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I de Fı́sica Teórica y Computacional, Universidad de Granada, Granada, Spain

* simone.pigolotti@oist.jp

Abstract

In ecology, species can mitigate their extinction risks in uncertain environments by diversify-

ing individual phenotypes. This observation is quantified by the theory of bet-hedging, which

provides a reason for the degree of phenotypic diversity observed even in clonal populations.

Bet-hedging in well-mixed populations is rather well understood. However, many species

underwent range expansions during their evolutionary history, and the importance of pheno-

typic diversity in such scenarios still needs to be understood. In this paper, we develop a the-

ory of bet-hedging for populations colonizing new, unknown environments that fluctuate

either in space or time. In this case, we find that bet-hedging is a more favorable strategy

than in well-mixed populations. For slow rates of variation, temporal and spatial fluctuations

lead to different outcomes. In spatially fluctuating environments, bet-hedging is favored com-

pared to temporally fluctuating environments. In the limit of frequent environmental variation,

no opportunity for bet-hedging exists, regardless of the nature of the environmental fluctua-

tions. For the same model, bet-hedging is never an advantageous strategy in the well-mixed

case, supporting the view that range expansions strongly promote diversification. These

conclusions are robust against stochasticity induced by finite population sizes. Our findings

shed light on the importance of phenotypic heterogeneity in range expansions, paving the

way to novel approaches to understand how biodiversity emerges and is maintained.

Author summary

Ecological populations are often exposed to unpredictable and variable environmental

conditions. A number of strategies have evolved to cope with such uncertainty. One of

them is stochastic phenotypic switching, by which some individuals in the community are

enabled to tackle adverse conditions, even at the price of reducing overall growth in the

short term. In this paper, we study the effectiveness of these “bet-hedging” strategies for a

population in the process of colonizing new territory. We show that bet-hedging is more

advantageous when the environment varies spatially rather than temporally, and infre-

quently rather than frequently.
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Introduction

The dynamics and evolutionary history of many biological species, from bacteria to humans,

are characterized by invasions and expansions into new territory. The effectiveness of such

expansions is crucial in determining the ecological range and therefore the success of a species.

A large body of observational [1, 2] and experimental [3–6] literature indicates that evolution

and selection of species undergoing range expansions can be dramatically different from that

of other species resident in a fixed habitat. Theoretical studies of range expansions based on

the Fisher-Kolmogorov equation [7, 8] or variants [9–11] also support this idea. Adaptive dis-

persal strategies [2] and small population sizes at the edges of expanding fronts [12, 13] are

among the main reasons for such difference.

Range expansions often occur in non-homogeneous and fluctuating environments. Under

such conditions, it is possible to mathematically predict the expansion velocity of a community

of phenotypically identical individuals [14–19]. However, diversity among individuals is

expected to play an important positive role when populations expand in fluctuating environ-

ments. For instance, diverse behavioral strategies help animal populations to overcome differ-

ent invasion stages and conditions [20–23]. Analyses of phenotypic diversity in motile cells

suggest that it also may lead to a selective advantage at a population level [24–26]. Although

several studies have tackled the problem of how individual variability affects population expan-

sion [6, 9, 10, 27–31], systematic and predictive theory is still lacking [23].

Phenotypic diversification is often interpreted as a bet-hedging strategy, spreading the risk

of uncertain environmental conditions across different phenotypes adapted to different envi-

ronments [32–41]. Since its formalization in the context of information theory and portfolio

diversification [42, 43], a large number of works have explored the applicability of bet-hedging

in evolutionary game theory [44–47] and ecology [48–52]. Few studies have explored the bene-

fits of bet-hedging in spatially structured ecosystems [53–55].

In this paper, we study how bet-hedging strategies can aid populations in invading new ter-

ritories characterized by fluctuating environments. In particular, we analyze the effect of spa-

tial expansion, different types of environmental heterogeneity, and demographic stochasticity

on development of bet-hedging strategies for a population front evolving according to a Fisher

wave.

By employing mathematical as well as extensive computational analyses, we find that the

advantage of bet-hedging in range expansions depends on the rate of environmental variation.

