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Abstract
We study the cross-sectional pro“les and spatialdistributions of the “elds in guided normal modes
of two coupled parallel optical nano“bers. We show that the distributions of the components of
the “eld in a guided normal mode of two identical nano“bers are either symmetric or
antisymmetric with respect to the radial principal axis and the tangential principal axis in the
cross-sectional plane of the “bers. The symmetry of the magnetic “eld components with respect to
the principal axes is opposite to that of the electric “eld components. We show that, in the case of
evenEz-cosine modes, the electric intensity distribution is dominant in the area between the “bers,
with a saddle point at the two-“ber center. Meanwhile, in the case of oddEz-sine modes, the
electric intensity distribution at the two-“bercenter attains a local minimum of exactly zero. We
“nd that the differences between the results of the coupled mode theory and the exact mode
theory are large when the separation distance between the “bers is small and either the “ber radius
is small or the wavelength of light is large. We show that a slight difference between the radii of the
nano“bers leads to strong asymmetry of the intensity distributions of the guided normal modes.

1. Introduction

Coupled waveguides form the central working component in numerous optical devices such as multicore
“bers, optical directional couplers, polarizationsplitters, ring resonators, and interferometers [1…3]. Most
of the previous work on coupling between parallel “bers was devoted to conventional “bers where the
refractive indices of the core and the cladding differ only slightly from each other and the “ber radius is
large compared to the wavelength of light [1…3]. It is desirable to study the properties of guided light “elds
in coupled subwavelength-diameter optical “bers due to their increasing relevance in current research
efforts [4].

Optical nano“bers are tapered “bers that have a subwavelength diameter and signi“cantly differing core
and cladding refractive indices [4]. Such ultrathin “bers allow for a guided light “eld, which is tightly
con“ned radially, to propagate along the “ber for a long distance (with several millimeters being typical)
and to interact ef“ciently with nearby quantum orclassical emitters, absorbers, and scatterers [5…7].
Optical nano“bers have been investigated for use in a variety of applications in nonlinear optics, atomic
physics, quantum optics, and nanophotonics [4…7]. Nano“bers have been used for atom trapping [8…11],
ef“cient channeling of emission from atoms into “ber-guided modes [12…14], ef“cient absorption of
guided light by atoms [15, 16], generation of Rydberg states of atoms [17], and excitation of quadrupole
transitions of atoms [18, 19]. Additionally, slot nano“bers, where the center of the nano“ber has been
removed to create two parallel waveguide channels, have been proposed as atom traps [20]. Trapping atoms
between two parallel nano“bers and interfacing them with the guided “elds of the two different nano“bers
may open up more possibilities for applications innonlinear optics, quantum optics, and quantum
information.

Recently, miniaturized optical devices comprising of twisted or knotted nano“bers have been produced
[21]. Coupling between two nano“bers in such systems has been studied by using the linear coupling theory
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[21, 22], which is an approximate theory valid under the condition of weak coupling [1…3]. It has been
shown that butt coupling and self coupling [1…3] could be quite substantial for nano“bers due to the
signi“cant mode spread and overlap [22]. In the case of strong coupling between two “bers, a rigorous
treatment for the normal modes is required.

The exact guided normal modes of two coupled dielectric rods can be calculated by the expansion of
circular harmonics [23]. This method has been extended to the case of multicore “bers [24…26]. A vector
theory that uses the circular harmonics expansion method and the “nite-element method has been
developed for two-core “bers with core index pro“les that are radially inhomogeneous [27]. The
propagation constant and the ”ux density of the “eld in a guided normal mode have been calculated [23,
27, 28]. It has been shown that the coupled mode theory (CMT) performs well when the separation
between the “bers is large [23, 27, 28], and gives reasonable results even for touching “bers when the “ber
radii are suf“ciently large [28]. The polarization patterns [27] and the mode cutoffs [29] have been
investigated. In optomechanics, forces arising from internal illumination by light traveling in coupled
waveguides have been studied [30], and light-guiding arrays of mechanically compliant glass nanospikes
have recently been fabricated [31].

