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Abstract In this work, we make a distinction between the differential geometric notion of
an isometry relationship among two dimensional surfaces embedded in three-dimensional
point space and the continuum mechanical notion of an isometric deformation of a two
dimensional material surface. We illustrate the importance of separating the abstract theory
of surfaces in differential geometry and their related differential geometric features from the
physical notion of a material surface which is subject to a deformation from a given reference
configuration. In differential geometry, while two surfaces may be isometric, the mapping
between them that characterizes the isometry is simply a mapping between the points of the
surfaces and not necessarily between corresponding material particles of a single deformed
material surface.

We review two equivalent characterizations of a smooth isometric deformation of a flat
material surface into a curved surface, and emphasize the requirement that the referential
directrix and rulings, and their deformed counterparts, must provide a basis for establishing
a complete curvilinear coordinate covering of the material surface in both the reference and
deformed states. Because this covering requirement has been overlooked in recent publica-
tions concerning the isometric bending of ribbons, we illustrate its importance in properly
defining the deformation of a ribbon in the two examples of a flat rectangular material strip
that is isometrically deformed into either (i) a portion of a circular cylindrical surface, or
(ii) a portion of a circular conical surface. We then show how the accurate calculation of the
bending energy in these two examples is influenced by this oversight. In example (i), the
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curvature along the generators of the deformed surface, generally helical in form, is con-
stant. In this special circumstance overlooking the covering requirement, as has been done
in the literature by integrating the specific bending energy, dependent only on the curvature,
over a domain on the supporting circular cylindrical surface equal in area, though not equal
in geometric form, to that of the deformed ribbon, gives the correct bending energy result. In
example (ii), the curvature along a generator of the cone is not constant and the calculation
of the bending energy is, indeed, compromised by this oversight.

The historically important dimensional reductions that Sadowsky and Wunderlich intro-
duced to study the bending energy and the equilibrium configurations of isometrically de-
formed rectangular strips have gained classical notoriety within the subject of elastic ribbons
and Möbius bands. We show that the Sadowsky and Wunderlich functionals also overlook
the covering requirement and that the exact bending energy is underestimated by these func-
tionals, the Sadowsky functional being the lowest. We then show that the error in using these
functionals can be great for a rectangular strip of given length � and width w, depending on
the form of the isometric deformation and the size of the half-length-to-width ratio w/ 2� .
The Sadowsky functional is meant to apply to strips for which w/ 2� is sufficiently small, in
which case the covering requirement is of little consequence, and for such strips it yields an
acceptable approximation of the actual bending energy. In such cases the Wunderlich func-
tional shows only an incremental improvement over the Sadowsky calculation. While the
Wunderlich functional is meant to apply accurately for all strips, without restricting the size
of w/ 2� , we show that in overlooking the covering requirement it greatly underestimates the
actual bending energy for many isometrically deformed ribbons. In particular, we show rela-
tive errors between the exact, the Wunderlich, and the Sadowsky calculations of the bending
energy as a function of w/ 2� for the case of a rectangular strip which is isometrically de-
formed into a portion of a right circular conical surface, and we observe that the error in
approximating the exact bending energy by the Wunderlich functional for reasonable ratios
w/ 2� is large and unacceptable. We then give an example of the isometric deformation of a
rectangular strip whose Wunderlich functional predicts zero bending energy but for which
the exact bending energy can be as large as one pleases.

Finally, contrary to suggestions in the literature, we argue that Kirchhoff rod theory does
not generally apply to the study of the isometric deformation of a thin rectangular strip
because for this class of problems the through thickness dimension of the strip is assumed
to be infinitesimal as compared to its width w. For Kirchhoff rod theory to apply, these
dimensions must be comparable.

Keywords Isometry · Unstretchable · Inextensional · Two-dimensional Riemannian
manifold · Embedding · Developable
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1 Introduction

In classical continuum mechanics, a body B may be viewed, geometrically, as a compact
three-dimensional Riemannian manifold endowed with a Riemannian metric. A configura-
tion of a body makes an identification between each body element x belonging to B and a
point x in a subset R � of three-dimensional Euclidean point space E3. In this setting, R � is
called the reference configuration of the body. A (smooth) deformation of the ‘body’ from
R � to some other subset R of E3 is then a mapping x �� y , where y denotes a generic el-
ement of R . In this setting, R is called the spatial (or deformed) configuration of the body.
A deformation is isometric if lengths between all points in R � and corresponding points in
R are preserved under the mapping. Because a body cannot generally be embedded in E3,
a three-dimensional Euclidean observer cannot discern its geometrical structure without re-
course to special instruments.

An analogous level of clarity is absent from a significant portion of the literature con-
cerned with ribbons and sheets conceived of as two-dimensional bodies, which we refer to
as material surfaces. The difference between the abstract mathematical notion of a surface
in two-dimensional Euclidean point space E2 and its embedding into E3 and the physi-
cal notion of the configuration of a material surface as viewed in E3 appears to have gone
unappreciated in much of the literature dealing with configurations of ribbons and sheets
in E3.

As an abstract mathematical entity, a material surface P may be considered, geomet-
rically, to be a compact two-dimensional manifold endowed with a Riemannian metric.
On this basis, an isometry between two distinct material surfaces can be defined and stud-
ied. A configuration of a material surface P rests on an identification between each ele-
ment x of P and a point x in a subset D of E2; D is called the reference configuration
of the material surface. A (smooth) deformation of the ‘material surface’ from D to S is
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then a mapping x �� y , where y is an element of E3. In this setting, S is called the spa-
tial (or deformed) configuration of the material surface. A deformation from D to S is
isometric if the length of any curve of points in D is preserved under the mapping. This
stands in contrast to the prevailing view in classical differential geometry, where two sur-
faces are said to be isometric if they have the same Gaussian curvature at corresponding
points and, in particular, a curved surface that is isometric to a planar region must be devel-
opable.

What perhaps makes things confusing when considering material surfaces and three-
dimensional bodies is that, because of the embedding property, the Riemannian manifold
and configurations of a material surface can be discerned by a three-dimensional Euclidean
observer. Unless special care is taken in defining an isometry between two surfaces and an
isometric deformation of a material surface, the distinction may therefore be easily missed.
In particular, the pitfall of misconstruing the notion (and condition) of conservation of Gaus-
sian curvature as the constraint appropriate to characterizing an unstretchable (or inexten-
sional) two-dimensional body must be avoided.

We explain below, by analogy and at a reasonably fundamental level, our understanding
of why much of the literature on unstretchable material surfaces is marred by confusion
surrounding the distinction between the isometric deformation of a material surface and the
differential geometric idea of an isometry between two surfaces. Section 2 is devoted to
background. Drawing on the work of Chen, Fosdick and Fried [1], we define precisely what
we mean by a smooth isometric deformation of a flat material surface into a curved surface,
provide two equivalent conditions that are necessary and sufficient that a deformation of a
flat material surface to a curved surface is isometric, and highlight the roles of the geometric
objects central to our description. Most crucial among these are the referential and spatial
directrices and the referential rulings and the spatial generators, which together provide a
basis for establishing meaningful correspondences between parametrizations of the material
surface in its reference and deformed configurations. In Sect. 3, we study a class of map-
pings introduced by Dias and Audoly [2] and show that all such mappings are isometric
in the sense defined in Sect. 2. In Sect. 4, we consider issues that arise in connection with
parametrizations of the reference and deformed configurations of a material surface. These
issues hinge on the importance of ensuring a surjective correspondence between material
points and parameter pairs. Dias and Audoly [2] overlook this issue and we find that their
approach yields a complete covering of the referential and deformed surfaces only in the
simple degenerate case where the reference configuration of the material surface is rect-
angular and is deformed into a (not necessarily circular) right cylindrical ring. Moreover,
we discover that the “edge functions” of Dias and Audoly [2] fail to cure this difficulty. In
Sect. 5 we explore how calculations of bending energy may be affected by failing to ensure
a surjective correspondence between material points and parameter pairs. To illustrate our
point, we compute the bending energy for a rectangular material strip bent to conform to a
portion of a right circular conical surface. We then compare that energy to the analogous en-
ergy obtained by evaluating Wunderlich’s [3, 4] dimensionally-reduced energy functional,
proving that that functional is strictly bounded above by the bending energy. We also find
that Wunderlich’s [3, 4] functional provides an accurate estimate of the bending energy only
in the limit in which the half-width-to-length ratio of the strip is infinitesimal and that Sad-
owsky’s [5, 6] functional performs just as well as Wunderlich’s [3, 4] in that regime. This
stems from the absence of a surjective correspondence between material points and param-
eters that is inherent to the parametric approach employed by Wunderlich [3, 4] and those
who have emulated his work or utilized his functional. In Sect. 6, we consider the implica-
tions of a key assumption in the theory of Kirchhoff rods, namely the assumption that the
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cross sections of such a rod are rigid and, thus, in particular, cannot sustain in-plane de-
formations. Observing that the theory of Dias and Audoly [2] violates this assumption, we
argue that their theory applies only to strip-like bodies that have widths comparable to their
thicknesses and, thus, to Kirchhoff rods with infinitesimal cross sectional area or framed
curves. Finally, in Sect. 7, we discuss and summarize our findings.

