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A B S T R A C T

Medium spiny neurons (MSNs) expressing dopamine D1 receptor (D1R) or D2 receptor (D2R) are major com-
ponents of the striatum. Stimulation of D1R activates protein kinase A (PKA) through Golf to increase neuronal
activity, while D2R stimulation inhibits PKA through Gi. Adenosine A2A receptor (A2AR) coupled to Golf is
highly expressed in D2R-MSNs within the striatum. However, how dopamine and adenosine co-operatively
regulate PKA activity remains largely unknown. Here, we measured Rap1gap serine 563 phosphorylation to
monitor PKA activity and examined dopamine and adenosine signals in MSNs. We found that a D1R agonist
increased Rap1gap phosphorylation in striatal slices and in D1R-MSNs in vivo. A2AR agonist CGS21680 in-
creased Rap1gap phosphorylation, and pretreatment with the D2R agonist quinpirole blocked this effect in
striatal slices. D2R antagonist eticlopride increased Rap1gap phosphorylation in D2R-MSNs in vivo, and the effect
of eticlopride was blocked by the pretreatment with the A2AR antagonist SCH58261. These results suggest that
adenosine positively regulates PKA in D2R-MSNs through A2AR, while this effect is blocked by basal dopamine
in vivo. Incorporating computational model analysis, we propose that the shift from D1R-MSNs to D2R-MSNs or
vice versa appears to depend predominantly on a change in dopamine concentration.

1. Introduction

In the brain, dopamine functions as a neuromodulator and is asso-
ciated with motor function, motivation, learning and reward (Wise,
2004; Beaulieu and Gainetdinov, 2011). Several neuropsychological
diseases are associated with dysfunctions of the dopaminergic system
including Parkinson's disease, schizophrenia, drug addiction, attention
deficit hyperactivity disorder and restless legs syndrome (Allen, 2004;
Iversen and Iversen, 2007; Pascoli et al., 2015). There are various do-
paminergic pathways in the brain. Two major pathways are the meso-
limbic pathway and nigrostriatal pathway, which project dopamine
neurons from the substantia nigra and the ventral tegmental area to the
striatum including the nucleus accumbens (NAc). The striatum is a
subcortical part of the forebrain and interacts with the cerebral cortex

and thalamus, resulting in various behavioral consequences, including
not only body movements but also motivation and learning (Shohamy,
2011).

Striatal medium spiny neurons (MSNs) are major components of the
basal ganglia, which make up approximately 95% of neurons within the
striatum, and receive dopaminergic regulation (Kemp and Powell,
1971). MSNs are classified into two types: MSNs expressing the dopa-
mine D1 receptor (D1R-MSNs) or dopamine D2 receptor (D2R-MSNs)
(Gerfen et al., 1990). In the NAc, D1R-MSNs are involved in rewarding
behavior, while D2R-MSNs are involved in aversive behavior (Hikida
et al., 2010). D1R is coupled to Golf, whose stimulation activates protein
kinase A (PKA) through adenylate cyclase (AC) (Herve et al., 1993,
2001). On the other hand, D2R is coupled to Gi, whose activation re-
sults in an inhibition of the cAMP/PKA signaling pathway (Montmayeur
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et al., 1993). In vivo imaging of transgenic mice expressing a PKA
fluorescence resonance energy transfer biosensor revealed that cocaine
administration increases PKA activity in D1R-MSNs of the striatum,
whereas PKA activity is decreased in D2R-MSNs (Goto et al., 2015),
indicating that PKA activity is reciprocally regulated between D1R-
MSNs and D2R-MSNs by extracellular dopamine. Thus, activity of the
basal ganglia is controlled by the dynamic balance between D1R-MSNs
and D2R-MSNs.

To elucidate the mode of action of dopamine in MSNs, Paul
Greengard's group has investigated the cAMP/PKA-dependent signaling
pathway and found that dopamine- and cAMP-regulated phosphopro-
tein of 32-kDa (DARPP-32) and α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid (AMPA)-selective glutamate receptor 1 (GluR1)
act as PKA substrates and are involved in synaptic plasticity (Walaas
et al., 1983; Snyder et al., 2000). N-methyl-D-aspartate (NMDA) re-
ceptor subunit1 (NR1) is also known to be the PKA substrate (Tingley
et al., 1997). DARPP-32 has been reported to amplify the action of
dopamine in MSNs. When DARPP-32 is phosphorylated by PKA, it can
inhibit protein phosphatase-1 activity and sustain the phosphorylated
state of the protein (Nishi et al., 2011). Both GluR1 and NR1 phos-
phorylations are implied to increase the expression level of surface
AMPA receptors and NMDA receptors (Esteban et al., 2003; Hallett
et al., 2006). McAvoy et al. (2009) have reported that PKA phosphor-
ylates Rap1gap at serine 563 (serine 499 in the human Rap1gap iso-
form) in striatal slices, and the phosphorylation of Rap1gap leads to the
inactivation of its GTPase-activating protein (GAP) activity. We have
recently carried out a comprehensive phosphoproteomic analysis of
PKA substrates downstream of D1R and identified novel PKA substrates
including Rasgrp2 (Nagai et al., 2016a). Rasgrp2 is a guanine nucleo-
tide exchange factor (GEF) for Rap1 that can activate Rap1 signaling to
regulate neuronal excitability and cocaine-induced reward responses by
acting through the MAPKK/MAPK pathway (Nagai et al., 2016b). In
addition to Rasgrp2, we have also found that, among the putative PKA
substrates, Rap1gap is phosphorylated by D1R agonist (Nagai et al.,
2016a). These findings suggest that D1R/PKA/Rap1gap is another
signaling pathway for dopamine action to control Rap1 activity in vivo
(Fig. 1a). The phosphorylation of Rap1gap appears to be useful for
monitoring PKA activity in striatal MSNs. However, whether dopamine
D1R stimulation promotes phosphorylation of Rap1gap in vivo remains
unclear.

