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Abstract

The discipline of modern condensed matter physic has a lot ambitions: to discover all
possible quantum phases of matter, to study the exotic properties and applications of
different matter states, and to realize them in experiments. A recent exciting develop-
ment in this field is the discovery of the fracton states of matter. Featuring immobile
excitations and gauged/ungauged subsystem symmetries, it is a phase of quantum
many-body systems that transcend the traditional scenarios of Landau-Ginsberg sym-
metry breaking and topological quantum states. This thesis is devoted to a few aspects
of the fracton states of matter. First, we study a unique property of the fracton mod-
els: they mimic the quantum-informational features of gravity. This can be shown
in the context of holographic principle or AdS/CFT duality: a fracton model in AdS
space can be shown to satisfy the major properties of holography: the boundary en-
tanglement entropy satisfies Ryu-Takayanagi formula, and the bulk reconstruction fol-
lows the Rindler reconstruction. Furthermore, the fracton model in hyperbolic space
is known to be similar to various other toy models of holography including holo-
graphic tensor-networks and bit-threads model. The intriguing similarity between
fracton models and gravity, as well as its implications, are discussed at length. In the
second half of the thesis, we explore possible experimental routes to realize the fracton
phases. Here we focus on frustrated magnets on the pyrochlore lattice, one of the most
versatile and experimentally fruitful framework to realize spin liquids. By analyzing
the symmetry and the coarse-grained limit of the model, we find it possible to realize
various versions of rank-2 U(1) gauge theory, and some of them are simple enough to
be experimentally realistic. We also propose ways to introduce quantum dynamics via
frustration of higher spins.

v





Acknowledgment

First and foremost, I am enormously indebted to my supervisor Nic Shannon and
co-supervisor Hirotaka Sugawara for their great mentorship. Nic has always been
tremendously resourceful, kind, and supportive to me. Besides proposing exciting
scientific ideas and providing very helpful guidance in condensed matter theory, he
also encourages me to be independent and develop my own ideas. More importantly,
he shows me a great example of how to be a decent, principled person.

Likewise, Hirotaka has always been the most supportive, and also knowledgeable
when it comes to high energy theory. I enjoyed the luxury to have two supervisors
covering both condensed matter physics and high energy physics. Owing to them,
over my doctoral course I could enjoy the so much beauty of physics – both amaze-
ments of fundamental theory regarding quantum gravity and elementary particles, as
well as the wonders of “emergence” in quantum many-body systems.

I am sincerely thankful to my collaborators: Ludovic Jaubert, Owen Benton, Mathieu
Taillefumier, Romian Sibille, Judit Romhanyi, Rico Pohle, Ke Liu, Andreas Thomasen.
With them I had a lot fun doing research, and also learned so much physics. In partic-
ular, the numerical simulation results in Chapter 4 and 5 are obtained by Ludovic,
and some of the analysis in Chapter 4 is done in collaboration with Owen. I am
also very thankful to Leilee Chojnacki, who helped me checking the English of the
thesis. I also appreciate daily interactions with other people in our unit and univer-
sity: Yasha Neiman, Karlo Penc, Yutaka Akagi, Karim Essafi, Olga Sikora, Hiroaki
Ueda, Yurika Kubo, Christina Lee, Andrew Smerald, Matthias Gohlke, Geet Rakala,
Tokuro Shimokawa, Soshi Mizutani, and Kimberly Remund. Also, I want to express
my thanks to our reserach unit assistants Megumi Ikeda and Shiho Saito, whose effec-
tiveness and sweetness have made all our research lives infinitely easier. They are not
only colleagues but also friends I hold dearly in life.

Last but not least, I want to thank my family for always supporting me to chase my
passion, and thank Maéva Techer for her love and support.

vii



Acknowledge to institutions

This work in funded by Theory of Quantum Matter Unit at Okinawa Institute of Sci-
ence and Technology, and the Japan Society for the Promotion of Science (JSPS) Re-
search Fellowships for Young Scientists.

viii



Preprints and Publications

Preprints

Geodesic string condensation from symmetric tensor gauge theory: a unifying framework of
holographic toy models, arXiv:1911.01007, Han Yan

How many spin liquids are there in Ca10Cr7O28? arXiv:1711.03778, Rico Pohle, Han Yan,
Nic Shannon

Publications

Rank-2 U(1) spin liquid on the breathing pyrochlore lattice, Physical Review Letters 124,
127203 (2020) Han Yan, Owen Benton, Ludovic D.C. Jaubert, Nic Shannon
※Highlighted as Editors’ selection, and by APS Physics Magazine article “Synopsis:
A Recipe for Finding Fractons” (Physics 13, s40).

Identification of hidden order and emergent constraints in frustrated magnets using tensorial
kernel methods, Physical Review B 100, 174408 (2019) Jonas Greitemann, Ke Liu, Lu-
dovic DC Jaubert, Han Yan, Nic Shannon, Lode Pollet
※Featured on OIST news “Man versus machine: can AI do science?”