2 Preliminaries

Consider a material surface that is identified with an open, connected subset D of two-
dimensional Euclidean point space E2. Suppose that D is deformed isometrically into a
surface S in three-dimensional point space E3. Let {š1, š2} be a fixed, positively oriented, or-
thonormal basis for the translation space V2 of E2 and define š3 := š1 × š2 so that {š1, š2, š3}
is a fixed, positively oriented, orthonormal basis for the translation space V3 of E3.

2.1 Deformations

Following Chen, Fosdick and Fried [1], D can be represented in terms of a referential di-
rectrix C0 and a family of referential rulings that do not intersect in the interior of D . Let
�x0 be an arclength parametrization of C0. It is then useful to view C0 as a curve framed by a
moving orthonormal triad {l 1, l 2, l 3} with elements

l 1 = š3 × �x �
0, l 2 = š3, l 3 = �x �

0, (2.1)

where a prime denotes differentiation with respect to arclength, and to express the orienta-
tion of a generic referential ruling by a unit vector field

l 1 + � l 3�
1 + � 2

= b, (2.2)

where � measures the tangent of the angle between l 1 and the rulings. With the foregoing
provisions, each point x � D � E2 can be expressed in terms of arclength � along C0 and
position � along the rulings through a relation x = �x(�, �) with �x of the form1

�x(�, �) = �x0(�) + � b(�). (2.3)

The directrix C0 is not necessarily a subset of D . Indeed, for (�, �) to cover D , C0 must
generally contain segments that are disjoint from D .2 It is therefore overly restrictive to
identify the referential directrix C0 with a material curve in D .

The surface S admits a representation analogous to that of the flat region D . In particular,
the spatial directrix C of S is the image of the referential directrix C0 and has arclength
parametrization �y0 satisfying

�y �
0 = R �x �

0, (2.4)

for some rotation field R . Additionally, the generators of S are determined simply by ro-
tating the rulings of D under R , so that the generator a of S corresponding to a referential
ruling with orientation b is given by

a = Rb. (2.5)

1In the present work, we replace the coordinates (� 1, � 2) used by Chen, Fosdick and Fried [1] with (�, �) .
2Moreover, it is possible and sometimes even necessary to choose C0 to be disjoint from D .
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In view of (2.4) and (2.5), the point y on S corresponding to the point x = �x(�, �) on D is
determined by a relation y = �y(�, �) , with �y being of the form

�y(�, �) = �y0(�) + � a(�). (2.6)

Since, as observed earlier, C0 must generally include segments that are disjoint from D ,
a continuity argument leads to the conclusion that C must generally contain segments that
are disjoint from S.

Chen, Fosdick and Fried [1] emphasize that the mappings defined in (2.3) and (2.6) are
not meaningful unless each pair (�, �) corresponds to a unique material point x in D and the
underlying correspondence between such coordinate pairs and points provides a complete
covering of D . Granted that these requirements are met, there exist scalar-valued mappings
�� and �� defined on D and a mapping �x from D to itself such that

x = �x(x) = �x
�
��( x), ��( x)

�
(2.7)

for each x in D . Moreover, �y defined by

y = �y(x) = �y
�
��( x), ��( x)

�
(2.8)

constitutes a deformation from D to S.
Let 	 denote the gradient with respect to position x in D and note that the dual basis

vectors g1 and g2 are given by

g1 = 	 � � and g2 = 	 ��. (2.9)

Then, since

(	 �x)
 	 �x =

�
�
�
�
� �x
��

�
�
�
�

2

g1 � g1 +
� �x
��

·
� �x
��

�
g1 � g2 + g2 � g1

�
+

�
�
�
�
� �x
��

�
�
�
�

2

g2 � g2 (2.10)

and

(	 �y)
 	 �y =

�
�
�
�
� �y
��

�
�
�
�

2

g1 � g1 +
� �y
��

·
� �y
��

�
g1 � g2 + g2 � g1

�
+

�
�
�
�
� �y
��

�
�
�
�

2

g2 � g2, (2.11)

we see that a deformation �y from D to S defined through (2.3) and (2.6) in accord with (2.8)
is isometric—in the sense that it preserves the length of any material curve in D—only if
both of the following conditions hold:

€ There exist mappings �� and �� such that each point x in D and its image y on S obey
(2.7) and (2.8), where �x and �y are as defined in (2.3) and (2.6).

€ The partial derivatives of �x and �y defined in (2.3) and (2.6) satisfy

�
�
�
�
� �y
��

�
�
�
�

2

=

�
�
�
�
� �x
��

�
�
�
�

2

,
� �y
��

·
� �y
��

=
� �x
��

·
� �x
��

, and

�
�
�
�
� �y
��

�
�
�
�

2

=

�
�
�
�
� �x
��

�
�
�
�

2

(2.12)

for each parameter pair (�, �) corresponding to a point x in D or, equivalently, by (2.4)–
(2.6), R and b satisfy

R�b = 0, (2.13)

for each admissible choice of the only argument � on which they depend.



Issues Concerning Isometric Deformations of Planar Regions. . .

For all remaining subsections of the present section, we assume that the first of the above
bullet items holds and focus only on exploring the ramifications of the condition (2.13)
necessary and sufficient to ensure that the second bullet item holds. Later, in Sect. 4, we
consider the remaining bullet item.

2.2 Alternative Conditions for Isometry

Since R�b = R�R
 Rb = R�R
 a, it is convenient to introduce the axial vector

p = ax
�
R�R
 �

(2.14)

of the skew tensor R�R
 associated with the rotation R and to express the isometry condi-
tion (2.13) in the equivalent alternative form

p × a = 0. (2.15)

As an immediate consequence of (2.4), we see that �y defined by (2.8) is an isometric defor-
mation if and only if p and a are collinear. Thus, p must be tangent to S. Moreover, since
|a| = | Rb| = | b| = 1, (2.13) holds if and only if p satisfies p = (a � a)p and thus admits
the representation3

p = pa, with p = p · a. (2.16)

In accord with its definition (2.14) and representation (2.16), p is the rate of rotation of the
generators of S along the spatial directrix C. Moreover, that rate has magnitude |p | = p .

