PHYSICAL REVIEW A 98, 063612 (2018)
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We investigate the ground-state properties of ultracold atoms trapped in a two-leg ladder potential in the
presence of an artificial magnetic field in a staggered configuration. We focus on the strongly interacting regime
and use the Landau theory of phase transitions and a mean field Gutzwiller variational method to identify the
stable superfluid phases and their boundaries with the Mott-insulator regime as a function of magnetic flux. In
addition, we calculate the local and chiral currents of these superfluid phases, which show a staggered vortex-
antivortex configuration. The analytical results are confirmed by numerical simulations using a cluster mean-

field-theory approach.
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I. INTRODUCTION

Ultracold bosonic atoms in optical lattices offer a unique
platform to study models for periodic many-body physics
in a clean and highly controllable setting. A wide range of
flexible geometries to trap neutral atoms can be created by
overlapping and interfering laser beams and interactions can
be controlled via external magnetic fields or by choosing
different atomic species. While the field was initially enthused
by the prediction and realization of the paradigmatic super-
fluid to Mott-insulator transition in square lattices [1,2], many
different situations have been investigated since then [3,4].

Recent progress in creating artificial gauge fields for ultra-
cold atoms in discrete [S] as well as continuum systems [6]
has opened up many avenues for the study of quantum phase
transitions in the presence of magnetic fields. These fields are
called artificial, as due to the charge neutrality of the atoms no
Lorentz force exists and therefore real magnetic fields do not
directly affect the center-of-mass variable.

The simplest way to mimic the effects of magnetic fields
on charged systems in neutral atoms is by rotation [7], which
probes superfluidity in the same way magnetic fields probe
superconductivity. Furthermore, very high synthetic magnetic
fields have been shown to be realizable using atoms in optical
lattices, where the atomic motion and the internal degrees
of freedom can be coupled by laser-assisted tunneling [8].
This has led to the successful implementation of uniform as
well as staggered flux distributions in the strong field regime
[8,9] and has enabled the realization of two-dimensional (2D)
topological states with finite Chern numbers [10,11].

Theoretically, the presence of artificial magnetic fields can
be included into the Bose-Hubbard model by using com-
plex tunnel couplings [12]. The main effect of these can
be observed even in the absence of interactions and the
single-particle spectrum for bosons in a periodic potential in
the presence of a strong magnetic field forms a self-similar
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structure known as the Hofstadter butterfly [13]. As the
effective magnetic fields created in optical lattices can be
much larger than what is possible in solid-state systems, these
techniques bring the study of a wide range of Hamiltonians
into reach that are inaccessible in condensed-matter physics.

Besides the realization of magnetic fields in extended
2D lattice systems, the effects of artificial magnetic fields
were also studied in bosonic ladder geometries, where chiral
currents and vortex and Meissner phases were predicted and
observed [14-24,26]. While ladder systems can be seen as
the smallest possible lattice structure, they possess additional
and unique properties, for example, due to the absence of the
requirement that the magnetic fields have to have rational val-
ues [17-20]. Furthermore, even though the above-mentioned
Meissner and vortex phases can already be observed for non-
interacting systems, interacting bosonic ladder systems with
uniform flux also support various spontaneously symmetry-
broken phases and chiral Mott insulator states [25].

Bosonic systems in the presence of uniform fluxes in
quasi-one-dimensional (quasi-1D) ladder geometries and
two-dimensional geometries have been studied in detail
[14-24,26] both theoretically and experimentally. However,
the existing work on bosons in quasi-one dimension subjected
to staggered artificial magnetic fluxes is much less extensive.
In particular, only recently studies by Dhar et al. [25] have
revealed the connection between spontaneously broken sym-
metry phases and chiral Mott insulator phases in such systems
at the fully frustrated points when the magnetic flux takes
the values o« = £m. The technical difficulty to experimentally
engineer magnetic fields alternating on the spatial scale of
optical lattices has now been overcome [8,21-23], which
fully justifies the study of this realisable model for the full
range of staggered magnetic flux strength for the quasi-1D
system. Similar to the case of uniform fluxes, staggered fluxes
[27-30] can drive quantum phase transitions in the two-leg
Bose Hubbard ladder systems and can enlarge the range
of physical effects that can be investigated. Here we study
the example of a single-component BEC trapped in such a
geometry in the presence of a periodically flipped artificial
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FIG. 1. Schematic of the two-leg ladder Bose Hubbard model
with staggered flux o in neighboring plaquettes. The dashed box
indicates the single unit cell used for the analytic and the cluster
mean field calculations. The red dots represent the bosonic atoms
on lattice sites.