In particular, bet-hedging is more convenient for infrequently varying environments, whereas

its advantages vanish for frequent environmental variation. For the same model, bet-hedging

is never an advantageous strategy in the well-mixed case, supporting the view that range

expansions strongly promote diversification. We further find that spatial environmental varia-

tions provide more opportunities for bet-hedging than temporal fluctuations. Finally, we show

that our conclusions still hold when considering stochastic effects on the front propagation

induced by a finite population size. The paper is organized as follows. We introduce a general

population model and an example with two available phenotypes and two environmental

states. We present an extensive study of this example. We then generalize the main conclusions

obtained for the example for a case with an arbitrary number of environmental states, and

then with also an arbitrary number of strategies. We conclude with a discussion and future

perspectives.

Models

We consider a population consisting of individuals that can assume N alternative phenotypes.

The population as a whole adopts a phenotypic strategy, that is identified by the fractions αi,
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i = 1. . .N of the population assuming each phenotype i with ∑i αi = 1 and 0� αi� 1 8i (Fig

1A). As customary in game theory, we say that a strategy is a “pure strategy” if αi = δik for some

phenotype k, and a “mixed strategy” otherwise. We assume that the αi’s remain constant in

time within the population.

The environment can be found in one of M different states, which can randomly alternate

either in time or in space. We call pi the probability of encountering environment i. We further

define the growth rate sij� 0 of phenotype j in environment i (Fig 1A). When the population

size is sufficiently large, so that demographic stochasticity can be neglected, the population-

averaged growth rate given the state i = i(x, t) of the environment at position x and time t is

si ¼
X

j

ajsij: ð1Þ

Since Eq (1) is linear in the αj’s, the population-averaged growth rate in a given environ-

ment is always maximized by the pure strategy with the highest growth rate. However, in the

presence of uncertainty about the environment, the population might choose other strategies.

One possibility is to select a different pure strategy, less risky than the optimal one. This case is

often termed “conservative bet-hedging” in the ecological literature [41]. Another option is to

adopt a mixed strategy, with different phenotypes more adapted to different environments.

This case is termed “diversifying bet-hedging” in the literature [41, 56]. Since our interest is in

diversification, the term “bet-hedging” will refer herein to diversifying bet-hedging.

Before presenting our results in full generality, weconsider a simple, yet ecologically rele-

vant instance of the model with only two phenotypes: “safe” and “risky” and two environmen-

tal states: “adverse” (a) and “favorable” (b). The safe phenotype is characterized by a growth

rate ss both in the adverse and favorable environments. The growth rate of the risky phenotype

is sa in environment (a) and sb in environment (b) (Fig 1B) [57]. The two environments occur

with the same probability, pa = pb = 1/2. A fraction of individuals α adopts the risky phenotype

and the complementary fraction (1 − α) adopts the safe phenotype (Fig 1B). For this model,

the population-averaged growth rate reads

sðx; tÞ ¼
sa ¼ ð1 � aÞss þ asa; in env: a

sb ¼ ð1 � aÞss þ asb: in env: b

(

ð2Þ

Note that, with a slight abuse of notation, we use equivalently σi or σ(x, t) to denote the pop-

ulation-averaged growth rate in the environment i(x, t). For pure strategies, α = 0 or α = 1, the

population-averaged growth rate σ reduces to the growth rate of the safe or risky phenotype,

respectively.

Results

Two-phenotype, two-environment model

We seek to understand those conditions under which bet-hedging is advantageous for the pop-

ulation. To this end, we shall compare three situations: i) well-mixed populations, ii) range

expansions in environments that fluctuate temporally, but that are homogeneous in space (Fig

1C), and iii) range expansions in spatially fluctuating environments that are homogeneous in

time (Fig 1D).

Well-mixed case. We start by analyzing the well-mixed case, where the spatial coordinates

of individuals can be ignored. The total population density f(t) evolves according to the
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Fig 1. Population model. A) General model: individuals can adopt N different phenotypes with probabilities αj (j =

1, � � �, N) and experience M different environmental conditions with probabilities pi (i = 1, � � �, M). The fitness of an

individual with phenotype j in an environment i is given by sij. B) Two-phenotypes model: Individuals can adopt either

a “risky” or a “safe” phenotype with probabilities α, and 1 − α respectively. The safe phenotype is characterized by an

environment-independent growth rate ss. The growth rate of the risky phenotype is sa or sb, depending on whether the

current environment is “adverse” (a) or “favorable” (b). C) and D) Sketch of range expansion in a population having