Hyperbolic fracton model, subsystem symmetry, and holography II: the dual eight-vertex model,
Physical Review B 100, 245138 (2019) Han Yan

Hyperbolic fracton model, subsystem symmetry, and holography, Physical Review B 99,
155126 (2018), Han Yan
※Highlighted as Editors’ selection, and featured on OIST news “Theories Past and
Present Show Quantum Connections”

Half moons are pinch points with dispersion, Physical Review B Rapid Communication
98, 140402(R), Han Yan, Rico Pohle, Nic Shannon
※Highlighted as Editors’ selection, and featured on OIST news “Half Moons and
Pinch Points: Same Physics, Different Energy”

Experimental signatures of emergent quantum electrodynamics in Pr2Hf2O7, Nature Physics

ix

https://arxiv.org/abs/1911.01007
https://arxiv.org/abs/1711.03778
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.127203
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.127203
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.245138
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.245138
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.155126
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.155126
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.140402
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.140402
https://www.nature.com/articles/s41567-018-0116-x
https://www.nature.com/articles/s41567-018-0116-x


14, 711(2018), Romain Sibille, Nicolas Gauthier, Han Yan, Monica Ciomaga Hatnean,
Jacques Ollivier, Barry Winn, Geetha Balakrishnan, Michel Kenzelmann, Nic Shannon,
Tom Fennell
※Featured on OIST news “Seeing the Light? Study Illuminates How Quantum Mag-
nets Mimic Light”

Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Trans-
verse Exchange, Physical Review X 7, 041057 (2017), Mathieu Taillefumier, Owen Ben-
ton, Han Yan, Ludovic D. C. Jaubert, Nic Shannon

Theory of multiple–phase competition in pyrochlore magnets with anisotropic exchange, with
application to Yb2Ti2O7, Er2Ti2O7 and Er2Sn2O7, Physical Review B 95, 094422 (2017),
Han Yan, Owen Benton, Ludovic D. C. Jaubert, Nic Shannon

From pinch points to pinch lines: a new spin liquid on the pyrochlore lattice, Nature Com-
munications 7, 11572 (2016), Owen Benton, Ludovic D. C. Jaubert, Han Yan and Nic
Shannon
※Featured on OIST news “A New Spin on Reality”

Articles

Neutron scattering signatures of a quantum spin ice, Swiss Neutron News 53, 12-22 (2019),
arXiv:1911.00968, Romain Sibille, Nicolas Gauthier, Han Yan, Monica Ciomaga Hat-
nean, Jacques Ollivier, Barry Winn, Geetha Balakrishnan, Michel Kenzelmann, Nic
Shannon, Tom Fennell

x

https://www.nature.com/articles/s41567-018-0116-x
https://www.nature.com/articles/s41567-018-0116-x
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.041057
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.094422
https://www.nature.com/articles/ncomms11572
https://www.nature.com/articles/ncomms11572
https://arxiv.org/abs/1911.00968


Contents

1 Introduction 1

1.1 The quests of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Brief review of the AdS/CFT correspondence . . . . . . . . . . . . . . . . 5

1.3 Spin liquid and emergent U(1) gauge theory . . . . . . . . . . . . . . . . 8

1.4 Rank–2 U(1) gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Hyperbolic Fracton Model and Holography 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Summary of the main results . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Fracton model on the Euclidean lattice . . . . . . . . . . . . . . . . . . . . 24

2.4 The Hyperbolic Fracton Model . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Rindler Reconstruction of the Hyperbolic fracton model . . . . . . . . . . 34

2.6 Mutual information of the hyperbolic fracton model . . . . . . . . . . . 36

2.7 Naive black holes in the hyperbolic fracton model . . . . . . . . . . . . . 42

2.8 Generalizations: higher dimension and quantum version . . . . . . . . . 43

2.9 Comparison with the holographic tensor-networks . . . . . . . . . . . . . 46

2.10 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



3 The Dual Eight-Vertex Model and Bit Threads 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Dual Eight Vertex Model on the Square Lattice . . . . . . . . . . . . . . . 50

3.3 Connection to rank-2 U(1) theory . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Hyperbolic Dual Eight-Vertex Model . . . . . . . . . . . . . . . . . . . . 54

3.5 Bit-Thread Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Bulk-Boundary Isometry for Diluted Fracton Excitations . . . . . . . . . 58

3.7 Non-Local Black Hole Microstate Degree of Freedom . . . . . . . . . . . 61

3.8 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Unifying holographic toy models with rank-2 U(1) field theory 65

4.1 Bit-thread type holographic toy models as a universal picture . . . . . . 66

4.2 Rank-2 U(1) Theory and Its Flat-Space Dynamics . . . . . . . . . . . . . . 68

4.3 Entanglement structure from Gauge symmetry: conventional U(1) as an
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Entanglement structure of R2-U1 in AdS space: geodesic string conden-
sation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 The case of scalar charged R2-U1 . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Pyrochlore Spin System 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 The pyrochlore lattice spin model with anisotropic exchange . . . . . . . 80

