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Abstract

Coherent control of charged particle systems strongly interacting
with microwave photons

Coherent control of charged particle systems using electromagnetic field is an exciting
area of research that can lead to new elements for quantum technologies. However,
the choice of a suitable system to realize such applications is limited because of the
often unavoidable presence of dissipation and decoherence. One condensed matter
system where these problems are minimised is the system of surface electrons on liquid
helium. This thesis aims to contribute to achieving coherent control of the quantum
states of orbital motion of electrons on helium using quantized electromagnetic field
in an optical resonator. In particular, I have studied the strong coupling regime of
interaction between the cyclotron motion of electrons and the microwave photons in a
Fabry-Perot resonator and provided a detailed analysis of experiments carried out in
the Quantum Dynamics Unit at OIST using both classical and quantum formalisms.
The agreement between both formalisms demonstrated the mean-value nature of the
observed normal mode splitting phenomenon. As a theoretical proposal, I have studied
the generation of squeezed states and spin-squeezed states of a harmonic oscillator and
of an ensembles of two-level-systems, respectively, which is strongly coupled to a two-
level system. In this work I will discuss a special case of the Jaynes-Cummings model
driven by an external field and its analogue in which a two-level system is coupled to
a collective large spin. This can be seen as a relevant proposal for electrons on helium
with coupling between their cyclotron motion and the surface-bound states. Finally,
I have studied the surface electrons on helium with a coupling introduced by an in-
plane magnetic field. I have shown that this leads to a renormalization of the energy
spectrum of coupled orbital motion and have made a number of predictions which were
confirmed in a subsequent experiment. This work therefore opens doors to explore the
physics in the strong coupling regime between the electrons’ surface-bound states and
photons in microwave resonators.
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Introduction

Highly controllable synthetic quantum systems designed from the bottom up have
been an active and exciting area of research in the recent decades. In these systems,
the interaction between different components can often be precisely controlled by the
experimentalist. By performing experiments with such systems, we can deepen our
understanding towards, for example, light-matter interactions, quantum entanglement,
many body physics, and unconventional phases of matter. This is not only interesting
from the fundamental physics’ point of view, but can also lead to applications based
on the principles of quantum mechanics.

Being able to prepare and manipulate quantum states beyond the time scale of
dissipation and decoherence is crucial for the development of many real-world quan-
tum applications. This includes but is not limited to quantum computing[1–3] and
quantum communication [4], quantum entanglement enhanced metrology[5–7], quan-
tum simulations [8–11], etc. Coherent control of quantum states can be implemented
in a wide variety of physical systems. In earlier years, researchers have realized it in
cold atoms and ions [12–16], superconducting circuits [17, 18], semiconductor quantum
dots (QDs) [19] and nano-mechanical structures [20]. In recent years, hybrid quan-
tum systems which combine, for example, microscopic atomic systems with solid-state
quantum devices, have been of considerable interest[21–24, 24, 25].

In addition to the synthetic quantum systems mentioned above, some condensed
matter systems which were traditionally used to study other phenomena, have been
introduced into this field of study. In particular, the surface electrons (SEs) on liquid
helium, the first two-dimensional electron system (2DES) realized in the laboratory
environment, has been discussed recently in the context of quantum information [26–
29]. This system gains attention because of its extreme purity, thus long coherence
time, as well as convenience to manipulate charged particles using an electrostatic field.
Therefore, it is an attractive idea to apply some theoretical models and experimental
methods similar to ones, for example, used for the Rydberg atoms or spins in QDs, to
SEs on liquid helium. However, while the governing principles are universal for different
systems, it is still a non-trivial task to implement the same ideas in different physical
systems because they differ greatly in energy scales, interaction strength, noise levels
and available experimental methods which can be applied to them.

This thesis aims at contributing to achieving coherent control of charged particle
states in the electrons-on-helium system. In particular, we are interested in the coupling
of the states of electron orbital motion to an optical resonator and control of this states
using light. In this work, we are inspired by the cavity Quantum Electrodynamics
(cQED) approach which uses the regime of strong coupling between, on the one hand,
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2 Introduction

an atom or an ensemble of atoms and, on the other hand, the electromagnetic (EM)
field of a cavity mode. Our purpose is to establish some basic experimental techniques
for this kind of experiments, as well as to formulate necessary theoretical models for
their adequate description. In addition, we consider some abstract theoretical models
which potentially can be realized in the electrons-on-helium system.

In the following, we will introduce the basic physics behind 2DES formed on the
surface of liquid helium and, in particular, emphasize some similarities of this system
with Rydberg atoms.

Electrons hovering above liquid helium

SEs on the free surface of liquid helium were theoretically introduced by Cole and
Cohen [30, 31] and, independently, by Shikin[32]. Soon after that, SEs were detected
in an experiment by Sommer and Tanner [33]. Such electrons are trapped near the
surface of a liquid by, on the one hand, an attractive potential from an ‘image charge’
under the surface due to the weak polarizability of helium atoms which constitute
the liquid and, on the other hand, a potential barrier at the vapor-liquid interface
due to hard-core repulsion from the helium atoms, see Fig. 1. According to quantum
mechanical principles, this allows such an electron to hover above the surface of liquid
helium at a distance of 〈z〉 ∼ 10 nm, thus forming a two-dimensional (2D) electron
system.

Figure 1: An electron above liquid helium

The basic quantum-mechanical Hamiltonian of a single electron above liquid helium
is given by

H =
p2

2me

+ V (r). (1)

where me is the bare electron mass. Assuming an infinitely extended flat surface of
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liquid helium, the potential energy of electron reads

V (z) = V0Θ(−z)− Λ

z
Θ(z), (2)

where V0 ∼ 1 eV is the height of repulsive potential barrier at the vapor-liquid interface,
Θ(z) is the Heaviside (step) function, and

Λ =

(
1

4πε0

)(
e2

4

)(
εHe − 1

εHe + 1

)
. (3)

Here, the Coulomb constant Λ describes the image charge in the liquid and is deter-
mined by the dielectric constant of liquid helium εHe. The total Hamiltonian H can be
separated into two parts, H = Hz ⊗ 1 + 1⊗Hxy, which describe the orbital motion of
electron in the direction perpendicular to the surface (Hz) and parallel to the surface
(Hxy). In the z direction, the electron motion is quantized into the surface bound
states, which are the eigenstates |n〉 of the Hamiltonian

Hz =
p2z

2me

+ V0Θ(−z)− Λ

z
Θ(z)

=
∑

En |n〉〈n| .
(4)

The energy spectrum of this motion can be easily found by making some reasonable
approximations. By assuming a rigid-wall repulsive barrier at the surface, that is
V0 → +∞, the eigenfunctions χn(z) = 〈z|n〉 and corresponding energy eigenvalues En
are obtained from a simple differential equation

[
− ~2

2me

∂2

∂z2
− Λ

z
− En

]
χn(z) = 0, (5)

with the boundary condition χn(z = 0) = 0. It is clear that this equation is identical
to that for the radial part of the eigenfunction (multiplied by r) of an electron with
the orbital quantum number ` = 0 in the hydrogen atom. Thus, we can immediately
write the energy eigenvalues in the form

En = −meΛ
2

2~2
1

n2
= −Er

n2
, n = 1, 2, 3, . . . , (6)

where we introduce the effective Rydberg constant Er = meΛ/(2~2). For liquid helium,
the dielectric constant εHe is close to unity due to the very weak polarizability of the
helium atoms. Therefore, the effective Rydberg constant for electrons on helium is
much smaller than the Rydberg constant for electrons in the hydrogen atoms. For two
isotopes of helium, 3He and 4He, the values of Er are given in Table 3.

