<table>
<thead>
<tr>
<th>Title</th>
<th>Evolutionary biogeography of the reef-building coral genus Galaxea across the Indo-Pacific ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Patricia H. Wepfer, Yuichi Nakajima, Makamas Sutthacheep, Veronica Z. Radice, Zoe Richards, Put Ang, Tullia Terraneo, Mareike Sudek, Atsushi Fujimura, Robert J. Toonen, Alexander S. Mikheyev, Evan P. Economo, Satoshi Mitarai</td>
</tr>
<tr>
<td>Journal</td>
<td>Molecular Phylogenetics and Evolution</td>
</tr>
<tr>
<td>Volume</td>
<td>151</td>
</tr>
<tr>
<td>Page Range</td>
<td>106905</td>
</tr>
<tr>
<td>Year</td>
<td>2020-07-09</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Rights</td>
<td>This article/chapter was published in Molecular Phylogenetics and Evolution, Volume 151, Patricia H. Wepfer, Yuichi Nakajima, Makamas Sutthacheep, Veronica Z. Radice, Zoe Richards, Put Ang, Tullia Terraneo, Mareike Sudek, Atsushi Fujimura, Robert J. Toonen, Alexander S. Mikheyev, Evan P. Economo, Satoshi Mitarai, Evolutionary biogeography of the reef-building coral genus Galaxea across the Indo-Pacific ocean, Page 106905, (C) Elsevier 2020.</td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1394/00001771/</td>
</tr>
<tr>
<td>Creative Commons</td>
<td>Attribution-NonCommercial-NoDerivatives 4.0 International(https://creativecommons.org/licenses/by-nc-nd/4.0/)</td>
</tr>
</tbody>
</table>
Title: Evolutionary biogeography of the reef-building coral genus *Galaxea* across the Indo-Pacific ocean

Authors: Patricia H. Wepfer¹,²*, Yuichi Nakajima¹, Makamas Sutthacheep², Veronica Z. Radice³, Zoe Richards⁴, Put Ang⁵, Tullia Terraneo⁶,⁷, Mareike Sudek⁸, Atsushi Fujimura⁹, Robert J. Toonen¹⁰, Alexander S. Mikheyev¹¹, Evan P. Economo²† & Satoshi Mitarai¹,†

*S. Mitarai and E. Economo jointly supervised this research.

¹Marine Biophysics Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
²Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
³Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand
⁴The University of Queensland, Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, St. Lucia QLD 4072 Australia
⁵Trace and Environmental DNA Laboratory, School of Molecular and Life Science, Curtin University, Bentley, Western Australia, 6102 and Aquatic Zoology Department, Western Australian Museum, Welshpool, Western Australia, 6106
⁶Marine Science Laboratory, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People’s Republic of China
⁷Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
⁸ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia
⁹Coral Reef Advisory Group, Department of Marine and Wildlife Resources, Fatago 96799, American Samoa
¹⁰University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 96923, USA
Stony corals (Scleractinia) form the basis for some of the most diverse ecosystems on Earth, but we have much to learn about their evolutionary history and systematic relationships. In order to improve our understanding of species in corals we here investigated phylogenetic relationships between morphologically defined species and genetic lineages in the genus Galaxea (Euphyllidae) using a combined phylogenomic and phylogeographic approach. Previous studies revealed the nominal species *G. fascicularis* included three genetically well-differentiated lineages (L, S & L+) in the western Pacific, but their distribution and relationship to other species in the genus was unknown. Based on genomic (RAD-seq) and mitochondrial sequence data (non-coding region between *cytb* and *ND2*) we investigated whether the morphological taxa represent genetically coherent entities and what is the phylogenetic relationship and spatial distribution of the three lineages of *G. fascicularis* throughout the observed species range. Using the RAD-seq data, we find that the genus Galaxea is monophyletic and contains three distinct clades: an Indo-Pacific, a Pacific, and a small clade restricted to the Chagos Archipelago. The three lineages of *G. fascicularis* were associated with different RAD-seq clades, with the ‘L’ lineage showing some morphological distinction from the other two lineages (larger more asymmetrical polyps). In addition to these, three more genetic lineages in *G. fascicularis* may be distinguished – a Chagossian, an Ogasawaran, and one from the Indian-Red Sea. Among nominal taxa for which we have multiple samples, *G. horrescens* was the only monophyletic species. The mitochondrial non-coding region is highly conserved apart of the length polymorphism used to define L, S & L+ lineages and lacks the power to distinguish morphological and genetic groups resolved with genomic RAD-sequencing. The polyphyletic nature of most species warrants a careful examination of the accepted taxonomy of this group with voucher collections and their comparison to type specimens to resolve species boundaries. Further insight to the speciation
process in corals will require international cooperation for the sharing of specimens to facilitate scientific discovery.

Graphical abstract

Keywords

RAD-seq, phylogenetics, Scleractinia, cryptic species, biogeography, mitochondrial haplotype analysis, Indo-Pacific, Chagos, *Galaxea*
1. Introduction

Our understanding of scleractinian coral diversity and diversification processes is still
underdeveloped despite their fundamental role in one of the world's most diverse ecosystems
– coral reefs. Even on the family level the taxonomy and evolutionary history of the
Scleractinia are not fully resolved (Romano and Cairns 2000, Fukami 2008, Kitahara et al.
2010) and less than half of all scleractinian species have been analyzed with modern
phylogenetic methods. Traditional species delimitations based on macromorphological
characters such as attributes of the corallite or colony growth form have been shown to differ
from genetic classification and many taxonomic species may not represent evolutionary
coherent entities, especially when comparing specimens across geographic regions (Fukami,
2008; Kitahara et al., 2010; Pinzon et al., 2013; Torres and Ravago-Gotanco, 2018).
Furthermore, horizontal gene flow may be common in the Scleractinia (Mao et al., 2018;
Veron, 1995; Willis et al., 2006), which further complicates the definition of species.
Meaningful species delimitations are essential to understand evolution and diversification
history and are crucial for the implementation of conservation measures for the protection of
this threatened order (Ayre and Hughes, 2004). Using a phylogenomic and phylogeographic
approach, we here attempt to shed light on the ‘species problem’ (Bernhard, 1902) in corals
and holistically analyze the relationships between morphological, spatial, and genetic
differentiation using the genus *Galaxea* Oken, 1815, as a model.

Galaxea is a small Indo-Pacific genus (ten described species, Table 1, (WoRMS,
2019)), and along with its phylogenetic sister *Simplastrea* Umbgrove, 1939, form the sister
group to *Euphyllia* Dana, 1846 (Huang, 2012), although some uncertainties regarding the
relationship to *Euphyllia* exist (Kitahara et al., 2016). The genus was recently reclassified
from Oculinidae Gray, 1847, to Euphylliidae Veron, 2000 (Budd et al., 2012). The ten extant
taxonomic species accepted to date are differentiated by colony branching patterns, the
number of septa cycles, and corallite size (Veron and Stanfford-Smith, 2000). Among the ten
taxonomic species the most common is *Galaxea fascicularis* L., 1767, distributed from the
Red Sea to Micronesia, which is also the evolutionarily oldest species with a fossil record
dated to the Oligocene (PBDB, 2018). Although *G. fascicularis* depends on its photosynthetic
symbionts for nutrition (Radice et al., 2019), this species has been classified as ‘stress-
tolerant’ because of its ability to increase particulate feeding when subject to elevated
seawater temperatures such as due to climate change (Ferrier-Pagès et al., 2010; Marshall and Baird, 2000). The second most common taxon is *G. astreata* Lamarck, 1816, which geographically overlaps with *G. fascicularis*. The other eight species are much rarer and seem to be restricted to South East Asia (Veron and Stafford-Smith 2000). The genetic coherence of the taxonomic species and their phylogenetic relationships have never been investigated.

As in many other coral genera (e.g., *Stylophora* (Flot et al., 2011), *Acropora* (Ladner and Palumbi, 2012), *Pocillopora* (Combosch et al., 2008), *Heliopora* (Yasuda et al., 2015; Yasuda et al., 2014), and *Seriatopora* (Warner et al. 2015), there are morphologically ‘cryptic’ but genetically highly differentiated lineages within the taxon *G. fascicularis* (for definition of ‘cryptic’ see (Bickford et al., 2007)). These lineages are relatively well-studied in the Ryukyu Islands, Japan, where two distinct types of *G. fascicularis* had originally been distinguished based on variation in the nematocyst anatomy (Hidaka 1992). They were later found to differ in the length of a mitochondrial non-coding region by almost 300 bp (intergenic region between *cytb* and *ND2*) (Watanabe et al. 2005), and microsatellite markers revealed that the they were genomically well differentiated lineages (Abe et al., 2008; Nakajima et al., 2015). Reproductive studies observed shifted spawning times in the field (Heyward et al., 1987; Yamazato, 1988) and the lineages to rarely cross-fertilize under laboratory conditions (Abe et al. 2008a). According to their mitochondrial length variation the two lineages had been referred to as ‘S’ and ‘L’ for a short or a long intergenic region, respectively. A third lineage from Japan 'L+' was found more recently, which has three more base pairs than ‘L’ in the respective mitochondrial region and differs from both lineages in the nuclear genome (Nakajima et al. 2016). The three lineages exist in sympathy on the coral reefs in in the Ryukyu Islands (Hidaka 1992), indicating either sympatric ecological segregation or neutral differentiation in an allopatric past, e.g. the currently observed sympathy could be the result of a relatively recent breakdown of a dispersal barrier, such as sea level rise after the Pleistocene (Bowen et al., 2013; Carpenter et al., 2010). However, their geographic distributions elsewhere or potential microhabitat differentiation have not been studied.