magnetic field. We find that the presence of the staggered
flux gives rise to superfluid phases with staggered vortex-
antivortex configurations, which are distinct from the usual
superfluid phases obtained in the Bose-Hubbard model [1].

The paper is organized as follows. In Sec. II, we introduce
the Bose-Hubbard model (BHM) with a two-leg ladder ge-
ometry in the presence of an artificial magnetic field with a
staggered configuration. In Sec. III, we review the properties
of its single-particle spectrum, and in Sec. IV, we present
calculations in the strong coupling regime to determine the
complete phase diagram. We also show the presence of flux-
dependent superfluid phases using Landau theory. In Sec. V,
we present our analytical calculations to determine the phase
boundaries using the variational Gutzwiller approach, and in
Sec. VI, these are complemented by the numerical calcula-
tions performed using the cluster mean field theory approach.
Finally, in Sec. VII, we present a summary and outlook of the
work.

II. MODEL

The Hamiltonian describing bosons in a two-leg ladder
geometry in the presence of a staggered magnetic flux of
magnitude o can be written as

H=-1J] Z [eH)f%a}aHl + e(—l)m%‘”bj,bH] +Hc]
i

4 p
~K ) (@jb; +He)+ =D nf(n] 1)
i J.p
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where the p;( pj.) are the bosonic annihilation (creation) op-

erators at site j of leg p (=a, b), nf is the number operator
at site j of leg p, « is the absolute value of the magnetic
flux, and u is the chemical potential. The intra- and interleg
hopping amplitudes are described by J and K respectively,
and the on-site interaction energy between two atoms is given
by U (see Fig. 1). The ratios J/U and K /U can be changed
in an experiment by tuning the optical lattice laser intensities
along each leg and by varying the separation between the legs,
respectively. We assume up-down symmetry for the ladder,
which implies that the chemical potential & and the onsite
interactions U are identical for each of the two legs. It is worth

noting that within the local density approximation, the results
from this model can also be applied to experimental systems
which have an additional harmonic trapping potential.

The phase « appearing in the hopping terms is given by
o= (e/h)frrjk dr - A(r), where A(r) is the vector potential
that gives rise to the magnetic field B =V x A and r; and r
are the positions of the lattice sites j and k. If an atom tunnels
around a plaquette, the total phase accumulated by the wave
function is called the gauge flux, which is a gauge-invariant
quantity. Specifically, we choose a Landau gauge for which
the hopping in the rung direction has no gauge field while
hopping along the legs imparts a phase that alternates from
one plaquette to the next, leading to the required staggered
flux. The physical properties of the Hamiltonian (1), including
the energy spectrum, response functions, etc., are, of course,
gauge invariant and only depend on the total flux going
through a plaquette.

III. SINGLE-PARTICLE SPECTRUM

We first determine the structure of the single-particle en-
ergy spectrum as a function of the magnetic flux values. For
this, we set U = 0 and write the Hamiltonian in momentum
space in terms of the Fourier components of the field operators
aj and b;. For ease of calculations, we use the gauge choice
where the phase ¢’ is only along one of the legs of the ladder,
resulting in the same effective magnetic flux magnitude «
for each plaquette. The energy eigenvalues can then be deter-
mined by simple diagonalization, and we show the spectrum
as a function of momentum k in Fig. 2, for different absolute
values of the magnetic flux «.