In this work, we investigate the spatial distributions of the “elds in guided normal modes of two coupled
parallel optical nano“bers. We “nd that the distributions of the components of the “elds in guided normal
modes of two coupled identical nano“bers are either symmetric or antisymmetric with respect to the
principal axes of the cross-sectional plane of the “bers. We reveal that the intensity distributions of the “elds
in guided normal modes of two identical “bers attain a local critical point at the two-“ber center that may
be used for atom trapping and guiding. Additionally, we show that the discrepancy between the results of
the CMT and the exact theory is large when the “ber separation distance is small and either the “ber radius
is small or the light wavelength is large.

The key advance of the present work in relation to our previous work [22] is that here we perform an
exact treatment for the spatial distributions of the “elds in guided normal modes of two nano“bers, while
in [22] we used the CMT and calculated the coupling coef“cients.

The paper is organized as follows. In section2 we describe the model of two coupled parallel nano“bers
and present the basic equations for guided normal modes. Section3 contains the numerical calculations of
the spatial distributions of the “elds in the guided normal modes. Finally, we conclude in section4.

2. Two coupled parallel optical nano“bers

We study two vacuum-clad, optical nano“bers that are parallel to each other in the direction of the “ber
axisz (see “gure1). The “bers are labeled by the indicesj = 1, 2. Each nano“berj can be treated as a
dielectric cylinder with a radiusaj and a refractive indexnj > 1, surrounded by an in“nite background of
vacuum or air with a refractive indexn0 = 1. The nano“ber diameters are a few hundreds of nanometers.
An individual nano“berj can support either a single or multiple modes and this depends on the “ber size

parameterVj = kaj

�
n2

j Š n2
0. Here,k = �/ c is the wave number of light with optical frequency� in free

space. We neglect the van der Waals interaction between the “bers assuming that they are “xed.
We note that, although the con“gurations of twisted and knotted nano“bers have been experimentally

realized [21], the technique used in that work does not allow one to obtain the con“guration of two parallel
nano“bers with high quality. Since nano“bers are usually fabricated by tapering of single-mode “bers [4],
the large conic transition regions make it very challenging to obtain the con“guration of two coupled
parallel nano“bers with high quality. Despite this fact, we believe that the model can, in principle, be
experimentally realized with a reasonable quality in the future. Alternatively, pulled nano“bers do not have
a comparable conical transition region and offer a con“guration that could be more easily experimentally
realizable [32].

We introduce the global Cartesian coordinate system{ x,y, z} . Here, thezaxis is parallel to thez1 andz2

axes of the “bers, thex axis is perpendicular to thez axis and connects the centersO1 andO2 of the “bers,
and they axis is perpendicular to thex andz axes (see “gure1). The planexy is the transverse
(cross-sectional) plane of the “bers. Thex andy axes are called the radial and tangential axes, respectively,
of the two-“ber system (see “gure1(b)). The positions of the “ber centersO1 andO2 on thex axis are
O1 = Š(a1 + d1) andO2 = a2 + d2, whered1 + d2 = d is the “ber separation distance. Without loss of
generality, we choosed1 = d2 = d/ 2. For each individual “berj, we use the local “ber-based system{ rj, � j}
of polar coordinates.

The normal modes of the coupled “bers are termed array modes. We study the array modes of a light
“eld with an optical frequency� which propagates in the+ zdirection with a propagation constant� . The
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Figure 1. Two coupled parallel optical nano“bers (a) and the geometry of the system (b).

electric and magnetic components of the “eld can be written asE = [EeŠi(� tŠ � z) + c.c.] / 2 and
H = [H eŠi(� tŠ � z)t + c.c.] / 2, respectively, whereE andH are the slowly varying complex envelopes.

We are interested in the guided (bound) modes whose “elds decay in the transverse direction. The exact
theory for the guided normal modes of two parallel dielectric cylinders has been formulated in [23]. The
”ux density and the beat wavelength for the energy beating between the guided normal modes have been
calculated for the cylinders withaj � �/ 2 andnj/ n0 � 1. We follow the theory of [23] and use it to treat
the spatial distributions of the “elds in the guided normal modes of the coupled nano“bers.