Dopamine suppresses neuronal activity through D2R (Gerfen and
Surmeier, 2011), whereas other neurotransmitters or neuromodulators
appear to increase the activity of D2R-MSNs. One such neuromodulator
implicated to increase the D2R-MSN activity is adenosine, which is one
of the prominent neuromodulators in the striatum. In the central ner-
vous system, adenosine serves as a neuromodulator involved in sleep
regulation, neuroprotection, locomotion, and blood flow regulation
(Morgan et al., 1991; Dunwiddie and Masino, 2001; Porkka-Heiskanen
et al., 2002; Wardas, 2002). Adenosine exerts its effects through ade-
nosine receptors: adenosine A1 receptor (A1R), adenosine A2A receptor
(A2AR), adenosine A2B receptor and adenosine A3 receptor. A1R is
widely distributed in the central nervous system, while A2Rs are lo-
cated mainly in the striatum and olfactory bulb (Wardas, 2002; Porkka-
Heiskanen et al., 2002). In the striatum, D2R-MSNs express A2AR,
which couples to the Golf protein, whereas D1R-MSNs express A1R,
which couples to the Gi protein (Fink et al., 1992; Ferre et al., 1996;
Fredholm et al., 2000; Kull et al., 2000). Thus, PKA activity in D2R-
MSNs is speculated to be positively controlled by adenosine/A2AR and
negatively by dopamine/D2R. However, how these two pathways co-
operatively act in D2R-MSNs remains largely unknown. Notably, A2AR
and D2R in MSNs are highlighted as therapeutic targets for Parkinson's
disease and schizophrenia (Richardson et al., 1997; Kapur and
Remington, 2001; Seeman, 2013; Pinna, 2014).

In light of these observations, we here investigated the modes of
action of dopamine and adenosine signal towards Rap1gap phosphor-
ylation in D2R-MSNs by use of striatal slice, in vivo, and computational

model analyses. We found that adenosine stimulated Rap1gap phos-
phorylation through A2AR in striatal slice. In vivo analysis showed that
Rap1gap phosphorylation was positively regulated by adenosine/
A2AR, and this effect was counteracted by dopamine/D2R. The math-
ematical model revealed that the balance of adenosine/A2AR and do-
pamine/D2R regulated Rap1gap phosphorylation in D2R-MSNs.

2. Material & methods

2.1. Animals

Male C57BL/6 mice (21–26 g) at the age of 7 weeks were purchased
from Japan SLC, Inc. (Shizuoka, Japan). Mice were housed in a density
of four mice per cage (17 cm wide× 28 cm long×13 cm high) in the
specific pathogen-free animal facility under standard conditions
(23 ± 1 °C, 50 ± 5% humidity) with a 12-h light/dark cycle. Food
and water were available ad libitum. Generation of Drd1-mVenus and
Drd2-mVenus transgenic mice were described previously (Nagai et al.,
2016a). Transgenic mice expressing a variant of yellow fluorescent
protein (mVenus) under the control of D1R promoter (Drd1-mVenus,
RBRC03111, Riken BRC, Tsukuba, Japan) or D2R promoter (Drd2-
mVenus, RBRC02332, Riken BRC) were identified by PCR with genomic
DNA prepared from tail clips. All mice were randomly assigned into
control and experimental groups using a completely randomized digital
table made by Microsoft Excel. All animal experiments were pre-re-
gistered, approved (approved number 29385) and performed in the
laboratory in accordance with the guidelines for the care and use of
laboratory animals established by the Animal Experiments Committee
of Nagoya University Graduate School of Medicine.

2.2. Drugs

CGS21680, S-(−)-Eticlopride hydrochloride and (± )-quinpirole
dihydrochloride were purchased from Sigma-Aldrich Co. (St. Louis,
MO, USA). SKF81297 hydrobromide and SCH58261 were purchased
from Tocris Bioscience (Bristol, UK). Eticlopride, quinpirole and
SKF81297 were dissolved in sterile distilled water (DW) or saline.
CGS21680 and SCH58261 were dissolved in DMSO as a stock solution
and diluted in saline to the final concentration. The dosages of drugs
used in the present study were chosen from previous reports
(Svenningsson et al., 2000).