On the other hand of cryptic diversity, phenotypic plasticity of colony form within a lineage can result in a single valid species encompassing multiple nominal taxa - e.g., *Pocillopora* (Johnston et al., 2017; Marti-Puig et al., 2014; Paz-Garcia et al., 2015), *Stylophora* (Arrigoni et al., 2016), *Seriatopora* (Bongaerts et al., 2011), *Montipora* (Forsman et al., 2010), *Porites* (Forsman et al., 2009). One way to identify cryptic species and
phenotypic plasticity is to examine phylogenetic relationships along a deeper time scale and across a more inclusive phylogenetic group instead of a locally restricted or taxonomically pre-selected number of species (Bickford et al., 2007). The extent of the genetic differentiation between the lineages in *G. fascicularis* has never been compared to other species within the genus and it is unclear how these lineages phylogenetically relate to each other and other lineages across the taxonomic range of *Galaxea*.

Here we investigated the relationships between the taxonomic species and genetic lineages in *Galaxea*. We specifically asked whether the nominal species based on gross colony morphology represent biologically meaningful entities from a phylogenetic perspective, and how the cryptic lineages in *G. fascicularis* are related and distributed across the nominal species range. We gathered field and museum collections of the taxonomic species *G. fascicularis, Galaxea horrescens* Dana, 1846, *Galaxea cryptoramosa* Fenner & Veron, 2000, *G. astreata*, and *Galaxea paucisepta* Claerbout, 1990, across the Indo-Pacific and used restriction site-associated DNA (RAD) sequencing to obtain a thorough genomic delineation. RAD-tag sequences are useful for both population genetics (Andrews et al., 2016) and to address phylogenetic inference between recently diverged lineages (Cariou et al., 2013; Emerson et al., 2010), and are therefore ideal for analyzing within-species differentiation in *G. fascicularis*, as well as interspecific relationships in the genus *Galaxea*. We investigated depth segregation and analyzed polyp size variation between the morphologically cryptic lineages in *G. fascicularis* to see whether they could vary in their habitat as a potential mechanism of ecological segregation (Prada and Hellberg, 2013; Serrano et al., 2014). We further analyzed the characteristic mitochondrial non-coding sequence between the genes *cytb* and *ND2* (Watanabe et al., 2005). By geographically mapping the distributions of the mitochondrial, morphological, and genomic diversity, we finally discuss potential influences of biogeographic processes for the evolutionary history of *Galaxea*.

2. Material and Methods

2.1. Specimen collection and identification

Galaxea specimens were collected from across the Indo-Pacific distribution range of the genus (Fig. 4) and of six nominal species (*G. fascicularis* (589), *G. astreata* (9), *G. cryptoramosa* (4), *G. paucisepta* (2), *G. horrescens* (6), *G. longisepta* (1 museum specimen). Field collections were gathered from the Red Sea (15, King Abdullah University of Science
and Technology), Maldives (10), Chagos (10), the Great Barrier Reef (5, University of Queensland), Western Australia (12, Curtin University), Thailand (205, Ramkamhaeng University), Taiwan (6) and Dongsha (6, Academia Sinica), Japan (292), Hong Kong (13, University of Hong Kong), American Samoa (5) (Coral Reef Advisory Group), and Guam (9, University of Guam). To further increase geographic coverage, field collections were complemented with museum specimens from the National Museum of Natural History, Washington D. C. (Smithsonian Institution, 18), the Naturalis Biodiversity Center, Leiden (2), and the Museum of the University of the Ryukyus Fujukan, Nishihara (16). All specimens used, including their sampling location and available metadata, are listed in Tables S1 and S2.

Species identification was performed analyzing field photographs (Fig. 1) and remaining collection material when available (Table S1). In particular, following Veron, (2000) and an unpublished taxonomic treatment given by van der Veer (2007), the following morphological characters were considered to identify species: the number of septa cycles, the size of polyps, and branching morphology. In *G. fascicularis*, primary and secondary septa are similar or same in size so that the number of primary septa appears to be irregular or extended. This feature can be observed through the coral tissue, which is why this taxonomic species may be readily identified in the field or from field photographs, together with the feature of massive and not branching colony morphology. Specimens with laminar growth form and in which polyps had unequal septa cycles containing six uniform septa each and for which polyps were > 3.5 mm in diameter were assigned to *G. astreata*. Specimens that were similar to *G. astreata* but had smaller polyps (< 3.5 mm) with strictly 2 septal cycles, out of which the second did often not reach the columnella, were assigned *G. paucisepata*. The identification of these two species required the examination of polyp skeleton material at the corallite level (Table S1). For further details regarding the identification of *G. astreata*, *G. paucisepata* and *G. cryptoramosa* see Supplementary Information. Specimens that were thinly branched and had small polyps shorter than the width of the branch they were sitting on were assigned *G. horrescens*. Specimens that exhibited any form of irregular branching patterns were assigned *G. cryptoramosa* following Van der Veer (2007). Identification of specimens from Dongsha Atoll and Taiwan Island, and most from Western Australia were visually confirmed by the sample providers from these areas (Allen Chen, Zoe Richards, respectively).
Six outgroup specimens were also collected and added to the phylogenetic analysis for rooting purposes and to test for the monophyly of *Galaxea*. Three species within the Complex clade of the Scleractinia with two specimens each were chosen, including the closely related *Euphyllia c.f. ancora* and *Pachyseris c.f. speciosa*, and two specimens of *Acropora digitifera* (Huang 2012).

2.2. DNA extraction

Holobiont DNA from field collections were extracted using the DNeasy® Blood & Tissue Kit (Qiagen, Hilden, Germany). The manufacturer's protocol was followed with modifications of an extended initial incubation time for tissue lyses at 56°C (4 –10 h), the addition of 4ul of 100x RNAse A after lysis, and the application of a 1.5–2 times larger volume of EtOH for denaturation for separating extensive amounts of mucus from the watery phase.

Archival DNA was extracted from 40 museum samples that were satisfying the criteria of having sufficient material, being of acceptable quality (i.e. without visible mold or algal contamination), and not showing signs of chemical treatment for preservation purposes (i.e. smell of xylene). Specimens from the National Museum of Natural History, Washington D.C., and the Naturalis Biodiversity Center, Leiden, were extracted and treated in collaboration with the ToBo laboratory at the Hawaii Institute of Marine Biology. Particularly careful precautions against contaminations were taken for the extraction of museum specimens as DNA is usually degraded and the yield is low, including sterilization of tools with 10% bleach, 99% EtOH, and Bunsen burner in between processing of each specimen, and autoclaving of tubes and tips. To remove potential surface contamination from the dried specimens, skeleton pieces were soaked in 70% EtOH for 10 min to 1 h and air-dried. The DNeasy® Blood & Tissue Kit extraction protocol was adjusted to a larger quantity of extraction material of 0.2–1.3g per specimen and a longer denaturation incubation time of 18–22 h at 56 °C with a larger amount of extraction buffer and Proteinase K (up to 10x more). After this step, the manufacturer's protocol was followed. Based on yield and quality of the DNA fragments (> 500 bp bands on Agarose gel after electrophoresis), 28 specimens were chosen for sequence analysis.
2.3. RAD-seq analysis

2.3.1 Library preparation and assembly

A total of 293 specimens were genotyped using RAD-tag sequencing. We used a RAD-protocol (Tin et al., 2014) that is designed for low quantities of degraded DNA and may therefore be suited to process marine invertebrate DNA for which quantity and quality are often low. It involves a single digestion with the restriction enzyme EcoR1 and produces short final fragments of 35-50 bp. Libraries were single-end sequenced using the Illumina HiSeq platform at the Okinawa Institute of Science and Technology. Raw reads were quality filtered and trimmed using Trimmomatic v.0.35 (Bolger et al., 2014). Samples with non-sufficient amplification (many of the museum specimens) were dropped, leaving 272 specimens for loci assembly. Raw sequences were submitted to Genbank (BioProject PRJNA576132, BioSamples SAMN12925065-SAMN12925355).