5.3 Analysis of the classical phase diagram at T=0 . . . . . . . . . . . . . . . 89

5.4 Application to materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Rank-2 U(1) spin liquid on breathing pyrochlore lattice 111

xii















































































The 2D square-lattice fracton model introduced in Sec. 2.3 is not suitable for studying
this type of holography. It does have the right number of degrees of freedom to be
“holographic”, in the sense that the boundary determines the bulk completely within
the ground state sector. However, because it is defined on a square lattice in flat space,
it cannot have the correct entanglement structure as the holography discussed in Ad-
S/CFT. Therefore it will not satisfy key results such as the RT formula and the Rindler
construction.

Nonetheless, the model in the hyperbolic space needs to preserve the most essen-
tial properties from the flat lattice model. That is, we would like to have the same
four-spin interactions and subsystem symmetry along the “straight lines” – which are
geodesics in the AdS2. This leads to the pentagon tessellation, a symmetric, uniform
tiling of the hyperbolic disk with pentagons. The hyperbolic lattice is illustrated in
Fig. 2.5. On this lattice most features of the flat lattice model are preserved as we ex-
plain below. We also note that the fracton model on a curved space has been discussed
in Refs. [95, 114, 115]. The choice of tessellation is not unique. With different tes-
sellations we have different hyperbolic lattices, but as long as a model has the same
structure of subsystem symmetries, it will share the same holographic entanglement
properties discussed in this chapter. This will be discussed in a future publication
[116].

The technical term for our choice of pentagon tiling is the (5, 4) tessellation of the
hyperbolic disk ( Fig. 2.5), where 5 refers to the number of edges of the pentagon, and
4 referes to the fact that each corner of a pentagon is shared by four pentagons in total.
In other words, each face has 5 edges and each vertex has 4 edges. An Ising spin of
value �1 is placed at the center of each pentagon in the lattice.

In the (5, 4) tessellation we define the same operator for four spins on pentagons shar-
ing a corner

Op =
4

Õ
i=1

Sz
i , (2.18)

where i runs over four spins, and Sz
i = �1 are the Ising degrees of freedom. The

Hamiltonian is
H = �å

p
Op , (2.19)

Op on different clusters are independent of each other.

When analyzing the fracton model on the flat lattice, the subsystem symmetry is de-
scribed by operations of splitting the lattice by a straight line. The straight lines are
essentially geodesics in the Euclidean geometry, composed of the edges in the square
lattice. By construction, every spin is unambiguously on one side of the line.

On the hyperbolic disk, the geodesics become arcs on the disk that intersect the disk
boundary perpendicularly on both ends. Thus the geodesics defined by the (5, 4) tes-
sellation, i.e., those formed by the edges of the pentagons, play an important role in
our analysis. They are referred to as “pentagon-edge geodesics”. All other conventional
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(a) Hyperbolic lattice 1 (b) Hyperbolic lattice 2 (c) Hyperbolic lattice 3

Figure 2.5: Hyperbolic lattice for the fracton model. (a): The lattice as the (5,4) tessella-
tion of the hyperbolic disk. The spins sit at the center of the unit plaquettes (pentagons
in the bulk or plaquettes on the boundary). The red square shows four pentagons that
form the four-spin cluster interaction term Op [Eq. (2.18)]. (b,c): Lattices of different
sizes. They can be obtained by adding more pentagon-edge geodesics far from the
center. Figure reproduced from Ref. [48].

geodesics are simply refereed to as “geodesics”. The pentagon-edge geodesics are the
blue arcs in Fig. 2.5.

The hyperbolic lattice is infinite. To study it in a controlled way, we introduce a cutoff
and unambiguously define the bulk and boundary degrees of freedom. This is done
by removing infinitely many pentagon-edge geodesics far from the center, and only
keep the ones within certain radius. Lattices of different sizes are shown in Fig. 2.5. It
is a common treatment in AdS/CFT. On the CFT side, an ultraviolet cut-off is applied,
and on the AdS side, the AdS space become finite-sized.

After the cutoff, finitely many pentagon-edge geodesics remain in the lattice, whose
number is denoted as Ng. There are finitely many pentagons in the system. Their as-
sociated spins are the bulk degrees of freedom. Next to the boundary cut-off there are
2Ng faces that are not pentagons, each partially bounded by a segment of the bound-
ary. We place an Ising spin on each of them as boundary degrees of freedom. The
number Ng is thus a measure of the boundary size of the lattice. In Fig. 2.5, finite
lattices of different sizes are illustrated.

2.4.2 Ground States and Fracton Excitations

The ground states and excitations of the hyperbolic fracton model can be explicitly
constructed by simply replacing operations using the straight lines in the flat lattice
with pentagon-edge geodesics.
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