2.3. Antibodies

Rabbit polyclonal antibody against Rap1gap phosphorylated at
serine 563 (S563) was produced against the phosphopeptide
CGSRRSpS563AIGIE. The obtained antiserum was then affinity-purified
against the phosphoprotein on membranes as previously described with
some modification (Kuroda et al., 2011). In brief, GST-hRap1gap-411-
681aa protein was purified from E. coli as antigen described previously
(Kato et al., 2012) and was subjected to in vitro phosphorylation assay
using PKA (Hamaguchi et al., 2015). Non-phosphorylated and phos-
phorylated antigens were applied to SDS-PAGE and transferred to
membranes separately. The antiserum was precleared by incubating
antiserum with membranes bound with the non-phosphorylated an-
tigen. The precleared antiserum was collected and incubated with
membranes bound with the phosphorylated antigen. After incubation,
antibody that bound with the phosphorylated antigen was eluted with
200 μl 0.1M glycine-HCl (pH 2.5), and pH was adjusted to 7.5. The
following antibodies were obtained commercially: rabbit anti-phospho-
GluR1 (S845) (RRID: AB_10860773), rabbit anti-phospho-NMDAR1
(S897) (RRID: AB_2112139), and rabbit anti-phospho-DARPP-32
(threonine 34) (T34) (RRID: AB_2169004) from Cell Signaling Tech-
nology (Danvers, MA, USA); mouse anti-GluR1 (RRID: AB_11212678)
from Millipore (Billerica, MA, USA); mouse anti-NMDAR1 (RRID: AB_
396353) and mouse anti-DARPP-32 (RRID: AB_398980) from BD
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Bioscience (Franklin Lakes, NJ, USA); rabbit anti-Rap1gap (RRID: AB_
777621) from Abcam (Cambridge, UK); rat anti-GFP antibody (RRID:
AB_10013361) from Nacalai Tesque (Kyoto, Japan); goat anti-rat Alexa
Fluor 488 (RRID: AB_2534074), goat anti-rabbit Alexa Fluor 568
(RRID:AB_143157) and goat anti-rabbit Alexa Fluor 680 (RRID: AB_
10375714) from Thermo Fisher Scientific (Waltham, MA, USA); and
goat anti-mouse IRDye 800CW (RRID: AB_621842) from LI-COR Bios-
ciences (Lincoln, NE, USA).

2.4. Preparation of striatal slices

Striatal slices were prepared from male C57BL/6 mice as described
previously (Nishi et al., 1997). The brain was removed and kept in
Krebs-HCO3

- buffer (124mM NaCl, 4 mM KCl, 26mM NaHCO3, 1.5mM
CaCl2, 1.25mM KH2PO4, 1.5mM MgSO4, and 10mM D-glucose, pH
7.4). Coronal brain slices (350 μm) were prepared using a VT1200S
vibratome (Leica Microsystems, Wetzlar, Germany). After isolation of
the whole striatum from the brain slice, striatal slices were incubated at
30 °C in Krebs-HCO3

- buffer with 10 μg/ml adenosine deaminase for
30min under constant oxygenation with 95% O2/5% CO2. The buffer
was replaced with fresh Krebs-HCO3

- buffer and preincubated for
30min. Slices were treated with SKF81297 (1 μM) or forskolin (1 μM)
for 10min. Striatal slices were pretreated with quinpirole (1 μM)
10min before the 5min treatment with CGS21680 (5 μM). After
treatment with drugs, slices were kept in liquid nitrogen and stored in a

freezer at −80 °C until assayed. Samples were homogenized in 1% SDS
buffer. Protein concentration was measured by BCA assay. Proteins
(20 μg) were applied in each point for immunoblotting.

2.5. Tissue preparation for immunoblotting

Mice were injected intraperitoneally (i.p.) with drugs (CGS21680
dissolved in 0.2% DMSO, SKF81297 dissolved in saline, or eticlopride
dissolved in saline) or their corresponding vehicle (saline or 0.2%
DMSO in saline) and sacrificed by decapitation 15min later. SCH58261
dissolved in 1.4% DMSO was administered 5min before eticlopride
treatment. After the decapitation, the heads of the mice were im-
mediately immersed into liquid nitrogen for 4 s, and the brains were
removed. The NAc was dissected out on an ice-cold plate. Each tissue
sample was snap frozen in liquid nitrogen and stored in a freezer at
−80 °C until assayed for immunoblotting.

2.6. Immunoblotting

For immunoblotting, 20 μg protein of each sample was loaded on
10% acrylamide gels. Then, the proteins were separated through gel
electrophoresis and transferred from the gel onto a polyvinylidene di-
fluoride membrane. Membranes were blocked for 1 h with Blocking-
One (Nacalai Tesque) and incubated overnight at 4 °C with primary
antibodies anti-phospho-GluR1 (S845) (1:1000), anti-GluR1 (1:1000),

Fig. 1. Stimulation of the dopamine D1R pro-
motes Rap1gap phosphorylation in striatal slices.
(a) Model of DR and AR signaling pathways in D1R-
MSN and D2R-MSN. (b) Specificity of the antibody
against Rap1gap phosphorylated by PKA. Five hun-
dred fmol of GST-Rap1gap-411-681 aa containing the
indicated amount of phosphorylated or non-phos-
phorylated protein was subjected to SDS-PAGE, fol-
lowed by immunoblot analysis with the anti-Rap1gap
pS563 antibody. (c) Forskolin (FSK) and SKF81279
(SKF) stimulated the phosphorylation of Rap1gap in
striatal slices. Striatal slices were treated with either
FSK (1 μM) or SKF (1 μM) for 10 min. Rap1gap
phosphorylation was measured via immunoblotting
using antibodies that were specific for total Rap1gap
or for Rap1gap phosphorylated at S563. Upper panels
show representative immunoblots. Quantification of
the immunoblotting assay is shown in the bottom
panel. Data are presented as the mean ± SEM
(n = 10 slices for control (cont), n = 6 slices for FSK,
n = 10 slices for SKF) of three independent experi-
ments. One-way ANOVA analysis, F(2,23) = 40.22,
p < 0.01. **p < 0.01 compared with the cont. Full-
length blots are presented in Supplementary Fig. S6.
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anti-phospho-NMDAR1 (S897) (1:1000), anti-NMDAR1 (1:1000), anti-
phospho-DARPP-32 (T34) (1:1000), anti-DARPP-32 (1:1000), anti-
phospho-Rap1gap (S563) (1:1000) and anti-Rap1gap (1:10000). After
the membranes were washed, they were incubated with goat anti-rabbit
Alexa Fluor 680 or goat anti-mouse IRDye 800CW at room temperature
for 1 h. Antibody binding was detected using an infrared imaging
system (LI-COR Biosciences). Band intensities were quantified using
ImageStudio software (LI-COR Biosciences).

