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underthe terms ofthe  \\e study the cross-sectional pro“les and spatiatributions of the “elds in guided normal modes
Attribution 4.0licence  of two coupled parallel optical nano“bers. We shithat the distributions of the components of
Any further distribution - the “eld in a guided normal mode of two identical nano“bers are either symmetric or

of this work must

maintain attributionto ~ @NtiSymmetric with respect to the radial principal axis and the tangential principal axis in the
theauthor(s) andthe — crggs-sectional plane of the “bers. The symmetrihe magnetic “eld components with respect to

title of the work, journal

citation and DOI. the principal axes is opposite to that of the electric “eld components. We show that, in the case of
evenk-cosine modes, the electric intensity distribution is dominant in the area between the “bers,

with a saddle point at the two-"ber center. Meanwhile, in the case oflgesine modes, the

electric intensity distribution at the two-"betenter attains a local minimum of exactly zero. We

“nd that the differences between the results of the coupled mode theory and the exact mode
theory are large when the separation distance between the “bers is small and either the “ber radius
is small or the wavelength of light is large. We show that a slight difference between the radii of the
nano“bers leads to strong asymmetry of the intensity distributions of the guided normal modes.

1. Introduction

Coupled waveguides form the central working compuiria numerous optical devices such as multicore
“bers, optical directional couplers, polarizati@plitters, ring resonators, and interferometets.§]. Most

of the previous work on coupling between parallbEts was devoted to conventional “bers where the
refractive indices of the core and the cladding differ only slightly from each other and the “ber radius is
large compared to the wavelength of light J]. It is desirable to study the properties of guided light “elds
in coupled subwavelength-diameter optical “bers due to their increasing relevance in current research
efforts [4].

Optical nano“bers are tapered “bers that have a subwavelength diameter and signi“cantly differing core
and cladding refractive indiced][ Such ultrathin “bers allow for a guided light “eld, which is tightly
con“ned radially, to propagate along the “ber for a longthnce (with several millimeters being typical)
and to interact ef“ciently with nearby quantum atassical emitters, absorbers, and scatteferg]

Optical nano“bers have been investigated for use iardety of applications in nonlinear optics, atomic
physics, quantum optics, and nanophotonids.f]. Nano“bers have been used for atom trappiriy [L1],
ef‘cient channeling of emission from atoms into “ber-guided modé&.[14], efcient absorption of

guided light by atoms15, 16|, generation of Rydberg states of atoms§][ and excitation of quadrupole
transitions of atoms 18, 19. Additionally, slot nano“bers, wherthe center of the nano“ber has been
removed to create two parallel waveguide channels, have been proposed as atoftirdpsdping atoms
between two parallel nano“bers and interfacing them with the guided “elds of the two different nano“bers
may open up more possibilities for applicationsrianlinear optics, quantum optics, and quantum
information.

Recently, miniaturized optical devices comprisof twisted or knotted nano“bers have been produced
[21]. Coupling between two nano“bers in such systems has been studied by using the linear coupling theory

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf ofisétute of Physics and Deutsche Physikalische Gesellschaft
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[21, 22], which is an approximate theory valid under the condition of weak couplihg]. It has been
shown that butt coupling and self coupling.[.3] could be quite substantial for nano“bers due to the
signi“cant mode spread and overlapZ. In the case of strong coupling between two “bers, a rigorous
treatment for the normal modes is required.

The exact guided normal modes of two coupled dielectric rods can be calculated by the expansion of
circular harmonics 23. This method has been extended to the case of multicore “b&tsg6]. A vector
theory that uses the circular harmonics expansion method and the “nite-element method has been
developed for two-core “bers with core index pro“les that are radially inhomogenebisThe
propagation constant and the "ux density of the “eld in a guided normal mode have been calcul&ted [

27, 28). It has been shown that the coupled mode theory (CMT) performs well when the separation
between the “bers is large$, 27, 2§, and gives reasonable results even for touching “bers when the “ber
radii are suf‘ciently largeZg]. The polarization patterns7] and the mode cutoffs39 have been
investigated. In optomechanics, forces arising from internal illumination by light traveling in coupled
waveguides have been studiéd][ and light-guiding arrays of mechanically compliant glass nanospikes
have recently been fabricatesll].