Recalling the definition (2.14) of p , we may rewrite (2.13) as a tensorial ordinary-
differential-equation

R� = pAR (2.17)

for R , where A = a× is the skew tensor with axial vector the spatial generator a. To de-
termine the isometric deformation �y from D to S, it is therefore necessary to first solve
(2.17) for the rotation tensor R subject to an initial condition R(0) = R0, with R0 being
a given rotation. This is no easy task. Indeed, (2.17) cannot be solved for R unless p and
a are given. Although it is known that a solution exists,4 no general explicit closed-form
solution is available. The alternative is to use approximation schemes such as the classical
Magnus [7] expansion method. However, there may be issues related to the dimensions of
D and additional conditions which do not enter into the problem statement of (2.17) that are
necessary to assure that no self-intersection occurs. A general solution strategy that over-
comes these obstacles does not yet exist. A complete explicit treatment of the particular
example of the isometric deformation of a rectangular material strip onto a portion of a right
circular conical surface is provided by Chen, Fosdick and Fried [1, Sect. 9].

2.3 Framing of the Spatial Directrix

The orthonormal triad {e1, e2, e3} with elements

ei = Rl i , i = 1, 2, 3, (2.18)

3Here, we use p in place of the symbol � used by Chen, Fosdick and Fried [1].
4See, for example, Hartman [9].
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provides a framing of the spatial directrix C. From (2.1) and (2.18), we infer that e1 is
tangent to S, e2 is normal to S, and e3 is tangent to C and, thus, also to S. Recalling that
{l 1, l 2, l 3} is also an orthonormal triad, we see from (2.18) that R entering (2.18) admits the
representation

R =
3�

i = 1

ei � l i . (2.19)

Moreover, using (2.18) in the expression (2.5) for the generator a of S corresponding to the
ruling b of D defined by (2.2), we find that

a =
e1 + � e3�

1 + � 2
. (2.20)

Recalling (2.16), we therefore arrive at a representation,

p =
p(e1 + � e3)

�
1 + � 2

, (2.21)

for the axial vector p of the skew tensor R�R
 associated with the rotation R .

2.4 Darboux Vector of the Spatial Directrix

From the theory of framed curves (Bishop [8]), it is known that the variation of the triad
{e1, e2, e3} along C is completely described, modulo a rigid transformation, by the differen-
tial equation

e�
i = � × ei , i = 1, 2, 3, (2.22)

where � is the Darboux vector of C. The components 	 i = � · ei , i = 1, 2, 3, of � relative to
{e1, e2, e3} can be found from (2.22) and are given by

	 1 = Š e�
3 · e2, 	 2 = e�

3 · e1, 	 3 = e�
1 · e2 = Š e�

2 · e1. (2.23)

Since e3 is tangent to C, its arclength derivative e�
3 is the curvature vector of C. While 	 1 and

	 2 measure the curvature of C about e2 and e1, respectively, 	 3 describes the precession of
{e1, e2, e3} about e3.

Bearing in mind the relation (2.18) determining {e1, e2, e3} in terms of the referential
triad {l 1, l 2, l 3} and the alternative version (2.15) of the isometry condition (2.13), we next
consider how the restrictions (2.1) on {l 1, l 2, l 3} influence the properties of the Darboux
vector � of C. Toward this objective, we first define the scalar curvature k of the referential
directrix C0 in accord with

�x ��
0 = kl �

1. (2.24)

Differentiating (2.1) with respect to arclength, we then find that

l �
i = kl 2 × l i , i = 1, 2, 3. (2.25)

Then, using the respective consequences

R�l i = R�R
 Rl i = p × ei , i = 1, 2, 3, (2.26)
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and

R(l i × l j ) = R
��

R
 ei
�

×
�
R
 ej

��
= ei × ej , i, j = 1, 2, 3, (2.27)

of (2.14) and (2.18) to simplify the condition that ensues upon differentiating (2.18) with
respect to arclength, we arrive at a differential equation

e�
i = (p + ke2) × ei , i = 1, 2, 3, (2.28)

which, when compared with (2.22), leads to the conclusion that the Darboux vector � must
be of the form

� = p + ke2. (2.29)

By (2.16), (2.20), and (2.29), the components of � relative to {e1, e2, e3} can now be
expressed as

	 1 =
p

�
1 + � 2

, 	 2 = k, 	 3 =
p�

�
1 + � 2

. (2.30)

Moreover, by (2.23), the curvature vector �y ��
0 = e�

3 of C takes the form

�y ��
0 = ke1 Š

pe2�
1 + � 2

. (2.31)

Since {e1, e2, e3} is orthonormal with e2 being normal to S and e3 being tangent to C, we
see from (2.30)1,2 and (2.31) that, as a curve in the surface S, C has normal and geodesic
curvatures

kn = Š
p

�
1 + � 2

= Š 	 1 = Š
	 3

�
and kg = k = 	 2. (2.32)

Lastly, from (2.30)3, we note that as {e1, e2, e3} traverses C it rotates about e3 with “angular
velocity” 	 3 = p�/

�
1 + � 2.

Since k = kg by (2.32)2, the representation (2.29) for the Darboux vector � of C can
be rewritten in the form p + kge2. We thus see that the basic isometry condition (2.13) is
equivalent to the requirement that

(� Š kge2) × a = 0. (2.33)

Adapting calculations performed by Chen, Fosdick and Fried [1, Sect. 6] to the present
setting, we find that the curvature tensor L = Š gradS e2 of S takes the explicit form

L = Š p
�

1 + � 2a� � a� = kn
�
1 + � 2

�
a� � a� , (2.34)

where a� is the unit vector field, orthogonal to a, defined by

a� =
� e1 Š e3�

1 + � 2
. (2.35)

Since a × a� = e2, {a, a� , e2} provides an orthonormal basis for V3 on S.
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3 Interpretation of the Class of Mappings Considered by Dias and
Audoly [2]

To describe a strip-like material surface in a planar reference configuration and in an as-
sociated deformed configuration obtained by bending, Dias and Audoly [2, equation (5)]
introduce, in their notation, ruled parametrizations

Y = X (S) + VQ (S) (3.1)

and

y = x(S) + Vq(S), (3.2)

where S measures arclength along the directrices parametrized by X and x and V deter-
mines position along the referential rulings and spatial generators that are respectively par-
allel to Q and q.5 The vector quantities Q and q are taken to be of the form

Q = D 1 + � D 3, q = d1 + � d3, (3.3)

where {D 1, D 2, D 3} and {d1, d2, d3} are moving orthonormal triads for the referential and
spatial directrices, D 3 and d3 satisfy the conditions6

D 3 = X �, d3 = x�, (3.4)

which are familiar from the description of framed curves (and Kirchhoff rods), and � is
the tangent of the shared angle between D 1 and Q and between d1 and q. Here, and in
the remainder of this section, a superscripted prime is used to denote differentiation with
respect to the arclength parameter S. Since in differential geometry, the surfaces that are
isometric to planar regions are the special ruled surfaces that are developable, and these
surfaces are not necessarily isometric deformations of one another, and since the work of
Dias and Audoly [2] is based on this differential geometric concept of isometry, further
explanation of their work seems necessary.

Dias and Audoly [2] refer to S and V as “longitudinal” and “transverse” coordinates.
From (3.4), S provides a one-to-one correspondence between points on the referential di-
rectrix, which Dias and Audoly [2] identify as a locus of material points,7 and their im-
ages on the spatial directrix. An analogous statement does not, however, apply to V . This
raises a need to properly characterize the inescapably material points that lie on the edges
of the material surface. To address this need, Dias and Audoly [2] introduce “edge func-
tions” V± (�,S) and in this regard state that “S varies in the interval 0  S  L , where L is
the curvilinear length of the center-line,” and that “V varies in a domain VŠ (�,S)  V 
V+ (�,S) ”, where “V± (�,S) encode the relative positions of the edges of the material surface
with respect to the center-line”.8 However, they do not explain whether—or, if so, how—the
ordered pairs (S,V ) correspond to material points.

5Dias and Audoly [2] refer to the directrices as “center-lines”.
6While (3.4)1 appears in the penultimate sentence of the first paragraph in Sect. 2.1 in the paper of Dias and
Audoly [2], (3.4)2 is (2*) of that paper.
7See the third sentence in the first paragraph of Sect. 2.1 of Dias and Audoly [2].
8See the discussion beginning in the final paragraph on page 52 of Dias and Audoly [2].