0� α� 1 for temporally varying C) and spatially varying D) environments, respectively.

https://doi.org/10.1371/journal.pcbi.1006529.g001
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equation

d
dt

f ðtÞ ¼ sðtÞf ðtÞ: ð3Þ

In writing Eq (3), we used the assumption that the fraction α of the population adopting the

risky phenotype remains constant in time (see [58, 59] for cases in which this assumption is

relaxed). Eq (3) can be readily integrated, obtaining

ln
f ðtÞ
f ð0Þ

� �

¼

Z t

0

dt0 sðt0Þ� !t�1 thsii ð4Þ

where hσii = ∑i pi σi denotes an average over the environmental states. For Eq (4) to hold, we

do not need to make strong assumptions about the statistics of the environmental states, other

than it should be stationary, ergodic, and with a finite correlation time.

The optimal strategy α� is obtained by maximizing the right-hand side of Eq (4) respect to

the strategy α. Since hσii is a linear function of α, its maximum is always reached at the

extremes of the interval (α 2 [0, 1]). In particular, defining the normalized growth rates

~sa � sa=ss and ~sb � sb=ss, we find that the optimal strategy is α� = 1 when ~sb > 2 � ~sa and

α� = 0 otherwise. This means that no bet-hedging strategy is possible in this model in the well-

mixed case [57].

This simple result illustrates an aspect of bet-hedging that is sometimes under-appreciated.

In well-mixed systems, bet-hedging optimal strategies appear when the model includes at least

one of the following ingredients: a) discrete generations, as in the seminal work of Kelly [42],

b) finite switching rates among strategies [33, 59], or c) a delta-correlated environment [53].

Any of these ingredients can lead to nonlinearities in the average exponential growth rate,

therefore opening the way for a non-trivial optimal strategy.

Note that, in this model, the frequency of environmental change does not play a role, as far

as it is finite [53]. The physical reason can be understood from the right-hand side of Eq (4):

the optimal strategy depends on the frequency of different environmental states but not on the

switching rates. This feature is also shared by other well-mixed models that do allow for opti-

mal bet-hedging strategies, such as the classic model by Kelly [42]. We shall see in the follow-

ing that, on the contrary, the rate of environmental change plays an important role for

expanding populations.

Range expansion in fluctuating environments. We now consider a population expand-

ing into an unoccupied, one-dimensional space under the influence of a stochastically chang-

ing environment. Its population dynamics are described by the Fisher equation [7, 60]:

@t f ðx; tÞ ¼ Dr2f ðx; tÞ þ sðx; tÞf ðx; tÞð1 � f ðx; tÞÞ; ð5Þ

where f(x, t) is the population density at spatial coordinate x and time t, and D is the diffusion

constant, which characterizes the motility of individuals. For a constant growth rate σ, the

stationary solution of Eq (5) is characterized by a front advancing in space with velocity

vF ¼ 2
ffiffiffiffiffiffiffi
Ds
p

. Instead, we consider a fluctuating case in which the growth rate σ(x, t) depends

on the population strategy α and on environmental conditions according to Eq (2). In such

case, we define an asymptotic mean velocity of the front as

vM ¼ lim
t!1

1

t

Z 1

0

f ðx; tÞ dx: ð6Þ

In what follows, we take vM as a proxy of the long-term population fitness and maximize it

with respect to α to determine the optimal strategy.

Bet-hedging strategies in expanding populations
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Range expansion in temporally varying environments. We first consider the case in

which environmental conditions change randomly with time, but are homogeneous across

space, σ(x, t) = σ(t) (see Fig 1C). Switching rates between adverse and favorable environments

are ka! b = kb! a = k. We first estimate the asymptotic mean velocity defined in Eq (6) in the

limiting cases of k! 0 and k!1.