According to the theory of [23], the longitudinal componentsEz andH z of the electric and magnetic
parts, respectively, of the “eld in a guided normal mode are given, inside “berj = 1, 2, as

Ez =
��

n= 0

[AnjJn(hjrj) cosn� j + EnjJn(hjrj ) sin n� j ],

H z =
��

n= 0

[BnjJn(hjrj) sin n� j + FnjJn(hjrj) cosn� j],

(1)

and, outside the two “bers, as

Ez =
2�

j= 1

��

n= 0

[CnjKn(qrj) cosn� j + GnjKn(qrj) sin n� j],

H z =
2�

j= 1

��

n= 0

[DnjKn(qrj) sin n� j + HnjKn(qrj) cosn� j] .

(2)

Here, we have introduced the “ber parameters

hj =
�

k2n2
j Š � 2, q =

�
� 2 Š k2n2

0, (3)

which determine the scales of the spatial variations of the “eld both inside and outside the “bers. In
equations (1) and (2), Jn represents the Bessel functions of the “rst kind andKn represents the modi“ed
Bessel functions of the second kind. The sets{ Anj,Bnj,Cnj,Dnj} and{ Enj,Fnj,Gnj,Hnj} contain the mode
expansion coef“cients for theEz-cosine (x-polarized) andEz-sine (y-polarized) modes, respectively. These
coef“cients characterize the contributions of the partial waves, associated with the circular harmonics, to
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the mode. We emphasize that equations (2) stand for guided (bound) modes but not for radiation
(unbound) modes. Therefore, equations (2) do not contain the Hankel functions and the modi“ed Bessel
functions of the “rst kind.

It follows from the Maxwell equations and the translational symmetry of the system in thez direction
that the transverse componentsEx,y andH x,y of the electric and magnetic parts of the “eld can be expressed
in terms of the longitudinal componentsEz andH z as [1…3]

Ex =
i�

k2n2
ref Š � 2

�
�
� x

Ez +
�µ 0

�
�
� y

H z

�
,

Ey =
i�

k2n2
ref Š � 2

�
�
� y

Ez Š
�µ 0

�
�
� x

H z

�
,

H x =
i�

k2n2
ref Š � 2

�
�
� x

H z Š
�� 0n2

ref

�
�
� y

Ez

�
,

H y =
i�

k2n2
ref Š � 2

�
�
� y

H z +
�� 0n2

ref

�
�
� x

Ez

�
.

(4)

Here,nref is the spatial distribution of the refractive index in the presence of the two-“ber system, that is,
nref = nj inside “berj = 1, 2 andnref = n0 outside the two “bers.

The “eld in the mode must satisfy the boundary conditions at the surfaces of both “bers. These
conditions say that the tangential components of the electric and magnetic “elds are continuous at the
boundary. By using the boundary conditions, the algebraic equations for the mode expansion coef“cients
{ Anj,Bnj,Cnj,Dnj} and{ Enj,Fnj,Gnj,Hnj} have been derived [23]. These equations are summarized in
appendixA.

For theEz-cosine modes, the expansion coef“cientsEnj, Fnj, Gnj, andHnj vanish. For these modes, the
coef“cientsAnj andBnj for the “eld inside the “bers are given by equations (A.4), while the coef“cientsCnj

andDnj for the “eld outside the “bers are nonzero solutions of equations (A.5).
For theEz-sine modes, the expansion coef“cientsAnj, Bnj, Cnj, andDnj vanish. For these modes, the

coef“cientsEnj andFnj for the “eld inside the “bers are given by equations (A.10), while the coef“cientsGnj

andHnj for the “eld outside the “bers are nonzero solutions of equations (A.11).
The dispersion equation for theEz-cosine orEz-sine modes is� = 0, where� is the determinant of the

system of linear equations (A.5) for Cnj andDnj or (A.11) for Gnj andHnj. The solution to the equation
� = 0 determines the propagation constant� , which allows us to calculate the other “ber parametershj

andq [see equations (3)].
Note that the coef“cients associated withCnj andDnj in equations (A.5) and withGnj andHnj in

equations (A.11) are real-valued coef“cients. Therefore, when we omit a common global phase, we can
make{ Anj,Bnj,Cnj,Dnj} and, similarly,{ Enj,Fnj,Gnj,Hnj} to be real-valued coef“cients. Then, the
longitudinal “eld componentsEz andH z, given by equations (1) and (2), are real-valued, while the
transverse components (Ex,Ey) and (H x,H y), given by equations (4), are imaginary-valued. Thus, we have

E�
z = Ez, H �

z = H z,

E�
x = ŠEx, H �

x = ŠH x,

E�
y = ŠEy, H �

y = ŠH y.