Issues Concerning Isometric Deformations of Planar Regions. . .

Because Dias and Audoly [2] require that the directrices are loci of material points, their
framework does not apply in situations where the directrices include segments that lie out-
side the boundaries of the referential and spatial manifestations of the material surface. For
this reason, only under special circumstances would the corresponding collection

�
(S,V ) : 0  S  L,V Š (�,S)  V  V+ (�,S)

�
(3.5)

of all admissible combinations of S and V cover the material surface in either of its config-
urations. The ramifications of this lapse are addressed in Sect. 4.

From (3.3), we see that {D 1, D 2, D 3} and {d1, d2, d3} are selected so that D 2 is nor-
mal to the plane occupied by the material surface in the reference configuration and that
d2 is normal to the tangent space of the spatial surface occupied by the material surface
in the deformed configuration. This assumption leads to supplemental conditions of the
form9

D �
3 · D 1 = d�

3 · d1 = 
 g, d�
1 · d2 = � d�

2 · d3. (3.6)

While (3.6)1 expresses the requirement that the geodesic curvature of the spatial directrix
must equal the curvature of the (flat) referential directrix, (3.6)2 expresses the additional
requirement that, in the spatial configuration, the material surface can manifest only devel-
opable shapes.

Dias and Audoly [2] do not explicitly state how a ruling parallel to Q must be rotated to
obtain the corresponding generator q. However, an implicit feature of their description is that
the spatial triad {d1, d2, d3} is obtained by transforming the referential triad {D 1, D 2, D 3}
by a counterpart rotation

� =
3�

i = 1

di � D i (3.7)

of the rotation R defined in (2.19). A particular consequence of this is that, analogous to the
relation (2.5) between the referential rulings and spatial generators,

q = �Q . (3.8)

In view of (3.8), there is an unmistakable correspondence between (3.1)–(3.2) and (2.3)–
(2.6). Indeed, (3.1)–(3.2) can be transformed into (2.3)–(2.6) by making the simple change
of variables10

S� �, V �
�

�
1 + � 2

, (3.9)

and introducing the identifications

X �� �x0,

x �� �y0

{D 1, D 2, D 3} �� { l 1, l 2, l 3},

{d1, d2, d3} �� { e1, e2, e3},

	



�
(3.10)

9The conditions (3.6)1 and (3.6)2 are conveyed in constraints (10*) and (11*) of Dias and Audoly [2], where
their (7*) is used to express the components of their Darboux vector � in terms of the triad {d1, d2, d3}.
Notice, however, that (3.6)1 involves the additional condition D �

3 · D 1 = 
 g which appears in the penultimate
sentence of the second paragraph in Sect. 2.3 of the paper of Dias and Audoly [2].
10From (3.9)2, we see that, contrary to what Dias and Audoly [2] assume, it is the product

�
1 + � 2V , rather

than V alone, that measures distance along the referential rulings and spatial generators.
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from which it follows that

� �� �, 
 g �� kg, and � �� � , (3.11)

where � is the Darboux vector entering (6)–(7*) of Dias and Audoly [2]. On this basis,
we see that the developability constraints (3.6)1 and (3.6)2 that they impose are implied by
(2.32)2 and (2.30)1,3, respectively. Moreover, from the identity

� = � 1q + 
 gd2, (3.12)

which arises from (7*), (10*), and (11*) of Dias and Audoly [2], we deduce that

(� Š 
 gd2) × q = 0. (3.13)

Thus, with reference to (3.9)–(3.11), we infer that the condition (2.33) necessary and suf-
ficient to ensure isometry of the deformation is satisfied. Granted that the conditions (3.4)
and (3.6) apply, the mapping Y �� y determined implicitly by (3.1) and (3.2) therefore satis-
fies the second of the bullet items entering the characterization of an isometric deformation
provided in the final paragraph of Sect. 2.1.

A more direct alternative to the foregoing argument hinges on showing that � �Q = 0 or,
equivalently, on demonstrating that the axial vector of the skew tensor � �� 
 is collinear
with q. Specifically, calculating � � and � 
 from (3.7), using the orthonormality of the
triads {D 1, D 2, D 3} and {d1, d2, d3}, the analog

d�
i = � × di , i = 1, 2, 3, (3.14)

of (2.22), and the constraints (3.6), we see that

� �� 
 =
3�

i,j = 1

�
d�

i � D i + di � D �
i

�
(D j � dj )

=
3�

i = 1

d�
i � di +

3�

i,j = 1

�
D �

i · D j
�
D i � D j

=
3�

i = 1

(� × di ) � di + 
 g

3�

i,j = 1

�
(D 2 × D i ) · D j

�
di � dj

= (� × )
3�

i = 1

di � di + 
 g

3�

i,j = 1

�
D 2 · (D i × D j )

�
di � dj

= (� × )
3�

i = 1

di � di Š 
 g(d3 � d1 Š d1 � d3)

= (� Š 
 gd2)×

= � 1q× , (3.15)

from which we deduce that ax(� �� 
 ) = � 1q, confirming thereby that, granted (3.4) and
(3.6), the mapping Y �� y determined by (3.1) and (3.2) constitutes an isometric deforma-
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tion as defined by Chen, Fosdick and Fried [1] and recapitulated in Sect. 2.1 of the present
paper.11

4 Importance of the Correspondence Between Curvilinear Coordinate
Pairs and Material Points

We next focus on the requirement that each coordinate pair (�, �) corresponds to a unique
material point x in D and, moreover, that the underlying correspondence between coordinate
pairs and points provides a complete covering of D .12 Together, these requirements ensure
that the relationship between coordinate pairs and material points is surjective.

4.1 General Considerations

Although Dias and Audoly [2] do not mention this requirement, an appreciation of its im-
portance is evident from their introduction of “edge functions” V± (�,S) . For the particular
case in which the reference configuration of the material surface is a rectangular strip, Dias
and Audoly [2] choose V± (�,S) so that the collection of parameter pairs (S,V ) covers the
region occupied by the material surface in its reference configuration, but that choice re-
stricts the referential rulings to be perpendicular to the referential directrix, which they take
to be midway between the long edges of the strip, and consequently limits the parametriza-
tions (3.1) and (3.2) to describe only the bending of a rectangular material strip into a right
circular cylindrical form. It does not, for instance, encompass the bending of a rectangular
material strip into a helical ribbon coincident with a portion of a right cylindrical surface or
into a conical ribbon coincident with a portion of a right circular conical surface, wherein
the referential rulings must be inclined relative to the referential directrix (as discussed later
in this section).

Returning to the general difficulty raised in the second paragraph of Sect. 3, because
Dias and Audoly [2] stipulate that their longitudinal coordinate S satisfies 0  S  L , the
measures that they introduce in connection with their edge functions V± (�,S) rarely suffice
to ensure that the collection (3.5) of (S,V ) pairs completely covers the planar region oc-
cupied by the material surface in the reference configuration and, thus, the curved surface
it occupies in the spatial configuration. This difficulty is evident even in the first figure of
their paper, a partial counterpart of which appears in our Fig. 1. For the particular directri-
ces, rulings, and generators depicted in that image, two corners of the material surface in
the reference configuration go uncovered by rulings and the same is true of the associated
corners of the deformed material surface. No element (S,V ) of (3.5) can describe a material
point in either of those corners. With reference to Fig. 1, this consequence of stipulating
that the referential and spatial directrices are loci of material points,13 can be rectified by
extending the range of the transverse coordinate S beyond 0  S  L , resulting in directri-
ces that include nonmaterial segments outside the boundaries of the material surface. Again
making reference to Fig. 1, this must be accompanied by the introduction of corresponding