When the environment changes very infrequently, k! 0, the population front has the

time to relax to the asymptotic shape characterized by its corresponding Fisher velocity,

va ¼ 2
ffiffiffiffiffiffiffiffi
Dsa
p

or vb ¼ 2
ffiffiffiffiffiffiffiffi
Dsb
p

depending on the environment [7, 61]. Thus, the asymptotic

mean velocity can be estimated as vM = (va + vb)/2. Maximizing vM with respect to α, we find

that in this case, a bet-hedging optimal strategy exists under the conditions (Fig 2A):

~sb > 2 � ~sa;

~sb < 1=~sa:
ð7Þ

In the opposite limiting case of a rapidly fluctuating environment, k!1, the population

effectively experiences the average of the two growth rates, so that the velocity can be estimated

as vM � 2
ffiffiffiffiffiffiffiffiffiffi
Dhsi

p
, where h. . .i denotes an average over the environmental states. In this case,

the optimal strategy α� is achieved by maximizing the average growth rate hσi with respect to

α. Since hσi is linear in α, the maximum always lies at the extremes of the interval [0, 1]. In par-

ticular, we find α� = 1 when ~sb > 2 � ~sa and α� = 0 otherwise, as in the well-mixed case. This

implies that no bet-hedging regime exists in this limit, similarly to the well-mixed case (Fig

2B).

To explore the intermediate regimes of finite k, it is necessary to resort to numerical simula-

tions of Eq (5). For a set of parameters such that the optimal strategy is α� = 1 for k! 0, the

optimal strategy remains α� = 1 for all values of k, see Fig 3A. Instead, in a case where the opti-

mal solution is in the bet-hedging region for k! 0, the optimal strategy α� increases with the

switching rate, so that for large k the optimal strategy is outside the bet-hedging region, α� = 1,

see Fig 3B. These results support our analytical estimates of limiting values and suggest that

the asymptotic mean velocity is a monotonically increasing function of the switching rate k in

Fig 2. Bet-hedging region in temporally varying environments. Optimal strategy α� as a function of growth rates

~sa � sa=ss and ~sb � sb=ss for range expansions in temporally varying environments under the limits of environmental

change rate (A) k! 0, see Eq (7), and (B) k!1. In all panels, lines delimit the bet-hedging region 0� α� � 1. Two

dots in the panels mark parameter values chosen for the analysis of Figs 3, 4 and 5.

https://doi.org/10.1371/journal.pcbi.1006529.g002
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this case. Note that, in the example of Fig 3B, the velocity corresponding to the optimal bet-

hedging strategy is only a few percent larger than the velocity for α = 0. For other parameters

values, we found velocities up to 15% larger than for pure strategies.

Range expansion in spatially varying environments. We now consider the case in which

environmental conditions are constant in time, but depend on the spatial coordinate x. The

dynamics are described by the Fisher Eq (5) with two types of environment randomly alternat-

ing in space, σ(x, t) = σ(x). We call kS the spatial rate of environmental switch, so that the prob-

ability of encountering an environmental shift within an infinitesimal spatial interval dx is

equal to kS dx. The switching rates from environment a to b and vice-versa are both equal to

kS. As above, we first analyze the two limits kS! 0 and kS!1.

In the limit kS! 0, the population front traverses large regions of space characterized by a

constant environment, either a or b, thus being able to reach the corresponding Fisher velocity,

va or vb, respectively. The mean traversed lengths Δxa and Δxb are equal for the two environ-

ments. On the other hand, the mean times spent in each of them, ta and tb, are different, and

satisfy the relation

ta
tb
¼
Dxa=va
Dxb=vb

¼
vb
va
: ð8Þ

Therefore, in this case, the asymptotic mean velocity is given by the harmonic mean of the

velocities in the two environments

vMðkS ! 0Þ ¼
tava þ tbvb
ta þ tb

¼
2vavb
va þ vb

: ð9Þ

Here, for kS! 0 the bet-hedging region is broader with respect to the temporally fluctuat-

ing environment for k! 0, see Fig 4A.

At the opposite limit of large kS, the environment is characterized by frequent spatial varia-

tions. In this case, the population front occupies multiple a and b sectors with an effective

Fig 3. The asymptotic mean velocity increases with k in temporally varying environments. (A) Velocities obtained

by numerical integration of Eq 5 for sa = 0.75, ss = 1, sb = 3 (yellow dot of Fig 2) for different switching rates k shown in

the figure legend. (B) The same for sa = 0.25, ss = 1, sb = 2 (blue dot of Fig 2). In (A), the optimal strategy is α = 1 for all

k values. In (B), bet-hedging optimal strategies appear depending on the value of k. The continuous red and yellow

lines (both in A and B) illustrate analytical predictions under the two limits vM(k! 0) = (va(α) + vb(α))/2 and

vMðk!1Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DhsðaÞi

p
, respectively.

https://doi.org/10.1371/journal.pcbi.1006529.g003
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growth rate hσi. As in the time-varying case, the asymptotic mean velocity in this limit is

vMðkS !1Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
Dhsi

p
, see also [15, 16]. The corresponding optimal strategy is the same as

in Fig 2C, so that there is no bet-hedging regime.