In this work, we investigate the spatial distributions of the “elds in guided normal modes of two coupled
parallel optical nano“bers. We “nd that the distriltions of the components of the “elds in guided normal
modes of two coupled identical nano“bers are either symmetric or antisymmetric with respect to the
principal axes of the cross-sectional plane of the “b&/s reveal that the intensity distributions of the “elds
in guided normal modes of two identical “bers attainachl critical point at the two-"ber center that may
be used for atom trapping and guiding. Additionallye whow that the discrepancy between the results of
the CMT and the exact theory is large when the “ber separation distance is small and either the “ber radius
is small or the light wavelength is large.

The key advance of the present work in relation to our previous wagif that here we perform an
exact treatment for the spatial distributions of theltis in guided normal modes of two nano“bers, while
in [27 we used the CMT and calculated the coupling coefcients.

The paper is organized as follows. In sectitome describe the model of two coupled parallel nano“bers
and present the basic equations for guided normal modes. Segtiontains the numerical calculations of
the spatial distributions of the “elds in the guéd normal modes. Finally, we conclude in section

2. Two coupled parallel optical nano“bers

We study two vacuum-clad, optical nano“bers thaegrarallel to each other in the direction of the “ber
axisz (see “gurel). The “bers are labeled by the indiges 1, 2. Each nano“beycan be treated as a
dielectric cylinder with a radiug; and a refractive indew; > 1, surrounded by an in“nite background of
vacuum or air with a refractive index = 1. The nano“ber diameters are a few hundreds of nanometers.
An individual nano“berj can support either a single or multiple modes and this depends on the “ber size

parametelV; = kg nJ-2 S n3. Here k= / cis the wave number of light with optical frequencyin free

space. We neglect the van der Waals interaction between the “bers assuming that they are “xed.

We note that, although the con“gurations of twisted and knotted nano“bers have been experimentally
realized P1], the technique used in that work does not alloweoto obtain the con“guration of two parallel
nano“bers with high quality. Since nano“bers are usually fabricated by tapering of single-mode 4hers |
the large conic transition regions make it very challenging to obtain the con“guration of two coupled
parallel nano“bers with high quality. Despite thect, we believe that the model can, in principle, be
experimentally realized with a reasonable quality filture. Alternatively, pulled nano“bers do not have
a comparable conical transition region and offer a cgaration that could be more easily experimentally
realizable 37].

We introduce the global Cartesian coordinate sysfeny, z} . Here, thez axis is parallel to the, andz,
axes of the “bers, thr axis is perpendicular to theaxis and connects the cent&s and O, of the “bers,
and they axis is perpendicular to theandz axes (see “guré). The planexy is the transverse
(cross-sectional) plane of the “bers. Thandy axes are called the radial and tangential axes, respectively,
of the two-“ber system (see “guréb)). The positions of the “ber centei®; and O, on thex axis are
O1= S(ay + dy) andO, = &, + d, Whered; + dy = dis the “ber separation distance. Without loss of
generality, we choosk = dy = d/ 2. For each individual “bej, we use the local “ber-based systém |}
of polar coordinates.