The wavefuctions which satisfy the eigenvalue equation (5) are given by the well
known expressions identical to those for electron in the hydrogen atom, e.g. the wave-
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3He 4He
Dielectric constant εHe 1.042 1.056

Bohr radius rB 10.3 nm 7.8 nm
Average distance 〈z〉 15.4 nm 11.6 nm
Rydberg constant Er 36 meV (4 K) 63 meV (8 K)

n = 1→ 2 transition frequency f12 65 GHz 114 GHz
n = 1→ 2 transition moment z12 6.2 nm 4.7 nm

Table 3: The estimated effective Bohr radius, the average distance 〈1| z |1〉 from
an electron in the ground state to the surface, the effective Rydberg constant, the
n = 1 → 2 transition frequency f12 = (E2 − E1)/h and the n = 1 → 2 transition
moment, 〈1| z |2〉, for SE on liquid 3He and 4He.

functions for the two lowest eigenstates are given by

χ1(z) =
2

a
3/2
B

z exp

(
− z

aB

)
,

χ2(z) =
1

2a
3/2
B

z

(
1− z

2aB

)
exp

(
− z

2aB

)
,

(7)

where

rB =
~2

meΛ
, (8)

is the effective Bohr radius. Again, because the dielectric constant of liquid helium is
close to unity, the effective Bohr radius for electrons on helium is about two orders of
magnitude larger than that for electron in Hydrogen atoms. The corresponding values
for 3He and 4He are given in Table 3. The energy eigenvalues and probability densities
|χn|2 for SE on liquid 3He are plotted in Fig. 2.

The radiation-induced transitions between eigenstates |n〉, which we usually call the
Rydberg states of SEs, were first directly observed by Grimes and Brown for electrons
on 4He [34]. For the resonant n = 1 → 2 transition, they measured the transition
frequency of about 126 GHz, which is somewhat larger than predicted by the approxi-
mate model described above, see Table 3. Similar disagreement was fond later for SEs
on liquid 3He [35]. Most likely, the disagreement comes from approximating a finite
potential barrier V0 ∼ 1 eV by the rigid-wall potential.

Usually, the motion of electrons in the z direction is independent from their in-
plane motion, thus each Rydberg state |n〉 is infinitely degenerate. In case of a simple
Hamiltonian (1), the eigenstates of the total orbital motion of SE are the products
|n〉 |px, py〉, where 〈r|px, py〉 = (2π~)−1 exp (−i(pxx+ pyy)/~). The in-plane motion of
SE can be quantized by applying a sufficiently strong magnetic field perpendicular to
the liquid surface. This situation is one of the main subjects of this thesis, therefore I
would postpone the detailed discussion of SEs subject to magnetic fields until Chapters
1 and 3.
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Figure 2: Energy eigenvalues (in GHz) and probability densities (in a.u.) for a surface
electron on liquid 3He.

Electrons on helium realize a unique 2D electron system because they are formed
above an extremely clean and smooth substrate. Helium liquefies at temperatures
around 4 K when all other substances solidify, therefore are frozen onto the walls
of a container holding liquid helium. Thus, the free surface of liquid helium has no
impurities, static irregularities or defects. At temperatures below 1 K, when the density
of helium vapor atoms above the surface is negligible, the scattering of electrons is only
from liquid surface excitations (ripplons) whose density decreases with cooling. Low
scattering rates result, for example, in the highest electron mobility ∼ 104 m2/(V·s)
known for any 2DES so far. This unique feature of SEs attracted condensed-matter
physicists for many year and many new and interesting phenomena were discovered,
such as the first realization of a Wigner Solid (the crystalline phase of 2DES), discovery
of novel edge magneto-plasmon modes, unconventional classical Hall effect, etc. [36,
37]. These phenomena are complementary to the physics of the Quantum Hall Effect
in semiconductor-based systems, such as two-dimensional electron gas (2DEG) in Si
inversion layers, GaAs/AlGaAs heterostructures and, most recently, in graphene.

However, there is another interesting aspect of this system which, to the best of
my knowledge, has not been sufficiently discussed in the literature. As shown above,
the Rydberg states of SEs have many similarities with the Rydberg atoms, whose
quantum properties have been studied very actively for the past few decades. SEs
have a relatively large transition dipole moment, see Table 3, that can rather strongly
couple them to propagating or standing EM waves. The Coulomb interaction between
electrons can lead to shifts in the Rydberg energy spectrum [38], thus showing effects
similar to the Rydberg blockade in an ensemble of atoms [16, 39], which potentially
can be used to simulate quantum many-body phenomena in these systems. Finally, the
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quantum states of orbital motion of SEs are shown to have rather long coherence time
(10-100 µs), which makes them a promising system for quantum information processing
applications [26, 29, 40].

The aim of this thesis was to make initial theoretical and experimental studies with
electrons on helium in the above context. In particular, we aimed to, for the first time,
coherently control Rydberg states of SEs by light. While it sounds straightforward
to apply the same ideas and techniques which are used for the Rydberg atoms, for
example coupling the Rydberg states of SEs to an optical cavity mode, certain technical
limitations where encountered during the experiments. In particular, it was found
that it is much easier to couple the EM field in our optical cavities to the in-plane
motion of SEs. Therefore, some modifications of the original plan had to be made. In
particular, I first studied the coupling between the in-plane quantized motion of SEs
in a perpendicular magnetic field and an optical cavity mode, which will be discussed
in Chapter 1. There, we demonstrated the strong coupling between an ensemble of
electrons and cavity. I also developed a full theoretical framework to describe these
experiments. Complementary to this, I studied a abstract theoretical model which can
be potentially applied to electrons on helium and realized in our experiments. This
will be described in details in Chapter 2. Finally, we studied the coupling between
the in-plane motion of SEs and their Rydberg states, which ultimately will be used to
couple the Rydberg states of SEs to EM field in a cavity. In particular, we realized such
coupling by introducing an in-plane magnetic field. In Chapter 3, I provide a detailed
theoretical analysis of the coupled orbital motion of the SEs and make a comparison
between the theoretical predictions and experimental results. In the last chapter, I will
conclude the whole thesis with a brief discussion of future works.



Chapter 1

Surface electrons on helium strongly
coupled to a microwave resonator

In the strong coupling regime, the light stored in a cavity resonator interacts with
matter at a time scale which is faster then energy dissipation and decoherence, which
allows coherent control of matter using light. This chapter describes an experimental
realization of the strong coupling between the cyclotron motion of two-dimensional
electrons on liquid helium and an electromagnetic mode of an optical (Fabry-Perot
type) resonator working in a microwave frequency range. In the experiment, the strong
coupling is manifested by the normal-mode splitting in the spectrum of coupled mode-
particle motion. We constructed a systematic quantum mechanical model to fully
describe dynamics of this coupled system. In particular, our model uses a quantum
harmonic oscillator to represent the cyclotron motion of the many-electron system,
while using the standard QED description for the cavity mode. As shown, our model
provides complete description of the experimental results, including a surprising feature
of coupling between the electron cyclotron motion and a circularly-polarized mode that
rotates in the direction opposite to the electron motion. This work has been published
in [41].

1.1 Motivation

Light-matter interaction between an N -particle system and a single-mode cavity res-
onator is a long-standing topic in atomic physics and quantum optics. Of particular
interests is the strong coupling regime in which the rate of energy exchange between
particles and cavity mode exceeds the dissipation rates set by cavity losses and relax-
ation processes in the system. In N -particle systems, the coupling is enhanced by a
factor of

√
N compared to a single particle and hence makes the strong coupling regime

experimentally more accessible. In experiments, the coupling strength is manifested
by the normal-mode slitting in the spectrum of coupled mode-particle motion, with
the splitting given by twice the

√
N -enhanced coupling constant [42–45]. It has been

mentioned that this splitting is essentially classical effect which can be understood on
the ground of two coupled damped oscillators [44, 46], and that observation of QED
features require, for example, photon correlation experiments [47].

7



8 Surface electrons on helium strongly coupled to a microwave resonator

Interests in collective coupling between matter and light was recently revived and
spread to a broad range of systems mainly due to its applications for hybrid quantum
systems and quantum technologies [19, 48]. Motivated by proposals to use solid-state
systems strongly coupled to microwave (MW) resonators for efficient quantum memory
storage [49–51], any experimental works were recently reported using solid-state spin
ensembles [29, 52–61]. Some recent work has been also done in the two-dimensional
electron gas (2DEG) in semiconductors where the cyclotron motion of electrons in a
strong perpendicular magnetic field was coupled to resonant structures [62, 63]. In
most of these recent works the normal mode splitting is presented as some kind of a
QED effect and treated in terms of the Jaynes-Cummings-type Hamiltonian typical
for cavity QED settings. However, this might seem to be surprising in the light of the
earlier work in atomic physics and quantum optics, as we mentioned earlier.