We numerically solved Eq (5) for intermediate values of kS and obtained the mean asymp-

totic velocities as a function of α, see Fig 4B. Results support theoretical predictions in the lim-

iting cases kS! 0 and kS!1. In this case, we observe a non-monotonic behavior of vM as a

function of kS, so that the maximum mean velocity is attained at an intermediate switching

rate. An analytical explanation of this non-trivial effect goes beyond the scope of this work.

Effect of finite population size. The deterministic Fisher Eq (5) is rigorously valid only in

the limit of infinite local population sizes. We now explore the robustness of our results when

considering stochasticity induced by the finite size of populations, i.e. “demographic noise”.

We focus on the case of a front propagating in a temporally varying environment. To study

finite population size, we solve numerically a stochastic counterpart of the Fisher equation

_f ðx; tÞ ¼ Dr2f þ sðtÞf ð1 � f Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N
f ð1 � f Þ

r

xðx; tÞ; ð10Þ

see e.g. [62]. In Eq (10), ξ(x, t) is Gaussian white noise with hξ(x, t)i = 0, hξ(x, t)ξ(x0, t0)i = δ(x −
x0)δ(t − t0). The parameter N represents the number of individuals per unit length correspond-

ing to f(x, t) = 1. For large population sizes, N� 1, Eq (10) reduces to Eq (5). Numerical inte-

gration of Eq (10) requires some care due to the fact that both noise and the deterministic

terms go to zero as the absorbing states f(x, t) = 0 and f(x, t) = 1 are approached [63–65]. A

detailed description of our integration scheme is presented in the Supporting S1 Appendix.

Fig 4. The bet-hedging region is expanded for range expansions in spatially varying environments compared to

temporally varying environments. A) Optimal strategy α� as a function of the parameters for spatially varying

environments in the limit ks! 0, Eq (9). White lines mark the limits of the bet-hedging region. The limit for

which the strategy α = 1 is optimal in temporally fluctuating environments for k! 0 is also shown (gray line)

for comparison. B) The velocity obtained by numerical integration of Eq (5) for sa = 0.25, ss = 1, sb = 2

(corresponding to the blue dot of panel A) and different values of kS shown in the figure legend. Light and dark gray

lines correspond to the analytical limits for temporally varying environments, vM(k! 0) = (va(α) + vb(α))/2, and

vMðk!1Þ ¼ vMðkS !1Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DhsðaÞi

p
, respectively. The red curve is the analytical solution for a spatially

fluctuating environment with kS! 0, see Eq (9). Note that in this case, the asymptotic mean velocity does not

increase monotonically with kS but is maximal at kS� 0.1.

https://doi.org/10.1371/journal.pcbi.1006529.g004
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For a Fisher wave propagating in a homogeneous environment, demographic noise leads to

a reduced front velocity v with respect to the deterministic case [60, 64, 66, 67]

ðv � vFÞ � �
C

ln 2ðNÞ
ð11Þ

where C is a constant, N is the maximum population size per unit length, and vF ¼ 2
ffiffiffiffiffiffiffi
Ds
p

is

the Fisher velocity in the absence of demographic noise. Eq (11) is valid in the weak noise

limit; for the corresponding strong noise expression, see [68]. Asymptotic mean velocities for

stochastic waves in temporally varying environments are shown in Fig 5. Also in this case,

small populations, subject to relatively strong demographic noise, propagate more slowly than

large populations. In particular, curves at different values of N can be approximately rescaled

using Eq (11), assuming that C does not depend on α (insets of Fig 5). These results imply that

the optimal strategy α� is robust with respect to demographic noise, at least for moderately to

relatively large values of N. The same scaling holds for spatially varying environments, but

with mild deviations that seem to expand the bet-hedging region even further, compared with

the infinite population size limit (see Supporting S2 Appendix). Finally, we remark that the

effect of finite population size on well-mixed bet-hedging populations has been studied in the

literature [33, 57–59, 69, 70].