Loci were assembled in ipyrad v.0.7.19 (Eaton 2015) based on partially assembled Galaxea reference sequences provided by the ReFuGe2020 consortium (Liew et al., 2016; Voolstra et al., 2015) and unassembled raw reads from a previous study (Nakajima et al., 2015). Reads were filtered to be minimally 35 bp long to enter assembly analysis in ipyrad and clustered using a threshold of 0.9. A minimum depth of 6 and maximum depth of 10,000 within samples were used for base calling. Only biallelic sites were considered. Maximally, four uncalled bases (Ns) and eight heterozygotes in consensus sequences were accepted and a locus was allowed to have maximally 10 SNPs and 8 indels. A locus needed to be represented in at least three samples. It has been shown that the random loss of loci due to low sequence coverage across specimens of hierarchical redundancy should not affect deeper phylogenetic relationships (Eaton et al., 2017). Therefore, and based on experience with a similar RAD approach in other phylogenetic projects (Fischer et al., 2015, Darwell et al., 2020), we accepted this relatively low vertical coverage of three specimens per locus (and a high gappyness of our data) in our main analysis, in order to reveal the maximal resolution of deeper relationships between groups of hierarchically equal specimens. However, as a supplemental analysis the effect of higher vertical coverage on phylogenetic relationships was also evaluated by filtering the final dataset to loci contained in at least 27 (10%) or 68 (25%) specimens. Finally, loci were trimmed by 5 bp at the 5' end by 5 bp because these contained too many inconsistent variable sites. From the mapping statistics, we then again excluded Galaxea individuals that had less than 1000 loci (two individuals). The ipyrad read
statistics and phylip file may be retrieved from the supplement (Table S4 and supplementary file 1).

In order to assess the risk of contamination of our RAD-reads and the reference genome with symbiont DNA, the assembled loci were blasted against a custom Symbiodiniaceae database using the same clustering threshold as ipyrad (90% identity). The Symbiodiniaceae database was composed of published genomic and transcriptomic sequences: genome clade B (Shoguchi et al., 2013), transcriptomes of subclades A, A3, B, B1, C1 (Pinzón et al., 2015), and transcriptomes of clades C and D (Ladner et al., 2012). We further screened our loci for bacterial, archaeal, or viral contamination using a k-mer based identification approach in Kraken v.1 (Wood and Salzberg, 2014). We used the ready-built KrakenMini_DB_8GB provided by the program developers.

2.3.2. Phylogenetic inference and network construction

From the filtered 272 specimens a phylogenetic tree was estimated based on the SNP phylip output file with a maximum likelihood approach using ExaML v.3 (Kozlov et al., 2015). Twenty random starting trees were generated using RAxML v.8.2.4 (Stamatakis, 2006) and given as input to ExaML. ExaML was run under the PSR model to find the most likely tree. The same was also done in our supplemental, more filtered datasets (loci coverage > 27, or > 68 specimens). Node supports were estimated for our main analysis (3 specimens) using Bootstrap analysis with 468 iterations. Bootstrapped alignments were created in RAxML and likelihood searches were performed in ExaML as described above. Convergence of the Bootstrap replicates was confirmed in RAxML using the autoMRE option (converged after 450 replicates). Direct supports (frequencies) for bipartitions were drawn on the tree using RAxML. In addition, we used Booster (Lemoine et al., 2018) to calculate branch supports. Booster implements a newly developed method of gradual distance measurements between branches and is thought to perform better for large datasets derived from next generation sequencing than traditional Felsenstein-statistics, because the presence of a single uncertain specimen results in the uncertainty of the whole clade (Lemoine et al., 2018). The booster instability metric for each specimen is given in Table S3. Specimens with high booster instability are considered to be of uncertain phylogenetic position (Lemoine et al. 2018) and may explain low Felsenstein Bootstrap supports of clades that include them.

To further evaluate the evolutionary relationships in Galaxea and to detect the potential existence of incompatible loci in the genomes, we computed a network using the
Neighbor-Net algorithm implemented in SplitsTree v.4.15.1 (Huson, 1998). We used the Hamming method to calculate pairwise distances based on the same SNPs as for the phylogeny.

2.3.3. Admixture and DAPC analysis
In order to investigate potential species delimitations the 264 *Galaxea* specimens (without outgroup specimens) were further analyzed in their genetic structure, using Admixture v.1.2 (Durand et al., 2011) and discriminant analysis of principal components (DAPC). For these the ipyrad VCF output file was filtered using VCFtools (Danecek et al., 2011) to only include SNPs that were present in at least 50% of all *Galaxea* individuals, which reduced the number of sites to 2275. The VCF file was transformed into a Plink bed file using PLINK v.1.9 (Chang et al., 2015) before running Admixture with default settings for K=1, 2, 3, …, 21. K with the smallest cross validation error (CV error) was inferred to determine the most likely number of ancestral lineages (Fig. S3). The results were plotted as barplots in R v.3.4 (R Core Team, 2015), once ordered by sites and cluster (Figs. 3) and once ordered by sites and individuals (Fig. S4).

A series of DAPC was run using the R adegenet package (Jombart and Ahmed, 2011). We first analyzed all *Galaxea* samples together. A principal component analysis (pca) was performed using the grPca function. The best number of clusters K was found using the function find.clusters based on the lowest value of the Bayesian Information Criterion (Fig. S6). As several highly similar K values were found (K=6, 7, or 8), each of the two main *Galaxea* clades from the phylogeny (Pacific and Indo-Pacific clade) were also analyzed separately. The number of principal components to retain was chosen so that at least 80% of the variation is retained, resulting in 100 principal components for the analysis on all specimens and the one on the Pacific clade, and 60 principal components for the analysis on the Indo-Pacific clade (Fig. S7). The clusters were then analyzed using DAPC and plotted as scatterplots (Fig. 5). Cluster assignments of individuals for all five analyses are given in Table S5.

2.4. Mitochondrial haplotype analysis
The *Galaxea* characteristic mitochondrial non-coding region between *cyt b* and *ND2* was analyzed by Sanger sequencing using published primers and protocols (Nakajima et al., 2016). Each polymerase chain reaction (PCR) contained 1µl of 8 µM primers, 2 µl MilliQ water, 5 µl AmpliTaq Gold Master Mix (Applied Biosystems, Thermo Fisher Scientific), and
1µl holobiont DNA. PCR products of successfully amplified samples were purified using ExoSAP-IT (Affymetrix, Santa Clara, CA, USA) and sent for single-end sequencing to Macrogen Japan Corporation, except for 16 museum specimens from Fujukan, which were sequenced in-house following (Nakajima et al., 2016). In total 135 specimens were sequenced in their mitochondrial region (chromatograms may be viewed in Supplemental file 2).

DNA sequences were examined and processed using Geneious v. 9.1.2 (Biomatters Ltd.). Low quality base calls at the ends and primer sequences were removed. Some specimens, especially the museum specimens, showed signs for containing multiple haplotypes, i.e. both the longer L and shorter S sequences, resulting in double peaks in the DNA chromatograph (indicated in Table S1). For these specimens, only the dominant sequences were taken if the peaks were an order of magnitude larger than those of the minor background sequences, and if they were identical to a sequence in at least one of the other specimens. Sequences of too low quality were removed entirely. The clean sequences were aligned to each other and previously published haplotype sequences by Watanabe et al. (2005) (LA-LE and SA-SC), and Nakajima et al. (2016) (Watanabe’s LA and SA as “L1” and “S1”, respectively, “L2” for here called LF and L+, Genbank accession numbers LC155810 - 3). Previously unknown sequences (LG – LP, SB) were submitted to Genbank (accession numbers MK054259 - MK054269). TCS haplotype network topology was inferred using TCS v. 1.21 (Clement et al., 2002) and the network was drawn using PopART (Leigh and Bryant, 2015) and Adobe Illustrator. The geographic distribution of the haplotypes was mapped using PopART and adjusted in color using Adobe Illustrator and GIMP software. The Nexus input file for PopART and TCS are given in the Supplement (Supplementary file 3).

For 199 additional specimens we determined the mitochondrial main type S, L, or L+ by fragment length analysis following the procedures described in Nakaema and Hidaka (2015). Specimens were assigned type L if they had a fragment size of 457 bp, S if their fragment size was 167 bp, and L+ if their fragment size was 460 bp. Specimens with equally abundant multiple fragment sizes were excluded from the analysis. In order to infer the relationship between the mitochondrial and genomic differentiation, the mitochondrial types were mapped onto the RAD-seq phylogeny where available.
2.5. Morphological and depth-differentiation between lineages of *G. fascicularis*

In order to infer any indications for potential ecological evolution between the three lineages ‘L’, ‘S’, ‘L+’ in *G. fascicularis*, we compared their depth distribution and skeletal corallite morphology of 334 specimens from two geographic regions (Thailand and Japan). For most specimens from Japan both RAD and mitochondrial data was available, for other specimens we only used mitochondrial fragment length data for lineage identification (Table S1).