Here, we study the strong coupling between the cyclotron motion of a many-electron
system formed on the surface of liquid helium and an EM mode in a microwave res-
onator. As was shown previously [64], the experimentally observed normal-mode split-
ting in the spectrum of coupled mode-particle motion can be completely accounted by
a simplified theoretical model based on classical electrodynamics. Motivated by the
recent interests to the strong coupling regime from the prospects of applications for
quantum technologies, we constructed a full quantum mechanical model to describe our
system and fully account for all experimental observations. As expected, we show that
both classical and full quantum mechanical treatments are equivalent for description
of the linear coupled systems studied here. Nevertheless, the proposed full quantum
treatment is very convenient to use, thus can serve as a useful tool to describe our
future experiments.

1.2 Theoretical background

This chapter briefly overviews the necessary theoretical background regarding QED
description of EM field and quantum description of the cyclotron motion of two-
dimensional electrons subject to a static magnetic field. The results derived here will
be used in later sections of this Chapter. We use the hat notation for quantum me-
chanical operators, e.g. Â, to emphasize the difference between a quantum mechanical
operator and an ordinary number.

1.2.1 Classical and quantum description of EM field

The electric (E) and magnetic (B) fields in a source-free medium obey the classical
Maxwell equations (we use S.I. units):

∇ ·D = 0, (1.1a)
∇ ·B = 0, (1.1b)
∇×E = −∂tB, (1.1c)
∇×H = ∂tD. (1.1d)
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where ∂t stands for the partial derivative with respect to time. Two additional vector
fields D = ε0E + Pe and H = B/µ0 −M are introduced to describe the effect of
medium, where Pe (M) is the induced electrical (magnetic) dipole moment of the
medium per unit volume and ε0 = 8.854 × 10−12 F/m (µ0 = 4π × 10−7 H/m) is the
permittivity (permeability) of medium-free space (vacuum).

In a linear medium, the relation between vector fields simplify toD = ε0(1+χe)E =
εE and B = µ0(1 + χm)H = µH , where χe (χm) is called the electric (magnetic)
susceptibility and ε (µ) is the dielectric constant (permeability) of medium. For a linear
homogeneous medium, from Eq. (1.1) we can obtain a pair of the wave equations for
vectors E and B:

∇×E − εµ∂2tE = 0, (1.2a)
∇×B − εµ∂2tB = 0. (1.2b)

As usual, an arbitrary time dependence of the EM field can be expanded in the Fourier
series. Following an adopted convention, it is convenient to consider the harmonic (with
angular frequency ω) time dependence of vector fields in a complex form exp(−iωt).
Then, from the wave equations we obtain the Helmholtz equations for complex-phasor
space vectors Ẽ(r) and B̃(r):

∇2Ẽ + ω2µεẼ = 0, (1.3a)

∇2B̃ + ω2µεB̃ = 0. (1.3b)

The complex-phasor space vectors contain information about the spatial distribution
of the EM field and are related to the components of the electric and magnetic fields
as E(r, t) = Re[Ẽ(r) exp(−iωt)] and B(r, t) = Re[B̃(r) exp(−iωt)].

The general solution of the Helmholtz equation, e.g. for the electric field, is given
by

Ẽ =
∑
k,α

Ẽk,α =
∑
k,α

Ek,αe
ikr, (1.4)

where k is the wave vector which defines the propagation direction for the mode Ẽk,λ

and whose magnitude satisfies k = ωεµ = ω/v, where v = 1/
√
εµ is the speed of light

in medium. In addition, the index α labels two possible polarizations, that is mutual
relation between different components of the field vector, for a given wave vector k.
From the Maxwell equation 1.1c, the corresponding solution for the magnetic field is
related to Ẽ by

B̃ = (iω)−1∇× Ẽ. (1.5)

The allowed solutions for the Helmholtz equations must also satisfy the boundary
conditions imposed by the Maxwell equations at the interfaces between different media:
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n · (D̃2 − D̃1) = ρ̃s, (1.6a)

n · (B̃2 − B̃1) = 0, (1.6b)

n× (Ẽ2 − Ẽ1) = 0, (1.6c)

n× (H̃2 − H̃1) = j̃s, (1.6d)

where n is the unit vector normal to the interface between media 1 and 2 (n points from
medium 1 towards medium 2), and ρ̃s (j̃s) is the complex-phasor of the time-dependent
electrical charge (current) at the interface per unit area.

As a simple example, which is related to our later discussion, consider a monochro-
matic plane EM wave propagating along z direction in a source-free medium confined
between two perfectly conducting infinite (xy-plane) plates located at z = 0 and z = L.
The general solution of the Helmholtz equation (1.3) for this case is the sum of two
waves propagating in the positive and negative z directions:

Ẽ(z) =
(
exE

(1)
x + eyE

(1)
y

)
eikz +

(
exE

(2)
x + eyE

(2)
y

)
e−ikz, (1.7)

where ex and ey are unit vectors in x and y directions, respectively, and E(1)
x(y) and E

(2)
x(y)

are arbitrary complex amplitudes. By applying the boundary condition (1.6c), that
is Ẽ(0) = Ẽ(L) = 0, we can find relations between complex amplitudes for the two
counter-propagating waves, as well as all allowed values of k, which results in

Ẽ(z) = 2iexE
(1)
x sin(kz) + 2ieyE

(1)
y sin(kz), (1.8)

where k must satisfy a relation sin(kL) = 0. The corresponding expression for the
complex-phasor vector of the magnetic field can be immediately obtained from Eq. (1.5)

B̃(z) = 2v−1exE
(1)
y cos(kz) + 2v−1ieyE

(1)
x cos(kz), (1.9)

The above solutions describe a superposition of two standing waves with independent
linear polarizations of the electric field (in x and y directions).

Sometimes it is also convenient to introduce notations for a pair of mutually or-
thogonal polarization vectors eα, α = 1, 2. In the above example, we can treat the
unit vectors ex and ey as such polarization vectors corresponding to two independent
linear polarizations of EM field. Alternatively, we can introduce a pair of polarization
vectors according to e± = (ex∓ iey)/

√
2. It is easy to see that these vectors satisfy the

orthonormality condition, e±e∗± = 1, e±e∗∓ = 0, and Eq. (1.7) can be represented as

Ẽ(z) =
(
e+E

(1)
+ + e−E

(1)
−

)
eikz +

(
e+E

(2)
+ + e−E

(2)
−

)
e−ikz, (1.10)

where E± = (Ex± iEy)/
√

2. Correspondingly, the standing wave solution (1.8) can be
represented in the form

Ẽ(z) = 2ie+E
(1)
+ sin(kz) + 2ie−E

(1)
− sin(kz). (1.11)

It is easy to check that this describes a superposition of two standing waves with
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independent circular polarizations of the electric field. The first term in the above
equation corresponds to the electric field rotating clockwise in the xy plane, and is
referred to as the left-hand-circularly-polarized (LHCP) wave. Similarly, the second
term corresponds to the electric field rotating counter-clockwise in the xy plane, and
is referred to as the right-hand-circularly-polarized (RHCP) wave. Thus, any vector
solution for the EM field can be always represented as a linear combination of the two
independent polarization vectors eα, α = 1, 2 (either linear or circular).

Next, we briefly review procedure that leads to the quantization of the EM field.
It will be convenient to write the general solutions of Eqs. (1.2) for the E and B fields
in the form

E(r, t) =
∑
k,α

Pk,α(t)Ek,α(r), (1.12a)

B(r, t) =
∑
k,α

ωkQk,α(t)Bk,α(r), (1.12b)

where Pk,α(t) and Qk,α(t) (Ek,α(r) and Bk,α(r)) are real-valued functions of time
(position vector). It is clear that Ek,α(r) and Bk,α(r) satisfy the Helpmhotz equations
similar to Eq. (1.3) with ωk = k/

√
εµ = kv, while Pk,α(t) and Qk,α(t) satisfy

P̈k,α + ω2
kPk,α = 0, (1.13a)

Q̈k,α + ω2
kQk,α = 0. (1.13b)

Thus, the total energy stored in a volume V occupied by the EM field can be written
as:

H =

∫
V

dV

(
E ·D

2
+
B ·H

2

)
=
∑
k,α

(
P 2
k,α

2
+
ω2
kQ

2
k,α

2

)
∆Ek,α, (1.14)

where ∆Ek,α =
∫
V

dV
(
εE2

k,α

)
=
∫
V

dV
(
B2

k,α/µ
)
.