Two-phenotype, multiple-environment model

In this section, we generalize our results to a model with two strategies, but an arbitrary num-

ber i = 1. . .N of environmental states. Let us start with the temporally varying case. Following

the usual logic, the mean velocity for k! 0 reads

vm ¼ 2
ffiffiffiffi
D
p
hsðaÞi ¼ 2

ffiffiffiffi
D
p X

i

pi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asi1 þ ð1 � aÞsi2

p

ð12Þ

where si1 and si2 are the growth rates of the two strategies in environment i. The first derivative

Fig 5. The optimal strategy is robust with respect to noise induced by finite population size in temporally varying

environments. (A) Asymptotic mean velocities obtained by numerical integration of the stochastic Fisher Eq (10) for

~sa ¼ 0:75, ss = 0.01, ~sb ¼ 3 (yellow dot of Fig 2) and different population sizes. (B) The same for ~sa ¼ 0:25, ss = 1, ~sb ¼
2 (blue dot of Fig 2). In both panels, the temporal switching rate of the environment is k = 0.001. Green dots

corresponds to the results of Fig 3A and 3B for k = 0.001. Insets show a collapse of the curves according to Eq (11),

with a fitted value of C = 3.

https://doi.org/10.1371/journal.pcbi.1006529.g005
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of the mean velocity respect to α reads

@vm
@a
¼

ffiffiffiffi
D
p X

i
pi

si1 � si2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asi1 þ ð1 � aÞsi2

p ð13Þ

Since v(α) is a concave function, the condition for having a bet-hedging strategy, i.e. a maxi-

mum in the interior of the interval (0, 1) is

@vm
@a
j
a¼0

¼
ffiffiffiffi
D
p X

i

pi
si1 � si2
ffiffiffiffiffisi2
p > 0 and

@vm
@a
j
a¼1

¼
ffiffiffiffi
D
p X

i

pi
si1 � si2
ffiffiffiffiffisi1
p < 0:

ð14Þ

These conditions reduce to the Eq (7) in the limiting case of the two-environment model.

With a similar strategy we can compute the limits of the bet-hedging region also for the spa-

tially varying case. In this case we have

vM ¼
2
ffiffiffiffi
D
p

P
i

pi
asi1þð1� aÞsi2

ð15Þ

and therefore

@vM
@a
¼

2
ffiffiffiffi
D
p

P
i

pi
asi1þð1� aÞsi2

� �2

X

j

pjðsj1 � sj2Þ
ðasj1 þ ð1 � aÞsj2Þ

2
: ð16Þ

To determine the bet-hedging region we follow the same logic as in the temporally varying

case, yielding

@vM
@a
j
a¼0

¼
2
ffiffiffiffi
D
p

P
i
pi
si2

� �2

X

j

pjðsj1 � sj2Þ
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@vM
@a
j
a¼1

¼
2
ffiffiffiffi
D
p

P
i
pi
si1

� �2

X

j

pjðsj1 � sj2Þ
s2
j1

:

ð17Þ

so that the condition in this case reads

X

j

pjðsj1 � sj2Þ
s2
j2

> 0 and
X

j

pjðsj1 � sj2Þ
s2
j1

< 0: ð18Þ

Even in this case, the bet-hedging region is broader in the spatially-fluctuating than in the

temporally-fluctuating case. This fact is proven in full generality in the next subsection.

General bet-hedging model

In this Section, we demonstrate that our main conclusions hold in full generality for arbitrary

numbers of phenotypes N and environmental states M (see Section Model). In particular, for a

temporally fluctuating environment in the limit of very slow switching rates, the bet-hedging

regime occupies a reduced region of parameter space compared to temporally constant

environments fluctuating slowly in space. Also in this case, we find that for frequent environ-

mental change, the propagation velocity tends to vM � 2
ffiffiffiffiffiffiffiffiffiffi
Dhsi

p
, regardless of whether the

environmental fluctuations depend on time or space. Therefore, the optimal strategy
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maximizes the linear function of the αis hσi and is therefore a pure strategy as discussed after

Eq (1).