We assessed depth distributions among the lineages based on depth recordings for 176 specimens from Japan and 157 specimens from Thailand using a diver computer. The reading was corrected for the tidal level of the sampling site at the time of collection to represent average depth. The distributions were visualized by boxplots for each sampling site and lineage separately using R.

We quantified polyp sizes in 157 specimens from the Ryukyu, Daito and Ogasawara Islands (Japan) based on size-standardized field photographs using Fiji v.2.0.0 (Schindelin et al. 2012). For each specimen, polyp maximal diameter, polyp minimal diameter, and distances between polyps were measured in 3–5 measurements from representative polyps of a colony and averaged within a specimen. Fractions of minimal and maximal diameters were calculated (‘shape’), and relative distances between polyps were calculated as fractions of measured distance to the maximal diameter (‘dist.rel’). A principal component analysis (PCA) was performed to depict morphological variation in two dimensions using the morph.pca function and plotted with the ggbiplot function in R. Variation in maximal polyp diameter between the lineages was additionally tested in a Kruskal-Wallis rank sum test, after confirming a non-normal distribution of this trait in a Shapiro-Wilk normality test. Skeletal features of the corallite (septa) were additionally examined based on 83 specimens with available material (Table S1), including the number of cycles and the number of septa in each cycle.

3. Results

3.1. RAD-seq phylogeny and network

The RAD-seq analysis revealed 214,705 loci and 456,846 unique patterns that were shared by 3 or more individuals. Most museum specimens (26) except for two from Tanzania and Indonesia had to be discarded due to insufficient data (less than 1000 loci). In addition, four field specimens from Miyako (1), Taiwan (2), Daito (1), and Chichi Island (1) were also removed due to insufficient data. Most loci were represented in less than a quarter of the
individuals, resulting in a relatively high ‘gappyness’ of our data (0.901, see full ipyard read
statistics in Table S4). In average, 14322 loci were covered in a Galaxea individual. This
number was smaller in the outgroup specimens (1072 loci), as well as in the Chagossian
small clade (9597 loci) and in G. horrescens (5873 loci, Table S4). Only 27 loci (0.01%)
mapped to sequences of Symbiodiniaceae and none of the loci were classified to be of
bacterial, archaeal, or viral origin by k-mer analysis. For the filtered datasets we retrieved
183,500 and 29,657 unique patterns that were present in at least 27 or 68 specimens,
respectively.

The node supports for deeper nodes and nodes clustering geographic locations were
high (Booster supports 0.8-1, Felsenstein bootstraps 60-100%). Supports were lower for
nested, terminal clades within geographic regions (Booster supports <0.8), especially
considering direct bootstrap frequencies (0- 20% for some nodes in the Pacific clade). Clades
with very low bootstrap values contained at least one specimen with a high Booster
instability score >1 (Fig. 2, Table S3). Specimens with high Booster instability scores tended
to have fewer loci (8769) than other specimens (14308) in average (Table S3), which may be
responsible for some of the instability.

The phylogeny confirmed that the genus Galaxea is monophyletic with respect to the
outgroup genera Euphylia, Pachyseris, and Acropora. Galaxea largely clustered into three
well-supported main clades (Fig. 2): a small clade only represented in Chagos and sister to all
other specimens (hereafter referred to as ‘Chagossian Clade’), an Indo-Pacific clade
containing specimens from the Red Sea, the Indian Ocean, and lineage ‘S’ from the central
Indo-Pacific (hereafter referred to as 'Indo-Pacific Clade'), and a Pacific clade comprising
lineage ‘L+', lineage ‘L’ and all nominal species (hereafter referred to as 'Pacific clade', Fig.
2). This was consistent in our supplemental analysis with higher vertical coverage, except for
unstable placement of the outgroup Acropora (Figs. S1, S2), which is probably related to low
coverage recovered for that taxon.

Within these main clades, specimens cluster according to geographical closeness. In
the Indo-Pacific clade, specimens from the Red Sea formed a sister group to an Indian Ocean
clade (Chagos and Maldives) and a clade containing samples from Asia and Australia. An
exception in the geographical structuring represented a specimen from Thailand PW289,
which was sister to all other individuals in this clade, which was confirmed to be a hybrid of
the two main clades (Fig. 3), In the Pacific clade, the G. fascicularis ‘L+’ - lineage formed a
strongly supported clade sister to the taxonomic species *G. horrescens* and all other specimens. The remaining specimens within the Pacific clade grouped to a south-eastern Pacific subclade containing specimens from American Samoa and the Great Barrier Reef, and two subclades containing Western Australian and Asian specimens, respectively. Finer geographic resolution could not be obtained and clades according to sampling sites within island archipelagos or regions remained unresolved. Notably, all islands of the Ryukyu archipelago (Japan) were mixed in a Ryukyu clade, unless they belonged to clonal clusters (for example specimens from Iheya in the Pacific clade, see Wepfer (2018)). In the supplemental analysis using fewer loci the geographic clustering was less clear (Figs. S1, S2).

Taxonomically, *Galaxea fascicularis* was polyphyletic, occurring throughout the phylogeny. *Galaxea astreata* was also polyphyletic represented across most parts of the Pacific clade and also in the Indo-Pacific clade. All other taxonomic species (*G. horrescens*, *G. cryptoramosa*, *G. paucisepta*) were included in the Pacific clade. *Galaxea horrescens* was monophyletic with specimens from two geographic regions (Guam and Western Australia). *Galaxea astreata*, *G. paucisepta* and *G. cryptoramosa* from the Ryukyu Islands were genomically undifferentiated from each other but clearly distinct from *G. fascicularis* specimens in the Ryukyu Islands. The cryptic lineages in *G. fascicularis* were split between the main clades; lineage ‘S’ was nested in the Indo-Pacific clade, and lineages ‘L’ and ‘L+’ were grouped in the Pacific clade.

The Neighbor-Net network (Fig. 3) was consistent with the phylogeny in distinguishing a Pacific clade L, clade L+, an Indo-Pacific clade, and a Chagossian clade. *G. horrescens* was placed closer to the outgroup *Euhphyllia* in the network instead of being nested within the Pacific clade like in the phylogeny. The geographic grouping within the main clades was also less clear than in the phylogeny, except for the somewhat distinct clades defined by specimens from Ogasawara, the Indian Ocean and the Red Sea.

3.2. Admixture and DAPC

Based on 2275 filtered SNPs (filtered to be represented in 50% of all specimens), Admixture determined K=7 as the most likely number of ancestral lineages in the genus *Galaxea* (Figs. 4, S3). K=3 and K=5 were the next most likely numbers of ancestral lineages in our data and are shown to infer relatedness between the seven main lineages. Admixture agreed with the phylogeny in identifying three main groups, a Chagossian group, an Indo-Pacific group containing the Admixture lineages ‘Indo-Pacific-a’ from the Indian Ocean and ‘-b’ from the...
central Indo-Pacific, and a Pacific group containing four lineages (‘Pacific-a’ to ‘-d’).

‘Pacific-a’ is spread across the entire Pacific and contains apart from *G. fascicularis* also *G. astreata*, *G. paucisepta*, and *G. cryptoramosa* from Okinawa, while ‘Pacific-b’ and ‘Pacific-c’ are local to the Ryukyu Islands and Ogasawara, respectively. ‘Pacific-d’ represented by *G. horrescens* and *G. fascicularis* lineage ‘L+’ is a well-defined already at the K=5-level and is a mix of the ancestral Chagosian and Pacific lineages at the K=3-level. One Thai specimen (Thai_PW289) was mixed of ancestral lineages belonging to different phylogenetic clades, containing ‘Indo-Pacific-b’ and ‘Pacific-a’ to equal parts (Fig. S4).

DAPC found K=6, 7, or 8 to be the most likely number of clusters in all *Galaxea*, and K=4 to be the most likely number of cluster in the Pacific clade and Indo-Pacific clade (Fig. S6, Table S5). The Chagosian clade clustered very distantly to all other clusters in the analyses over all *Galaxea* (‘Cluster Chagos’, Fig. 5a). After that, all analyses agreed in a cluster for lineage L+ (‘Cluster L+) and one for the Ogasawaran specimens (‘Cluster Ogasawara’, Fig. 5a, b). The analysis on the Pacific clade further distinguished a cluster for *G. horrescens* (‘Cluster Horrescens’) from a large Asia-Pacific cluster (‘Cluster L’, Fig. 5b), and the analysis on the Indo-Pacific clade distinguished a cluster for the Red Sea (‘Cluster Red Sea’) from the Indian Ocean (‘Cluster Indian’) and separated a cluster from mainly Hong Kong (‘Cluster Hong Kong’) from the other Asian and Australian specimens (‘Cluster S’, Fig. 5c, Table S5).