2.7. Immunohistochemistry

Mice were anesthetized with tribromoethanol (200mg/kg, i.p.) for
rapid and deep anesthesia and transcardially perfused with isotonic 4%
paraformaldehyde. Then, the brains were removed and incubated in 4%
paraformaldehyde overnight at 4 °C. The brains were cryoprotected in
20–30% sucrose in PBS. Then, the brains were frozen using O.C.T
compound (Sakura Finetechnical, Tokyo, Japan). The coronal striatal
sections (20 μm-thick) were fixed with 4% paraformaldehyde for 5min
and incubated with 0.3% Triton X-100/PBS for 10min. After the slices
were washed with PBS for 10min twice, the slices were incubated for
1 h at room temperature in blocking buffer (5% normal goat serum/
0.3% Triton X-100/PBS) and overnight at 4 °C in the presence of the
primary antibodies (anti-GFP antibody, 1:1000; anti-phospho-Rap1gap
(S563) antibody, 1:500). Sections were washed three times with PBS
and incubated with the secondary antibodies (goat anti-rat Alexa Fluor
488, 1:1000; goat anti-rabbit Alexa Fluor 568, 1:1000) in 0.3% Triton
X-100/PBS for 1 h at RT. After the slices were washed with PBS, they
were mounted on slide glasses and observed using a confocal micro-
scope (LSM780, Carl Zeiss, Jena, Germany).

2.8. Mathematical modeling

A signaling pathway model of D2R-MSNs was constructed based on
previous modeling studies (Nakano et al., 2010; Nair et al., 2015) to
reproduce the interaction between the dopamine and adenosine signals.
The biochemical reaction in the model can be written by differential
equations. For example, the binding reaction of A and B produces
molecule AB as the following differential equation:

= −

d AB
dt

k A B k AB[ ] [ ][ ] [ ],f b

where kf and kb are the rate constants of forward and backward reac-
tions. The affinity parameters of adenosine/A2AR and dopamine/D2R
were set according to the experimentally determined kinetic constants
provided by the IUPHAR database (Southan et al., 2016) and the pre-
vious models (Nakano et al., 2010; Nair et al., 2015). The differential
equations were numerically calculated using the COPASI simulator
(Hoops et al., 2006).

2.9. Experimental design and statistical analysis

Assumptions of how well normality and equal variances fit the data
could not be reliably assessed because of the small sample sizes. Sample
size was not predetermined by formal power analysis statistical
methods. No samples or data were excluded from the analysis. Data
analysis was performed using Prism 6 Statistics software (GraphPad
Software, Inc., La Jolla, USA). All data are expressed as the
means ± SEM. A one-way, two-way, or three-way analysis of variance
(ANOVA) was used, followed by Tukey's test when the F ratios were
significant (p < 0.05). The number of animals and brain slices are
indicated in the text and figure legends.

3. Results

3.1. Stimulation of dopamine D1R promotes Rap1gap phosphorylation in
striatal slices

PKA has been shown to phosphorylate Rap1gap at S563 (McAvoy
et al., 2009). Consistently, our previous phosphoproteomic analysis of
D1R signaling showed that Rap1gap is phosphorylated at S563 in
striatal slices after treatment with the dopamine D1R agonist SKF81297
(Fig. 1a) (Nagai et al., 2016a). Based on these findings, we developed
an antibody against Rap1gap phosphorylated at S563 and confirmed
that this antibody specifically recognized phosphorylated Rap1gap by
PKA without cross-reacting with the non-phosphorylated Rap1gap
(Fig. 1b and Fig. S11a). We next examined whether SKF81297 and
forskolin, an inducer of cAMP, enhanced the phosphorylation of
Rap1gap in striatal slices using the phospho-specific antibody (Fig. S1).
The phosphorylation level of Rap1gap at S563 was significantly in-
creased after the treatment of the striatal slice with SKF81297 or for-
skolin compared with that of control (p < 0.01, Fig. 1c), indicating
that D1R and PKA stimulation promotes Rap1gap phosphorylation at
S563 (Fig. 1a).

3.2. Stimulation of adenosine A2AR promotes Rap1gap phosphorylation in
striatal slices

To monitor Rap1gap phosphorylation in D2R-MSNs, striatal slices
were treated with the A2AR agonist CGS21680 and D2R agonist quin-
pirole (Fig. 1a and Fig. S2). Treatment of striatal slices with CGS21680
significantly increased the phosphorylation level of Rap1gap at S563
(p < 0.01, Fig. 2a). The CGS21680-stimulated phosphorylation of
Rap1gap at S563 was completely blocked by pretreatment with quin-
pirole, whereas quinpirole itself had no effect on Rap1gap phosphor-
ylation (p < 0.01, Fig. 2a). We also confirmed the PKA activity using
other well-known PKA substrates, including DARPP-32 (Lindskog et al.,
1999; Yabuuchi et al., 2006), AMPA receptor GluR1 subunit (Snyder
et al., 2000), and NMDA receptor NR1 subunit (Tingley et al., 1997).
Treatment of the slices with CGS21680 increased phosphorylation le-
vels of DARPP-32 at T34 (p < 0.01, Fig. 2b), AMPA receptor GluR1
subunit at S845 (p < 0.01, Fig. 2c), and NMDA receptor NR1 subunit
at S897 (p < 0.01, Fig. 2d). Pretreatment of slices with quinpirole
blocked the CGS21680-induced phosphorylation of these proteins
(p < 0.01, Fig. 2b–d). These results suggest that A2AR but not D2R
stimulation promotes Rap1gap phosphorylation in striatal slices, and
that the phosphorylation of Rap1gap is a useful molecular marker to
monitor PKA activity.