The normal modes of the coupled “bers are termed array modes. We study the array modes of a light
“eld with an optical frequency which propagates in the z direction with a propagation constant. The
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Figure 1. Two coupled parallel optical nano“bers (a) and the geometry of the system (b).

electric and magnetic components of the “eld can be writteE as[E€>( 'S 2 + ¢.c.]/ 2 and
H=1[H eSi 1S oty c.c.]/ 2, respectively, wheieandH are the slowly varying complex envelopes.
We are interested in the guided (bound) modes whose “elds decay in the transverse direction. The exact
theory for the guided normal modes of two parallel dielectric cylinders has been formulat2d.iif he
"ux density and the beat wavelength for the energy beating between the guided normal modes have been
calculated for the cylinders witly  / 2 andn/ny 1. We follow the theory of]3 and use it to treat
the spatial distributions of the “elds in the guided normal modes of the coupled nano“bers.
According to the theory of43, the longitudinal componentg, andH , of the electric and magnetic
parts, respectively, of the “eld in a guided normal mode are given, insidej“bet, 2, as

E=  [Ayh(hr)cosn j+ Eyh(h)sinn ],

1)
H,= [anJn(h,-r,-) sinn it Fann(h,-r,-) cosn j],
n=0
and, outside the two “bers, as
2
E= [CriKn(an) cosn j+ GyKn(gr) sinn ],
j=1n=0 5
. )
H,= [DniKn(ar) sinn j+ HyKn(gr) cosn j].
j=1n=0
Here, we have introduced the “ber parameters
hi= kS 2 q= 2S Kk2ng, (3)

which determine the scales of the spatial variations of the “eld both inside and outside the “bers. In
equations () and (2), J, represents the Bessel functions of the “rst kind &pdrepresents the modi“ed
Bessel functions of the second kind. The $étg, By, Cyyj, Dnj} and{ Ey, Fyj, Gy, Hyy} contain the mode
expansion coef“cients for th&,-cosine k-polarized) andg;-sine {/-polarized) modes, respectively. These
coef“cients characterize the contributions of the palrtvaves, associated with the circular harmonics, to

3
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the mode. We emphasize that equatiofsgtand for guided (bound) modes but not for radiation
(unbound) modes. Therefore, equatioriy flo not contain the Hankel functions and the modi“ed Bessel
functions of the “rst kind.

It follows from the Maxwell equations and theanslational symmetry of the system in thdirection
that the transverse componerig, andH,, of the electric and magnetic parts of the “eld can be expressed
in terms of the longitudinal components, andH , as [L..3]

[ Ho
= . + H ,
= k2nZ, S 2 x= y -
i = Ho
= - H
5 k2nZ S 2 yEZ s x °
. (4)
He= ! H,5 e g
kS 2 ox ¢ y o
i 0n2
H, = . H, + ref
YUk, s 2yt Xt

Here,nys is the spatial distribution of the refractive index in the presence of the two-“ber system, that is,
Nef = N inside “berj = 1,2 andnes = Ng outside the two “bers.

The “eld in the mode must satisfy the boundary conditions at the surfaces of both “bers. These
conditions say that the tangential components of the electric and magnetic “elds are continuous at the
boundary. By using the boundary cditions, the algebraic equationsrfthe mode expansion coef‘cients
{Anj, Bnj, Cyj, Dnj} and{ Eyj, Fyj, Gnj, Hny} have been derive@f]. These equations are summarized in
appendixA.

For theE-cosine modes, the expansion coef“cieB{s F;, Gnj, andHy; vanish. For these modes, the
coef‘cientsAy; and By; for the “eld inside the “bers are given by equatiors ), while the coef‘cient<y;
and Dy, for the “eld outside the “bers are nonzero solutions of equatioAsy.

For theE-sine modes, the expansion coef‘ciedg, By, Cpj, andDyj vanish. For these modes, the
coef‘cientsE, andF for the “eld inside the “bers are given by equations {0, while the coef“cientss;
andHy; for the “eld outside the “bers are nonzero solutions of equatioAsl().

The dispersion equation for thg,-cosine orE-sine modes is= 0, where is the determinant of the
system of linear equationg\(5) for C,; and Dy or (A.11) for G,; andHy,;. The solution to the equation

= 0 determines the propagation constantwhich allows us to calculate the other “ber parametgrs
andq[see equations3].