3.4. Mitochondrial haplotype diversity

Across all locations and taxonomic species, 12 mitochondrial haplotypes were found, two haplotypes that were 135 bp short (S subtypes) and 10 haplotypes that had the longer 467 bp or 470 bp sequences (L subtypes: LA, LG-LP, L+). LA and SA were the most widely distributed and most frequent types. Most of the other haplotypes differed only by a single substitution from LA and were only represented in one specimen. These rare haplotypes were collapsed into LA for simplicity (Fig. 6). The complete resolution of the haplotype network including the haplotypes that were not found here but were reported previously (LA-LE, SA, SB Watanabe et al., 2005), and (LF; Nakajima et al., 2016) may be retrieved from the supplement (Fig. S5). SB only differed by one bp from SA but was common in Taiwan and in the Great Barrier Reef. LH only occurred in *G. horrescens*. The specimens from the Chagosian RAD-seq clade could not be amplified in this marker (multiple bands of the PCR product in gel electrophoresis).
The mitochondrial haplotypes mapped inconsistently to the RAD-seq phylogeny. The Pacific clade contained mostly the longer L subtypes (LA-LP, except for LJ), but also contained the shorter S type in some specimens from the Ryukyu and Daito Islands. The Indo-Pacific clade contained both L and S subtypes (LA, LJ, SA, SB); the Pacific specimens had haplotypes SA or SB, and most specimens from the Indian Ocean and the Red Sea were associated with LA or LJ (Fig. 2, 5).

3.5. Depth distribution and morphological variation between lineages in *G. fascicularis*

Within sampling sites, no obvious difference in depth distributions among the lineages ‘S’, ‘L’, and ‘L+’ in *G. fascicularis* were found (Fig. S7). However, in Thailand the relative abundances of ‘S’ and ‘L’ lineages differed by sampling site and depth. Sites in Trat were shallower (3.7 m mean depth) and had more of the S than L type, whereas sites in Chumphon were deeper (5.6 m mean depth) and had more of the L type.

The first two dimensions of the PCA explained 84% of the total morphological variation in polyp size, polyp shape, and distance between polyps (Fig. 7). The three lineages ‘L’, ‘L+’, and ‘S’ in *G. fascicularis* largely overlapped in the ordination space. However, lineage ‘L’ may grow larger and more asymmetrical polyps (more ellipsoid than circular) than the other lineages as shown by differences along the PC1 axis corresponding to polyp size and differences along the PC2 axis corresponding to polyp shape (ratio between the longer and shorter polyp diameter). The non-parametric Kruskal-Wallis test detected a significant difference in maximal polyp diameters between genetic lineages (Chi-squared = 31.879, df = 2, p-value ≤ 0.001) but polyp shape did not have an effect. The number of septa cycles or their sizes (hierarchy) septa were variable (2-3 cycles, sometimes with indistinguishable hierarchy, each with 6-8 septa) but did not differ between the three lineages (Table S1).

4. Discussion

We investigated genetic differentiation in the genus *Galaxea* across its distribution range and assessed morphological variation and depth distribution between the cryptic lineages ‘L’, ‘S’, and ‘L+’ of the taxonomic species *G. fascicularis* in the Ryukyu Islands, Japan. We found that *Galaxea* was monophyletic with respect to the outgroup specimens and clustered into three distinct clades, an Indo-Pacific, a Pacific, and a small Chagossian clade sister to the two other clades. The clades may be further split into seven to nine separate lineages (Table 2). *Galaxea fascicularis* was spread across all clades and thus clearly paraphyletic, as was *G.*
astreata. *Galaxea horrescens* was the only monophyletic named species. The in *G.*
fascicularis commonly used mitochondrial marker (non-coding region between *cyt b* and
ND2) only partially matched the genomic divergence and underestimated the diversity in the
genus. The previously described cryptic lineages in *G. fascicularis* belonged to separate
clades and differed morphologically in that lineage ‘L’ tended to have larger polyps than the
other two lineages ‘S’ and ‘L+’.

4.1. Morphological diversity and taxonomic implications

The most common and best known species *Galaxea fascicularis* is polyphyletic and may
under consideration of a phylogenetic species concept (Donoghue, 1985) not be a valid taxon
as it is described and applied today (van der Veer, 2007; Veron, 2000): it intermingles with
other nominal species throughout our phylogenetic tree (Fig. 2). There are at least four
(Chagossian, ‘L+’ ‘S’, and ‘L’) but up to eight genetic entities that have the morphology of
G. fascicularis (see discussion below, Table 2). Some of the entities (‘L’ vs. ‘S’ and ‘L+’)
tend to differ in polyp size and shape (Fig. 5), but no other morphological or environmental
characteristics analyzed here varied. At least two of the entities (lineages ‘L’ and ‘S’) also
seem to be reproductively isolated from each other (Abe et al. 2008a) and thus may satisfy
the biological species concept (Mayr, 1942). However, non-monophyletic species are
increasingly accepted (Carnicer et al., 2019), and a future taxonomic analysis should
evaluate reproductive isolation in depth, as well as consider more and other morphological
traits, perhaps such as those associated with the soft-tissue (Hidaka, 1992), to finally decide
whether the taxon *G. fascicularis* should be split into separate formal species.

Galaxea astreata, G. cryptoramosa, and *G. paucisepta* were different from *G.*
fascicularis from the same location (Okinawa), but were molecularly undifferentiated from
each other and *G. fascicularis* from other parts of the Pacific, belonging to the same ancestral
lineage ‘Pacific-a’ (Figs. 2, 3, 4). How these specimens relate to other conspecific
individuals, for example from their respective type areas (all within Coral Triangle) and what
constitutes within versus between species differentiation for the genus remain to be
investigated in future studies. Particularly problematic is *G. astreata,* for which the name is
used inconsistently (Van der Veer, 2007; Veron & Stafford-Smith, 2000) and the original
description by Lamarck, 1816, is vague.

Out of the six taxa examined, *Galaxea horrescens* was the best-defined species and
may be the only valid taxonomic species recognized in this genus under the phylogenetic
species concept (Donoghue, 1985). Specimens from multiple locations formed a monophyletic clade based on the RAD data and were also distinct in their mitochondrial haplotype (mostly LH). Uncertainty exists regarding its phylogenetic position: in contrast to the phylogenetic tree, Admixture and DAPC analysis, the network places *G. horrescens* separate from the Pacific clade and next to the outgroup species *Euphyllia* (Fig. 3). It is possible that this pattern resulted from hybridization with *Euphyllia*, and future studies should clarify this question including more outgroup species. In contrast to the other species in *Galaxea*, *G. horrescens* occupies a different ecological niche given its branching growth form and brooding reproductive mode (Fadlallah, 1983), favoring the hypothesis of being a outgroup to the rest of *Galaxea*. However, regardless of its exact position in the phylogeny, the validity of the species *G. horrescens* is well-supported by both life history and genetic characters.

The morphological and taxonomic diversity in *Galaxea* was highest in the Pacific clade, with most nominal species (all but *G. fascicularis* and *G. astreata*) represented only in this clade (Fig. 2). The branching colony growth forms of *G. horrescens* and *G. cryptoramosa* seem to have evolved independently based on the distant phylogenetic placement of the two species on the tree (Fig. 2). However, more specimens of *G. cryptoramosa* from other locations and representatives of the third branching species *G. acrihelia* (although van Veeren (2007) synonymized this taxon with *G. cryptoramosa*) are needed, to analyze the emergence of branching in *Galaxea*. It is possible that branching morphology is not a good taxonomic character, since *G. cryptoramosa* intermingled with *G. astreata* and *G. paucisepta* in the phylogeny (Fig. 2), similar to what was found for branching and mounding morphologies in *Porites* (Forsman et al., 2017) or branching proportions of species in *Oculina* (Eytan et al., 2009).

This first phylogenetic analysis of the genus *Galaxea* highlights a clear need for a taxonomic revision. Future studies are needed to determine the taxonomic rank of the genetic entities in *Galaxea* and decide whether this genus should be extended by several new species or whether these entities can be absorbed into existing taxonomic names. The present study was significantly limited by the absence of field collections from within the Coral Triangle, where many of the accepted species’ type areas are located (Veron, 2000). Museum specimens were mostly not useful for phylogenetic analysis with RAD-seq here, and unfortunately, fresh collections proved impossible due to the challenging legal and administrative procedures to obtain samples from the involved countries needed to resolve
these questions. To better comprehend biological diversity, fully understand species relationships, and to complete the taxonomic revision clearly needed within the genus *Galaxea*, specimen sharing across political borders will be necessary.