(5)

Equations (5) indicate that the longitudinal componentsEz andH z of the “eld in a guided normal mode
are�/ 2 out of phase with respect to the transverse componentsEx, Ey, H x, andH y. This relative phase is a
typical feature of guided [1…3] and other transversely con“ned light “elds [33].

Let us consider the particular case where the two “bers are identical, that is, the two “bers have the same
radiusa1 = a2 = a and the same core refractive indexn1 = n2 = nf . In this case, for theEz-cosine modes,
we “nd

An2 = (Š1)n	 An1, Bn2 = (Š1)n	 Bn1,

Cn2 = (Š1)n	 Cn1, Dn2 = (Š1)n	 Dn1,
(6)

and, for theEz-sine modes, we get

En2 = (Š1)n	 En1, Fn2 = (Š1)n	 Fn1,

Gn2 = (Š1)n	 Gn1, Hn2 = (Š1)n	 Hn1,
(7)
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Table 1. Symmetry (+ ) and antisymmetry (Š) of the components of the
“elds in the guided normal modes of two coupled identical “bers with respect
to the transformationx � Š x.

Mode type Ex Ey Ez H x H y H z

EvenEz-cosine + Š Š Š + +
Odd Ez-cosine Š + + + Š Š
EvenEz-sine Š + + + Š Š
Odd Ez-sine + Š Š Š + +

where	 = Š1 or + 1 corresponds to the even or odd mode, respectively [23]. Then, equations (A.5) for the
Ez-cosine modes reduce to equations (A.14) and equations (A.11) for the Ez-sine modes lead to
equations (A.15).

After performing the transformationx � Š x, that is, (x, y) � (Šx,y), we have (r1, � 1) � (r2, � Š � 2)
and (r2, � 2) � (r1, � Š � 1). It follows from the relations (6) and (7) and equations (1), (2) and (4) that the
“eld components of the evenEz-cosine and oddEz-sine modes satisfy the relations [27]

Ex(Šx,y) = Ex(x, y), H x(Šx,y) = ŠH x(x, y),

Ey(Šx,y) = ŠEy(x, y), H y(Šx,y) = H y(x, y),

Ez(Šx,y) = ŠEz(x, y), H z(Šx,y) = H z(x, y),

(8)

and the “eld components of the oddEz-cosine and evenEz-sine modes obey the relations [27]

Ex(Šx,y) = ŠEx(x, y), H x(Šx,y) = H x(x, y),

Ey(Šx,y) = Ey(x, y), H y(Šx,y) = ŠH y(x, y),

Ez(Šx,y) = Ez(x, y), H z(Šx,y) = ŠH z(x, y).

(9)

The symmetry properties of the components of the “elds in the guided normal modes of two coupled
identical “bers with respect to the transformationx � Š x are summarized in table1.

After performing the transformationy � Š y, that is, (x, y) � (x,Šy), we have (r1, � 1) � (r1,Š � 1) and
(r2, � 2) � (r2,Š � 2). It follows from equations (1), (2) and (4) that the “eld components of theEz-cosine
modes satisfy the relations [27]

Ex(x,Šy) = Ex(x, y), H x(x,Šy) = ŠH x(x, y),

Ey(x,Šy) = ŠEy(x, y), H y(x,Šy) = H y(x, y),

Ez(x,Šy) = Ez(x, y), H z(x,Šy) = ŠH z(x, y),

(10)

and the “eld components of theEz-sine modes obey the relations [27]

Ex(x,Šy) = ŠEx(x, y), H x(x,Šy) = H x(x, y),

Ey(x,Šy) = Ey(x, y), H y(x,Šy) = ŠH y(x, y),

Ez(x,Šy) = ŠEz(x, y), H z(x,Šy) = H z(x, y).