Note that the coef“cients associated with and Dy, in equations f.5) and with G, andHy,; in
equations A.17) are real-valued coef‘cients. Therefore, when we omit a common global phase, we can
make{ Anj, By, Cyj, Drj} and, similarly{ Ej, Fyj, Gnj, Hij} to be real-valued coef‘cients. Then, the
longitudinal “eld componentss; andH ,, given by equationsl and (2), are real-valued, while the
transverse componentgy, E;) and (Hy, Hy), given by equations4), are imaginary-valued. Thus, we have

EZ = EZ! HZ = HZ;
E( = éEx, Hx = éH Xy (5)
E = SE,, H, = SH,.

Equations §) indicate that the longitudinal components andH of the “eld in a guided normal mode
are / 2 out of phase with respect to the transverse compongnts,, Hy, andH,. This relative phase is a
typical feature of guidedi[..3] and other transversely con“ned light “eldS§.
Let us consider the particular case where the two “bers are identical, that is, the two “bers have the same
radiusa; = a = aand the same core refractive index= n, = n;. In this case, for th&,-cosine modes,

we “nd . -
Anz = (?1)n Ant, Bn2 = (Svl)“ Bn1, )
Cn2= (S1)" Cu, Dnz = (S1)" Dy,

and, for theE,-sine modes, we get
Eno = (é 1)" En, Fn2 = (é 1)" Fu, @
Gz = (S51)" Gy, Hnz = (S1)" Hu,

4
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Table 1. Symmetry ¢ ) and antisymmetry$) of the components of the
“elds in the guided normal modes of two coupled identical “bers with respect

to the transformatiorx S x.

Mode type E E E Hy Hy H,
EvenE,-cosine + S S S + +
0dd E,-cosine S + + + S S
EvenE,-sine S + + + S S
0dd E-sine + S S S + +

where = S1or+ 1 corresponds to the even or odd mode, respectivel [Then, equationsA.5) for the
E,-cosine modes reduce to equatiors 14 and equations4.11) for the E,-sine modes lead to
equations A.15.

After performing the transformatiox S x, thatis, &y) (Sx,y), we havei,, ;) (12, S )
and (2, ,) (11, S ). Itfollows from the relations®) and (7) and equations 1), (2) and (4) that the
“eld components of the eveE,-cosine and oddg;-sine modes satisfy the relatioris/]

E«(Sx.y) = Edx,Y), Hx(Sx,y) = SHx(x,Y),
E/(Sx,y) = SEy(xy), Hy(Sx,y) = Hy(x,Y), 8)
E(Sx,y) = SE,(x.Y), H.(SX,y) = Hz(xY),

and the “eld components of the odH,-cosine and eveg;-sine modes obey the relationg7]

Ex(éxa y) = éEX(X! y)r Hx(éxvy) = HX(X! y),
Ey(é X, y) = Ey(X! y)r H y(é X, y) = éH y(X1 y)! (9)
E(Sxy) = E(x.Y), Hz(Sxy) = SH(xY).

The symmetry properties of the components of tlelds in the guided normal modes of two coupled
identical “bers with respect to the transformation S x are summarized in table

After performing the transformatioy S vy, thatis, &y) (x,Sy), we haverg, ;) (r,S ;) and
(r2, 5) (r2,S ). Itfollows from equations 1), (2) and (4) that the “eld components of th&,-cosine
modes satisfy the relation&T]

E)((X!éy) = EX(X! y)r HX(Xiéy) = éH X(X! y),
Ey(X! éy) = éEy(X! y)r H y(X1 éy) = H y(X! y)r (10)
E(x. Sy) = E(x.Y), Hz(x,Sy) = SH(xy),

and the “eld components of thE,-sine modes obey the relationd]]

B(xSY) = SEx(xY),  Hu(x,Sy) = Hx(xy),
Ey(xv éy) = EV(X! y)r H y(X1 éy) = éH y(X1 y)! (11)
EZ(Xv éy) = éEZ(XI y)! H Z(X! éy) = H Z(X1 y)

Note that equationsX0) and (11) remain valid for nonidentical “bes. The symmetry properties of the
components of the “elds in the guided normal modes of two coupled “bers with respect to the
transformationy S yare summarized in tabl2

Thus, the “eld componentg,,,; andHyy, are either symmetric or antisymmetric with respect to the
transformationsx S xandy S y. This arises because the principal axaady are the symmetry axes
of the system of two identical “bers. We note that the symmetry of the magnetic “eld compoHggts
with respect to the transformation S xory S yis opposite to that of the electric “eld components
Exyz. The symmetry relationssf...{1) are in agreement with the results 6f7.

