 1. According to quantum
mechanical principles, this allows such an electron to hover above the surface of liquid
helium at a distance of hzi � 10 nm, thus forming a two-dimensional (2D) electron
system.

Figure 1: An electron above liquid helium

The basic quantum-mechanical Hamiltonian of a single electron above liquid helium
is given by

H =
p2

2me

+ V (r): (1)

where me is the bare electron mass. Assuming an infinitely extended flat surface of
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liquid helium, the potential energy of electron reads

V (z) = V0�(�z)� �

z
�(z); (2)

where V0 � 1 eV is the height of repulsive potential barrier at the vapor-liquid interface,
�(z) is the Heaviside (step) function, and

� =

�
1

4��0

��
e2

4

��
�He � 1

�He + 1

�
: (3)

Here, the Coulomb constant � describes the image charge in the liquid and is deter-
mined by the dielectric constant of liquid helium �He. The total Hamiltonian H can be
separated into two parts, H = Hz 
 1 + 1
Hxy, which describe the orbital motion of
electron in the direction perpendicular to the surface (Hz) and parallel to the surface
(Hxy). In the z direction, the electron motion is quantized into the surface bound
states, which are the eigenstates jni of the Hamiltonian

Hz =
p2
z

2me

+ V0�(�z)� �

z
�(z)

=
X

En jnihnj :
(4)

The energy spectrum of this motion can be easily found by making some reasonable
approximations. By assuming a rigid-wall repulsive barrier at the surface, that is
V0 ! +1, the eigenfunctions �n(z) = hzjni and corresponding energy eigenvalues En
are obtained from a simple differential equation

�
� ~2

2me

@2

@z2
� �

z
� En

�
�n(z) = 0; (5)

with the boundary condition �n(z = 0) = 0. It is clear that this equation is identical
to that for the radial part of the eigenfunction (multiplied by r) of an electron with
the orbital quantum number ‘ = 0 in the hydrogen atom. Thus, we can immediately
write the energy eigenvalues in the form

En = �me�
2

2~2

1

n2
= �Er

n2
; n = 1; 2; 3; : : : ; (6)

where we introduce the effective Rydberg constant Er = me�=(2~2). For liquid helium,
the dielectric constant �He is close to unity due to the very weak polarizability of the
helium atoms. Therefore, the effective Rydberg constant for electrons on helium is
much smaller than the Rydberg constant for electrons in the hydrogen atoms. For two
isotopes of helium, 3He and 4He, the values of Er are given in Table 3.

The wavefuctions which satisfy the eigenvalue equation (5) are given by the well
known expressions identical to those for electron in the hydrogen atom, e.g. the wave-
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3He 4He
Dielectric constant �He 1.042 1.056

Bohr radius rB 10.3 nm 7.8 nm
Average distance hzi 15.4 nm 11.6 nm
Rydberg constant Er 36 meV (4 K) 63 meV (8 K)

n = 1! 2 transition frequency f12 65 GHz 114 GHz
n = 1! 2 transition moment z12 6.2 nm 4.7 nm

Table 3: The estimated effective Bohr radius, the average distance h1j z j1i from
an electron in the ground state to the surface, the effective Rydberg constant, the
n = 1 ! 2 transition frequency f12 = (E2 � E1)=h and the n = 1 ! 2 transition
moment, h1j z j2i, for SE on liquid 3He and 4He.

functions for the two lowest eigenstates are given by

�1(z) =
2

a
3=2
B

z exp

�
� z

aB

�
;

�2(z) =
1

2a
3=2
B

z

�
1� z

2aB

�
exp

�
� z

2aB

�
;

(7)

where

rB =
~2

me�
; (8)

is the effective Bohr radius. Again, because the dielectric constant of liquid helium is
close to unity, the effective Bohr radius for electrons on helium is about two orders of
magnitude larger than that for electron in Hydrogen atoms. The corresponding values
for 3He and 4He are given in Table 3. The energy eigenvalues and probability densities
j�nj2 for SE on liquid 3He are plotted in Fig. 2.

The radiation-induced transitions between eigenstates jni, which we usually call the
Rydberg states of SEs, were first directly observed by Grimes and Brown for electrons
on 4He [34]. For the resonant n = 1 ! 2 transition, they measured the transition
frequency of about 126 GHz, which is somewhat larger than predicted by the approxi-
mate model described above, see Table 3. Similar disagreement was fond later for SEs
on liquid 3He [35]. Most likely, the disagreement comes from approximating a finite
potential barrier V0 � 1 eV by the rigid-wall potential.