11The presentation of Dias and Audoly [2] is not convincing as it stands because it emphasizes the differential
geometric notion of isometry and does not clearly define the deformation of material points from a reference
form to a spatial form and explicitly distinguish and characterize the deformationas isometric.
12See the first bullet item in the final paragraph of Sect. 2.1.
13See Sect. 2.1 and, in particular, the statements in the final sentences of the paragraphs containing (2.3) and
(2.6).
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Fig. 1 Schematic of (a) a planar material surface and (b) an isometric deformation of that material surface.
(Inspired by Dias and Audoly [2, Fig. 1].) In the reference configuration, two corners of the material surface
go unruled unless the referential directrix includes segments that are disjoint from the referential region
occupied by the material surface. The corresponding corners of the surface identified with the material surface
in its deformed configuration do not possess generators unless the spatial directrix includes corresponding
segments that are disjoint from that surface. The segments of the directrices that lie on the material surface
and, thus, consist of material points, are indicated in white, as are the rulings and generators needed to fully
cover the material surface in the reference and deformed configurations. The segments of the directrices that
are disjoint from the material surface and, thus, do not contain material points, are indicated in red. The rulings
and generators that intersect those segments are red outside of the referential and spatial manifestations of
the material surface and white inside those manifestations

rulings and generators that reach from the nonmaterial portions of the directrices into the
previously uncovered portions of the material surface. It then remains to correctly delineate
the range of V for the rulings and generators corresponding to each point, whether material
or nonmaterial, on the directrices.

4.2 Example: Isometric Deformation of a Rectangular Material Strip to a Helical
Sector of a Cylindrical Surface

We consider the isometric deformation of a rectangular material strip D onto a helical sector
S of a right circular cylindrical surface Y of radius r0. To simplify the discussion, we identify
the spatial manifestation of D with S and refer to S as a ‘helical ribbon’.

Employing the definitions and notation introduced at the outset of Sect. 2, we identify
the reference configuration of the strip with the planar region

D =
�

(x1, x2) : 0  x1  �, Š
w
2

 x2 
w
2


� E2, (4.1)

where x1 and x2 serve as rectilinear coordinates for E2 in the directions of š1 and š2. Each
ordered pair of (x1, x2) in D then corresponds to a unique material point x = o+ x1š1 + x2š2,
where o denotes the point at the origin. Moreover, we rule D with a family of parallel straight
lines inclined at an angle � 0, satisfying

0 < � 0 < / 2 (4.2)
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Fig. 2 A rectangular material strip D of length � and width w identified with the planar region
{(x1, x2) : 0  x1  �, Šw/ 2  x2  w/ 2} and ruled by a family of parallel linesoriented at angle � 0 satis-
fying 0 < � 0 < / 2 when measured clockwise from the line x2 = 0. The strip is completely covered by the
collection P of (�, �) coordinate pairs defined in (4.7). The curvilinear coordinates (�, �) of a material point
x in D with rectilinear coordinates (x1, x2) are given by (4.4)

if measured counterclockwise from the š1 direction, and take the referential directrix C0 to
be a closed subinterval of the line x2 = 0, as illustrated in Fig. 2. Aside from rulings that
pass through the material points on the midline C0 � D of D , there exist rulings that are
connected to nonmaterial points on the segments of C0 that lie on either side of C0 � D .
Without these nonmaterial segments of C0, it is impossible to ensure that each coordinate
pair (�, �) corresponds to a unique material point x in D and, moreover, that the underlying
correspondence between coordinate pairs and points covers D completely.

Following Chen, Fosdick and Fried [1, Sect. 7.1], an isometric deformation �y from D to
S can be expressed as

�y(x) = �y0

�
��( x)

�
+ ��( x)š3, (4.3)

where �� and �� are given, for each x = xi ši in D and each � 0 satisfying (4.2) by

��( x) = x1 Š x2 cot � 0 and ��( x) = x2 csc � 0, (4.4)

and the parametrization �y0 of the spatial directrix C of S is defined according to

�y0(�) = Š r0 cos

�
� sin � 0

r0
+ � 0

�
š1 + r0 sin

�
� sin � 0

r0
+ � 0

�
š2 + � cos � 0š3. (4.5)

The spatial directrix C of S is a helix of lead angle / 2 Š � 0 and the generators of S are
parallel to the axis of Y . Moreover, S is right-handed according to the direction of š3. An
image showing the shapes determined by using �y defined through (4.3)–(4.5), for � 0 = / 6
and � 0 = / 3, to isometrically deform a rectangular strip of length � = 5r0 and width w =
r0/ 2 onto a right circular cylindrical surface Y of radius r0 appear in Fig. 3.

With reference to Fig. 2 and bearing in mind that, by (4.4)1, x1 = � if x2 = 0, a trigono-
metric exercise shows that the referential directrix C0 is given by

C0 =
�
(x1, x2) : Šw cot � 0/ 2  x1  � + w cot � 0/ 2, x2 = 0

�
. (4.6)

Consistent with the statements immediately after (4.2), the referential and spatial directrices
must therefore include segments that extend beyond the edges of D . Moreover, the collection
of (�, �) coordinate pairs needed to describe each material point x belonging to D can be
expressed as

P =
�

(�, �) : Š � cos � 0  �  � Š � cos � 0, Š
w csc � 0

2
 � 

w csc � 0

2


. (4.7)
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Fig. 3 Helical ribbons determined by using �y defined through (4.3)–(4.5), with � 0 = / 6 and � 0 = / 3, to
isometrically deform a rectangular strip of length � = 5r0 and width w = r0/ 2 onto a right circular cylinder
Y with axis parallel to š3 and radius r0

In the current notation and with an essential correction of their edge functions,14 the
specialization of (3.5) that Dias and Audoly [2] would consider has the form (Fig. 4)

P̄ =
�

(�, �) : 0  �  �, Š
w csc � 0

2
 � 

w csc � 0

2


. (4.8)

In view of (4.4), the subset of the (x1, x2)-plane covered by P̄ is not D but rather

D̄ =
�

(x1, x2) : x2 cot � 0  x1  � + x2 cot � 0, Š
w
2

 x2 
w
2


. (4.9)

Hence, P̄ fails to cover the triangular subregions

�
(x1, x2) : 0  x1 < x 2 cot � 0, 0  x2 

w
2


(4.10)

and
�

(x1, x2) : � + x2 cot � 0 < x 1 < �, Š
w
2

 x2  0


(4.11)

of D . Additionally, P̄ contains ordered pairs (�, �) that correspond to nonmaterial points in
the triangular regions

�
(x1, x2) : x1  x2 cot � 0 < 0, Š

w
2

 x2  0


(4.12)

14See the discussion in the second paragraph of Sect. 4. For a helical ribbon with spatial directrix being a helix
of lead angle / 2 Š � 0, the referential rulings must be inclined at an angle � 0 when measured counterclock-
wise from the referential directrix. In the present setting, the edge functions ± w/ 2 that Dias and Audoly [2]
introduce in their discussion of rectangular material strips must therefore be replaced by ± w csc � 0/ 2.
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Fig. 4 The set D̄ of (x1, x2) pairs determined by all combinations of (�, �) pairs in the set P̄ defined in
(4.8). Material points in the triangular subregions of (4.10) and (4.11) of D are missing from D̄ ; moreover,
D̄ contains spurious nonmaterial points belonging to triangular regions (4.12) and (4.13) disjoint from D

and
�

(x1, x2) : � < x 1  x2 cot � 0 < 0, Š
w
2

 x2  0


, (4.13)

both of which are disjoint from D but have areas equal to those of the missing regions (4.10)
and (4.11) respectively, (Fig. 4). The collection of coordinate pairs in P̄ is therefore not only
insufficient to describe all material points in D but also includes spurious elements that are
not needed to describe material points in D .

In the bending of a rectangular material strip into a helical ribbon, we therefore conclude
that the parametric description of Dias and Audoly [2] fails to completely cover both the
planar subset D of E2 occupied by the strip in its reference configuration and the curved
surface S in E3 identified with the helical ribbon. Moreover, that description includes ex-
traneous coordinate pairs that do not correspond to material points of D . Although we have
exposed these drawbacks in the context of a special example, we emphasize that, as dis-
cussed in the previous section, their generic nature is evident from Fig. 1 of Dias and Au-
doly [2].