It is worth noting that, for the oddE,-sine mode, we have the relatioBgx,y) = SE,(x, Sy),
E(xY) = SE,(Sx,y), andE,(x,y) = SE,(Sx,y), indicating the antisymmetry d, about thex axis and
that of E, and E; about they axis. It follows from these relations that, for the oBgdsine mode, the electric
“eld E at the two-"ber centerX,y) = (0, 0) is zero, thatig:(0,0)= 0

The vanishing of the electric “eld of the oddE,-sine mode at the two-"ber center can be used to
produce a local minimum of a blue-detuned optical dipole potential to trap ground-state atBtsf or
a local minimum of a ponderomotive optical Ryelig-electron potential to trap Rydberg atonss[39)].

5
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Table 2. Symmetry ¢ ) and antisymmetry$) of the components of the
“elds in the guided normal modes of two coupled “bers with respect to the
transformationy S .

Mode type E E E Hy Hy H,
E,-cosine + S + S + S
E,-sine S + S + S +

Similarly, we can show that, in the case of the &gdosine mode, the magnetic “eld at the two-"ber
center is zero, that i$] (0,0)= 0.

3. Numerical calculations

In this section, we numerically calculate the propagationstants and spatial distributions of the “elds in
guided normal modes of two parallel vacuum-clad silica nano“bers. The refractive index of the vacuum
cladding isng = 1. To calculate the refractive indax = n, = n¢ of the silica cores of the nano“bers, the
four-term Sellmeier formula for fused silica is us&$,[40]. In particular, for light with the wavelength

= 800 nm, we have; = 1.4533. In our numerical calculations, tivnite number of circular harmonics
is truncated at a “nite numbeN,« in the range from 9 to 19. The value Nf,.« is chosen such that the
propagation constant converges and the boundand@ions are satis“ed with a reasonable accuraty.[

According to the previous section, in the case ohittl “bers, there are four kinds of normal modes,

denoted as eve,-cosine, oddE,-cosine, evel,-sine, and oddE,-sine modes, or aki™®), 1€0s), 18 and
1" modes, respectivelp§. The everE,-cosine, oddE,-cosine, evel,-sine, and odds,-sine modes can
also be labeled by the letters OO, OE, EE, and EO, respectively. These letters indicate the symmetry (E) and
antisymmetry (O) of the “eld componerig, about thex (“rst letter) and y (second letter) axe[]. We are
interested in the case where the “ber radii are small enough that no more than one normal mode of each of
the four kinds can be supported.

3.1. Propagation constants of guided normal modes of two identical nano“bers

Let us assume that the two nano“bers have the same “ber radius, tlamtisa, = a. We plot in

“gures 2. .4 the propagation constant, normalized to the free-space wave numkgeas functions of the

“ber radiusa, the light wavelength, and the “ber separation distanck We note that the ratioe  / k
between andkis called the effective refractive index. It is clear from “gure$ that nes depends on the
parameters of the “bers, the wavelength of light, and the mode type. We observe from the “gures that there
are four guided normal modes, identi“ed as eercosine, odds-cosine, evel,-sine, and odds-sine

modes P3.