(11)

Note that equations (10) and (11) remain valid for nonidentical “bers. The symmetry properties of the
components of the “elds in the guided normal modes of two coupled “bers with respect to the
transformationy � Š y are summarized in table2.

Thus, the “eld componentsEx,y,z andH x,y,z are either symmetric or antisymmetric with respect to the
transformationsx � Š x andy � Š y. This arises because the principal axesx andy are the symmetry axes
of the system of two identical “bers. We note that the symmetry of the magnetic “eld componentsH x,y,z

with respect to the transformationx � Š x or y � Š y is opposite to that of the electric “eld components
Ex,y,z. The symmetry relations (8)…(11) are in agreement with the results of [27].

It is worth noting that, for the oddEz-sine mode, we have the relationsEx(x, y) = ŠEx(x,Šy),
Ey(x, y) = ŠEy(Šx,y), andEz(x, y) = ŠEz(Šx,y), indicating the antisymmetry ofEx about thex axis and
that of Ey andEz about they axis. It follows from these relations that, for the oddEz-sine mode, the electric
“eld E at the two-“ber center (x, y) = (0, 0) is zero, that is,E(0, 0) = 0.

The vanishing of the electric “eldE of the oddEz-sine mode at the two-“ber center can be used to
produce a local minimum of a blue-detuned optical dipole potential to trap ground-state atoms [34…36] or
a local minimum of a ponderomotive optical Rydberg-electron potential to trap Rydberg atoms [37, 38].
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Table 2. Symmetry (+ ) and antisymmetry (Š) of the components of the
“elds in the guided normal modes of two coupled “bers with respect to the
transformationy � Š y.

Mode type Ex Ey Ez H x H y H z

Ez-cosine + Š + Š + Š
Ez-sine Š + Š + Š +

Similarly, we can show that, in the case of the oddEz-cosine mode, the magnetic “eldH at the two-“ber
center is zero, that is,H (0, 0) = 0.

3. Numerical calculations

In this section, we numerically calculate the propagation constants and spatial distributions of the “elds in
guided normal modes of two parallel vacuum-clad silica nano“bers. The refractive index of the vacuum
cladding isn0 = 1. To calculate the refractive indexn1 = n2 = nf of the silica cores of the nano“bers, the
four-term Sellmeier formula for fused silica is used [39, 40]. In particular, for light with the wavelength
� = 800 nm, we havenf = 1.4533. In our numerical calculations, thein“nite number of circular harmonics
is truncated at a “nite numberNmax in the range from 9 to 19. The value ofNmax is chosen such that the
propagation constant converges and the boundary conditions are satis“ed with a reasonable accuracy [23].

According to the previous section, in the case of identical “bers, there are four kinds of normal modes,
denoted as evenEz-cosine, oddEz-cosine, evenEz-sine, and oddEz-sine modes, or asI (cos)

0 , I (cos)
� , I (sin)

0 , and
I (sin)
� modes, respectively [23]. The evenEz-cosine, oddEz-cosine, evenEz-sine, and oddEz-sine modes can

also be labeled by the letters OO, OE, EE, and EO, respectively. These letters indicate the symmetry (E) and
antisymmetry (O) of the “eld componentEy about thex (“rst letter) and y (second letter) axes [27]. We are
interested in the case where the “ber radii are small enough that no more than one normal mode of each of
the four kinds can be supported.

3.1. Propagation constants of guided normal modes of two identical nano“bers
Let us assume that the two nano“bers have the same “ber radius, that is,a1 = a2 = a. We plot in
“gures2…4 the propagation constant� , normalized to the free-space wave numberk, as functions of the
“ber radiusa, the light wavelength� , and the “ber separation distanced. We note that the rationeff � �/ k
between� andk is called the effective refractive index. It is clear from “gures2…4 that neff depends on the
parameters of the “bers, the wavelength of light, and the mode type. We observe from the “gures that there
are four guided normal modes, identi“ed as evenEz-cosine, oddEz-cosine, evenEz-sine, and oddEz-sine
modes [23].