4.3 Example: Isometric Deformation of a Rectangular Strip to a Sector
of a Conical Surface

Now, let us consider the isometric deformation of a rectangular material strip D of length �
and width w to a ribbon coincident with a sector S of a right circular conical surface K .15

For convenience, we continue to employ the definitions and notation introduced at the outset
of Sect. 2 and, as in our treatment of the isometric deformation of a rectangular material strip
to a helical ribbon, we identify the reference configuration of D with the planar region

D =
�

(x1, x2) : 0  x1  �, Š
w
2

 x2 
w
2


� E2. (4.14)

Additionally, we rule D with a family of straight lines that intersect at a point outside of D
and take the referential directrix C0 to be a closed subinterval of the line x2 = 0, as illustrated
in Fig. 5. As with the bending of a rectangular material strip into a helical ribbon presented

15For a complete description of that deformation and derivations of all kinematical objects used in the sub-
sequent calculations, we refer the reader to Chen, Fosdick and Fried [1, Sect. 9].
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Fig. 5 The rectangular material strip D of length � and width w showing some members of the family
of intersecting straight lines which become the lines of zero principal curvature of the subset S of a right
circular conical surface K . The corresponding referential rulings of D are the white segmentsof those lines.
The referential directrix C0 is indicated in red. The length of a generator of the portion of the right circular
conical surface K that lies above the plane spanned by š1 and š2 is denoted by � . The curvilinear coordinates
(�, �) = ( ��( x), ��( x)) of the material point x � D with rectilinear coordinates (x1, x2) are given by (4.20)

in Sect. 4.2, there exist not only rulings that pass through material points on the portion
C0 � D of the referential midline C0 that lies within D but also rulings that are connected to
nonmaterial points belonging to segments of C0 that lie on either side of C0 � D . Moreover,
these nonmaterial segments of C0 are essential to ensure that each coordinate pair (�, �) cor-
responds to a unique material point x in D and that the underlying correspondence between
coordinate pairs and points covers D completely. Emulating our treatment of the example
considered in Sect. 4.2, we identify the spatial manifestation of the material surface with the
subset S of K and refer to S as a ‘conical ribbon’ (see Fig. 6).

4.3.1 Characterization of the Conical Surface

We assume that K opens downward from H š3 and intersects the (x1, x2)-plane to form a
circle of radius R, in which case it has tip angle 2� , with

tan � =
R
H

, (4.15)

and the generators of the portion of K that is situated above the (x1, x2)-plane are of length

� =
�

R2 + H 2. (4.16)

With reference to Fig. 5, we denote the angle between š1 and the referential ruling, with
orientation b(0), that passes through the left-hand end point (x1, x2) = (0, 0) of the midline
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Fig. 6 The right circular conical surface K and the rectangular material strip D shown attached at Rš1 and
tangent to K along the generator defined by a. Each point x of D is translated by the constant vector Rš1 and
the vector between the origin and that point is then rotated about the point Rš1 by the linear transformation
Q 0 defined in (9.14) of Chen, Fosdick and Fried [1], the effect of which is to map the ruling of D parallel to
b(0) to the generator of S parallel to a = Q 0b(0)

of D by � 0 and without loss of generality require that

0 < � 0 <

2

. (4.17)

To ensure that for all lengths � > � cos � 0, S is wrapped smoothly onto K without intersect-
ing with the tip of K , we restrict the width w of D to satisfy the inequality w < 2� sin � 0.
To be definite in all subsequent calculations, we shall assume that � > � cos � 0 so that both
of the following inequalities hold:

� > � cos � 0 and w < 2� sin � 0. (4.18)

4.3.2 Characterization of the Deformation

Following Chen, Fosdick and Fried [1, Sect. 9.1], the isometric deformation �y that bends
the rectangular strip D onto the right circular conical surface K in such a way that the left-
hand endpoint of its midline lies on the circle of radius R along which K intersects the
(x1, x2)-plane, as depicted in Fig. 6 can be expressed as

�y(x) = �y0

�
��( x)

�
Š ��( x)

�
sin �

�
cos �

�
��( x)

�
š1 Š sin �

�
��( x)

�
š2

�
Š cos � š3

�
, (4.19)

where �� and �� are given, for each (x1, x2) in (0, �) × (Šw/ 2,w/ 2) and each � 0 satisfying
(4.17), by
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��( x) =
x1 sin � 0 Š x2 cos � 0

sin � 0 Š x2/�
and ��( x) = x2

�

1 +
�

cos � 0 Š x1/�
sin � 0 Š x2/�

� 2

, (4.20)

and the spatial directrix C of S is parametrized by �y0 defined according to

�y0(�) =
�

R Š
� �

0

�
sin � cos � (� ) cos �(� ) + sin � (� ) sin �(� )

�
d�

�
š1

Š
� � �

0

�
sin � cos � (� ) sin �(� ) Š sin � (� ) cos �(� )

�
d�

�
š2

+
�

cos �
� �

0
cos � (� ) d�

�
š3, (4.21)

in which � (�) satisfying

tan � (�) =
sin � 0

cos � 0 Š �/�
, (4.22)

is the angle formed by the referential ruling with orientation b(�) and the orientation š1 of
the referential directrix and � is related linearly to � through

� = (� Š � 0) csc �. (4.23)

4.3.3 Coverage of the Strip by Curvilinear Coordinates

Referring to Fig. 5 and noticing that, by (4.20)1, x1 = � if x2 = 0, we find on the basis of
trigonometric exercises that the referential directrix C0 is given by

C0 =
�
(x1, x2) : � Š  x1  � + , x2 = 0

�
, (4.24)

where � Š and � + are defined according to

� Š = Š
w cos � 0

2(sin � 0 Š w/ 2�)
and � + = � +

w(�/� Š cos � 0)
2(sin � 0 Š w/ 2�)

, (4.25)

and, consistent with the restrictions (4.18) on � and w and the observation that C0 must
extend beyond D , obey

� Š < 0 and � < � + . (4.26)

We next determine the collection of (�, �) coordinate pairs that belong to each edge of D .
For clarity, we label those edges as follows:

L 0 =
�
(x1, x2) : x1 = 0, Šw/ 2  x2  w/ 2

�
,

L � =
�
(x1, x2) : x1 = �, Šw/ 2  x2  w/ 2

�
,

L ± =
�
(x1, x2) : 0  x1  �, x 2 = ± w/ 2

�
.

	
����


�����

(4.27)

Focusing first on L 0 and L � , we see from (4.20) that the values of the � coordinate at the
material points (x1, x2) = (0, Šw/ 2) and (x1, x2) = (�, Šw/ 2) at the lower left and lower
right corners of D are

� 0 =
w cos � 0

2(sin � 0 + w/ 2�)
and � � = � Š

w(�/� Š cos � 0)
2(sin � 0 + w/ 2�)

, (4.28)
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respectively. Applying the restrictions (4.18) on � and w to (4.28), we see further that � 0

and � � must be such that

0 < � 0 < � � < �. (4.29)

Since the values of the � coordinate at the material points (x1, x2) = (0,w/ 2) and (x1, x2) =
(�,w/ 2) at the upper left and right corners of D are � Š and � + , respectively, we thus con-
clude from (4.20) that L 0 and L � can be described as

L 0 =
�
(�, �) : � Š  �  � 0, � = � 0(�)

�
(4.30)

and

L � =
�
(�, �) : � �  �  � + , � = � � (�)

�
, (4.31)

where � 0 and � � are defined according to

� 0(�) = Š
��(�) sin � 0

cos � 0 Š �/�
and � � (�) =

(� Š �)�(�) sin � 0

cos � 0 Š �/�
, (4.32)

with � given by

�(�) =

�

1 +
�

cos � 0 Š �/�
sin � 0

� 2

. (4.33)