Usually, the motion of electrons in the z direction is independent from their in-
plane motion, thus each Rydberg state jni is infinitely degenerate. In case of a simple
Hamiltonian (1), the eigenstates of the total orbital motion of SE are the products
jni jpx; pyi, where hrjpx; pyi = (2�~)�1 exp (�i(pxx+ pyy)=~). The in-plane motion of
SE can be quantized by applying a sufficiently strong magnetic field perpendicular to
the liquid surface. This situation is one of the main subjects of this thesis, therefore I
would postpone the detailed discussion of SEs subject to magnetic fields until Chapters
1 and 3.
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interesting for future investigation.
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Chapter 2

Adiabatic Preparation of squeezed
states

2.1 Overview
We showed in the experiment detailed in Chapter 1 the strong coupling between two
quantum harmonic oscillators, i.e., the strong coupling between the cyclotron motion
of surface electrons on liquid helium and the microwave photons in the cavity. The
experimental realization of strong coupling to photons in a quantum system is one of the
prerequisites for implementing some protocol of coherent control of matter using light.
In this chapter, we deviate from the experiments and focus on developing theoretical
protocols that have potential use in experimental systems including the surface electron
system on liquid helium. I will present a theoretical study about the use of a single
two-level system coupled to an oscillator mode or coupled to a collective spin in order
to generate squeezed states by slowly changing the driving terms. The results of this
study are published in [72]1.

This chapter is structured as follows. Section 2.2 briefly explains why we study
the adiabatic preparation of squeezed states using Jaynes-Cummings-type systems.
Section 2.3 introduces the theoretical model and related concepts. In Section 2.4, we
introduce the Hamiltonian and identify the analytical solution for the eigenstate that is
followed adiabatically by the system. The system is prepared in the ground state of the
Jaynes-Cummings Hamiltonian, and subject to a gradually increased resonant driving
of the oscillator mode until a maximum critical strength. In Section 2.5, we study the
case of a two-level system coupled to an effective large collective spin, for which the
initial ground state also transforms adiabatically through a sequence of eigenstates,
and for which one may explore system eigenstates for all driving strengths. Finally,
Section 2.6 contains the conclusions and an outlook for this chapter.

2.2 Motivation
How might one prepare and manipulate the quantum states of matter using precisely
controlled light-matter interactions, especially into non-classical states which can be

1This chapter describes joint work with Prof. Klaus Mølmer, Aarhus University.
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used for high precision measurements and quantum information processing? This ques-
tion can be answered by studying various simple theoretical models. One of the simplest
non-trivial interacting quantum mechanical models is the one that contains a two-level
system(TLS) and a quantized harmonic oscillator (HO) mode which couples strongly to
that TLS. Yet, this minimalistic model can describe a wide range of experimental phys-
ical systems. Among them are atoms in cavities (cavity QED) [12, 13], cold trapped
ions [14, 15], superconducting qubits in microwave resonators (circuit QED) [17], elec-
trons on liquid helium [26, 27], and many others [73]. In this chapter, we are going
to study experimental protocols that can be implemented in these systems to generate
non-classical states called squeezed states.

Squeezed states of an oscillator mode are non-classical states, for which the fluc-
tuations in one of its quadratures are smaller than that of a coherent state [74–77].
Squeezed states of light hold potential for high precision optical measurements, and
squeezed microwave fields were recently shown to enhance the sensitivity in electron
spin resonance experiments [78]. The robust generation of such states is of interest
in many experimental systems with applications for sensing and quantum information
processing.

In the Section 2.4, we use the Jaynes-Cummings Model (JCM) [79], which describes
the interaction between the TSL and the HO with the rotating wave approximation
(RWA). Even with the simplification brought on by the RWA in the JCM, one can
see that the discrete nature of the bosonic mode leads to interesting features. These
features include, the ‘collapse and revival’ of Rabi oscillations, demonstrated by atoms
in microwave and optical cavities [12, 45, 80, 81], or coupling of the internal degree of
freedom to the center-of-mass motion of ions [14, 15, 82]. The non-linearity induced by
the two-level system causes an effective Kerr non-linearity. This leads to squeezing [83,
84], superpositions of coherent states of the oscillator [85], and, similar to classical
nonlinear systems, bistability and phase transitions are also present in the JC model
[86, 87].

