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a b s t r a c t 

Two-dimensional simulations are used to explore topological transitions that occur during the formation 
of films grown from grains that are seeded on substrates. This is done for a relatively large range of 
the initial value �s of the grain surface fraction �. The morphology of porous films is captured at the 
transition when grains connect to form a one-component network using newly developed raster-free al- 
gorithms that combine computational geometry and network theory. Further insight on the morphology 
of porous films and their suspended counterparts is obtained by studying the pore surface fraction �p , 
the pore over grain ratio, the pore area distribution, and the contribution of pores of certain chosen ar- 
eas to �p . Pinhole survival is evaluated at the transition when film closure occurs using survival function 
estimates. The morphology of closed films ( � = 1 ) is also characterized and is quantified by measuring 
grain areas and perimeters. The majority of investigated quantities are found to depend sensitively on �s 
and the long-time persistence of pinholes exhibits critical behavior as a function of �s . In addition to 
providing guidelines for designing effective processes for manufacturing thin films and suspended porous 
films with tailored properties, this work may advance the understanding of continuum percolation the- 
ory. 

© 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The percolation threshold in continuum percolation theory 

[1–3] plays a significant role in thin film growth [4] , grain bound- 

ary engineering [5,6] , and research on porous media [7,8] . In the 

formation of a thin film from a random distribution of initially 

isolated grains on a substrate, we identify the percolation thresh- 

old with the instant when the grains form a cluster that connects 

two opposing edges of the substrate. As a consequence of random- 

ness, these instances differ for a comparable set of samples. We 

identify the percolation transition with the region spanned by the 

probability density of these instances. Inspired by network theory 

[9] , we specify and explore two other topological thresholds that, 

to the best of our knowledge, have received little attention in 

the existing literature: the connected-grain threshold and the 

closed-film threshold. We identify the connected-grain threshold 

with the instant when all grains connect to form a one-component 

network and the closed-film threshold with the instant when 
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the film closes. For a comparable set of samples, the probability 

densities of these respective instances span a connected-grain and 

a closed-film transition. 

Granted that (1) grain nucleation occurs randomly and homo- 

geneously over the entire substrate, (2) the growth rate is con- 

stant in time, (3) the growth is radial, and (4) grain motion [10–

12] is negligible, the growth of thin films can be described by 

the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model [13–15] . De- 

spite its simplicities, the JMAK model can be applied to good ef- 

fect in a plethora of circumstances [16–18] . An important outcome 

of the model is that the characteristic length of grains at film clo- 

sure monotonically decreases as the ratio n r /g r of the nucleation 

and growth rates n r and g r increases [19] . This can be understood 

from realizing that the grain density ρ increases monotonically as 

n r /g r increases and that, at film closure, the characteristic length 

of grains and the film thickness decrease monotonically as ρ in- 

creases. In general, the characteristic length after film closure is 

correlated with the thickness of the film depending on the dom- 

inant growth and restructuring mechanisms [20,21] . A prime ex- 

ample of process for which n r /g r is too small to form films in the 

submicron scale is provided by the chemical vapor deposition of 

polycrystalline diamond (PCD) [22–25] . Nevertheless, films in the 
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submicron scale can be grown by seeding nanometer scale dia- 

mond grains, known as nanodiamonds [26–28] , on substrates prior 

to growth [29–31] . The presence of seeded grains before growth is 

not only beneficial for decreasing film thickness but can also facil- 

itate the growth of films with desirable morphologies and prop- 

erties [32] . Moreover, altering the size of seeded nanodiamonds 

is known to strongly impact the morphology and thermal proper- 

ties of gallium nitride (GaN) on PCD wafers [33] and PCD on GaN 

wafers [34] . 

In this work, we investigate the formation and the morphol- 

ogy of closed and porous films grown from grains that are seeded 

on substrates using two-dimensional simulations. In so doing, our 

purpose is to provide guideline for designing effective processes 

for manufacturing thin films and suspended porous films with tai- 

lored properties. For example, suspended PCD films, which are typ- 

ically made by removing a portion of a substrate upon a PCD film 

was grown, are prime candidates for single-cell culture and analy- 

sis [35] , particularly if they are porous. The morphological features 

of porous films are captured with vector-based algorithms that we 

developed combining computational geometry and network theory. 

Rasters-based methods [36] , which are prone to resolution issues, 

are not used. The specific goals of this work are to: 

� Characterize the morphologic features of closed films, for which 

the grain surface fraction � is unity, by studying grain areas 

and perimeters. 