The above expression points out that we can describe the EM field by a classical
Hamiltonian of a collection of harmonic oscillators each described by two continuous
canonical variables Qk,α, Pk,α. In quantum mechanics, we introduce corresponding Her-
mitian operators Q̂k,α, P̂k,α which satisfy the commutation relation [ωkQ̂k,α, P̂k′,α′ ] =
iδk,k′ , δα,α′ . As usual, it is convenient to introduce the lowering/raising operators de-
fined by

âk,α = 2−1/2
(
ωkQ̂k,α + iP̂k,α

)
, (1.15a)

â†k,α = 2−1/2
(
ωkQ̂k,α − iP̂k,α

)
, (1.15b)

which satisfy the bosonic commutation relations [âk,α, â
†
k,α] = δk,k′ , δα,α′ . From Eq. (1.14),
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the corresponding quantum mechanical Hamiltonian reads

Ĥa =
∑
k,λ

∆Ek,α

2
(â†k,λâk,λ + âk,λâ

†
k,λ

) =
∑
k,λ

∆Ek,α(â†kâk + 1/2). (1.16)

Finally, it is convenient to define the vector fields Ek,α and Bk,α for each mode as a
product of the polarization vector eα and some normalized complex functions of posi-
tion vector, Ek,α = Evaceαfk,α(r) and Bk,α = Bvaceαgk,α(r), such that

∫
V

dV |fk,α|2 =∫
V

dV |gk,α|2 = V . To complete analogy with the quantum harmonic oscillator, we
require that ∆Ek,α = ~ωk, from which we obtain Evac =

√
~ωk/(2εV ) and Bvac =√

µ~ωk/(2V ), which are related to the r.m.s. electric and magnetic fields of vacuum.
Thus, the above quantum mechanical treatment states that the energy of each EM

mode is quantized in fractions of ~ωk, which are often represented as fictitious bosonic
particles, photons, with the raising/lowering operators for each mode playing roles of
the photon creation/anihilation operators. From Eqs. (1.12), the corresponding vector
operators for the electric and magnetic fields are

Ê = i
∑
k,λ

√
~ωk
2εV

(
eαfk,αâk,α − e∗αf

∗
k,αâ

†
k,α

)
, (1.17a)

B̂ =
∑
k,λ

√
µ~ωk
2V

(
eαgk,αâk,α + e∗αg

∗
k,αâ

†
k,α

)
. (1.17b)

This form ensures that the operators Ê and B̂ are Hermitian, which corresponds to
real-valued classical vector fields E and B. In the Heisenberg picture, the time depen-
dence of operators comes from âk,α(t) = âk,α|t=0 exp(−iωkt), â†k,α(t) = â†k,α|t=0 exp(iωkt),
as can be immediately obtained from the Hamiltonian (1.16) and the bosonic commu-
tation relations.

Finally, it is also helpful to introduce the operator of the vector potential. Using
the classical expression E = −∂tA, in the Heisenber picture we obtain

Â =
∑
k,λ

√
~

2εωkV

(
eαfk,αâk,αe

−iωkt + e∗αf
∗
k,αâ

†
k,αe

iωkt
)
. (1.18)

1.2.2 Cyclotron motion of two-dimensional electron systems

In two-dimensional electron systems (2DESs), the motion of electrons in one direction
(we assume z direction) is quantized and all electrons occupy the lowest energy state
for this motion. Such electrons can move in the 2D plane and couple to the EM field
which has the electric field E lying in the xy plane. For a classical particle of charge
−e (e>0 is the elementary charge) and mass me, the equation of motion reads

me∂tv = −eE −mevν, (1.19)

where v is the particle velocity in the xy plane. In addition, we introduced a phe-
nomenological scattering rate of electrons ν which characterizes their interaction with
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environment. For a many-electron system, summing over all electrons (we assume that
all electrons experience the same electric field), we can write the equation of motion
for the electron current density j = −ensv, where ns is the areal density of electrons,
in the form

∂tj = σ0E − νj, (1.20)

where σ0 = nse
2τ/me and τ = 1/ν is the scattering time. Assuming harmonic depen-

dence for the electric field in the form exp(−iωt) , we obtain a simple relation between
the current density and driving electric field:

j = σ(ω)E, (1.21)

where the ac conductivity is given by

σ(ω) =
σ0

1− iωτ
. (1.22)

The motion of electrons in the xy plane, therefore the ac conductivity, can be
strongly modified by applying a uniform static magnetic field B0 along z direction. By
adding the Lorentz force in Eq. (1.19) and repeating the same steps, we obtain

−iωτjx = σ0Ex + ωcτjy − jx, (1.23a)
−iωτjy = σ0Ey − ωcτjx − jy, (1.23b)

from which we obtain

jx =
σ0(1− iωτ)

(1− iωτ)2 + ω2
cτ

2
Ex +

σ0ω0τ

(1− iωτ)2 + ω2
cτ

2
Ey,

jy = − σ0ω0τ

(1− iωτ)2 + ω2
cτ

2
Ex +

σ0(1− iωτ)

(1− iωτ)2 + ω2
cτ

2
Ey, (1.24a)

where ωc = eB0/me is the cyclotron frequency. Thus, in perpendicular magnetic fields
the ac conductivity becomes a symmetric tensor with elements σxx = σyy, σxy = −σyx,
where

σxx =
σ0(1− iωτ)

1 + (ω2
c − ω2)τ 2 − 2iωτ

, (1.25a)

σxy =
σ0ωcτ

1 + (ω2
c − ω2)τ 2 − 2iωτ

. (1.25b)

Using notations E± = Ex ± iEy and j± = jx ± ijy, which were discussed in the
previous section, Eqs. (1.24) can be represented in a more convenient form

j± = σ±E±. (1.26)
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where the ac conductivity σ± = σxx ± iσxy is given by

σ± =
σ0ν

ν − i(ω ± ωc)
, (1.27)

As discussed in the previous section, the complex amplitude E+ (E−) corresponds to
the vector of the electric field which rotates clockwise (counter-clockwise) in the xy
plane. Similar situation holds for the complex amplitudes of the current density of
electrons j±. It is clear from Eq. (1.27) that the counter-clockwise rotating, that is
RHCP, electric field E− couples strongly to the motion of electrons when the frequency
ω is close to the cyclotron frequency ωc. The origin of such a cyclotron resonance (CR)
is clear. In the static magnetic field B0 applied in the positive z direction, electrons
undergo cyclotron motion in the xy plane in the counter-clockwise direction, thus are
able to continuously gain energy from the electric field when the frequencies of their
rotation are close. Contrarily, for the clockwise rotating, that is LHCP, electric field
electrons gain energy from and loose energy to the field twice per every period of
rotation. For this reason, the resonant mode (RHCP in the above case) is often called
the CR-active mode, while the oppositely rotating (LHCP in the above case) mode is
called the CR-passive mode.

Next, we briefly discuss the quantum mechanical description of the cyclotron mo-
tion of electrons. In order to describe effect of the applied static magnetic field B0,
it is convenient to introduce the corresponding vector potential A0. The quantum
mechanical Hamiltonian for an electron reads

Ĥ =
1

2me

(p̂+ eÂ0)
2. (1.28)

As is well known, the eigen states of this Hamiltonian represent the quantized states
of electron orbital motion in xy plane with an equidistant energy spectrum En =
~ωc(n + 1/2), n = 0, 1, .. (the Landau levels). To describe motion of a many-electron
system, it is convenient to introduce the operator of kinematic momentum π̂̂π̂π = p̂+eÂ0

defined for a single electron and use the symmetric gauge for the vector potential,
Â0 = (−ŷB0/2, x̂B0/2, 0). The commutation relation [π̂x, π̂y] = −i~eB0 leads to the
definition of a dimensionless lowering/raising operators

b̂ =

√
1

2~eB0

(π̂x − iπ̂y), (1.29a)

b̂† =

√
1

2~eB0

(π̂x + iπ̂y), (1.29b)

which satisfy the bosonic commutation relation [b̂, b̂†]=1. This single-particle operator
can be related to a complex current density operator for a many-particle system ĵ− =
2−1/2(ĵx − iĵy), where ĵx = (−e/meS)

∑
e

π̂x and ĵy = (−e/meS)
∑
e

π̂y. Here, the sum

is over all electrons in the system, and S is the surface area occupied by the electron
system. It is clear that operator ĵ− is the quantum mechanical analog of the classical
current density j− due to the cyclotron motion of electrons, which was discussed earlier
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in this section. The operators b̂ and ĵ− are related by

ĵ− = −eωclBN
S

b̂, (1.30)

where N is the number of particles in the system and lB =
√

~/(eB0) is the magnetic
length. Thus, our treatment states that the cyclotron motion of the many-electron
system can be represented by a quantum harmonic oscillator described by the lower-
ing (raising) operator b̂ (b̂†), which corresponds to decreasing (increasing) the current
density j− due to the cyclotron motion by −ensωclB.