From (4.20), we next see that L ± can be described as

L ± =
�
(�, �) : � 0  �  � � , � = Š � ± (�)

�
, (4.34)

where � ± are defined by

� ± (�) = ±
w�(�)

2
. (4.35)

Each referential ruling connects two edges of D and lies on a straight line defined by
a point (�, 0), with � Š  � < � + , on the referential directrix and the nonmaterial point
(x1, x2) = (� cos � 0, � sin � 0) corresponding to the apex of the right circular conical sur-
face K . The point (�, 0) is material if 0  �  � and nonmaterial if � Š  � < 0 or
� < �  � + . The referential rulings

�
(�, �) : � = � 0, � Š (� 0)  �  � + (� 0)

�
(4.36)

and
�
(�, �) : � = � � , � Š (� � )  �  � + (� � )

�
(4.37)

connect the lower left and right corners (x1, x2) = (0, Šw/ 2) and (x1, x2) = (�, Šw/ 2) of
D to the upper edge L + of D and naturally decomposes D into a union of three subregions,
each distinguished by the features of its rulings, as depicted in Fig. 7. This decomposition
consists of:16

16These subregions are complementary to the extent that their interiors are disjoint.
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Fig. 7 Decomposition of the rectangular material strip D of length � and width w into a trapezoidal subre-
gion and two triangular subregions. The strip D is completely covered by the collection of (�, �) coordinate
pairs in the union T0 � Tc � T� of the sets defined in (4.38)–(4.40). The values � 0 and � � of � that determine
the inclinations of the rulings that emanate from the lower left and lower right corners of D appear in (4.28)

€ A trapezoid within which all rulings extend from the lower edge L Š of D and the upper
edge L + of D . This subregion of D consists of all coordinate pairs (�, �) belonging to

Tc =
�
(�, �) : � 0  �  � � , � Š (�)  �  � + (�)

�
. (4.38)

€ A triangle within which all rulings extend from the left edge L 0 of D and the upper edge
L + of D . This subregion of D consists of all coordinate pairs (�, �) belonging to

T0 =
�
(�, �) : � Š  �  � 0, � 0(�)  �  � + (�)

�
. (4.39)

€ A triangle within which all rulings extend from the right edge L � of D and the upper edge
L + of D . This subregion of D consists of all coordinate pairs (�, �) belonging to

T� =
�
(�, �) : � �  �  � + , � � (�)  �  � + (�)

�
. (4.40)

4.3.4 Incomplete Coverage of the Strip by Curvilinear Coordinates

In the current notation and with a necessary correction of their edge functions, the special-
ization of (3.5) that Dias and Audoly [2] would consider has the form

A =
�
(�, �) : 0  �  �, � Š (�)  �  � + (�)

�
. (4.41)

We immediately see that all pairs (�, �) in the subsets

�
(�, �) : � Š  � < 0, � 0(�)  �  � + (�)

�
(4.42)

and
�
(�, �) : � < �  � + , � � (�)  �  � + (�)

�
(4.43)
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Fig. 8 Covering of the (x1, x2)-plane provided by the set A of (�, �) pairs defined in (4.41). In addition
to missing all material points belonging to the triangular subregions (4.44) and (4.45) of D , A contains
pairs (�, �) that correspond to spurious nonmaterial points in the triangular regions (4.47) and (4.48) disjoint
from D

of T0 and T� are absent from A ; hence, A fails to cover the triangular subregions

�
(x1, x2) : 0  x1 < x 2 cot � 0, 0 < x 2 

w
2


(4.44)

and
�

(x1, x2) : � Š
�/� Š cos � 0

sin � 0
x2  x1 < �, 0 < x 2 

w
2


(4.45)

of D , as illustrated in Fig. 8. Additionally, since for each choice of � � satisfying 0  � � < � Š

or � + < � �  � , the ruling

�
(�, �) : � = � � , � Š (� � )  �  � + (� � )

�
(4.46)

extends beyond the boundary of D , A contains ordered pairs (�, �) that correspond to spu-
rious nonmaterial points in the triangular regions

�
(x1, x2) : x2 cot � 0  x1 < 0, Š

w
2

 x2 < 0


(4.47)

and
�

(x1, x2) : �  x1 < � Š
�/� Š cos � 0

sin � 0
x2, Š

w
2

 x2 < 0


, (4.48)

both of which are disjoint from D , as illustrated in Fig. 8. Importantly, the areas of the
spurious regions (4.47) and (4.48) are the same as those of the missing subregions (4.44)
and (4.45), respectively.
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5 Bending Energies

In a tradition that traces back at least to Sadowsky’s [5, 6] formulation of a variational
problem for determining the equilibrated shape of a Möbius band in the absence of external
loading, it is common to take the bending energy E stored in bending an unstretchable
material surface with planar rectangular reference shape D in E2 into a curved surface S in
E3 to be given by

E = 2µ
�

S
H 2(y) da(y), (5.1)

where µ > 0 is the bending modulus of the material surface and H and da denote the mean
curvature and area element of S. In (5.1), E is evaluated in the deformed configuration of
the material surface. Alternatively, it is possible to parametrize E using the rectilinear or
curvilinear coordinates of the material points of D . For the second of these options, it is
however essential to ensure that the limits of integration are determined consistent with the
need to ensure that the curvilinear coordinates completely cover D !

To illustrate the importance of the foregoing statement, we next consider three particular
examples involving isometric deformations of rectangular material strips.

5.1 Example 1: Bending Energy of a Rectangular Strip Isometrically Deformed
to a Ribbon Coincident with a Sector of a Conical Surface

In this first example, we consider the calculation of the stored energy for a rectangular strip
that is isometrically deformed into a portion of a right circular conical surface and compare
this calculation to those predicted by the related Sadowsky and Wunderlicht functionals.

5.1.1 Rectilinear Parametrization of the Bending Energy

Since the deformation �y defined by (4.19) is isometric, the mean curvature H of the conical
ribbon S is equal to one half the nonvanishing principal curvature of S. Moreover, the area
element da(y) of S obeys da(y) = da(x) = dx1dx2. Using (9.59) of Chen, Fosdick and
Fried [1], which gives the nonvanishing principal curvature of S as a function of the recti-
linear coordinates (x1, x2) of the material points in D , we thus find that the bending energy
E of S obtained by specializing (5.1) to the deformation �y defined by (4.19)–(4.23) can be
expressed as

E =
µ cot2�

2� 2

� w/ 2

Šw/ 2

� �

0

dx1 dx2

(cos � 0 Š x1/�) 2 + (sin � 0 Š x2/�) 2
. (5.2)

Evaluating the innermost integral in (5.2), which is elementary for each x2 in (Šw/ 2,w/ 2),
introducing the change of variables

u =
cos � 0

sin � 0 Š x2/�
, (5.3)

and defining

u± =
cos � 0

sin � 0 � w/ 2�
and a =

�/� Š cos � 0

cos � 0
, (5.4)
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we see that

E =
µ cot2 �

2

� u+

uŠ

(arctan u + arctan au)du
u

. (5.5)

The integral (5.5) is not elementary but can be expressed in terms of the inverse tangent
integral Ti2, as defined by (Lewin [10, Chap. II])

Ti2(� ) =
� �

0

arctan u du
u

. (5.6)

Specifically, using (5.6) and recalling the definitions (5.4) of u± and a, we arrive at the
representation

E =
µ cot2 �

2

�
Ti2

�
cos � 0

sin � 0 Š w/ 2�

�
+ Ti2

�
�/� Š cos � 0

sin � 0 Š w/ 2�

�

Š Ti2

�
cos � 0

sin � 0 + w/ 2�

�
Š Ti2

�
�/� Š cos � 0

sin � 0 + w/ 2�

��
. (5.7)

Using the definitions (4.25) of � ± and (4.28) of � 0 and � � in (5.4), we see that (5.2) takes
the alternative form

E =
µ cot2 �

2

� � cot � (� Š )

cot � (� 0)

arctan u du
u

+
� cot � (� � )

cot � (� + )

arctan u du
u

�

=
µ cot2 �

2

�
Ti2

�
cot � (� Š )

�
Š Ti2

�
cot � (� + )

�
Š Ti2

�
cot � (� 0)

�
+ Ti2

�
cot � (� � )

��
. (5.8)

Modulo the scale factor µ cot2 �/ 2 determined by the bending modulus µ of the material
surface and the opening angle 2� of the right circular conical surface K , the bending energy
E stored in isometrically deforming a rectangular material strip D of length � and width w
into a ribbon S on K is therefore completely determined by the angles of the lines formed by
the four corners of D and the point (x1, x2) = (� cos � 0, � sin � 0) corresponding to the apex
of the right circular conical surface K . The alternative representation (5.8) for E can also
be derived directly from (5.7) on the basis of (4.25), (4.28), the periodicity of the cotangent,
and the observation that Ti2 is an odd function of its argument.