For zero flux and finite rung coupling, a two-band structure
in the single-particle spectra appears, which has the expected
2m periodicity [see Fig. 2(a)]. In the presence of a finite stag-
gered flux, the lowest band continues to have a nondegenerate
minimum at k = 0 [see Figs. 2(b) and 2(c)] and increasing the
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FIG. 2. Single-particle spectrum of the two-leg ladder system for
different absolute magnetic flux strengths for / = 1 and K = 1.
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rung coupling K leads to an increase in the band gap between
the upper and lower bands. Since the system now possesses a
finite flux, condensing into the minimum leads to a superfluid
with a unique current pattern, which is further discussed
in Sec. IV. Upon increasing the staggered flux further, the
lowest band starts developing additional minima at k = £
[see Fig. 2(c)], which eventually become degenerate with
the minimum at £k = 0 for « = w [see Fig. 2(d)]. This limit
is known as the fully frustrated case for the Bose-Hubbard
model and it corresponds to half a flux quantum per plaquette
[25]. It is worth noting that at « = +m the presence of the
two degenerate minima in the single-particle spectra is an
indication of the nontrivial nature of superfluid phase with
its unique current distribution, which we discuss below in
Sec. VIB.The occurrence of degenerate minima at k/7 =0
and k/m = +£1 can influence the stability and properties of
the phases in different regimes. While for the Mott-insulating
regime the qualitative nature of the phase remains unaffected,
the properties of the superfluid states can get substantially
changed due to the staggered flux. We discuss this situation
in detail in the next section.

IV. SUPERFLUID MOTT-INSULATOR TRANSITION:
LANDAU THEORY OF PHASE TRANSITIONS

In this section, we discuss the results obtained for strong
coupling regime and determine the complete phase diagram
at zero temperature. For the Bose-Hubbard model with no
flux, the zero-temperature phase diagram comprises a super-

separated by a second-order phase transition, driven by quan-
tum fluctuations [31]. When one crosses the phase boundary
from MI into the SF phase, the U(l) gauge symmetry is
spontaneously broken, which gives rise to a finite SF-order
parameter. Since the form of this order parameter depends
on system parameters, one can expect that the presence of a
finite staggered flux leads to different and distinctly broken-
symmetry SF phases. In the following, we will use the Landau
theory of phase transitions and introduce a plaquette order pa-
rameter, which identifies the various SF phases. Determining
the values of U/J at which the SF order parameter vanishes
allows us to obtain the phase boundaries within the full phase
diagram as a function of the magnetic flux «.

The basic plaquette in our system consists of four sites,
indicated by the dashed lines in Fig. 1. The different superfluid
phases will be characterized by introducing the plaquette
order parameter ¥ = (¥, x1, X2, ¥2), where {; = (a;) and
Xxi = (b;) stand for site order parameters for legs a and b,
respectively. In the mean-field limit, we can decouple the sites
of the unit cell by [32]

alay ~ Yiag +dl e — ¥,
blbe ~ x bk + blxe — X e 2)

a;bj A~ Yib; +a;)(j — Y

where j,k € {l,2}. Hence, we can write the mean-field
Hamiltonian in the grand canonical ensemble in the form

H=H)" + 1M,

fluid (SF) phase and a Mott insulator (MI) phase, which are where
|
U x x —i iy
HY' = 7 Z [n(nS = 1) +n5(n) —1)] — Z (S +n")+ K Z(l//jxj + XU+ T (€YY + e x e+ He)
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Since we concentrate on the strong-coupling regime, our expansion will treat HMF as a perturbation. Calculating the ground-state
energy, E[yr], for the four-site plaquette up to second order with respect to the perturbation HMF then gives

E[V] =2Un(n —1) — 4un + Z WM, W, (5)

v,V

where n is the filling fraction and M, ,, are the matrix elements of the 4 x 4 Hermitian matrix M, which is given by

Eo(K? +4J%) K 4K J Egcos(%) 2J e/
B K Eo(K*+4J%) 2J et/ 4K J Egcos(%)
| 4K JEgcos(%) 2Je"ie/? Eo(K? +4J%) K ’
2J et/ 4K J Egcos(%) K Eo(K*+4J%)
with
n+1