� Investigate the long-time persistence of pores at the closed-film 

transition. Such pores are typically referred to as pinholes. 

� Identify the connected-grain transition. 

� Characterize, at the connected-grain transition, the morphology 

of porous films and their suspended counter parts in terms of 

(1) the pore surface fraction �p , (2) the pore over grain ratio, 

(3) the pore area distribution, and (4) the contribution of pores 

of certain chosen areas to �p . 

� Ascertain the effect of the value �s of the grain surface fraction 

at the outset of growth on the goals listed above. 

The difference between porous films and their suspended coun- 

terparts is clarified hereinafter and the results of our study are 

summarized in the conclusions. 

2. Methods 

2.1. Model 

The assumptions and simplifications underlying our approach 

resemble those of the JMAK model. The main difference is that 

nucleation of grains during growth is neglected. Instead, seeding is 

simulated with random sequential adsorption (RSA) [37,38] . During 

RSA, grain centers are sequentially placed at random positions on 

the substrate, with the provision that a grain is rejected if it over- 

laps one or more earlier adsorbed grains. For each simulation con- 

ducted, the number of deposited grains and the size of the square 

substrate are fixed, so that � is altered with the size of the de- 

posited grains. RSA seeding is done with circular grains, namely 

disks, of fixed radius r s that expand radially and at an identical 

rate during growth. Consequently, grain boundaries correspond to 

a Voronoi diagram [39–41] , which often describes the morphology 

of physical systems [42–44] , and each grain fills a corresponding 

Voronoi cell at the instant of film closure. 

Fig. 1 provides a schematic depicting all ingredients of our 

model and the links between the morphology of a film and a 

Voronoi diagram. The figure also clarifies that grain boundaries are 

identified as grain-grain interfaces [45,46] . The growth parameter 

r is defined as the radius of a grain that is hypothetically unclus- 

tered, and can be calculated through the relation 

r(t) = r s + g r (t ) t , (1) 

Fig. 1. Simulation model: Schematic depicting the ingredients of the model used 
in this work to simulate growth from grains that are seeded on substrates before 
growth. In this model, seeding is simulated by the random sequential adsorption 
(RSA) of circular grains, namely disks of fixed radius r s , periodic boundary condi- 
tions are obeyed, and grains expand radially and at an identical rate. At the outset 
of growth, each grain is represented by a dark green disk and light green is used 
to indicate the instantaneous extent to which each grain has grown. The growth 
parameter r defines the radius of a grain that is hypothetically unclustered. Grain 
centers act as Voronoi region points and define a Voronoi diagram in which ridges 
coincide with boundaries. 

in which t is the growth time. From (1) , we find that the growth 

rate g r can vary with t . This fact can be crucial for modeling ther- 

mally activated growth processes, such as the chemical vapor de- 

position of diamond, that reach a constant temperature and, there- 

fore, a constant growth rate, only after an initial stage in which 

transient effects are evident. 

Unclustered diamond grains often take the shape of cubocta- 

hedrons [47] , for which spheres can serve as good approxima- 

tions. The projection of a sphere onto the substrate is a disk. 

Therefore, disks can provide suitable representatives of grains in 

two-dimensional simulations. For a detailed geometrical modeling 

study on the chemical vapor deposition of single crystal diamond 

grains that includes the dependence of growth rate on facet type, 

we refer to the work of Silva et al. [48] . 

2.2. Seeding method 

In Uhlmann’s [49] work on three-dimensional RSA of spheres, 

the standard deviation of the volume of a Voronoi cell approx- 

imately converges when simulations with 22 3 spheres are per- 

formed. From this, we infer that for two-dimensional RSA of disks 

(grains), at least 22 2 disks should be used for Voronoi cell proper- 

ties to converge. 

Seeding simulations are done by sequentially placing 10 4 disks 

on a square substrate and for each simulation, r s and the area of 

the substrate are fixed. The initial value �s of the grain surface 

fraction (or packing fraction) � is taken to range from �s = 0 to 

�s = 0 . 5184 by altering r s and is limited by the saturation pack- 

ing fraction �s ≈ 0 . 5471 [50,51] . For each of the 19 r s values, 10 4 

simulations are performed. Periodic boundary conditions are im- 

plemented by surrounding the substrate with eight identical sub- 

strates on which disks are copied. These copied disks are not al- 

lowed to overlap the disks of neighboring substrates, which is 

probable when boundaries are crossed. 