5.1.2 Curvilinear Parametrization of the Bending Energy

Using (9.58) of Chen, Fosdick and Fried [1], which gives the nonvanishing principal curva-
ture of S, we obtain the mean curvature of S as a function �H of the curvilinear coordinates
(�, �) of the form

�H (�, �) = Š
cot �

2� sin � 0(�(�) Š �/� sin � 0)
, (5.9)

where � is defined as in (4.33). Additionally, referring to (9.59) of Chen, Fosdick and
Fried [1], the Jacobian �� of the transformation underlying the correspondence between ma-
terial points in D and curvilinear coorindates (�, �) is given by

�� (�, �) =
�(�) Š �/� sin � 0

� 2(�)
. (5.10)
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Taking advantage of the decomposition of D into a trapezoidal subregion and two tri-
angular subregions described in Sect. 4.3.3 and invoking the definitions (4.38), (4.39), and
(4.40) of the corresponding collections Tc, T0, and T� of coordinate pairs (�, �) , we see that
the bending energy E of S can also be expressed as

E =
µ cot2 �

2� 2 sin2 � 0

� � 0

� Š

1

� 2(�)

� � � + (�)

� 0(�)

d�
�(�) Š �/� sin � 0

�
d�

+
µ cot2 �

2� 2 sin2 � 0

� � �

� 0

1

� 2(�)

� � � + (�)

� Š (�)

d�
�(�) Š �/� sin � 0

�
d�

+
µ cot2 �

2� 2 sin2 � 0

� � +

� �

1

� 2(�)

� � � + (�)

� � (�)

d�
�(�) Š �/� sin � 0

�
d�, (5.11)

where � ± , � 0, � � , � 0, � � , and � ± are defined by (4.25), (4.28)1, (4.28)2, (4.32)1, (4.32)2,
and (4.35), respectively. Each of the innermost integrals in (5.11) can be evaluated in closed
form and identities connecting the integrals over � that remain can be expressed in terms
of the dilogarithm Li2 (Lewin [10, Chap. I]). A well-established identity (Lewin [10, equa-
tion (2.3)]) connecting Li2 to the inverse tangent integral Ti2 can then be used to recover
(5.7) or, equivalently, (5.8) from (5.11).

5.1.3 Wunderlich’s Functional

Wunderlich’s [3, 4] functional is a dimensionally reduced version of the bending energy E
defined in (5.1), with its domain of integration being the midline of the spatial manifestation
S of the material surface. We next specialize that functional to the problem of isometrically
deforming the rectangular material strip D to the conical ribbon S and compare the resulting
expression with the bending energy E of S in either the form (5.7) determined by the recti-
linear parametrization or its equivalent alternative form (5.11) determined by the curvilinear
parametrization.

With reference to the material in the first two paragraphs on page 279 of Wunderlich’s [3]
original paper, we gather identifications of the form

L �� �, b ��
w
2

, � �� � ,
�



�� cot � , and V ��
sin2 � 0

� �

(5.12)
where 
 and � denote the curvature and torsion of C. In particular, from (4.21), we see that

 2 takes the form


 2 = | �y ��
0 |2 =

cot2 �

� 2 sin2 � 0

1

� 6
, (5.13)

with � as defined in (4.33). Moreover, from (9.52)2 of Chen, Fosdick and Fried [1], the
relation (4.22) defining the angle � between the referential rulings and the referential direc-
trix C0, and (4.33), we see that

sin2 � =
1

� 2
and � � =

1

� sin � 0

1

� 2
. (5.14)
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Multiplying (6) of Wunderlich [3, 4] by a factor of µ/ 2 to ensure a meaningful comparison
to E and invoking (5.12)–(5.29), we thus find that, for the conical ribbon S, Wunderlich’s
[3, 4] functional specializes to17

EW =
µ
2

� �

0


 2(�)( 1 + cot2 � (�)) 2 sin2 � (�)
� �(�)

log

�
sin2 � (�) + w� �(�)/ 2

sin2� (�) Š w� �(�)/ 2

�
d�

=
µ cot2 �
2� sin � 0

log

�
sin � 0 + w/ 2�
sin � 0 Š w/ 2�

� � �

0

d�
� 2(�)

. (5.15)

Recalling the definition (4.33) of � , we notice that the remaining integral in (5.15) is ele-
mentary and, since arctan(cot � 0) = / 2 Š � 0 for 0 < � <  , we arrive at the closed-form
representation

EW =
µ cot2 �

2

�

2

Š � 0 + arctan

�
�/� Š cos � 0

sin � 0

��
log

�
sin � 0 + w/ 2�
sin � 0 Š w/ 2�

�
. (5.16)

Since (5.16) is predicated upon integrating over the collection of (�, �) coordinate pairs that
belong to A instead of the union TŠ � Tc � T+ that ensures complete coverage of D , we an-
ticipate that EW will underestimate the correct bending energy, as we will see in Sect. 5.1.5.

5.1.4 Sadowsky’s Functional

Prior to Wunderlich [3, 4], Sadowsky’s [5, 6] derived a dimensional reduced version of the
general bending energy E defined in (5.1) under the assumption, w � � , that the width of
the rectangular material strip is negligible in comparison to its length. Using (5.12)4 and
(5.13), the Sadowsky [5, 6] functional takes the form

ES =
µ
2

� �

0

 2(�)

�
1 + cot2(�)

� 2
d�, (5.17)

where, to facilitate comparisons with E and EW, we have again introduced a factor of µ/ 2.
Following steps analogous to those leading from (5.15) to (5.16), we find that, for the prob-
lem of isometrically deforming the rectangular material strip D to the conical ribbon S,
Sadowsky’s [5, 6] functional takes the form

ES =
µ� cot2 �
� sin � 0

�

2

Š � 0 + arctan

�
�/� Š cos � 0

sin � 0

��
w
2�

. (5.18)

17It is also possible to directly obtain (5.16) from the version of Wunderlich’s [3, 4] functional that appears
in (30*) of Dias and Audoly [2]. To do that, we require the appropriate specializations of their quantities �
and � 1. With this in mind, we recall from (3.11)1 that the quantity � introduced in (2.2) is equal to � of Dias
and Audoly [2]. Since � = cot � for the deformation �y of D to S defined in (4.19), we thus see from (4.22)
that � of Dias and Audoly [2] is given by

� = cot � . (†)

From (3.11)2, we find moreover that our Darboux vector � is equal to the Darboux vector � of Dias and
Audoly [2]. Thus, by (2.30)1, (4.23), and (9.22) of Chen, Fosdick and Fried [1], we determine that � 1 of Dias
and Audoly [2] is given by

� 1 =
p

�
1 + � 2

=
cot �

� sin � 0

1
�

1 + � 2

1

� 2
. (‡)

Using (†) and (‡) in (30*) of Dias and Audoly [2], we obtain (5.15) and, therefore, upon integration with
respect to � , arrive at (5.16).
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