Eo(n, U, p) = . 6
o(n, U, ) [U(n_l)_M+M_Un] ()
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In standard Landau theory, the free energy is expanded with
respect to a scalar order parameter and the phase-transition
boundary is determined by demanding that the second-order
expansion coefficient should vanish. In our case, the second-
order phase transitions between the different SF and MI
phases therefore occur when the eigenvalues of M are zero.
The matrix has four eigenvalues and eigenvectors given by

€1 = Eo[4J% + K? + 4J Kcos(a/2)]

+/4J2 + K2+ 4J Kcos(a/2), (N

€ = Eg[4J% + K* —4J Kcos(a/2)]

+V4J2 + K2 — 4J Kcos(a/2), 8

€3 = Eo[4J% + K? 4+ 4J Kcos(a/2)]

—V4J2 + K2+ 4JKcos(a/2), )

€4 = Eo[4J% + K? — 4J Kcos(a/2)]

—J4J? + K2 —4JKcos(a/2), (10)

K +2J¢i/? K +2Jei*/?
v, = —— 1, —,
|K +2Jeie/2]” 7 |K 4 2Jeie/?]

= (", 1,7, 1), (11)

v, — K —2Jev? K —2Je%/?
2T\ Tk =272 T K = 2Jei02)
= (_ei027 _15 ei029 1)5 (12)
v (_ K+ 2J e/ K 42Je/?
PTN\ Ik 12762 T K + 2060
= (=", 1, =", 1), (13)
v, (K- 2Jelv/? K —2Je@/?
TNk —2Jee2]” T K —2Jeie)
= (eiez’ _17 _eieza 1)’ (14)
where A91 = tan_l(%) and 0, =
tan~! (_%)‘ These four eigenvectors describe
all possible SF phases.

A. Interpretation of the superfluid phases

In the standard Landau theory, the expansion of free energy
is performed with respect to a scalar order parameter and
the second-order phase transition point is determined by the
vanishing of the second-order expansion coefficient. In the
present work, we use an extension of this theory, where
the second-order phase transitions is determined by the zero
crossings of the eigenvalues of the matrix. Out of the four
eigenvalues obtained in our calculations, the zero crossings of
only the first two eigenvalues give physical phase boundaries
between the superfluid and Mott-insulator phases for repulsive
interactions in different regimes of magnetic flux. The other

two eigenvalues do not give any feasible boundaries for the
case of repulsive interactions, indicating that they do not
correspond to any physical superfluid phase.

In the following, we label the corresponding first two SF
eigenvectors as superfluid 1 (SF-1) and superfluid 2 (SF-2),
which, as they are not observables, have a form depending on
the choice of the gauge in our calculations. They are, however,
characterized by gauge-invariant circulating currents around
the plaquettes, that are arranged in a staggered pattern along
the ladder. In fact, these currents can be viewed as a sequence
of vortices and antivortices, and we give more details about
this below in Sec. VIB. The boson density is uniform for both
superfluid states; however, the direction and sign of the leg and
rung currents identify these states as having distinct patterns
for currents related by time reversal or by a unit translation.
Hence, SF-1 and SF-2 can be seen as corresponding to a single
superfluid phase with two different order parameters depend-
ing on the strength of the magnetic flux. The condensate wave
function appears due to the spontaneous breaking of the U(1)
symmetry and a chiral current appears due to the symmetry
broken explicitly by the Hamiltonian. This is consistent with
the results known for the fully frustrated case with o = £
flux per plaquette, where Hartree theory indicates the presence
of the same two superfluid states [25]. At this point, the
Hamiltonian is invariant with respect to both translational and
time-reversal symmetry, which leads to the emergence of the
staggered flux states.

The phases of the order parameters at each lattice site
are given by ®gp; = (01,0,60,,0) for SF-1 and Pgp, =
(62 + 7, , 65, 0) for SF-2. In the fully frustrated case, which
is the point where the system switches between being in SF-1
and SF-2, the phase around the plaquette for both superfluid
states becomes equal and opposite, manifesting the opposite
circulation of currents in each state. At this particular value of
the magnetic flux, the energy eigenvalues of both superfluid
states become degenerate as well, and while for ¢ < 7 the
SF-1 phase had the lower energy, beyond o = 7 the SF-2
become energetically more favorable. This transition from the
SF-1 to the SF-2 phase therefore corresponds to a reversal of
the direction of circulation.