The effect of EM field on the motion of electrons can be introduced in a similar
way by defining the corresponding vector potential A for the EM field and writing the
Hamiltonian for the many-electron system as

Ĥ =
1

2me

∑
e

(π̂̂π̂π + eA)2. (1.31)

In the full QED treatment, we replace A with the corresponding operator of the vector
potential Â introduced in the previous section. The full quantum treatment will be
discussed in Section 1.5.

1.3 Experimental realization of the strong coupling
between 2D electrons and light

In this Section, we briefly describe experimental methods which we used to realize and
study the strong coupling regime of interaction between 2DES on the surface of liquid
helium and a single-mode optical resonator working in the microwave (MW) frequency
range. 1

1.3.1 Experimental setup and measurements

The main features of our experimental setup used to realize the strong coupling between
the cyclotron motion of 2D electrons and an EM mode is illustrated in Fig. 1.1. 2D
electron system is formed on the surface of liquid helium placed between two mirrors of
a single-mode optical cavity resonator. The Gaussian beam of the cavity mode impinges
the 2D electron system, thus couples to the electron cyclotron motion induced by the
applied magnetic field B0. In the experiment, we used a semi-confocal Fabry-Perot
(FP) resonator which consisted of a top hemispherical mirror and a bottom flat mirror.
The COMSOL simulation of the resonator mode is shown in Fig. 1.2. In the experiment
described here we used a resonant TEM003 mode (angular frequency ωr ≈ 35.14 GHz)
with three anti-nodes of the electric field between the mirrors [65].

The physical realization of the experimental method is shown in Fig. 1.3. The ex-
periment was done with 2D electrons on liquid 3He cooled below 1 K in a vacuum-tight
copper cell attached to the mixing chamber of a dilution refrigerator, see Fig. 1.3(a).

1The experimental data presented in this section were obtained by Aleksiy A. Zadorozhko who
designed and performed the experiment.
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Figure 1.1: An illustration of the experimental setup used to realize the strong cou-
pling between 2D electrons on liquid helium and a single EM mode in an optical
resonator.

The design of the cell is shown in Fig. 1.3(b). The semi-confocal Fabry-Perot res-
onator was formed by a top spherical mirror made of copper and a bottom flat mirror
made of a 0.5 µm-thick gold film evaporated on a sapphire substrate. The spherical
mirror had the diameter of 35.3 mm and curvature of 30 mm. The flat mirror con-
sisted of three concentric electrodes forming the Corbino disk with radia 7, 9.9, and
12.9 mm and 5 µm-wide gap between electrodes. The distance between two mirrors
was D = 13 mm that determined the frequency of the resonant mode. To excite
this mode, the linearly-polarized microwave radiation was supplied from a room tem-
perature source and transmitted into the cell through a fundamental-mode (WR-28)
rectangular waveguide which was vacuum-sealed with a Kapton film K, see Fig. 1.3(a).
In addition, the waveguide had an infra-red filter F installed at the 4 K stage of the
dilution refrigerator in order to stop the thermal radiation from the room temperature.
The MW radiation was coupled from the waveguide into the cell through a Kapton-
sealed 1.8 mm round aperture made in the middle of the spherical mirror, while the
coupling was adjusted by the thickness of the wall of the mirror where the aperture
was made.

The helium was condensed in the cell such that the liquid level was placed at a
distance h = 2.1 mm above the flat mirror to coincide with the position of the first
antinode of the cavity mode, see Fig. 1.3(c). The position of liquid level was monitored
by observing the downshift of the resonant frequency of the resonator ωr as the cell was
filled with liquid and comparing it with the shift calculated using the finite element
method (FEM). The electrons were produced by the thermal emission from a tungsten
filament placed above the liquid surface and 2DES was created and confined on the
surface above the flat mirror by applying a positive bias to the central and middle
electrodes of the Corbino disk. To excite the cyclotron resonance of electrons, the
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Figure 1.2: COMSOL simulation of the EM mode in a semi-confocal Fabri-Perot
microwave (35.14 GHz) cavity resonator.

static magnetic field B0 was applied perpendicular to the liquid helium surface and
the value of B0 was adjusted such that the cyclotron frequency ωc was close to ωr.
In the experiment, both ωc and the frequency of the MW radiation ω/2π introduced
into the cell could be varied, and either the MW power reflected from the cavity
or the dc conductivity response of electrons could be measured as a function of ωc
and ω. To measure reflected power we used a pulse-modulated (at frequency fm =
10 kHz) MW signal applied to the resonator. The signal reflected from the cavity
passed through a cryogenic circulator and was directed onto a cryogenic InSb detector
(QMC Instruments Ltd.) operating at the temperature of the mixing chamber. The
detector signal proportional to the MW power incident on it was measured by a lock-in
amplifier at the modulation frequency fm. For an empty cavity, the quality factor of
the resonant TEM003 mode was measured to be Q ≈ 10, 000.

In addition to MW power measurements, the dc conductivity signal of electrons
was measured by the standard capacitive (Sommer-Tanner) method using the Corbino
disk. To do this, a low-frequency ac signal at 1117 Hz was applied to the inner Corbino
electrode and an ac current induced in the middle Corbino electrode by the electron
motion was measured using a lock-in amplifier.

1.3.2 Results

Figure 1.4 (left panel) shows the power reflection from the cavity containing 2DES at
the surface density of ns = 8.0 × 107 cm−2 measured at T = 0.2 K and input MW
power P = −9 dBm. In this experiment, the detector signal was recorded by scanning
the frequency of input MW signal ω at fixed value of magnetic field B0, therefore the
cyclotron frequency of electrons ωc, and repeating experiments for different values of
B0. Due to the much larger quality factor Q of our cavity comparing with the previous
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Figure 1.3: (a) Schematic diagram of the experimental setup. (b) 3D drawing of the
experimental cell. (c) Distribution of the MW electric field of the resonant TEM002

mode inside the Fabry-Perot resonator. Black solid line shows position of the liquid
helium level in the resonator which coincides with the position of the first antinode of
MW electric field in the resonator.
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experiment [64], in the present experiment we can clearly resolve two modes in the
reflection spectrum. One mode shows pronounced normal-mode splitting when the
cyclotron frequency is close to the resonant frequency of the cavity ωr/2π ≈ 35.06 GHz.
The other mode shows a single dip when the excitation frequency ω is close to the
resonant frequency ωr and is nearly unaffected by the presence of electrons. It is clear
that these two modes can be associated with the two circular-polarized components
of the input linear-polarized MW signal. For a given direction of the perpendicular
magnetic field B0 only one of the two components (CR-active component) can excite
the cyclotron resonance in 2DES, while another one (CR-passive component) should
not affect the electron motion in the rotating wave approximation. Thus two modes in
the reflection spectrum shown in Fig. 1.4 can be associated with two circular-polarized
components of the MW field in the cavity.

Figure 1.4 (right panel) shows the dc conductivity response of 2DES measured at
the same conditions as the measurements of the power reflection shown on the left
panel. In this experiment, an electrical current induced by the electron motion on
the middle electrode of the Corbino disk was measured while a low-frequency driving
voltage having the amplitude of 20 mV was applied to the center electrode. Unlike the
power reflection measurements, which probes the coupled motion of the MW field in the
cavity, in this experiment we probe the coupled motion of the electron system. Such a
coupled motion is strongly affected only by the CR-active component of the MW field.
The cyclotron motion of electrons introduce heating of the 2DES on liquid helium due
to its slow energy relaxation. Such a heating strongly affects the dc conductivity of
electrons, which causes a change in the electron current detected by the Corbino disk.
Correspondingly, a strong dc conductivity response of 2DES is observed at the same
ωc and ω as the power reflection spectrum of the CR-active mode, c.f., two panels
in Fig. 1.4. A surprising feature is the appearance of a strong response of the 2DES
observed at ωc ≈ ω ≈ ωr, which is also observed in the reflection spectrum of the
CR-passive mode, see top panel. We will discuss this additional resonance in Section
1.6.