We consider a range expansion where the environment fluctuates in time and the stochastic

switching rates among the M environmental states are small. Following the same line of

thought of the two-strategy, two-environment model, the optimal strategy maximizes

sT ¼
vMðk! 0Þ

2
ffiffiffiffi
D
p ¼

X

i
pi
ffiffiffiffi
si
p

ð19Þ

where σi = ∑j sij αj. For spatially varying environments, the optimal strategy maximizes the har-

monic mean

sS ¼
vFðkS ! 0Þ

2
ffiffiffiffi
D
p ¼

1

P
ipi

1
ffiffiffiffi
si
p

:
ð20Þ

Both for Eqs (19) and (20), maximization has to be performed with the constraint ∑j αj = 1

and 0� αj� 1 8j. We recall that the bet-hedging regime is the region of parameter space

where the optimal solution is a mixture of all phenotypes, αi> 0 8i. Here we show that if, for a

given choice of the sij’s and pi’s, a population advancing in a temporally varying environment

is in a bet-hedging regime, then the same holds for spatially varying environments. For the

demonstration, we borrow a mathematical tool from evolutionary game theory [71]. We intro-

duce the gradients

FT
l ¼

@sT

@al
¼

sl
2
ffiffiffi
s
p

� �

FS
l ¼

@sS

@al
¼ ðsSÞ

2 sl
2s3=2

D E ð21Þ

where hxi = ∑i pi xi is the average over environments. We now associate replicator equations to

Eqs (19) and (20):

d
dt
al ¼ alðF

T
l �

�FTÞ ¼ al
sl � s
2
ffiffiffi
s
p

� �

ð22Þ

d
dt
al ¼ alðF

S
l �

�FS
l Þ ¼ alðs

SÞ
2 sl � s

2s3=2

D E
: ð23Þ

The system is in a bet-hedging regime when the replicator equations admit a stable fixed

point in the interior of the unit simplex, 0< αi< 1. Instead of computing the fixed point

explicitly, we check whether each phenotype l has a positive growth rate for αl� 1. Brouwer’s

fixed point theorem ensures that, under this condition, there must be a fixed point in the inte-

rior (see [71], chapter 13). For our aims, it is therefore sufficient to prove that, for small αl,
if ðFT

l �
�FTÞ is positive, then ðFS

l �
�FSÞmust be positive as well. Note that for αl� 1, the aver-

age σ = ∑j sij αj does not depend on αl, and therefore, σ and sl are uncorrelated random vari-

ables respect to the average over the environment. Since
ffiffiffi
s
p

> 0, this means that the sign of

ðFT
l �

�FTÞ is the same than the quantity

1

h
ffiffiffi
s
p
i
hsli

1
ffiffiffi
s
p

� �

� 1: ð24Þ
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Following the same logic, the sign of ðFS
l �

�FSÞ is the same than

hsli
1

s3=2

� �

�
1
ffiffiffi
s
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� �

¼
1
ffiffiffi
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s
p
i
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� �

: ð25Þ

This means that, in the general case, the bet-hedging region is defined by the conditions

temporally varying case :
1

h
ffiffiffi
s
p
i
hsli

1
ffiffiffi
s
p

� �

� 1 > 0 8l

spatially varying case :
hslih1=s3=2i

h1=
ffiffiffi
s
p
i
� 1 > 0 8l:

ð26Þ

We now turn to the demonstration that the bet-hedging region in the spatially varying case

is always broader than in the temporally varying case. Since hsli> 0, we need to demonstrate

that the following inequality always holds

h1=s3=2i

h1=
ffiffiffi
s
p
i
� h

1
ffiffiffi
s
p i

1

h
ffiffiffi
s
p
i
: ð27Þ

This can be proven from the chain of inequalities

h1=s3=2i

h1=
ffiffiffi
s
p
i
�

1

s
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�
1
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p

� �
1
ffiffiffi
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� �

�
1
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s
p

� �
1

h
ffiffiffi
s
p
i
: ð28Þ

In Eq (28), the second and third inequalities are consequences of Jensen’s inequality, since

both x2 and 1/x are convex functions. For the first inequality in Eq (28), since s> 0, we can use

the result hxii � hxjii/j proved for i> j in [72]. Combining this result for (i = 3, j = 2) and

(i = 2, j = 1), we obtain hx3i � hx2ihxi. Taking hxi ¼ h1=
ffiffiffi
s
p
i we finally prove Eq (28). There-

fore, in the limit of small switching rates of the environment, the bet-hedging region is wider

in the spatially varying case than in the temporally varying case.