B. Phase diagram

The boundary between the MI and SF phases can be
found as a function of o by determining the zeros of the
respective eigenvalues and we show the full phase diagram
in Fig. 3. The zero crossings exist in the range —7 <o <7
for SF-1 and in the ranges —37 <o < —mwand 7 < o < 37
for SF-2, implying a 2w periodicity for both the superfluid
phases. As noted above, for values of o beyond =+, the
SF-1 undergoes a transition to the SF-2, which at this point
becomes energetically favorable (e, < €;). The critical point
of transition from SF to MI phase for « = 0 agrees with the
known mean-field results [18]. It is also worth nothing that at
o = 7 and —, for a gauge choice where the phase « is only
along one of the legs, the Hamiltonian is real and therefore
time-reversal invariant.

The phase diagram as a function of different values of the
hopping amplitude K with fixed J is shown in Fig. 3. For
K < 1, the hopping along the rung of the ladder is reduced,
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afm

FIG. 3. Phase diagram for the two-leg ladder Bose-Hubbard
model in the presence of a staggered flux of magnitude « for unit
filling factor using Landau theory. The solid (red) curve marks the
boundary between the Mott-insulator and the different superfluid
phases for K = J = 1.0. The region below the solid (red) curve
comprises of two types of superfluids, SF-1 and SF-2 (see text for
details), which are separated by green dashed lines. The dashed
(blue) lines and dotted (black) lines mark the phase boundaries for
J =1land K = 0.5 and 1.5, respectively.

and hence the transition to the Mott-insulating state can be
achieved at lower values of U. Similarly, for K > 1 the overall
hopping is larger compared to the situation with K = 1 and
the transition to the Mott-insulating phase requires a higher
value of the onsite interaction U. This suggests that one can
tune the phase transition boundary by simply changing the
relative hopping amplitudes for any value of flux «.

V. VARIATIONAL MEAN-FIELD GUTZWILLER
APPROACH FOR PHASE BOUNDARIES

In the following, we will explore the transition from the
Mott insulator to the above-mentioned superfluid phases as a
function of J, U, u and «. For this, we scale the Hamiltonian
in Eq. (1) by setting K = 1 and assume that the wave function
for the perfect Mott-insulating phase is localized with an
equal number of particles ny at each site. The phase boundary
between the incompressible MI phase and the compressible
SF phases can then be analytically determined by calculating
the energy for particle-hole-type excitations using a reduced-
basis variational ansatz for the Gutzwiller wave function.

For this, we assume that the total wave function is the
product of two individual ladder wave functions, |¥) =
[1;|G)4;|G)p;, where a and b label the legs of the ladder
and j labels the individual sites along a leg. In the strongly
interacting regime, we work very near to the phase boundary,
which implies that only Fock states close to the MI one are
populated. Hence, we can write a Gutzwiller ansatz for the
local sites as

aj

1GYa, = fo_1lno = 1) + fur In0) + fr'y11mo + 1),

b b; b:
1GYo; = Fag-1ln0 = 1) + fug Ino) + fosilno + 1) (15)

2
— la[=0
-=la|=0.27
la] =037
........ ‘Cb‘ :047T

0 0.03 0.05 0.07
J/U

FIG. 4. Phase diagram of the Bose-Hubbard model for the two-
leg ladder for different absolute values of staggered magnetic flux
o, for K =1 and U = 1, calculated using a variational mean-field
approach. The MI phases are indicated with their average occupancy
per site, and SF indicated in the plot can be SF-1 for —7m <« <7
and SF-2 for the regime —37 <o < —w and 7w < o < 37.