Figures2…4 show that there are two pairs of adjacent curves. The upper pair corresponds to the even
modes and the lower pair to the odd modes. This indicates that the propagation constant of an even mode
(see the upper pair of curves) is larger than that ofthe corresponding odd mode (see the lower pair of
curves). The differences between the propagation constants for the oddEz-cosine and oddEz-sine modes
(see the lower pair of curves) are smaller than those for the evenEz-cosine and evenEz-sine modes (see the
upper pair of curves). We see from “gure4 that the differences between the propagation constants for the
four guided array modes reduce with increasing “ber separation distanced. We observe from “gures2 and3
that the oddEz-cosine and oddEz-sine modes have cutoffs but the evenEz-cosine and evenEz-sine modes
have no cutoff [23, 29]. The reason is the following:

For a single propagation direction+ z, each single-mode nano“ber can support a superposition of two
fundamental modes HE11 that are quasilinearly polarized along thex andy axes and are called asEz-cosine
andEz-sine modes, respectively. We expect that two coupled parallel single-mode nano“bers can support up
to four guided normal modes. We introduce the notatione(p)

j for the pro“le function of the single-“ber
mode with the quasilinear polarizationp = x,y of nano“ber j = 1, 2. According to the CMT [3], there is no
coupling between the principalx andy polarizations. For a suitable choice of the global phases of the mode
functions, the approximate pro“le functions of the guided normal modes can be given ase(p)

± � e(p)
1 ± e(p)

2 ,
where the sign+ andŠ corresponds to the even and odd modes, respectively. Note that

e(p)
1 (r) = e(p)

2 (r +
Š�

O1O2). When either the “ber radius is small enough or the light wavelength is large
enough, we can use the approximatione(p)

1 (r) � e(p)
2 (r). In these limits, the even array modes with the

pro“le functionse(p)
+ � e(p)

1 + e(p)
2 approach the modes of single nano“bers, while the odd array modes with

the pro“le functionse(p)
Š � e(p)

1 Š e(p)
2 are widely spread out in the outside of the nano“bers. Consequently,

the propagation constant of an even mode is larger than that of the corresponding odd mode (see

6
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Figure 2. Propagation constant� , normalized to the free-space wave numberk, as a function of the “ber radiusa for two
identical nano“bers. The wavelength of light is� = 800 nm and the separation distance between the two “bers isd = 0 (a) and
200 nm (b). The refractive index of the “bers isnf = 1.4533 and that of the surrounding medium isn0 = 1.

Figure 3. Propagation constant� , normalized to the free-space wave numberk, as a function of the wavelength� of light for two
identical nano“bers. The “ber radius isa = 200 nm and the separation distance between the two “bers isd = 0 (a) and 200 nm
(b). The refractive indexnf of the nano“bers is calculated from the four-term Sellmeier formula for fused silica [39, 40] and that
of the surrounding medium isn0 = 1.

“gures2…4). When the propagation constant� of an odd mode achieves the free space valuek, the mode is
not guided, and a cutoff is observed. We note that the position of the cutoff is determined by the solution to
the equation� = k, where the propagation constant lies on the free-space light line. We recognize that the
above qualitative physical explanation is partly based on the CMT, which is not valid below the cutoff. Near
the cutoff, the deviation of this theory from the exact theory is signi“cant but not dramatic (see
subsection3.3).

Comparison between “gures2(a) and (b) and between “gures3(a) and (b) shows that the cutoff values
of the “ber radiusa and the light wavelength� for the oddEz-cosine andEz-sine modes depend on the
separation distanced between the two “bers. A smallerd leads to a larger cutoff value of the “ber radiusa
and to a smaller cutoff value of the light wavelength� . We see from “gure4(a) that, if the “ber radiusa is
large enough or, equivalently, the light wavelength is small enough, there is no cutoff of the guided normal
modes. However, “gures4(b) and (c) show that, if the “ber radiusa is small enough or, equivalently, the
light wavelength is large enough, a cutoff of an odd guided normal mode may appear at a nonzero “ber
separation distanced. Comparing the solid and dashed curves of “gures2…4 shows that the difference
between the propagation constants of theEz-cosine andEz-sine modes reduces with increasing “ber
separation distanced. This feature is due to the fact that the difference between the propagation constants
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Figure 4. Propagation constant� , normalized to the free-space wave numberk, as a function of the “ber separation distanced
for two identical nano“bers. The “ber radius and the light wavelength are (a)a = 200 nm and� = 800 nm, (b)a = 150 nm and
� = 800 nm, and (c)a = 200 nm and� = 1000 nm. Other parameters are as in “gures2 and3.