4.2. The cryptic lineages in *G. fascicularis*

The sympatric lineages ‘L’, ‘S’, ‘L+’ in the Ryukyu Islands (Hidaka, 1992; Nakajima et al., 2016; Watanabe et al., 2005) belonged to separate phylogenetic clades that were associated with different ocean basins (Figs. 2B, 5). Admixture analysis and DAPC further distinguished multiple entities within these lineages: three ancestral lineages ‘Pacific-a’, ‘-b’, ‘-c’, and two DAPC clusters ‘L’ and ‘Ogasawara’ within lineage ‘L’; and clusters ‘S’ and ‘Hong Kong’ within lineage ‘S’ (Figs. 4, 5). Lineage ‘S’ was closely related to other lineages of the morphology *G. fascicularis* in the Indian Ocean (Admixture lineage ‘Indo-Pacific-a’, or DAPC clusters ‘Indian’ and ‘Red Sea’, Fig. 4c). DAPC generally distinguished more entities than Admixture. Synthesizing all analyses and drawing the most parsimonious conclusion under consideration also of the phylogeny (Fig. 2) and network (Fig. 3), *G. fascicularis* may be split into six separate cryptic lineages: Chagossian, Pacific-L+, Pacific-L, Ogasawara, Indo-Pacific-S, and Indian-Red Sea (Fig. 5, Table 2).

The distribution and abundance of lineages ‘L’ and ‘S’ are about equal in the Ryukyu Islands, however, this varied across the Pacific. More isolated islands further to the East such as Samoa and the Ogasawara Islands only harbored Pacific lineages but no Indo-Pacific S. Lineages may also occur at varying abundances between specific sampling sites (Fig. S6; Nakajima et al. 2016), suggesting the influence of underlying environmental factors influencing local distribution patterns. Although the three lineages could not be distinguished in their depth occurrences (Fig. S6), there may be some unmeasured traits that will potentially give more insight into ecological differentiations between lineages.

Their distribution pattern in the Pacific could apart from the biogeographic history of *Galaxea* (see below), perhaps be explained by the ability of lineage ‘L’ to disperse farther distances more easily. For example, lineage ‘L’ has been observed to often have a less dense coenosteum than lineage ‘S’ (Hidaka 1992, Wewengkang et al. 2007). A softer coenosteum may lead to more frequent colony fragmentation and dispersal by rafting (Thiel and Haye, 2006), which would allow lineage ‘L’ to disperse to remote places more easily. Although the correlation between coenosteum density and lineage identity was not significant in a previous study (Wewengkang et al., 2007), this aspect may hold more insights regarding the
morphological, life-history, and dispersal differentiation between the cryptic lineages, when they will be reassessed in the light of the present findings regarding polyp size (Fig. 5) and genetic distinction within lineage ‘L’ (Admixture lineages and DAPC clades, Figs. 3-5).

There are signs for some asymmetric gene-flow from Indo-Pacific lineage ‘S’ into the Pacific clade, based on the many specimens of lineage ‘L’ containing mitochondrial haplotype S, but not the other way around (Fig. 2). This mismatch of mitochondrial and genomic, mostly nuclear data could indicate asymmetric introgression (Moore, 1995; van Oppen et al., 2001), which would be consistent with a laboratory experiment finding higher fertilization success between female ‘S’ and male ‘L’ than the other way around (Abe et al., 2008). However, apart from one specimen in Thailand (PW289), we did not detect mixing of the Pacific and Indo-Pacific genomes in the network and Admixture analysis (Figs. 3, 4), Hybridization between coral species has often been suggested (Ladner and Palumbi, 2012) (Combosch and Vollmer, 2015), however, in Galaxea the level of hybridization between the lineages may be rather rare. An important factor that has potentially influenced the maintenance of the genetic identity of lineages ‘L’ and ‘S’ in the Ryukyu Islands may be shifted spawning times as observed in Okinawa (Heyward et al., 1987; Watanabe et al., 2005; Yamazato, 1988). Future research using more loci and other methods, such as for example D-statistics (Durand et al., 2011), may provide more insight into a hybridization history between the lineages, but due to the ‘gappy’ nature of our RAD data could not be done here.

Lineage ‘L+’ was rare and could only be confirmed from a few locations in the Ryukyu Islands in Japan. In the phylogenetic tree, it is located basal to all other lineages of the Pacific clade (Fig. 2) and the network analysis (Fig. 3), as well as the Admixture analysis (Fig. 4, K=3) indicated some shared genes with the Chagossian clade. Interestingly, Admixture analysis grouped lineage L+ with G. horrescens (Fig. 3), and the mitochondrial haplotype L+, which was otherwise private to lineage L+, was found in a museum specimen of G. horrescens from Palau (Fig. 4). These findings suggest that lineage ‘L+’ may be a very old lineage possibly sharing a common ancestor with the Chagossian clade, and a more recent common ancestor with G. horrescens. The long inner branch (Fig. 2) and its marginal and sparse geographic distribution favor the hypothesis of representing a relic of an ancient lineage that is now perhaps being outcompeted by the other lineages in Galaxea in most parts of the distribution range. Further experiments addressing differences in fitness and a timed phylogeny are required to test this hypothesis.
4.3. Low mitochondrial diversity and a successful deletion

Haplotype LA (or a highly similar version) was present in both the Pacific as well as the Indo-Pacific clade, indicating that it may be the ancestral type of the two main extant clades in Galaxea. However, to find the genealogy of this mitochondrial sequence for the whole genus, future studies will need to investigate this sequence in the Chagossian clade. Across the entire distribution range, there were only a few differences in this region, apart from the characteristic 300 bp deletion in the S-haplotype (SA, SB and SC). This mitochondrial region was much less differentiated than the rest of the genome (Figs. 2, 4) consistent with previous findings in corals (Shearer et al. 2002), and may by itself not be sufficient to distinguish lineages or taxonomic species in the genus Galaxea. However, the investigation of more complete mitochondrial data in Galaxea may find additional variation or a more suitable mitochondrial marker for representing the diversity in this genus (such as the ORF in Pocillopora, Johnston et al. 2017).

The characteristic deletion in haplotype S may have happened at once and shortly after the establishment of the Indo-Pacific clade in the Pacific since there are no intermediate lengths and all representatives of the Indo-Pacific clade in the Pacific (G. fascicularis lineage ‘S’) contain this deletion. As discussed above, haplotype S was also present in some individuals of the Pacific clade and Maldives, and some specimens from the Pacific clade and some museum specimens included both the longer and shorter haplotype. However, none of the lineage ‘S’-specimens contained one of the longer L-haplotype. One explanation for this asymmetry could be that the spread of the shorter mitochondrial sequence is under positive selection, favoring its successful establishment in the central Indo-Pacific and its introgression into other lineages across the Galaxea phylogeny. Cases of positive or negative selection for mtDNA types exist (Meiklejohn et al., 2007), and shorter sequences are generally faster and ‘cheaper’ to replicate, which by itself could be a reason for its positive selection (Selosse et al., 2001). It is possible that specimens containing both haplotypes represent a case of heteroplasy resulting from a past hybridization event, in which intracellular purifying selection has not yet fully eliminated the longer haplotypes (Birky, 2001).

4.5. Evolutionary biogeography of Galaxea

The geologic history and well-preserved fossil record in the Scleractinia (Keith et al., 2013) may give insight into explaining large-scale diversity patterns in Galaxea. The oldest fossils
of *Galaxea* are dated to 33.9–28 Ma (stem group age) and were found in Jamaica, Iran, and Florida (PBDB 2018), indicating a Tethyan origin of the genus in the Oligocene. Since the early Miocene 23–20 Ma and coinciding with the closing Tethys (Rögl, 1998), *Galaxea* has been extinct in the Atlantic and restricted to the Indo-Pacific, when also the first records of the taxon *Galaxea fascicularis* were found in Indonesia, Fiji, Iran, and Australia. A record from Hawaii from the mid Miocene indicates that the genus may have had its full contemporary range (or larger) by 11 Ma (since it is not present in Hawaii currently).

The existence of the clade in Chagos at the base of the tree (Fig. 2) supports a possible origin of *Galaxea* in the Western Indian Ocean. Although without a dated phylogeny and ancestral state analysis this is hypothetical, this ancient clade perhaps is a relic from the early, tectonically dynamic Miocene times (Rögl 1998). The Western Indian Ocean has been suggested to be important for the evolution of other corals, for example *Stylophora*, for which two of three lineages occurred in the Indian Ocean (Flot et al., 2011). In *Stylophora*, the Chagossian population is closely related to the ones in Madagascar and South-East Africa, and the population from the Red Sea is related to the one from Mid-Eastern Africa (Keshavmurthy et al., 2013). This is consistent with our results that the specimen from Tanzania clustered with specimens from the Red Sea (Figs. 2, 3, 4) and it is a common biogeographic pattern across many marine animals and plants (Costello et al., 2017). Further sampling is needed to confirm whether the Chagossian lineage occurs only in Chagos or also in other regions, too. There is also always the chance that we missed important taxa from under-sampled regions, e.g. the Coral Triangle, which would change the phylogenetic topology and position of this Chagossian clade. However, the presence of both the ancient lineage as well as the wide spread Indo-Pacific lineage in Chagos in our study provides new insight into the genetic diversity in Chagos, which is typically grouped with either the Indo-Pacific and/or western Indian Ocean (Costello et al., 2017; Crandall et al., 2019; Kulbicki et al., 2013).