Figures2..4 show that there are two pairs of adjacent curves. The upper pair corresponds to the even
modes and the lower pair to the odd modes. This indicates that the propagation constant of an even mode
(see the upper pair of curves) is larger than thathaf corresponding odd mode (see the lower pair of
curves). The differences between the propagation constants for thE,amisine and oddE,-sine modes
(see the lower pair of curves) are smaller than those for the Exeasine and eveR,-sine modes (see the
upper pair of curves). We see from “gudiehat the differences between the propagation constants for the
four guided array modes reduce with increasing “ber separation distande observe from “gureg and 3
that the oddE;-cosine and oddE,-sine modes have cutoffs but the e\&rcosine and eveR;-sine modes
have no cutoff 23 29. The reason is the following:

For a single propagation directionz, each single-mode nano“ber can support a superposition of two
fundamental modes Hfz that are quasilinearly polarized along thendy axes and are called Bscosine
and E;-sine modes, respectively. We expect that two coupled parallel single-mode nano“bers can support up
to four guided normal modes. We introduce the notatiq(ﬁ) for the pro“le function of the single-“ber
mode with the quasilinear polarizatiqn= x,y of nano“berj = 1, 2. According to the CMTJ], there is no
coupling between the principalandy polarizations. For a suitable cloai of the global phases of the mode
functions, the approximate pro‘“le functions of the guided normal modes can be givéﬁ) as e(lp) + e(zp),
where the sigrt andS corresponds to the even and odd modes, respectively. Note that

e(lp)(r) = e(zp)(r + osioz). When either the “ber radius is small enough or the light wavelength is large
enough, we can use the approximatiéﬁ(r) eép)(r). In these limits, the even array modes with the
pro“le functions ef,”) e(lp) + e(zp) approach the modes of single nano“bers, while the odd array modes with
the pro‘le functionse & § &P are widely spread out in the outside of the nano“bers. Consequently,

the propagation constant of an even mode is ¢aripan that of the corresponding odd mode (see

6
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Figure 2. Propagation constant, normalized to the free-space wave numkeas a function of the “ber radiua for two
identical nano“bers. The wavelength of light iss 800 nm and the separation distance between the two “betsi< (a) and
200 nm (b). The refractive index of the “bersris= 1.4533 and that of the surrounding mediumng = 1.

1.34 _ even &z-cosine (a)
d=0 -——- even &z-sine
124~ odd &z-cosine
odd &z-sine
1.14
~ 1.0
A 1.3
1.2+
1.14
1.0

600 800 1000 1200 1400 1600

A (nm)

Figure 3. Propagation constant, normalized to the free-space wave numkgas a function of the wavelengthof light for two
identical nano“bers. The “ber radius 8= 200 nm and the separation distance between the two “baisi (a) and 200 nm
(b). The refractive inder; of the nano“bers is calculated from the four-term Sellmeier formula for fused siigal[)] and that

of the surrounding mediumisy = 1.

“gures 2. .4). When the propagation constantof an odd mode achieves the free space vigltlee mode is
not guided, and a cutoff is observed. We note that the position of the cutoff is determined by the solution to
the equation = k, where the propagation constant lies on the free-space light line. We recognize that the
above qualitative physical explanation is partly based on the CMT, which is not valid below the cutoff. Near
the cutoff, the deviation of this theory from the exact theory is signi“cant but not dramatic (see
subsectiorB.3).

Comparison between “gurefa) and (b) and between “gure¥a) and (b) shows that the cutoff values
of the “ber radiusa and the light wavelength for the oddE,-cosine ands,-sine modes depend on the
separation distancg between the two “bers. A smalldileads to a larger cutoff value of the “ber radiais
and to a smaller cutoff value of the light wavelengtiWe see from “gurel(a) that, if the “ber radiusais
large enough or, equivalently, the light wavelengtemall enough, there is no cutoff of the guided normal
modes. However, “guregb) and (c) show that, if the “ber radiua is small enough or, equivalently, the
light wavelength is large enough, a cutoff of an odd guided normal mode may appear at a nonzero “ber
separation distancg Comparing the solid and dashed curves of “guzeg shows that the difference
between the propagation constants of thecosine ands-sine modes reduces with increasing “ber
separation distanog This feature is due to the fact that the difference between the propagation constants