3.3. Stimulation of dopamine D1R promotes Rap1gap phosphorylation in
the accumbal D1R-MSNs

To investigate the regulatory effect of D1R on Rap1gap phosphor-
ylation in vivo, we examined the phosphorylation level of Rap1gap in
the NAc of C57BL/6 mice by immunoblotting (Fig. S3a). The phos-
phorylation level of Rap1gap at S563 was significantly increased in the
SKF81297-treated mice (p < 0.05, Fig. 3a). We also im-
munohistochemically investigated if SKF81297 stimulates phosphor-
ylation of Rap1gap in accumbal D1R-MSNs by treating Drd1-mVenus
transgenic mice, which express mVenus in the D1R-MSNs, with
SKF81297 (Fig. S3b). SKF81297 treatment increased the number of
phosphorylated Rap1gap-positive cells, and most of the signals were
colocalized with mVenus-positive cells in the NAc of Drd1-mVenus
transgenic mice (Fig. 3b). There were few cells positive for Rap1gap
phosphorylation in saline-treated mice (Fig. 3b). These results indicate
that D1R stimulation increased PKA activity in the accumbal D1R-MSNs
in vivo (Fig. 1a).

X. Zhang et al. Neurochemistry International 122 (2019) 8–18

11



3.4. Inhibition of dopamine D2R promotes Rap1gap phosphorylation in the
accumbal D2R-MSNs

We further investigated the effect of the A2AR agonist on Rap1gap
phosphorylation in vivo (Fig. S4a). Treatment with CGS21680 slightly
but not significantly increased the phosphorylation level of Rap1gap at
S563 in the NAc of C57BL/6 mice (Fig. 4a). This may be because that
the basal levels of extracellular dopamine interfere with the effect of
A2AR activation towards the Rap1gap phosphorylation by acting
through D2R. Therefore, we measured the phosphorylation level of
Rap1gap S563 after treatment with the D2R antagonist eticlopride in
mice (Fig. S4b). Treatment with eticlopride significantly increased the
phosphorylation level of Rap1gap in a dose-dependent manner
(Fig. 4b). Furthermore, the eticlopride-induced Rap1gap phosphoryla-
tion was detected in accumbal D2R-MSNs of Drd2-mVenus transgenic
mice, in which D2R-MSNs express mVenus (Fig. 4c and Fig. S4c),

suggesting that the basal levels of extracellular dopamine inhibit
Rap1gap phosphorylation in vivo.

3.5. Inhibition of adenosine A2AR suppresses the Rap1gap phosphorylation
promoted by the D2R antagonist

To examine the interaction between A2AR and D2R in the NAc of
mice, we further investigated the effect of the A2AR antagonist
SCH58261 on eticlopride-induced Rap1gap phosphorylation (Fig. S5).
Pretreatment with SCH58261 significantly suppressed the Rap1gap
phosphorylation induced by eticlopride treatment (p < 0.01, Fig. 5).
SCH58261 itself had no effect on the phosphorylation level of Rap1gap.
Thus, A2AR stimulation is required for the D2R antagonist-induced
Rap1gap phosphorylation. Taken together, these results suggest that
adenosine promotes Rap1gap phosphorylation through A2AR, but do-
pamine counteracts this effect through D2R in MSNs in basal conditions

Fig. 2. Stimulation of adenosine A2AR pro-
motes Rap1gap phosphorylation in striatal
slices. Striatal slices were treated with
CGS21680 (CGS) (5 μM) for 5min after pre-
treatment with quinpirole (1 μM) 10min before.
The phosphorylated protein levels were de-
termined via immunoblotting using phospho-
specific antibodies. (a) pS563 Rap1gap. (b) pT34
DARPP-32. (c) pS845 GluR1. (d) pS897 NR1.
The upper panels show immunoblots for phos-
phoproteins and the respective total proteins.
Quantification of the immunoblot assay is shown
in the bottom panels. The data were normalized
to the total protein levels in each sample and
were expressed as percentages of levels in the
control slices. Data are presented as the
mean ± SEM (n = 4 slices for all groups) of
four independent experiments. Two-way ANOVA
analysis for pS563 Rap1gap; quinpirole, F
(1,12) = 110.2, p < 0.0001; CGS21680, F
(1,12) = 90.16, p < 0.0001; interaction, F
(1,12) = 107.3, p < 0.0001. Two-way ANOVA
analysis for pT34 DARPP-32; quinpirole, F
(1,12) = 13.35, p = 0.0033; CGS21680, F
(1,12) = 9.344, p = 0.0100; interaction, F
(1,12) = 7.23, p = 0.0197. Two-way ANOVA
analysis for pS845 GluR1; quinpirole, F
(1,12) = 16.87, p = 0.0015; CGS21680, F
(1,12) = 11.59, p = 0.0052; interaction, F
(1,12) = 5.595, p = 0.0357. Two-way ANOVA
analysis for pS897 NR1; quinpirole, F
(1,12) = 134.5, p < 0.0001; CGS21680, F
(1,12) = 84.28, p < 0.0001; interaction, F
(1,12) = 40.75, p < 0.0001. *p < 0.05 and
**p < 0.01 compared with the corresponding
control. Full-length blots are presented in
Supplementary Fig. S7.
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(Fig. 1a).