1.4 Classical description of coupled electron-mode mo-
tion

First, we consider a completely classical description of the coupled electron-mode mo-
tion. Our treatment is similar to that described previously [64], which is also similar
to the earlier treatment by Shikin [66],but takes correct account for two independent
circular polarization modes of the EM field in the resonator. In order to account for
the observed experimental results we use a model of a 2DES system in a simplified FB
resonator, see Fig. 1.5. In our model, the resonator is formed by two infinitely large
mirrors located at a distance D apart. One of the mirrors located at z = 0, where
z-direction is perpendicular to the mirrors, is partially-reflecting with the amplitude
reflection coefficients r1 and r2 for the MWs incident on the mirror from z > 0 and
z < 0, respectively. The corresponding transmission coefficients are t1 = 1 + r1 and
t2 = 1 + r2. The second mirror (occupying the half-space at z < −D) is a good con-
ductor with a finite electrical conductivity σ that accounts for internal (Ohmic) losses
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Figure 1.4: Power reflection from the cavity (top panel) and electron dc conductivity
response (bottom panel) versus the cyclotron frequency of electrons ωc and frequency
of MW excitation ω measured at T = 0.2 K for surface density of electrons ns =
8.0× 107 cm−2 and input MW power P = −9 dBm.
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of MW field in the cavity. An infinitely large 2DES is located at z = −d, d < D, with
the 2D plane oriented parallel to the plane of the mirrors, see Fig. 1.5. In simplicity,
we neglect the presence of the dielectric liquid 3He at −D < z < −d, whose dielectric
constant is very close to that of vacuum (ε ≈ 1.05).

We will use notations for classical EM field similar to those introduced in Section
1.2.1. In order to account for the components of the EM field corresponding to two
independent circular polarizations, we use the complex amplitudes E± = (Ex±iEy)/

√
2

and j± = 2−1/2(jx± ijy) for the EM field and current density of electrons, respectively.
The classical problem of EM field distribution inside and outside the resonator can
be solved by considering the superposition of propagating waves and accounting for
the boundary conditions at z = −d and −D. Designating left- and right-propagating
fields inside and outside resonator as indicated in Fig. 1.5 and employing the boundary
conditions given by Eqs. (1.6) we obtain

E
(1)
± = t1E

in
± + r2E

(2)
± , (1.32a)

Eout
± = r1E

in
± + t2E

(2)
± , (1.32b)

E
(1)
± eikd + E

(2)
± e−ikd = E

(3)
± eikd + E

(4)
± e−ikd, (1.32c)

− E(3)
± eikd + E

(4)
± e−ikd + E

(1)
± eikd − E(2)

± e−ikd = η0j±, (1.32d)

E
(3)
± eikD + E

(4)
± e−ikD = E

(5)
± eiκD, (1.32e)

− E(3)
± eikD + E

(4)
± e−ikD = −η0

η
E

(5)
± eiκD, (1.32f)

where η0 =
√
µ0/ε0 = 377 Ohm is the intrinsic impedance of vacuum, k = ω/c is

the propagation constant in vacuum (c = 1/
√
ε0µ0 is the speed of light in vacuum),

κ =
√
µ0ω/η is the propagation constant in conductor, and η is the intrinsic impedance

of conductor:

η ≈
√
ωµ0

2σ
(1− i), 1

η0

√
ωµ0

2σ
<< 1. (1.33)

The third and forth lines in Eq.(1.32) express continuity of electric field and disconti-
nuity of magnetic field, respectively, at z = −d. The latter is due to non-zero electric
surface current in 2DES. The fifth and sixth lines express continuity of electric and
magnetic fields, respectively, at z = −D.

From Eq. (1.32) we can obtain relations between the E-field in the cavity at z = −d
for each of two circular-polarized modes, E± = E

(1)
± eikd + E

(2)
± e−ikd, and the corre-

sponding components j± of the electron current density. Calculations are significantly
simplified if we consider the frequency ω being close to ω0 = cπm/D, where m = 1, 2, ..
is the cavity mode number. Note that for an empty cavity each m-th mode is twice de-
generate with respect to two independent polarization modes E+ and E−. In addition,
we consider that 2DES is located at distance λ0/4 = cπ/(2ω0) from the second mirror,
that is at the antinode of the electric field. Finally, we assume that r1 ≈ 1 (that is
t1 ≈ 2) and r2 ≈ −1 (that is t2 << 1). Expanding in the first order of (ω − ω0)/ω0,
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√
ωµ0/(2σ)/η0, and t2, it is straightforward to obtain the required relation

D

c

(
i(ω − ωr)− (γint + γext)

)
E± − η0j± = 2i(−1)mEin

± , (1.34)

where ωr = ω0 − δωint − δωext is the resonant frequency of cavity,

δωint =
ω0

πm

√
ωε0
2σ

, δωext = −Im
( ω0

2πm
t2

)
, (1.35)

and

γint =
ω0

πm

√
ωε0
2σ

, γext = Re
( ω0

2πm
t2

)
, (1.36)

are internal (Ohmic) and external (radiative) loss rates of the resonator, respectively.
Eq. (1.34) gives us the first coupled relation between the EM field of the resonator

mode and the current density of electrons. The second one is simply given by j± =
σ±E±, where the ac conductivity is given by Eq. (1.27). Thus, we obtain a system of
coupled equations for electron-mode motion

(
D
c

[
i(ω − ωr)− (γint + γext)

]
−η0

nse
2/me i(ω ± ωc)− ν

)(
E±

j±

)
=

(
2i(−1)mEin

±
0

) (1.37)

In the absence of external drive, Ein
± = 0, the nontrivial solutions for E± and j±

exist only for ω such that the determinant of the matrix in the left-hand-side of
Eq. (1.37) vanishes. This provides frequencies ω1,2 for normal (eigen) modes of the
coupled electron-field motion. It is instructive to find these frequencies for the case of
zero losses, that is ν = 0 and γint + γext = 0. Then, we obtain

(ω − ωr)(ω ± ωc)−
nse

2

meε0D
= 0. (1.38)

For ωc ≈ ωr, two solutions ω1,2 = ωr ± g, where

g =

√
nse2

meε0D
, (1.39)

are realized for the E− mode. For this mode, the normal-mode splitting in the spectrum
of coupled electron-field motion is given by 2g. As discussed in Section 1.2.1, this mode
corresponds to RHCP electric field which rotates in the same direction as electrons in
the static magnetic field B0 oriented in positive z-direction. In other words, this
corresponds to the CR resonance of electrons coupled to the CR-active (E−) mode.
The CR-passive (E+) mode does not have any splitting as expected.

For the sake of comparison with the experimental results we derive an expression
for the normalized power reflection, which we define as the ratio between the time-
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averaged output and input MW powers, PR = EoutE∗out/(EinE∗in). From Eqs. (1.32) we
obtain

Eout
± =

(
1− 2(δωext + iγext)

(ω − ωr) + iγ + iη0σ±c/D

)
Ein
± , (1.40)

where γ = γint + γext is the total loss rate of the cavity. Assuming linearly polarized
(along x-axis) input MW field with Ein

+ = Ein
− = E0/

√
2, we obtain

PR =

∣∣E+
out

∣∣2 +
∣∣E−out∣∣2

E2
0

=
1

2

∣∣∣∣∣1 +
2(γext − iδωext)

i(ω − ωr)− γ − σ+
ε0D

∣∣∣∣∣
2

+
1

2

∣∣∣∣∣1 +
2(γext − iδωext)

i(ω − ωr)− γ − σ−
ε0D

∣∣∣∣∣
2

.

(1.41)

Similarly, the time-averaged power of Joule heating of 2DES due to MW electric field
is given by

PJ =〈Re(j)Re(E)〉t
=

1

2

(
Re(σ+)|E+|2 + Re(σ−)|E−|2

)
.