10P Publishing New J. Phy&3(2021) 043006 F L Kienet al

1.2
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Figure 4. Propagation constant, normalized to the free-space wave numkgas a function of the “ber separation distartte
for two identical nano“bers. The “ber radius and the light wavelength ar@@)200 nm and = 800 nm, (b)a= 150 nm and
= 800 nm, and (ca= 200 nmand = 1000 nm. Other parameters are as in “gufeand 3.

of thex- and y-polarized array modes is determined by the coupling between the nano“bers, which depends
on the mode overlap and consequently reduces with increabking

Nano“bers are effective media for nonlinear optics due to the tight con“nement of the “elds in their
guided modesf..7, 41, 42]. The control of dispersion properties of tapered “bers has led to many
interesting applications such as supercontinuum generatidhgnd photon triplet generation42]. An
advantage of the system of two coupled nano“bers is that the dispersion properties of the array modes
depend on not only the “ber radius, the wavelength of light, and the material refractive index but also the
separation distance between the “bers. Consequeatilycan control and manipulate nonlinear processes
by varying the “ber separation distaniteaddition to the other parameters.

3.2. Spatial pro“les of the “elds in the guided normal modes of two identical nano“bers

In this subsection, we study the spatial distributions of the “elds in the guided normal modes of two
identical nano“bers. We display the cross-sectional pro“les of the electric intensity distrib{{fer
different guided array modes. We also show the dependencies of the compBpdfjisandE; and the
intensity|E|? of the electric “eld on thex andy coordinates (sinc& and E, are imaginary-valued ani, is
real-valued, we plot Imi) = SiE, Im(E) = SiE, and ReE,) = E)).

3.2.1. EveRk;-cosine mode
In “gure 5, we plot the cross-sectional pro“le of the electric intensity distribufigft of the “eld in the
evenE,-cosine mode of two identical parallel nano“beriélgure shows that the electric “eld intensity is
dominant in the area between the “bers. This feature can be used to attract addnfz] using a single
red-detuned array-mode light “eld. We notedhthe intensity distribution of the evelf,-cosine mode is
similar to that of the perpendicular-polarizationrsynetric mode of a slot nano“ber, where high intensities
can be realized in the vacuum region between the slot wl]s [

We show in “gure6 the dependencies of the componeBisE,, andE, and the intensityE|? of the
electric “eld in the evelk;-cosine mode on th& andy coordinates. Comparing the scales of the vertical
axes in “gures shows that all the three componertg E;, andE; of the “eld are signi“cant, whilds, (see
“gures6(a) and (e)) is dominant. These features are in agreement with the fact that, in the case of single
“bers, theE,-cosine modes are quasilinearly polarized alongxthgis [1..3].

Figuress and 6 show that a signi“cant portion of the “eld is in the outside of the nano“bers. The “gures
also show that abrupt changes of the “elds occur atshrfaces of the “bers. Such dramatic changes arise
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Figure 5. Cross-sectional pro“le of the electric intensity distributili|? of the “eld in the everE,-cosine mode of two identical

parallel nano“bers. The “ber radius &= 200 nm and the separation distance between the two “batsis50 nm (a) and 200 nm (b).
The power of light is the same in the two cases. Other parameters are as ir2‘gure
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Figure 6. Dependencies of the componeitis E;, andE, and the intensityE|? of the electric “eld in the eveR,-cosine mode of
two identical “bers on thex andy coordinates. The “ber radius 8= 200 nm and the separation distance between the two “bers is
d= 50 nm. The parameters used are the same as for “Blae

from the boundary conditions and the sharp contrast between the refractive mdefXhe silica nano“bers
and the refractive indery = 1 of the vacuum medium outside the nano“bers.

The solid curve of “gures(d) shows that the peaks of the intensity distribution occur at the facing
points (x,y) = (£ d/ 2,0). Meanwhile, the centex,y) = (0, 0) of the two-"ber system is a saddle point
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