of thex- and y-polarized array modes is determined by the coupling between the nano“bers, which depends
on the mode overlap and consequently reduces with increasingd.

Nano“bers are effective media for nonlinear optics due to the tight con“nement of the “elds in their
guided modes [5…7, 41, 42]. The control of dispersion properties of tapered “bers has led to many
interesting applications such as supercontinuum generation [41] and photon triplet generation [42]. An
advantage of the system of two coupled nano“bers is that the dispersion properties of the array modes
depend on not only the “ber radius, the wavelength of light, and the material refractive index but also the
separation distance between the “bers. Consequently,one can control and manipulate nonlinear processes
by varying the “ber separation distancein addition to the other parameters.

3.2. Spatial pro“les of the “elds in the guided normal modes of two identical nano“bers
In this subsection, we study the spatial distributions of the “elds in the guided normal modes of two
identical nano“bers. We display the cross-sectional pro“les of the electric intensity distributions|E|2 for
different guided array modes. We also show the dependencies of the componentsEx, Ey, andEz and the
intensity|E|2 of the electric “eld on thex andy coordinates (sinceEx andEy are imaginary-valued andEz is
real-valued, we plot Im (Ex) = ŠiEx, Im (Ey) = ŠiEy, and Re (Ez) = Ez).

3.2.1. EvenEz-cosine mode
In “gure 5, we plot the cross-sectional pro“le of the electric intensity distribution|E|2 of the “eld in the
evenEz-cosine mode of two identical parallel nano“bers. The “gure shows that the electric “eld intensity is
dominant in the area between the “bers. This feature can be used to attract atoms [34…36] using a single
red-detuned array-mode light “eld. We note that the intensity distribution of the evenEz-cosine mode is
similar to that of the perpendicular-polarization symmetric mode of a slot nano“ber, where high intensities
can be realized in the vacuum region between the slot walls [20].

We show in “gure6 the dependencies of the componentsEx, Ey, andEz and the intensity|E|2 of the
electric “eld in the evenEz-cosine mode on thex andy coordinates. Comparing the scales of the vertical
axes in “gure6 shows that all the three componentsEx, Ey, andEz of the “eld are signi“cant, whileEx (see
“gures6(a) and (e)) is dominant. These features are in agreement with the fact that, in the case of single
“bers, theEz-cosine modes are quasilinearly polarized along thex axis [1…3].

Figures5 and6 show that a signi“cant portion of the “eld is in the outside of the nano“bers. The “gures
also show that abrupt changes of the “elds occur at the surfaces of the “bers. Such dramatic changes arise
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Figure 5. Cross-sectional pro“le of the electric intensity distribution|E|2 of the “eld in the evenEz-cosine mode of two identical
parallel nano“bers. The “ber radius isa = 200 nm and the separation distance between the two “bers isd = 50 nm (a) and 200 nm (b).
The power of light is the same in the two cases. Other parameters are as in “gure2.

Figure 6. Dependencies of the componentsEx, Ey, andEz and the intensity|E|2 of the electric “eld in the evenEz-cosine mode of
two identical “bers on thex andy coordinates. The “ber radius isa = 200 nm and the separation distance between the two “bers is
d = 50 nm. The parameters used are the same as for “gure5(a).

from the boundary conditions and the sharp contrast between the refractive indexnf of the silica nano“bers
and the refractive indexn0 = 1 of the vacuum medium outside the nano“bers.

The solid curve of “gure6(d) shows that the peaks of the intensity distribution occur at the facing
points (x, y) = (± d/ 2, 0). Meanwhile, the center (x, y) = (0, 0) of the two-“ber system is a saddle point
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