In the opposite limit of high rates of environmental switch, the function to be optimized

is linear, and the optimal strategy is a pure strategy, i.e. the bet-hedging region shrinks to a set

of measure zero. In this case, the particular phenotype l adopted by the whole population is

that maximizing ∑i pi sil. This conclusion holds both for temporally and spatially varying

environments.

Discussion

Understanding the precise mechanisms of population expansions is of utmost importance,

not only for understanding species diversity, but also to cope with invasive species in new hab-

itats [20–23], bacterial infections [24–26, 73], and cell migration, such as those occurring dur-

ing tissue renewal or cancer metastasis [5]. Phenotypic diversity is a convenient strategy for

the success of population expansions in a broad range of contexts [20–26]. Although precise

experimental measures are not easy to obtain, a recent study shows that populations with

increased variability in individual risk-taking can colonize wider ranges of territories [74].

In this work, we proposed a general mathematical and computational framework to analyze

such scenarios. In particular, we introduced a population model with diverse phenotypes that

perform differently depending on the type of environment. We focused on the “optimal”

degree of diversity leading to the fastest average population expansion in an environment fluc-

tuating either in space or in time. We found that, contrarily to the well-mixed case, bet-hedg-

ing can be convenient in expanding populations. This result complements the study in [53] for

a fixed habitat and supports the view that diversification is of broad importance for spatially-
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structured populations. For environments varying slowly in time, the expansion is relatively

slow, and diverse communities can be optimal depending on the parameters. On the contrary,

for fast environmental changes, the optimal population always adopts a unique strategy.

A remarkable outcome of our analysis is that spatial fluctuations create more opportunities

for bet-hedging than temporal fluctuations, in that the region of parameter space where the

optimal population is diverse, is always larger in the former case. One intuitive explanation is

that in the case of spatial fluctuations, the population spends less time traversing favorable

patches than adverse ones. This means that the beneficial effect of favorable patches is reduced

with respect to the case of temporal fluctuations. Therefore, a pure risky strategy is less efficient

in the case of spatial variability and can be more easily outcompeted by a diversified bet-hedg-

ing strategy.

The framework presented here can be extended to accommodate other scenarios. We have

assumed that the fraction of individuals adopting each phenotype is fixed by the phenotypic

switching rates. To understand the evolution of bet-hedging, it could be interesting to study

scenarios in which the phenotypic switching rates are slower, so that phenotypes can be

selected, and/or are themselves subject to evolution and selection [57, 70]. Another potentially

relevant extension would be to consider two-dimensional habitats. Although the classic theory

for Fisher waves [7, 8] is unaffected in higher dimensions, in the presence of spatial heteroge-

neity the front shape can become anisotropic, potentially affecting the results. Similarly, it

would be interesting to analyze the combined effect of spatial and temporal variability. We

also limited ourselves to the case where the different environments affect individual growth

rates, whereas in general, one could also expect them to have an effect on motility [14, 15, 75–

77], opening the way for different forms of bet-hedging. Finally, the present study was limited

to pulled waves. It would be interesting to study the effect of bet-hedging on pushed waves, for

example to describe population expansion in the presence of an Allee effect [78, 79].

It would be also interesting to experimentally test our results. Experiments of expanding

bacterial colonies in non-homogeneous environments have already been performed and shed

light, for example, on the evolution of antibiotic resistance in spatially-structured populations

[80]. To perform experiments within the limits of our theory, a challenge can be to maintain

the environmental variability sufficiently low to avoid exposing the population to an excessive

evolutionary pressure. Similar problems appear, for example, in studies of range expansion of

mutualistic bacteria [81]. An extension of the theory including both phenotypic and genetic

diversity could account for these scenarios.

In summary, we have introduced a model to understand conditions favoring diversification

of an expanding population. Our work provides a bridge between the theory of bet-hedging

and that of ecological range expansion described by reaction-diffusion equations. The results

of the model highlight the relation between population diversity and fluctuations of the envi-

ronment encountered during range expansion. The flexibility and generality of our framework

make it a useful starting point for applications to a wide range of ecological scenarios.
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in detail the methods applied for the integration of the wave equations of the two-pheno-
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