3.6. Mathematical model for dopamine and adenosine signals in D2R-MSNs

A mathematical model was constructed to reproduce the interaction
between the dopamine and adenosine signaling pathways in D2R-
MSNs. In this model, we focused on the phosphorylation level of
Rap1gap because PKA-mediated Rap1gap phosphorylation is regulated
by adenosine/A2AR/Golf/adenylate cyclase and dopamine/D2R/Gi/
adenylate cyclase pathways in D2R-MSNs. According to previous re-
ports, the basal extracellular concentration of adenosine and dopamine
is estimated at approximately 25–250 nM and 7–20 nM, respectively, in
the rat brain (Dunwiddie and Masino, 2001; Chen, 2005). We found
that about 10% of Rap1gap in the NAc of mice was phosphorylated at
S563 under basal condition (Fig. S11). Therefore, we simulated a
change of phosphorylated Rap1gap level when extracellular dopamine
and/or adenosine were used within a wide range of their concentration
including basal condition.

We first fixed adenosine concentration at 10, 100 or 1000 nM, and
modeled the effect of extracellular dopamine level on Rap1gap phos-
phorylation (Fig. 6a). When the adenosine concentration was set at
10 nM, a little amount of Rap1gap was phosphorylated within a phy-
siological range of extracellular dopamine concentration (Fig. 6a left
panel). The phosphorylation level of Rap1gap was increased with

reducing extracellular dopamine under the circumstances (Fig. 6a left
panel). The dopamine concentration-response curve was markedly
shifted toward the right depending on adenosine concentration, and the
phosphorylation level of Rap1gap was slightly increased even within
the physiological range of dopamine concentration (Fig. 6a middle and
right panel).

We next fixed dopamine concentration at 1, 10 or 100 nM, and
modeled the effect of extracellular adenosine on Rap1gap phosphor-
ylation (Fig. 6b). When the dopamine level was kept low at 1 nM,
adenosine increased the phosphorylation level of Rap1gap in a con-
centration-dependent manner (Fig. 6b left panel). As extracellular do-
pamine concentration at 10 nM (around basal level) or 100 nM,
Rap1gap phosphorylation level was remarkably suppressed within the
physiological range of extracellular adenosine concentration (Fig. 6b
middle panel and right panel).

Finally, we integrated these mathematical models and analyzed the
level of phosphorylated Rap1gap for different combination of the ex-
tracellular adenosine and dopamine concentration. The phosphoryla-
tion of Rap1gap in D2R-MSNs was promoted under the certain condi-
tion that meets both low concentration of dopamine and above basal
concentration of adenosine (Fig. 6c).

Fig. 3. Stimulation of the dopamine D1R
promotes Rap1gap phosphorylation in ac-
cumbal D1R-MSNs. (a) Dopamine D1R agonist
SKF81297 administration dose-dependently sti-
mulated the phosphorylation of Rap1gap in the
NAc 15 min after SKF81297 injection. Left pa-
nels show representative immunoblots.
Quantification of the immunoblotting assay is
shown in the right panel. Data are presented as
the mean ± SEM (n = 3 mice for all groups).
One-way ANOVA analysis; F(3,8) = 4.698,
p = 0.0356. *p < 0.05. Full-length blots are
presented in Supplementary Fig. S8. (b) Phos-
phorylated Rap1gap was detected in D1R-MSNs
in the NAc after SKF81297 injection. Drd1-
mVenus transgenic mice were administered
saline or SKF81297 (5mg/kg, i.p.), and im-
munohistochemical analysis was performed
15min after the treatment. Immunofluorescence
staining using an anti-Rap1gap antibody specific
for phosphorylation at S563 (left panels) or an
anti-GFP antibody (middle panels) is shown. The
scale bar indicates 10 μm.
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Fig. 4. Inhibition of the dopamine D2R but
not adenosine A2AR stimulation promotes
Rap1gap phosphorylation in the accumbal
D2R-MSNs. (a) Adenosine A2AR agonist
CGS21680 administration failed to stimulate the
phosphorylation of Rap1gap in the NAc 15min
after CGS21680 injection. Left panels show re-
presentative immunoblots. Quantification of the
immunoblotting assay is shown in the right
panel. Data are presented as the mean ± SEM
(n=4 mice for control, CGS 0.1 and CGS 0.5,
n= 5 mice for CGS 2.0). One-way ANOVA ana-
lysis; F(3,13)= 2.234, p= 0.1328. (b)
Dopamine D2R antagonist eticlopride adminis-
tration stimulated the phosphorylation of
Rap1gap in the NAc 15min after eticlopride in-
jection. Left panels show representative im-
munoblots. Quantification of the immunoblot-
ting assay is shown in the right panel. Data are
presented as the mean ± SEM (n=4 mice for
control, CGS 0.1 and CGS 0.5, n=5 mice for
CGS 2.0). One-way ANOVA analysis; F
(3,13)= 6.564, p=0.0061. *p< 0.05 and
**p<0.01. Full-length blots are presented in
Supplementary Fig. S9. (c) Phosphorylated
Rap1gap was detected in D2R-MSNs in the NAc
after eticlopride injection. Drd2-mVenus trans-
genic mice were administered saline or eticlo-
pride (2mg/kg, i.p.), and immunohistochemical
analysis was performed 15min after the treat-
ment. Immunofluorescence staining using an
anti-Rap1gap antibody specific for phosphor-
ylation at S563 (left panels) or an anti-GFP an-
tibody (middle panels) is shown. The scale bar
indicates 10 μm.