We parameterize the amplitudes as [33]

a; a a; —i0; ’ i0; A
(fno/fl’ nojv fllol+1) = (e i ./Aaj, m, e ./Aa/_)a

(16)

bj bj  pbj —if; i A
(Frte Jo s Fur) = (€780 1= A3 = A A ),
(17)

with complex variational parameters AVR A’a/_, AVIR A,bj <1
to ensure the normalization condition of states |G),, and
|Gy, Minimizing the energy functional with respect to the
variational parameters Ay A;j, AVIR A;)j, and 6; gives the
boundary between the MI and SF phase for any value of u,
U, and «. The dependence on the value of magnetic flux is
implicit in the largest eigenvalue of the single-particle Hamil-
tonian and the Mott-insulator—superfluid phase boundaries are
shown as a function of the magnetic flux o/ and interaction
strength U in Fig. 4.

It can be seen that a higher magnetic flux enlarges the
regions where the Mott-insulator phase appears by shifting
the critical point or tip of the lobe for the phase transition
to higher values. This enlargement of the insulating phase is
expected since the effect of the magnetic field is to localize
the single-particle dynamics even for noninteracting systems,
thus making the transition to insulating phases easier. It is also
known to occur for the case of bosonic two-leg ladder systems
in the presence of uniform flux [18,20].

Let us stress that these results are exact within mean-field
theory. The shape of the MI lobe is concave and independent
of the dimensionality, since in our mean-field calculations
the dimensionality enters only through a prefactor. Since
fluctuations are known to be particularly important in lower
dimensions, one cannot expect the mean-field theory to be
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quantitatively accurate for quasi-one-dimensional systems.
Hence, the results from the above analysis carry only quali-
tative importance and provide a general idea of how the phase
boundaries are affected by the presence of magnetic flux.
In particular, they can be expected to work only for small
hopping strengths when correlations are weak. To complete
our study, we present in the following numerical calculations
for the phase diagram and the chiral currents.

VI. NUMERICAL RESULTS

In the following, we analyze the model given in Eq. (1)
numerically using a self-consistent cluster mean-field theory
(CMFT) approach. For this, a cluster of sites is considered as a
unit cell of the system which is then decoupled from all other
clusters using the mean-field decoupling approximation. For
any two adjacent sites (i, j) which belong to different clusters,
we therefore write

ala; ~ pfa; +alp; — o} ;. (18)

where ¢} = (aiT ) and ¢; = (a;) are the SF order parameters.
The resulting cluster Hamiltonian is then diagonalized self-
consistently with respect to the superfluid order parameter ¢;,
while keeping all other parameters fixed. The ground state
obtained in this way can be used to calculate the number of
particles at each site as p; = (n;).

CMFT takes into account the nonlocal correlations which
are otherwise overlooked in the single-site mean-field method
and it is therefore more accurate. With proper implementation,
results from CMFT can match fairly well with those obtained
from other sophisticated methods like quantum Monte Carlo,
etc., but with significantly less computational efforts. Owing
to these features, CMFT methods have been used exten-
sively to successfully study a variety of problems in the past
[34-42]. In this work, we use a four-site cluster as indicated
by dashed lines in Fig. 1, fix the value of J as 1, and scale all
other parameters in units of J.

A. Phase diagrams

The phase diagram calculated using the CMFT method is
shown in Fig. 5. To obtain it, we first fix the value K = 1 and
choose a particular value of a(=n). We then fix U and vary
W to determine the ¢; self-consistently, and a vanishing value
of ¢; along with an integer value of p; signifies the SF-MI
transition. To obtain the critical point for the SF-MI transition,
we increase the value of U systematically until ¢; vanishes
and p; becomes equal to 1, or in other words until the system
enters the Mott-insulator phase with filling factor 1. We repeat
this procedure for several values of « varying from —2x to
27 and the critical values of U obtained in each case are
marked by a black circle in the phase diagram in Fig. 5. The
continuous red line connecting the black circles then indicates
the SF-MI phase boundary and by comparing these to Fig. 3,
one can clearly see that it matches the behavior obtained using
the Landau theory of phase transitions presented in Sec. IV.
Numerically studying the cases for / = 1 and K # 1 gives the
corresponding shifts in phase boundaries as well (not shown).