We have investigated the generation of squeezed states by adiabatic evolution of a
JC system subject to a slowly varying coherent drive on the oscillator component, in
Sec. 2.4. In addition, we supplement the analysis of the oscillator with the study of a
single two-level system coupled to a large spin. Which might describe, for example, a
central spin coupled to the collective symmetric states of other spin 1/2 particles in a
spin-star configuration [88].

Collective spin squeezed states [89–91] have non-classical correlations (entangle-
ment) between their spin 1/2 constituents [92, 93], and they have been proposed for
use in precision clocks and magnetometers, and as entanglement sources for quantum
information protocols [6]. Spin squeezing of atomic ensembles may be obtained by
suitably engineered interactions. Using Rydberg blockade interactions, the use of laser
excitation pulses have been proposed to implement adiabatic protocols to drive a large
system of atoms into spin squeezed and entangled states [94, 95].

In Section 2.5, we study a case analogous to the JCM, namely that of a classically
driven spin interacting with a single two-level system, and we identify the states ex-
plored by this system under adiabatic variation of the interaction parameters. Unlike
for the oscillator, the states of the large spin are always normalizable, but they evolve
through spin squeezed and very non-classical quantum states.
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2.3 Concepts and methods

In this section, we are going to review the technical backgrounds of a few subjects
needed by the main part of the study. Firstly, we introduce the basics of quantum
harmonic oscillator and its squeezed states in Subsection 2.3.1. This is followed by
a brief review of the phase space representation of quantum states, which we use to
visualize our results in this chapter. Then we proceed to use the Jaynes-Cummings
model to describe the interaction between a two-level-system and the harmonic oscil-
lator. In Subsection 2.3.4 we introduce the properties of the large collective spins, the
spin squeezed states and their connections to harmonic oscillator.

2.3.1 Properties of quantum harmonics oscillators

Firstly we’ll review some important properties of the HOs, and uncertainty relations in
different states of HOs. Secondly, we define the phase space representations, so that it
can be used to visualize the quantum states in a intuitive way. These are the concepts
needed in Section 2.4.

The Hamiltonian of a harmonic oscillator can be written as

HHO =
P 2

2m
+

1

2
m!2X2 = ~!(aya+

1

2
); (2.1)

where X is the position operator, and P � �i~@=@X is the momentum operator.
These operators follow the canonical commutation relation [X;�i~@=@X] = i~.

The dimensionless annihilation operator a and its adjoint ay for the HO are defined
as

a �
r
m!

2~

�
X +

i

m!
P

�
; ay �

r
m!

2~

�
X � i

m!
P

�
; (2.2)

so that they follow the simple commutation relation
�
a; ay

�
= 1.

The exact values of m and ~ are irrelevant to the discussions, in the rest of this
chapter. The will be set to ~ = 1; m = 1. I will also use observable x, p which
correspond to position and momentum operator respectively,

x = (a+ ay); p = (a� ay)=i: (2.3)

With the definition of the HO, we are going to study the uncertainty of the observables
in the different states of HOs including the Fock state, the coherent state and the
squeezed state.

The uncertainty principle

The uncertainty of an observable is define by its standard deviation

�A =

q

A2
�
�


A
�2
; (2.4)

where A is an Hermitian operator and hAi its expectation value.



36 Adiabatic Preparation of squeezed states

One can show that [96]

�A2�B2 � jh�A�Bij2 =
1

4
jh[A;B]ij2 +

1

4
jhf�A; �Bgij2; (2.5)

where �A � A� hAi. This leads to the familiar uncertainty principle

�A�B � 1

2
jh[A;B]ij: (2.6)

Now we can see this uncertainty relation in the HO case. For the eigenstates of
(2.1), i.e., the Fock state aya jni = n jni, the uncertainty of x and p is simply

�x2
n = �p2

n = 2n+ 1 (2.7)

The ground state of HO, also called the vacuum state, jn = 0i, reachs the equal sign
in Eq. (2.6).

Coherent states

Coherent states of harmonic oscillators are the eigenstates of the non-hermitian anni-
hilation operator in [97–99], defined as

a j�i = � j�i : (2.8)

Unlike number states with n � 0, coherent states can be generated by applying a
spatially homogeneous periodic driving force to the harmonics oscillator, thus is the
most ‘classical’ pure state.

Let D(�) be a unitary displacement operator

D(�) � exp
�
�ay � ��a

�
= e�j�j

2=2e�a
y
e��

�a; (2.9)

The a coherent state can be generated by applying the unitary displacement operator
D(�) on the ground state j0i, i.e.

j�i = D(�) j0i = e�j�j
2=2
X �np

n!
jni ; (2.10)

where a j0i = 0.
One can use a variation of the Baker–Campbell–Hausdorff formula to evaluate the

transformation property of an operator. It reads

e�BAe��B = A+ �[B;A] +
�2

2!
[B; [B;A]] + � � � ; (2.11)

where B is an operator and � a number [100].