When �s approached saturation, computation time significantly 

increased. This is due to the strongly decreasing disk adsorption 

near the end of the seeding simulation [52] . 
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Fig. 2. Connected-grain threshold: A Delaunay network of 14 points that coincide 
with grain centers is depicted. The points and triangle edges correspond to network 
vertices and network edges, respectively, and the lengths of the triangle edges cor- 
respond to the network edge weights. Radius r = r m , which marks the connected- 
grain threshold, is found with the minimum spanning (weight) tree (MST) of the 
Delaunay network by taking 2 r m to be the largest weight of the MST. 

2.3. Methods for obtaining thresholds 

The radius r = r f , which marks the closed-film threshold, is 

found by calculating the distances from Voronoi region points to 

neighboring Voronoi vertices and selecting the largest distance. 

To find r = r m , which marks the connected-grain threshold, a 

Delaunay triangulation of grain centers is transformed into an 

undirected network, as schematically depicted in Fig. 2 . Here- 

inafter, such a network is called a Delaunay network. The vertices 

and edges of a Delaunay network correspond to those of its De- 

launay triangulation. The edges are appointed weights equal to the 

lengths of their corresponding triangle edges. The radius r m is then 

found via the minimum spanning (weight) tree (MST) of the un- 

derlying Delaunay network and is calculated using Kruskal’s algo- 

rithm [53] . We do this by taking 2 r m to be the largest weight of 

the MST. 

For each value of r s , the mean value M e [ r f ] of r f and the mean 

value M e [ r m ] of r m are obtained from the 10 4 seeding simulations. 

We emphasize that the values of M e [ r f ] and M e [ r m ] increase as the 

number of grains in our simulations increases. However, investi- 

gating this dependence goes beyond the scope of our work. In this 

work, we investigate the trends obtained as a function of r s . The 

probability densities (PDs) of r f and of r m span the closed-film and 

connected-grain transitions, respectively. 

Voronoi diagrams and Delaunay triangulations are made from 

grain centers, including the eight copies of these centers that are 

used for obeying the periodic boundary conditions. A more effi- 

cient procedure to construct Voronoi diagrams and Delaunay trian- 

gulations with periodic boundaries might be available in the near 

future [54] . 

2.4. Methods for obtaining morphologies 

2.4.1. Closed films 

Grains of closed films correspond to Voronoi cells and when 

calculating the area and the perimeter of those grains, only grains 

with a region point lying on the original substrate are used. The 

periodic boundary conditions ensure that the total area of such 

cells is equal to the substrate area. Triangulation, as illustrated in 

Fig. 3 (a), is used to calculate the area of a Voronoi cell. The perime- 

ter of a Voronoi cell is calculated from its vertices. 

2.4.2. Algorithm 1: Pore surface fraction 

The pore surface fraction �p is calculated by triangulating 

Voronoi cells in the same fashion as in Section 2.4.1 . In each 

Voronoi cell, a grain center o and the vertices a and b of a Voronoi 

ridge coincide with the vertices of a triangle. The grain surface 

fraction � is the sum of the areas of intersection of such trian- 

gles and grains, divided by the area of the substrate. Subsequently, 

�p is calculated as 1 − �. 

To compute the areas of intersection geometrically, we distin- 

guish five cases for which the perimeter of a grain and a triangle 

intersect, as shown in Figs 3 (b–f). The area of intersection a in for 

each of these cases is listed below. 

� Case 1 : a in is equal to the area of triangle oab. 

� Case 2 : a in is equal to the sum of the area of triangle oeb and 

the area of the sector ode of the circle of radius r centered at o. 

� Case 3 : a in is equal to the sum of the area of triangle area oe f

and the areas of the sectors ode and of g of the circle of radius 

r centered at o. 

� Cases 4 & 5 : a in is equal to the area of the sector ode of the 

circle of radius r centered at o. 

Based on these cases, we developed a computational geometry 

algorithm that only uses angles when circle sectors are computed. 

The mathematics behind the most essential portion of the algo- 

rithm, which computes a in , is given in the comments of our Python 

code. See S1 in supplementary materials for this code. 

2.4.3. Algorithm 2: Pore areas and pore perimeters 

We compute pore areas and pore perimeters using an algorithm 

that constructs a multi-component undirected network starting 

from a Voronoi network. The vertices and edges of this network 

correspond to those of a Voronoi diagram. The instructions of this 

algorithm, which are also generated by our Python code, are based 

on the five cases of intersection shown in Figs. 3 (b–f) and are listed 

below. 