Fig. 5. Inhibition of the adenosine A2AR suppresses the
Rap1gap phosphorylation promoted by the dopamine
D2R antagonist. The adenosine A2AR antagonist
SCH58261 (10 mg/kg) was administered 5 min before the
eticlopride (Eti, 2 mg/kg) treatment. The phosphorylation of
Rap1gap in the NAc was measured 15 min after eticlopride
injection. Left panels show representative immunoblots.
Quantification of the immunoblotting assay is shown in the
right panel. Data are presented as the mean ± SEM (n = 12
mice for all groups) of four independent experiments. Two-
way ANOVA analysis; eticlopride, F(1, 43) = 4.89,
p = 0.0324; SCH58261, F(1, 43) = 2.778, p = 0.1029;

interaction, F(1, 43) = 11.53, p = 0.0015. **p < 0.01. Full-length blots are presented in Supplementary Fig. S10.
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4. Discussion

We have recently reported that dopamine phosphorylates and ac-
tivates Rasgrp2 through D1R/PKA in D1R-MSNs (Nagai et al., 2016a).
Consequently, Rasgrp2-mediated Rap1 activation stimulates MAPK,
which increases the excitability of D1R-MSNs to enhance reward-re-
lated behaviors (Nagai et al., 2016a). As showed in Fig. 1a, in this
study, we demonstrated that D1R stimulation phosphorylated Rap1gap
in D1R-MSNs (Figs. 1c and 3). Our results also showed that A2AR sti-
mulation enhanced Rap1gap phosphorylation in striatal slice (Fig. 2a).
Administration of the D2R antagonist enhanced Rap1gap phosphor-
ylation, and this effect was blocked by pretreatment with the A2AR
antagonist although A2AR agonist had minimal effect (Figs. 4 and 5).
These results suggest that PKA is inactivated in D2R-MSNs in basal
conditions because endogenous dopamine inhibits PKA activity in vivo.

Adenosine can activate PKA in D2R-MSNs under the conditions of do-
pamine depletion or with blockade of D2R. Our results developed the
interaction between D1R and A1R in D1R-MSNs and the interaction
between D2R and A2AR in D2R-MSNs proposed by the analyses of
DARPP-32 phosphorylation in slices and in vivo (Nishi et al., 1997,
2011; Lindskog et al., 1999; Yabuuchi et al., 2006).

Phosphorylation of Rap1gap at S505 and S563 has been shown to
decrease its GAP activity on Rap1 (McAvoy et al., 2009). We found that
about 10% of Rap1gap was phosphorylated at S563 in the NAc of
saline-treated mice, and D1R agonist or D2R antagonist administration
increased the phosphorylation of Rap1gap S563 approximately twice
that of saline-treated mice. We believe that Rap1gap phosphorylation is
effective to regulate Rap1 activity. First, we calculated the change of
Rap1gap S563 phosphorylation in the NAc including both D1R-MSNs
and D2R-MSNs. If D1R agonist induced 2-fold increase of Rap1gap S563

Fig. 6. Mathematical model prediction of the dopamine and adenosine dose-dependent responses of the phosphorylation of Rap1gap in D2R-MSN. (a)
Dopamine dose-dependent responses of phosphorylation of Rap1gap at three different extracellular adenosine levels. Horizontal and vertical axes represent the input
level of dopamine (logarithmic scale) and the ratio of phosphorylated Rap1gap S563 to the total Rap1gap. (b) Adenosine dose-dependent responses of phosphor-
ylation of Rap1gap at S563 at three different extracellular dopamine levels. Horizontal and vertical axes represent the input level of adenosine (logarithmic scale) and
the ratio of phosphorylated Rap1gap S563 to the total Rap1gap. (c) Dopamine and adenosine dose-dependent responses of phosphorylation of Rap1gap. The color
indicates the phosphorylation level of Rap1gap at S563.
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phosphorylation in the NAc, Rap1gap S563 phosphorylation in D1R-
MSNs should be increased 3 times the basal level whereas Rap1gap
S563 phosphorylation was unchanged in D2R-MSNs. Second, it is pos-
sible that there are several phosphorylation sites including S505 and
S563 in Rap1gap-C-terminal that can be phosphorylated by PKA since
S563 phosphorylation occupied 20% of Rap1gap-C-terminal phos-
phorylation under basal condition (Fig. S11d). Third, as Rap1 activity is
regulated by both GEF and GAP simultaneously, we assume that PKA
phosphorylates Rasgrp2 to promote Rap1 activation and, meanwhile,
phosphorylates Rap1gap to inhibit Rap1 inactivation. Based on these
points, Rap1 is efficiently activated through these two signaling path-
ways in D1R-MSNs or D2R-MSNs, thereby activating the Rap1/MAPKK/
MAPK signaling pathway.

The extracellular dopamine concentration is changed dynamically
and rapidly in the striatum released from dopaminergic neurons in
response to stimuli (Robinson et al., 2002; Wenzel et al., 2015; Collins
et al., 2016). D1R and D2R have low and high affinity sites for dopa-
mine (Seeman et al., 2006; Seeman, 2007; Marcellino et al., 2012), and
the high affinity sites of both receptors are thought to play more crucial
role than low affinity site. Since the Kd values of high affinity site of
D1R and D2R are around 200 nM and 10 nM, respectively (Marcellino
et al., 2012), extracellular dopamine seems to bind to D2R rather than
D1R under basal condition. Adenosine is produced both intracellularly
and extracellularly from breakdown of adenine nucleotides including
ATP and ADP (Latini and Pedata, 2001). Intracellularly produced ade-
nosine is transported to the extracellular region through a nucleoside
transporter (King et al., 2006). Although there are many different
adenosine sources, striatal A2AR is activated by ecto-5′-nucleotidase
(CD73)-mediated ATP-derived adenosine (Augusto et al., 2013; Ena
et al., 2013), which accounts for tonic A2AR activation. According to
pharmacological approaches or microdialysis analyses in the rat brain,
basal adenosine concentrations are estimated to be in the range of
25–250 nM (Dunwiddie and Masino, 2001). The affinity of A1R and
A2AR is around 100 nM (Dunwiddie and Masino, 2001). Therefore,
basal extracellular adenosine concentrations are sufficient to tonically
activate A1R and A2AR. Taking these matters into account, we simu-
lated a change of phosphorylated Rap1gap level downstream A2AR and
high affinity D2R in D2R-MSNs. We assumed that PKA was activated at
low concentration of dopamine and inactivated at high concentration of
dopamine in D2R-MSNs when basal adenosine was present (Fig. 6). This
observation was consistent with the experimental findings in vivo
(Figs. 4 and 5). Although we did not simulate mathematical models of
the Rap1gap phosphorylation downstream of A1R and high affinity
D1R in D1R-MSNs, PKA activity may be controlled in D1R-MSNs in the
opposite way, which means that PKA is inactivated at low concentra-
tion of dopamine and activated at high concentration. Thus, when basal
adenosine is present, the switch between the D1R-MSN and D2R-MSN
activation states occurs efficiently depending on the concentration of
extracellular dopamine (Fig. 7).