(1.42)

The numerical solutions for PR and PJ obtained by solving Eq. (1.37) for ns =
6× 107 cm−2, ν = 8× 107 s−1 and Q = 20, 000 are shown in Fig. 1.6. As seeing from
comparison with Fig. 1.4, our completely classical model reproduces the main features
of the experimental results. In particular, it reproduces the normal-mode splitting
observed in both cavity field and electron system responses.

As seen from comparison with Fig. 1.4, our model does not reproduce an additional
resonance appearing in both the reflection spectrum of the CR-passive LHCP mode
and the dc conductivity response of electrons. This resonance will be addressed in
Section 1.6.

1.5 Full quantum mechanical description of coupled
electron-mode motion

In this section, we present the full quantum mechanical treatment of the coupled
electron-mode motion and compare our results with the corresponding classical treat-
ment, as well as our experimental results. After formulating the quantum mechanical
Hamiltonian for the coupled system, we use quantum Langevin approach to formulate
the coupled equations of motion, as well as input-output formalism to relate input and
output cavity fields.
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Figure 1.6: Power reflection from the cavity (top panel) and power of Joule heating
of 2DES by MW field (bottom panel) versus the cyclotron frequency of electrons ωc
and frequency of MW excitation ω calculated from Eqs. (1.37), (1.41) and (1.42) for
ns = 6× 107 cm−2, ν = 8× 107 s−1 and Q = 20, 000.
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1.5.1 Hamiltonian of coupled oscillator system

We start with the description of EM field inside the model optical resonator shown
in Fig. 1.4. As described in Section 1.2.1, the EM field inside an empty single-mode
resonator can be described by an operator of vector potential

Â(z, t) =

√
~ω0

2ε0V

∑
α

(
eαf(z)âα(t) + e∗αf

∗(z)â†α(t)
)
, (1.43)

where sum is over two polarization degrees of freedom described by the complex po-
larization vectors eα. For example, as discusses in Section 1.2.1 e± = (2−1/2)(ex∓ iey)
represent the LHCP and RHCP fields. We will use notations âR and âL for the cor-
responding photon operators. The normalized function f(z) = i

√
2 sin(k0z), where

k0 = πm/D, m = 1, 2, .. , describes the spatial distribution of the electric field of
the m-th mode (see Section 1.2.1). Under the Coulomb gauge condition, ∇A = 0 and
∇φ = 0, the Hamiltonian of the system composed of a single EM mode and N -electron
system can be written as

Ĥ = ~ωr
∑
α

â†αâα +
1

2me

∑
e

(
π̂ππ + eÂ

)2
≈ ~ωr

(
â†LâL + â†RâR

)
+ ~ωc

∑
e

b̂†b̂+ ~g0
∑
e

(
b̂â†R + b̂†âR

)
,

(1.44)

where we adopted notations used in previous section for the frequency of resonant
cavity mode ωr ≈ k0/c. We used the rotating wave approximation (RWA), and neglect
the A2 term in the Hamiltonian. The single-electron coupling constant is given by
g0 =

√
e2ωc/(meε0ωrV ). The interaction term in the above equation can be viewed as

an exchange of a quantum of excitation between the electron cyclotron and the cavity
RHCP field. In RWA, the counter-rotating field of LHCP mode does not contribute to
the interaction. We will reexamine possible contribution of this mode later. Finally,
as in the previous section we assumed that electrons are located in the antinode of the
electric field of the EM mode, thus |f(ze)|2 = 2.

1.5.2 Coupled equations of motion

Next, we write the Heisenberg equations of motion for time-dependent operators âL

and b̂ as

˙̂aR = (−iωr − γ)âR − ig0Nb̂+ F̂a, (1.45a)
˙̂
b = −ig0âR + (−iωc − ν)b̂+ F̂b. (1.45b)

Here, we use the quantum Langevin equation and introduce the Langevin noise op-
erators F̂a and F̂b, which vanish in the corresponding mean value equations, as well
as the phenomenological relaxation rates γ and ν, in order to account for interaction
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of the system with environment [67]. The above equations describe two coupled har-
monic oscillators with frequencies ωr and ωc. It is easy to check that the corresponding
equations for mean values of operators âL and b̂ obtained from (1.45) are equivalent
to our classical equations (1.37) for complex amplitudes E− and j−. Indeed, it is easy
to see that the operators corresponding to these quantities are given by the Fourier
components of operators ĵ− and Ê− = i

√
2EvacâR, where Evac =

√
~ω/(2ε0V ) (see

Section 1.2.1). Using equations of motion (1.45), we obtain

[i(ω − ωr)− γ] 〈Ê−(ω)〉 − 2E2
vacS

~ωr
〈ĵ−(ω)〉 = 0,

e2ωcN

meωrS
〈Ê−(ω)〉+ [i(ω − ωc)− ν] 〈ĵ−(ω)〉 = 0.

(1.46)

The above system of coupled equations for the mean-values of quantum mechanical
operators is similar to the classical coupled equations (1.37), see Section 1.4. Note that
from Eqs. (1.46) the normal mode splitting is given by

g =

√
2e2E2

vacωcN

me~ω2
r

. (1.47)

The relation of this result to the classical expression Eq. (1.39) will be discussed in
Section 1.7.

In order to include an external pumping to our model, it is convenient to use Collect
and Gardiner’s approach, which allows to obtain relation between the input and output
fields [68]. We consider a one sided cavity for which the main source of loss (with the
rate γ) is coupling to external field. In this case, the boundary condition at the coupling
port reads

√
2γâR(L)(t) = â

(in)
R(L)(t) + â

(out)
R(L)(t), (1.48)

which is consistent with boundary conditions (1.32a). Note that operators for external
(in and out) fields are normalized such as â†â gives the in(out)coming number of pho-
tons per second. The equations of motion for operators âR(L) and b̂ lead to the linear
algebraic equations for the corresponding Fourier transforms u = (âR(ω), âL(ω), b̂(ω)),
which can be written in the matrix form as Mu = −√2γu(in), where

M =

i(ω − ωr)− γ 0 −ig0N
0 i(ω − ωr)− γ 0
−ig0 0 i(ω − ωc)− ν

 . (1.49)

The solution for u(in) = (â
(in)
R (ω), â

(in)
L (ω), 0), which can be obtained by simply inverting

the matrix M , reads
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âR(ω) =

√
2γ(ν − i(ω − ωc))

(i(ω − ωr)− γ) (i(ω − ωc)− ν) + g20N
â
(in)
R (ω), (1.50a)

âL(ω) =

√
2γ

γ − i(ω − ωr)
â
(in)
L (ω), (1.50b)

b̂(ω) = − ig0
√

2γ

(i(ω − ωr)− γ) (i(ω − ωc)− ν) + g20N
â
(in)
R (ω). (1.50c)

Using the above equations together with the boundary condition (1.48), we obtain the
linear input-output relations for two polarization modes

â
(out)
R

â
(in)
R

= −1− 2γ(i(ω − ωc)− ν)

(i(ω − ωr)− γ) (i(ω − ωc)− ν) + g20N
, (1.51a)

â
(out)
L

â
(in)
L

=
(ω − ωr)− iγ
(ω − ωr) + iγ

. (1.51b)

The normalized power reflection is given by PR = 〈â(out)†â(out)〉/〈â(in)†â(in)〉, which
results in the same relations as for classical quantities, see Eq. (1.40). The time-
averaged power absorbed by the electron system from MW field is given by

PJ = 〈̂j · Ê〉 = −i~g0ωcns
D

〈b̂†âR − b̂†â†R〉. (1.52)

The above equations completely reproduce results obtained from the classical treatment
and shown in Fig. 1.6.

1.6 Additional resonance

We have shown that both classical and full quantum models reproduce the result of the
normal mode splitting due to coupling between the cyclotron motion of electrons and
RHCP cavity mode, see Fig. 1.6. However, the experimental data shown in Fig. 1.5
exhibit an additional resonance peak when the MW frequency ω is close to both the
cavity frequency ωr and cyclotron frequency ωc. This result indicates that there is
an effective coupling between the electron motion and CR-passive LHCP mode of the
cavity.