� Case 1 : Voronoi network vertices v a and v b , which correspond 

to Voronoi vertices a and b, respectively, are filtered (removed) 

so that network edge w , formed between v a and v b , vanishes. 

� Case 2 : Area aed and perimeter portion de are assigned to v a . 
Vertex v b and edge w are filtered. 

� Case 3 : Area aed and perimeter portion de are assigned to v a . 
Area bg f and perimeter portion f g are assigned to v b . Edge w 

is filtered. 

� Cases 4 & 5 : Area abed and perimeter portion de are arbitrarily 

assigned to v a or to v b . 

A non-filtered vertex is associated with multiple areas and the 

sum of these areas is the area weight of that vertex. An analo- 

gous requirement applies to perimeter portions. A component of 

the network, which consists of one or more vertices, represents a 

pore; the sum of the area weights of a pore equals the pore area 

a p . The sum of the perimeter portion weights of that pore equals 

the perimeter s p . 

For a substrate with 14 grains, growth is shown in Figs. 4 (a–d) 

to showcase network formation. See S2 in supplementary materials 

for the corresponding movie. Light yellow, medium light orange, 

and medium dark pink Voronoi vertices are contained in pores that 

cross boundaries in distinct ways and are treated to obey the peri- 

odic boundary conditions accordingly. Pores with dark purple col- 

ored vertices don’t require such attention. 

2.4.4. Algorithm 3: Film portion filtering 

If the substrate of a porous film with r < r m is removed to make 

a suspended porous film, portions of film that are not connected 

to the sample spanning portion of film are removed together with 

the substrate. To simulate this process, we introduce a film portion 
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Fig. 3. Voronoi diagram triangulation and grain–triangle intersections: (a) A Voronoi diagram that is constructed from grain centers and for which the Voronoi cells are 
triangulated. For one Voronoi cell, the vertices of a triangle coincide with a grain center and the vertices of one Voronoi ridge. Grain surface fraction � is the sum of the 
areas of intersection of such triangles and grains. (b–f) Five cases where the perimeter of a grain, with center o and radius r, and the edges of a triangle, with vertices o, a , 
and b, intersect. Intersections are denoted by the points d, e , f , and g. The number of intersections combined with the displayed relations specify each case. As delineated 
in the text, this forms the basis for the algorithms to calculate surface fractions and pore properties. 

Fig. 4. Pore identification with Algorithm 2 : (a–d) A substrate seeded with 14 grains 
at several stages of growth with colored pore vertices. See S2 in supplementary 
materials for the corresponding movie. Pores with light yellow, medium light or- 
ange and medium dark pink colored vertices cross boundaries in distinct ways and 
are treated to obey periodic boundary conditions accordingly. The dark purple col- 
ored vertices don’t require such attention. The algorithm of identifying pores and 
attributing pore properties to vertices, namely Algorithm 2 , is delineated in the text. 

filtering (FPF) algorithm that is illustrated in Figs. 5 (a– c) and re- 

lies on constructing a Delaunay network of grain centers. Delaunay 

network edges that are larger than 2 r are filtered and all network 

components, except the component consisting of most vertices, are 

marked to be treated as special pore components. These special 

components do not contribute to perimeter portion weights and 

have a maximal contribution to the area weights. Pores remaining 

after FPF are depicted in Fig. 5 (d), together with the pore vertices 

and edges that are obtained via Algorithm 2 . 

Fig. 5. Illustration of the film portion filtering (FPF) algorithm: (a) Delaunay net- 
work formed from grain centers with r < r m . (b) Network with edges larger than 
2 r filtered. (c) All network components, except the component consisting of most 
vertices, are marked to be treated as special pore components. (d) Pores after FPF 
together with the vertices and edges obtained with Algorithm 2 . 

2.5. Technical methods 

Simulations were done with Python. We also relied on the com- 

putational geometry software that we developed for computing 

grain-triangle surface intersections and for transforming Voronoi 

diagrams in pore networks, as described in Section 2.4 . This soft- 

ware was used in tandem with the graph-tool [55] library, which 

allowed us to obtain MSTs and network components efficiently. In 

addition, the NumPy [56] , SciPy, Matplotlib, and powerlaw [57] li- 

braries were used. Voronoi diagrams were created using the im- 

plementation of Qhull [58] in Scipy. 
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