20

=1.0

210
| SF2 SF-1 . SF2 |
5 1 1 -
i | i
3 -1 0 1 2
o/t

FIG. 5. Same as Fig. 3, but the results are obtained by using the
CMFT approach.

B. Chiral currents

We finally calculate the chiral currents in the system using
CMFT, which will allow us to determine the overall flow
pattern in the system. The difference between the phases
SF-1 and SF-2 can be characterized by their local current
configurations and by their global chiral currents, the latter
of which have the form

Je=Y_ Gl =il (19)
leo/e

where the associated operators are

] (o2, /2 1
Jla =11 Pal a; — & Pajaryy),

jll,‘b = iJ(eia/zblTHbl - efia/zbllrb“rl)' (20)

Here [ represents the site index and for the numerical calcu-
lations we set the values of on-site interaction to U = 8 and
of the chemical potential to . = 11.5, as for these parameters
the system remains within the SF phase. The resulting chiral
currents for different values of K are shown in Fig. 6. Two

" (a) SF-2

It SF-2 | SF-1 SF-1 | SF-2 1

oUT

FIG. 6. Variation of j. (top panel) and | j.| (bottom panel) with n
for / = 1and K = 0.25, 1.0, and 1.50 and (U, u) = (8.0, 11.5).
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FIG. 7. Schematic of current patterns associated with the SF-1
and SF-2 phases. The red arrows denote the local currents given by
equation (20). The blue circular arrows denote the local staggered
vortices/antivortices deduced from the local current pattern. The
local currents possess opposite rotational directions for the two
superfluid phases.

striking features are immediately obvious: (i) The sign of j.
is reversed whenever the system makes a transition from the
SF-1 to the SF-2 phase, while the sign of « is unchanged,
and (ii) the slope of |j.| changes sign at the boundary be-
tween the two SF phases. The chiral currents for both SF-1
and SF-2 phases originate from the staggered currents going
around each plaquette and have opposite rotational directions
in each phase. For the SF-1 phase, the value of chiral cur-
rents increases as a function of increasing magnetic flux o,
and local currents flowing around the plaquettes acquire a
staggered (vortex-antivortex) configuration. At « = —m and
7, the Hamiltonian becomes real and time-reversal invariant.
Beyond these values, the staggered currents again break this
symmetry, now with a reversal of the direction of the local
currents around each plaquette, resulting in opposite chiral
currents and a transition to SF-2 phase with a staggered
(antivortex, vortex) current distribution. We want to highlight
the fact that the only symmetry that is spontaneously broken
here is the U(1) symmetry, which is responsible for giving the
condensate phase and the origin of chiral currents is a result
of the symmetry broken explicitly by the Hamiltonian. The
flow of currents for both superfluid phases is schematically
shown in Fig. 7. Although the value of u is fixed to 11.5 for

the chiral current calculations, we have checked and found
similar results for other values of p as well, as long as the
system is in the superfluid phase. The only change is in the
absolute value of j.

It is to note that Fig. 6 shows the behavior of chiral
currents as a function of magnetic flux for different values
of rung tunneling K. It depicts that with increase or decrease
in strength of rung tunneling, the chiral currents increase
or decrease accordingly. This is done for a fixed value of
interaction U, implying that the behavior of chiral current is
directly proportional to the ratio of K/U. Hence, it is evident
from Fig. 6 that for fixed K value the chiral currents decrease
with increasing interaction strength.

VII. SUMMARY AND OUTLOOK

We have examined the Bose-Hubbard model in the pres-
ence of a staggered magnetic flux on a two-leg ladder con-
figuration. We have shown that such a system possesses an
interesting phase diagram, which is strongly influenced by the
magnetic flux. The presence of alternating flux in the system
leads to the appearance of a staggered current superfluid
phase, which is different than the ones observed in the stan-
dard two-leg Bose Hubbard model with uniform flux. We have
performed numerical cluster mean-field studies to confirm
these analytically obtained phases. We believe that the model
we have considered serves as an example for understanding
the fundamental properties of lattices gases coupled to more
complicated gauge fields, and can, in particular, stimulate
experimental work on two-leg ladder bosonic systems in the
presence of staggered gauge fields.
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