In the present study, we focused on the direct antagonism of A2AR
signaling and D2R signaling in MSN. Regarding this antagonism, there
are two other possibilities that D2R antagonist could indirectly enhance
A2AR signaling by increasing adenosine release and that A2AR an-
tagonist could indirectly enhance D2R signaling by increasing dopa-
mine release. The former possibility cannot be denied since no studies
have examined the effect of D2R antagonist on adenosine release yet.
However, the latter possibility could be excluded by the previous
findings that systemic or intra-striatal administration of A2AR antago-
nist has no effect on the extracellular level of dopamine (Dremencov
et al., 2017; Golembiowska and Dziubina, 2004).

Recently, the concept of A2AR-D2R heteromerization has been
highlighted, which proposes that A2AR-D2R interactions include not
only at the level of adenylate cyclase, but also multiple allosteric in-
teractions (Ferre et al., 2011; Navarro et al., 2014; Bonaventura et al.,
2015). In addition to D2R-MSN, A2AR is also expressed in glutama-
tergic terminals (Rodrigues et al., 2005) and cholinergic interneurons

(Preston et al., 2000) to regulate neurotransmitters release in the
striatum, including glutamate and acetylcholine (Schiffmann et al.,
2007). These neurotransmitters also control basal ganglia circuits and
contribute to striatal function. Furthermore, extracellular adenosine is
known to dynamically change especially in pathological conditions
(Dunwiddie and Masino, 2001; Cunha, 2016; Dale and Frenguelli,
2009). The above facts cannot be ignored to propose a fine-tuned model
of D2R-A2AR interactions at the level of adenylate cyclase. However, in
this study, we proposed a simplified mathematic model based on the
perspective of classical pharmacology to clarify how dopamine and
adenosine co-operatively regulate PKA activity in the D2R-MSNs.

D2R antagonists are commonly used as pharmacotherapy for schi-
zophrenia, and A2A antagonists are used as pharmacotherapy for
Parkinson's disease (Kapur and Remington, 2001; Jenner, 2005;
Seeman, 2013; Pinna, 2014). Although the location of the target re-
ceptors of these drugs in the brain is well investigated, how and where
these drugs act at the cellular and molecular level remain largely un-
known. This has been the major obstacle for developing new ther-
apeutic drugs. Here, we found that the D2R antagonist activated PKA
and induced Rap1gap phosphorylation in D2R-MSNs (Fig. 4b and c).
The effects of D2R antagonists can be examined at cellular and mole-
cular levels through monitoring Rap1gap phosphorylation not only by
immunoblotting but also by immunohistochemistry. Furthermore, the
effects of A2AR antagonists could be evaluated in combination with
D2R antagonists (Fig. 5). We propose that examining the mode of ac-
tions of the existing drugs at cellular and molecular levels using these
approaches is important and may also be useful in the development of
new drugs.

5. Conclusions

The current study demonstrated cell-type specific PKA activation to
regulate Rap1gap phosphorylation. These findings indicate that PKA/
Rap1 pathway contributes not only in D1R-MSNs but also in D2R-MSNs.
Consequently, we propose a model that explains how the active state
shifts between D1R-MSNs and D2R-MSNs (Fig. 7). Basal dopamine
concentration cannot activate D1R but activate D2R to suppress D2R-
MSN activity. High dopamine concentration can activate D1R to acti-
vate D1R-MSN, and activate D2R to suppress D2R-MSN activity. Low
dopamine concentration can activate neither D1R nor D2R so that D2R-
MSN becomes active without D2R's suppression and because basal
adenosine tonically activates A2AR. In conclusion, with the cooperation
of adenosine, dopamine concentration plays a role of switch in con-
trolling active state shift between D1R-MSNs and D2R-MSNs in the
neural circuit.
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Fig. 7. Working model: Switch between the D1R-MSN and D2R-MSN activation states occurs efficiently depending on the concentration of dopamine. (a)
When dopamine concentration is low, D2R-MSNs show high excitability that facilitates glutamate stimulation and are activated, consequently leading to aversive
behavior. In pathophysiological condition, the dopamine hypofunctional state may be associated with Parkinson’ disease, attention deficit hyperactivity disorder and
restless legs syndrome. (b) When dopamine concentration is in basal condition, both D1R-MSNs and D2R-MSNs show low excitability and are inactive. (c) When
dopamine concentration is high, D1R-MSNs show high excitability that facilitates glutamate stimulation and are activated, consequently leading to rewarding
behavior. In pathophysiological condition, the dopamine hyperfunctional state may be associated with schizophrenia and drug addiction.
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