Dy(�)aD(�) = a+ �; Dy(�)ayD(�) = ay + �� (2.12)

The variance of the two quadrature in a coherent state j�i should be the same as
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the ones in the vacuum state j0i

�x2
coh = �p2

coh = 1: (2.13)

Eq. (2.13) is the theoretical limit of variance for a classically driven harmonic oscil-
lator or light, to further lower this value, one has to use non-classical quantum states,
which are the squeezed states.

Squeezed state of a quantum harmonic oscillator

A squeezed state in general refers to the state in which one observable’s fluctuation is
reduced even compared to that of the coherent state [101, 102]

�A <
1

2
jh[A;B]ij: (2.14)

Here the fluctuation of A is reduced at a cost of the increasing fluctuation in the other
observable B.

Squeezed light is important for modern quantum applications, because it reduces the
fluctuation of light to be below the classical limit. It allows us to push the precision of
measurements further than what is allowed by using coherent light. One can read more
about the development of squeezed light in quantum optics in the review papesr[103,
104].

One way of generating a squeezed state is by applying a unitary transformation of
higher power of a and ay. For example

S(�) = exp
�

1
2
(��a2 � �ay2)

�
= exp

�
i
2
r(X�Y�+�=2 + Y�+�=2Y�)

�
; (2.15)

where � = rei2� for r; � 2 R.
S(�) has the useful transformation property:

Sy(�)aS(�) = cosh �a+ sinh �ay = a cosh r � aye2�i� sinh r (2.16)

which shows that 1) one can reduce the uncertainty of one quadrature by applying
squeezing operator to a coherent state. 2) the eigenstate of linear combination of a and
ay can be obtained using D(�) and S(�).

It is useful to define

b � ua+ vay = cosh �a+ sinh �ay; (2.17)

which can have the canonical commutation relation
�
b; by

�
= 1 if the constraint juj2 �

jvj2 = 1 is imposed. The uncertainty the two quadratures for the eigenstates of b is

Var(x) = ju� vj2; Var(p) = ju+ vj2; (2.18)

when both � and � are real. These eigenstates of b are also called the generalized
coherent state [75, 105, 106].
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The squeezing of an arbitrary state is quantified by the squeezing parameter

�2 = 2 min
�2(0;2�)

Var(X�) = min
�

Var(ae�i� + ayei�); (2.19)

and for squeezed state S(�) j�i the squeezing parameter is

� = cosh � � sinh � = exp(��); (2.20)

for � > 0.

2.3.2 Quasi-probability representation of quantum states and
visualization

A quantum state cannot have a real probability distribution in the phase space in
the same way as in a classical system, because the probability of finding a particle
in a certain position and momentum in the same time is not well-defined. However,
when relaxing the axiom of probability one may define quasi-probability distributions
in the phase space to represent a quantum state in the phase space, such that . In this
chapter, we choose to use Wigner function and Husimi Q-function to visualize the state
which represents expectation values of symmetrically ordered and anti-normal ordered
characteristic functions respectively [107, 108].

An arbitrary mixed or pure quantum state is defined by density matrix

� =
X
i

pi j iih ij ; (2.21)

where the probabilities pi are non-negative and add up to one.
The quasi-probability representation of � can be defined by Fourier transforms of the

representations’ corresponding characteristic functions [67]. For one-dimensional sys-
tems, the characteristic functions for the Wigner-function and the Husimi Q-function
are

�(�) �
D
e�a
y���a

E
= Tr

�
�e�a

y���a
�
; (2.22a)

�A(�) �
D
e��

�ae�a
y
E

= Tr
�
�e��

�ae�a
y
�
; (2.22b)

which are the expectation values of the displacement operator in Eq.(2.9). The operator
in �A(�) is called anti-normal ordered, since the all the creation operators ay are placed
on the right side compared to the one in �(�).

Here we denote � � (x+ ip)=2 as the coordinates in the phase space. The Wigner
function W (�) and Husimi Q-function Q(�) naturally relate to their characteristic
functions by the Fourier transforms:

W (�) =
1

�2

Z
exp(���� ���)�(�)d2� (2.23a)

Q(�) =
1

�2

Z
exp(���� ���)�A(�)d2�: (2.23b)
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