The divergence between the Indo-Pacific and Pacific clade may be a result of periods of restricted water flow between the Indian and Pacific Oceans, possibly during the late Miocene or Pliocene, as has been suggested in many marine animals (Bowen et al., 2013; Gaither et al., 2011). The South-East Asian region has been tectonically dynamic throughout the Cenozoic era (Hall and Holloway, 1998), which is regarded to be an important driver of allopatric speciation in many marine organisms (Carpenter et al., 2010). While the Australian plate was much further south during the late Oligocene and created a well-mixed Tethys sea,
it moved up and has restricted marine dispersal towards the late Miocene, perhaps at times completely isolating the two basins in the Pliocene (Hall and Holloway 1998). The fossil record of other morphologically defined taxonomic Galaxea species supports this hypothetical divergence time between the two clades of sometime during the late Miocene, as the morphological diversification in this genus, particularly colony branching, is a trait associated with the Pacific clade (Fig. 2): the oldest record of G. paucisepta and G. acrheilia (synonym G. cryptoramosa) appeared at 7 Ma in Indonesia, and ‘Acrhelia horrescens’ (synonym G. horrescens) was identified from 2.5 Ma in the Ryukyu Islands (PBDB, 2018). Thus, the record of the branching G. acrheilia at 7 Ma suggests that the divergence between the Indo-Pacific and Pacific clade could be at least 7 M years old. However, in the light of the inconsistency of morphological and genetic variation in corals, the fossil record should be used with caution. For example, it is possible that the branching fossil specimens belong to an entirely different, now extinct clade of Galaxea and do not relate to the Pacific Clade of this study.

Although we did not date our phylogenetic tree, the overlapping distributions of the two genetically very distinct Pacific and Indo-Pacific clades in the western Pacific may perhaps be explained by a relatively recent invasion of lineage ‘S’ from the Indo-Pacific clade into the Pacific. Lineage ‘S’ may only be present in Asia and Australia because of a lack of time to disperse to more isolated places like the Ogasawara Islands and American Samoa in detectable quantities. Like numerous other marine organisms with an overlapping distribution in the central Indo-Pacific, the pattern could be linked to sea level fluctuations in the Pleistocene (Crandall et al., 2008; DeBoer et al., 2014; Jackson et al., 2014), for example, higher sea levels after the last glacial maximum (~ 15 000 years) reconnected the two ocean basins again through the Indonesian flow through (Hoeksema, 2007). However, there were several climatic cycles since the beginning of the Pleistocene and the invasion of lineage ‘S’ could also date back to much longer times (~2 Ma) (Bowen et al., 2013; Gaither et al., 2011). In order to know the point in time lineage ‘S’ could have invaded the Pacific, as well as divergence times between the major clades in Galaxea, a molecular clock analysis is needed. Future studies may potentially use selected specimens from the present phylogeny and analyze divergence times with a number of genes with well-known evolutionary rates.

As mentioned above, our study was limited by the lack any fresh collections suitable for genomic analysis from the Coral Triangle, the center of the geographic distribution range as well as the taxonomic diversity of Galaxea. Policies that have originally been created to
protect biodiversity and biological resources of nations from commercial exploitation are now increasingly preventing research needed for conservation goals (Prathapan et al., 2018). This was discussed for the Nagoya protocol (Prathapan et al., 2018) but also applies to the CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) regulations. International and collaborative efforts to reveal true biodiversity patterns should be facilitated rather than hindered, in order to understand and address problems affecting biodiversity on a global level, such as global mass coral mortality due to climate change.

5. Conclusions

Based on a genus-wide sampling across the Indo-Pacific and using high-resolution genomic markers it was possible to infer a geographically well-resolved phylogeny of the genus *Galaxea*. These data also provide insights into the co-occurrence patterns and potential emergence histories of morphologically and ecologically undifferentiated genetic lineages. We showed that *Galaxea* is composed of three genetically highly divergent but morphologically similar clades, that call into question the currently accepted taxonomy of this genus. In particular, the genetic lineages of *G. fascicularis* were associated with different clades making this nominal species clearly polyphyletic. In addition to the three previously known lineages in *G. fascicularis* (‘L’, ‘S’, ‘L+’) this morphology contains three more genetic entities from Ogasawara, the Indian Ocean, and Chagos (Table 2). The rooted phylogeny suggests that morphological diversification in colony growth forms was associated with the Pacific clade, which contained the taxonomic species *G. horrescens*, *G. cryptoramosa*, and *G. paucisepta*. The *Galaxea*-characteristic mitochondrial non-coding region was highly conserved across the Indo-Pacific with only a single variable nucleotide (aside from the length polymorphism) that lacks the power to differentiate both morphological and genomic diversity in this genus. In conclusion, we confirmed another case of mismatching taxonomic and phylogenetic species identity in Scleractinia, and our results indicate a more detailed taxonomic examination of *Galaxea* is clearly warranted. Whether such study will be possible in the future depends on resolving the legal and administrative procedures to obtain and exchange scientific samples across international boundaries. There is still much to learn about the species problem in corals, and this research adds to a growing number of studies that highlight the importance of a complete geographic sampling and the necessity to investigate beyond nominal species boundaries for revealing true diversity patterns and evolutionary history in corals. Such taxonomic and geographic sampling is made
exceedingly difficult, particularly in the Coral Triangle due to efforts to protect biological resources from piracy.

Acknowledgements

We wish to thank Shohei Suzuki for assistance in field work, Jo Tan for leading library preparations, Nitish Narula for assistance in bioinformatic data processing, and Bert Hoeksema for providing the master thesis of his former student Eva Van der Veer. We thank James Reimer, Paul Barber, and Nina Yasuda for discussions and inputs on the manuscript, and Jean-François Flot for his careful reviews. Museum specimens were provided by the Natural History Museum of the University of the Ryukyus, Okinawa, the Smithsonian Institution, and the Naturalis Biodiversity Center for providing. V.Z.R. collected data from Chagos and the Maldives with support from the XL Catlin Seaview Survey, funded by XL Catlin in partnership with The Ocean Agency and The University of Queensland. DNA extracts or specimens were exported with the CITES permit numbers PWS2016-AU-001320, PWS2016-AU-001565, AC.0510.2/18836, or processed in country of collection. This work was supported by JSPS KAKENHI Grant Numbers 17J00366 to P.H.W and 16H05621 to Y.N. P.H.W., Y.N., S.M., A.S.M., and E.P.E. were supported by subsidy funding to OIST.

References

Data in RAD-seq Phylogenetics with a Deep-scale Example from Flowering Plants. Syst Biol
66, 399-412.

Emerson, K.J., Merz, C.R., Catchen, J.M., Hohenlohe, P.A., Cresko, W.A., Bradshaw, W.E.,
Holzapfel, C.M., 2010. Resolving postglacial phylogeography using high-throughput
sequencing. P Natl Acad Sci USA 107, 16196-16200.

sequences reveal mid-range isolation of an imperilled deep-water coral population. Mol
Ecol 18, 2375-2389.

Ferrier-Pagès, C., Rottier, C., Beraud, E., Levy, O., 2010. Experimental assessment of the
feeding effort of three scleractinian coral species during a thermal stress: Effect on the rates

phragmotic ant species from Africa: morphology and next-generation sequencing solve a

Flot, J.-F., Blanchot, J., Charpy, L., Cruaud, C., Licuanan, W.Y., Nakano, Y., Payri, C.,
Tillier, S., 2011. Incongruence between morphotypes and genetically delimited species in the
coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological
stasis or interspecific hybridization? Bmc Ecol 11, 22.

Forsman, Z.H., Barshis, D.J., Hunter, C.L., Toonen, R.J., 2009. Shape-shifting corals:
Molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 9.

Forsman, Z.H., Concepcion, G.T., Haverkort, R.D., Shaw, R.W., Maragos, J.E., Toonen, R.J.,
2010. Ecomorph or Endangered Coral? DNA and Microstructure Reveal Hawaiian Species

Forsman, Z.H., Knapp, I.S.S., Tisthammer, K., Eaton, D.A.R., Belcaid, M., Toonen, R.J.,
2017. Coral hybridization or phenotypic variation? Genomic data reveal gene flow between

Backhuys.

The data were downloaded from the Paleobiology Database, using the taxon name 'Galaxea'.

Shoguchi, E., Shinzato, C., Kawashima, T., Gyoja, F., Mungpakdee, S., Koyanagi, R.,
Takeuchi, T., Hisata, K., Tanaka, M., Fujiwara, M., Hamada, M., Seidi, A., Fujie, M., Usami,
T., Goto, H., Yamasaki, S., Arakaki, N., Suzuki, Y., Sugano, S., Toyoda, A., Kuroki, Y.,
Assembly of the Symbiodinium minutum Nuclear Genome Reveals Dinoflagellate Gene

Stamatakis, A., 2006. RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses
with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690.

Tin, M.M.Y., Economou, E.P., Mikheyev, A.S., 2014. Sequencing degraded DNA from non-
destructively sampled museum specimens for RAD-tagging and low-coverage shotgun

van der Veer, E., 2007. Towards a revision of the coral genus Galaxea (Scleractinia:

van Oppen, M.J.H., McDonald, B.J., Willis, B., Miller, D.J., 2001. The evolutionary history
of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear
marker: Reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol
Evol 18, 1315-1329.

Veron, J.E.N., 1995. Corals in space and time : the biogeography and evolution of the

Science, Townsville, Australia.

Voolstra, C., Miller, D., Ragan, M., Hoffmann, A., Hoegh-Guldberg, O., Bourne, D., Ball, E.,
Ying, H., Foret, S., Takahashi, S., Weynberg, K., van Oppen, M., Morrow, K., Chan, C.X.,
Rosic, N., Leggat, W., Sprungala, S., Imelfort, M., Tyson, G., Kassahn, K., Lundgren, P.,
Consortium—using “omics” approaches to explore the adaptability and resilience of coral
holobionts to environmental change. Frontiers in Marine Science 2, 68.

WoRMS, E.B., 2019. World Register of Marine Species.

Tables and Figures

Table 1. Currently accepted species in *Galaxea* by the World Register of Marine Species (WoRMS, 2019) and distributions as given by Veron (2000). The age refers to the oldest fossil record listed the Paleo Biology Database (PBDB, 2018) where available. Abbreviations: na = not available, SE= South East

<table>
<thead>
<tr>
<th>Species</th>
<th>First description</th>
<th>Distribution</th>
<th>Abundance</th>
<th>Age [My]</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. astreata</td>
<td>Lamarck, J.B.d.1816. Animaux sans Vertèbres: 227</td>
<td>Red Sea, Indo-Pacific</td>
<td>common</td>
<td>11.6</td>
</tr>
</tbody>
</table>

G. cryptoramosa (synonym G. acrhelia)
Table 2. Summary and synthesis of evolutionary entities in *Galaxea*. Based on genomic RAD-seq data, seven lineages may be distinguished as a parsimonious conclusion from Admixture (Fig. 4) and DAPC (Fig. 5), while accounting for distinguished groupings in Neighbor-Net (Fig. 3) and monophyly in the phylogenetic tree (Fig. 2).

<table>
<thead>
<tr>
<th>Synthesis</th>
<th>Admixture</th>
<th>DAPC</th>
<th>Neighbor-Net group</th>
<th>Monophyly</th>
<th>Nominal species</th>
<th>Mt-hapl.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pacific-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ogasawaran</td>
<td>Pacific-c</td>
<td>Cluster Ogasawara</td>
<td>(Ogasawara)</td>
<td>yes</td>
<td>G. fasc.</td>
<td>LA</td>
</tr>
<tr>
<td>Lineage L+</td>
<td>Pacific-d</td>
<td>Cluster L+</td>
<td>L+</td>
<td>yes</td>
<td>G. fasc., G. astr</td>
<td>L+</td>
</tr>
<tr>
<td>G. horresc.</td>
<td></td>
<td>Cluster Horresc.</td>
<td>G. horresc.</td>
<td>yes</td>
<td>G. horresc.</td>
<td>LH</td>
</tr>
<tr>
<td>Indian-Red Sea</td>
<td>Indo-Pacific a</td>
<td>Cluster Indian</td>
<td>Indo-Pacific (Red Sea)</td>
<td>paraphyletic</td>
<td>G. fasc.</td>
<td>LA, LJ, SA</td>
</tr>
<tr>
<td>Lineage S</td>
<td>Indo-Pacific-b</td>
<td>Cluster S</td>
<td>(S)</td>
<td>yes</td>
<td>G. fasc., G. astr</td>
<td>SA, SB</td>
</tr>
<tr>
<td></td>
<td>Cluster HK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chagosian</td>
<td>Chagosian</td>
<td>Cluster Chagos</td>
<td>Chagosian</td>
<td>yes</td>
<td>G. fasc.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

5
Figure 1. Example photographs of *Galaxea* specimens of different taxonomic species. A: *G. fascicularis*, lineage "S", PW575 from Seragaki; B: *G. fascicularis*, lineage "L", PW100 from Iheya; C: *G. fascicularis*, lineage "L+", PW42 from Miyako; D: *G. paucisepta*, PW571 from Seragaki; E: *G. cryptoramosa*, PW249 from Seragaki; F: *G. horrescens*, AF-3 from Guam; G: *G. paucisepta* (overgrowing *G. astreata*), PW573 from Seragaki; H: *G. astreata*, PW572 from Seragaki; I: *G. astreata*, PW448 from Motobu.
Figure 2. RAD-seq phylogeny of *Galaxea*. A: Tips are labeled according to their geographic origin, sample number, taxonomic species and mitochondrial haplotype. In addition, the taxonomic species are illustrated by tip color, and the mitochondrial haplotypes by circles next to the labels retrieved either by Sanger sequencing (filled circles) or fragment length analysis (empty circles). Crosses (x) mark specimens with booster instability >1 (Table S3). Node supports are given as Booster distances > 0.8 and direct bootstrap frequencies based on 468 bootstrap replicates. More details to sampling origin may be retrieved from Tables S1 and S2. B: The insertion shows the overview topology of the whole tree and the lineages in *Galaxea* synthesized in this study (Table 2).
Figure 3. Neighbor-Net network implemented in SplitsTree. Specimens are grouped into five major branches. In addition, the Ogasawaran specimens may be distinguished from the large Pacific group (Lineage L). The distinction between Lineage S from the rest of the Indo-Pacific clade is less clear, indicating incomplete lineage sorting or mixing. Hybridization between the main clades is only evident in one specimen (Thai _PW289). In contrast to the phylogeny (Fig. 2), G. horrescens is placed closer to the outgroup. The other nominal species (G. astreata, G. paucisepta, G. cryptoramosa) belonged to lineage L.
Figure 4. Admixture ancestral assignments for Galaxea specimens (in alphabetical order) based on 2275 genetic sites present in at least 50% of all individuals. K=7 was the most likely number of ancestral lineages, but results for K= 3 and 5 (Fig. S3) are also shown to illuminate the relationships between lineages. K=3 distinguishes the Pacific (blue, ‘Pacific-a’), Indo-Pacific (red, ‘Indo-Pacific-b’), and Chagossian clade (yellow) identified in the phylogenetic analysis; from those, K=5 distinguishes the lineages L+ (marked with ‘+’) and G. horrescens (marked with ‘h’) from the Pacific clade (pink, ‘Pacific-d’) and a second Indian Ocean with Red Sea cluster from the ‘Indo-Pacific’ clade (orange, ‘Indo-Pacific-a’); and K=7 splits an Ogasawaran lineage (dark blue, ‘Pacific-c’) and a lineage represented in SW Japan (Ryukyu Islands and Daito, turquoise, ‘Pacific-b’). Highest diversity of ancestral lineages are in the Pacific, particularly in the Ryukyu Islands. Labels for each sample may be retrieved from Fig. S4.
Figure 5. DAPC scatter plots for A) all Galaxea specimens, B) Pacific clade, C) Indo-Pacific clade. In summary, nine distinct DAPC-clusters are distinguished in Galaxea: one Chagosian, four Pacific, and four Indo-Pacific clusters.
Figure 6. A: Geographic distribution of RAD-lineages in Galaxea as synthesized in Table 2 and 3 mitochondrial haplotypes. The mitochondrial haplotypes refer to the non-coding region between the genes cytb and ND2. B: Mitochondrial haplotype network of haplotypes that differed by more than one substitution or were found in more than one specimen. C: Mitochondrial haplotype network by taxonomic species. Most taxonomic species contain haplotype LA, except for G. horrescens, which contained LH, and L+, and G. astreata, in which one specimen contained SA. LA is the most common and most widely distributed mt-haplotype. The two networks differ by a deletion of 300 bp in SA and SB.
Figure 7. Morphology principal component analysis on cryptic lineages in G. fascicularis from Japan. Lineage ‘L’ grows somewhat larger polyps than the other lineages. Specimens for which only mitochondrial data from fragment length analysis (FA) was available are colored in a lighter shade. Abbreviations: diam.max = maximal polyp diameter, dist.rel = space between polyps, shape = ratio of shorter to longer polyp diameter.
Author statement

Patricia H. Wepfer: conceptualization, formal analysis, investigation, resources, writing-original, visualization, project administration, funding
Yuichi Nakajima: resources, funding, supervision
Makamas Sutthacheep: resources
Veronica Z. Radice: resources
Zoe Richards: resources
Put Ang: resources
Tullia Terraneo: resources
Mareike Sudek: resources
Atsushi Fujimura: resources
Robert J. Toonen: resources, writing-review, supervision
Alexander S. Mikheyev: methodology, funding, resources
Evan P. Economo: conceptualization, writing-review, resources, supervision
Satoshi Mitarai: resources, funding, supervision