This visible deviation from the ideal model can be explained by several mechanisms.
The leading contribution comes from the spatial inhomogeneity of the MW field on the
surface of liquid helium inside our experimental cell. The cylindrical copper cell in
our setup, see Fig. 1.3(b), has a diameter of the same order of magnitude as the
MW wavelength. As an illustration, the numerical simulation of the field distribution
inside the cell using boundary conditions imposed by the cell confinement is plotted
in Fig. 1.7(left panel). Here, we used a linearly polarized field as the input field.
Clearly, the field inside the cavity does not preserve the linear polarization. Similarly,
in Fig. 1.7(right panel) we show the polarization profile of the MW field for a pure
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Figure 1.7: (left panel) Distribution of MW electric field on the surface of liquid he-
lium inside the experimental cell under excitation with linearly (x-direction) polarized
field. (right panel) Polarization of MW electric field on the surface of liquid helium
under excitation with CP field.

circularly-polarized (CP) field as the input field. It clearly shows that the field is
not circularly polarized everywhere inside the cell. The physical explanation of this is
simple. According to the boundary conditions Eqs. 1.6 the MW electric field must be
always perpendicular to the conducting walls of the cylindrical cell, which is impossible
to satisfy for the pure CP mode. Therefore, interaction of the CP mode with the
conducting walls produces an admixture with the opposite polarization.

That means the cyclotron motion away from the center can also have an effective
coupling to the CR-passive mode. One can account for this effect by a small modifi-
cation to the interaction term (1.44) to reflect the spatial dependence of the coupling
between b̂ and â(R/L). The interaction part of the Hamiltonian reads,

ĤI =
∑
i

~
(
g
(i)
R b̂

(i)â†R + g
(i)
L b̂

(i)â†L

)
+H.c., (1.53)

where g(i)R(L) is a function of the position of particle i. In polar coordinate the interaction
Hamiltonian reads

ĤI =

∫ 2π

0

dφ r

∫ R0

0

dr Â(r, φ) · ĵ(r, φ), (1.54)

where φ is the azimuthal radian, r is the distance for the center, R0 is the inner radius
of the cavity.

In our cylindrical cavity, 2DES formed a pool of charge with diameter about 5 mm
at the center of the cell. In our simulations, we assumed that charge was uniformly
distributed in a circle of radius 5 mm around the center of the FB cavity. The power
reflection and the power of Joule heating were numerically calculated from the mean
value equations by the similar method used in Eq. (1.50). The results of our simulations
are plotted in Fig. 1.8. Comparison with Fig. 1.4 shows that our simulations reproduce
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Figure 1.8: Power reflection from the cavity (top panel) and power of Joule heating
of 2DES by MW field (bottom panel) versus the cyclotron frequency of electrons ωc
and frequency of MW excitation ω, calculated using the model with spatially inhomo-
geneous electromagnetic field and interaction term described by Eq. (1.54).
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all the main feature of the additional resonance appearing in the CR-passive LHCP
mode.

1.7 Discussion

In this Chapter, we described an experiment to realize the regime of strong coupling
between a many-electron system and EMmode in an optical resonator, as manifested by
the normal-mode splitting in spectrum of the coupled electron-mode motion. We also
showed that both the classical and full quantum description of the coupled system give
equivalent results, as well as completely accounts for all the experimental observations.

To illustrate the equivalence of two theoretical approaches further, let us examine
the expression for the coupling constant g which quantifies the observed normal-mode
splitting. Near the crossing point, ωr ≈ ωc, the full quantum expression (1.47) gives

g ≈
√

2e2E2
vacN

me~ωc
=

√
2elBEvac

~
√
N. (1.55)

On the one hand, this expression has a quantum mechanical meaning of a
√
N -enhanced

coupling of a single-electron dipole elB to the r.m.s. electric field of vacuum Evac, see
Section 3.1. On the other hand, by using the definition of Evac =

√
~ω/(2ε0V ), we

completely reproduce the classical result for g given by Eq. (1.39). Note that the
Plank’s constant ~ drops out from the expression for g.

The complete equivalence of the full quantum and classical descriptions of the cou-
pled linear quantum system discussed in this section is not surprising. Indeed, the
linearity of the obtained equations of motion for quantum-mechanical operators allows
one to construct closed mean-value equations for observables which completely corre-
spond to the classical equations of motion. The complete agreement of the classical
approach with the experiment is also not surprising since the input EM field is in a
classical coherent state and there are no considerable non-linear effects in our experi-
ment. Still, the regime of strong coupling demonstrated in our experiments can provide
possibilities to create and manipulate non-classical states of 2DES by introducing non-
linearities in the system, e.g. coupling the cyclotron motion to a degree of freedom
with effective two-level energy spectrum. Some theoretical models for such nonlinear
systems will be discussed in Chapter 2, while in Chapter 3 we describe our further ex-
periments with 2D electrons on helium to explore possibilities for observing quantum
effects of light-matter interaction in this system.

It is worthwhile to mention that in our calculation, we didn’t need to consider the
Coulomb interaction between the electrons and the interaction between electrons and
the helium surface excitations. For example, two-dimensional plasmons exist due to the
interaction among the SEs, which was experimentally observed by Grimes et al [69].
This phenomenon can shift the frequency of the cyclotron resonance. The changes
in CR linewidth and peak position against the pressing field E⊥ provides information
about the effective mass of SEs and about their coupling to the helium surface motion.
This was demonstrated in Édel’man’s experiments in [70] and [71]. In our experiment
these shifts are small and thus can be ignored. However, these interactions might be
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interesting for future investigation.
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Chapter 2

Adiabatic Preparation of squeezed
states

2.1 Overview
We showed in the experiment detailed in Chapter 1 the strong coupling between two
quantum harmonic oscillators, i.e., the strong coupling between the cyclotron motion
of surface electrons on liquid helium and the microwave photons in the cavity. The
experimental realization of strong coupling to photons in a quantum system is one of the
prerequisites for implementing some protocol of coherent control of matter using light.
In this chapter, we deviate from the experiments and focus on developing theoretical
protocols that have potential use in experimental systems including the surface electron
system on liquid helium. I will present a theoretical study about the use of a single
two-level system coupled to an oscillator mode or coupled to a collective spin in order
to generate squeezed states by slowly changing the driving terms. The results of this
study are published in [72]1.

This chapter is structured as follows. Section 2.2 briefly explains why we study
the adiabatic preparation of squeezed states using Jaynes-Cummings-type systems.
Section 2.3 introduces the theoretical model and related concepts. In Section 2.4, we
introduce the Hamiltonian and identify the analytical solution for the eigenstate that is
followed adiabatically by the system. The system is prepared in the ground state of the
Jaynes-Cummings Hamiltonian, and subject to a gradually increased resonant driving
of the oscillator mode until a maximum critical strength. In Section 2.5, we study the
case of a two-level system coupled to an effective large collective spin, for which the
initial ground state also transforms adiabatically through a sequence of eigenstates,
and for which one may explore system eigenstates for all driving strengths. Finally,
Section 2.6 contains the conclusions and an outlook for this chapter.

2.2 Motivation
How might one prepare and manipulate the quantum states of matter using precisely
controlled light-matter interactions, especially into non-classical states which can be

1This chapter describes joint work with Prof. Klaus Mølmer, Aarhus University.

33
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used for high precision measurements and quantum information processing? This ques-
tion can be answered by studying various simple theoretical models. One of the simplest
non-trivial interacting quantum mechanical models is the one that contains a two-level
system(TLS) and a quantized harmonic oscillator (HO) mode which couples strongly to
that TLS. Yet, this minimalistic model can describe a wide range of experimental phys-
ical systems. Among them are atoms in cavities (cavity QED) [12, 13], cold trapped
ions [14, 15], superconducting qubits in microwave resonators (circuit QED) [17], elec-
trons on liquid helium [26, 27], and many others [73]. In this chapter, we are going
to study experimental protocols that can be implemented in these systems to generate
non-classical states called squeezed states.

Squeezed states of an oscillator mode are non-classical states, for which the fluc-
tuations in one of its quadratures are smaller than that of a coherent state [74–77].
Squeezed states of light hold potential for high precision optical measurements, and
squeezed microwave fields were recently shown to enhance the sensitivity in electron
spin resonance experiments [78]. The robust generation of such states is of interest
in many experimental systems with applications for sensing and quantum information
processing.

In the Section 2.4, we use the Jaynes-Cummings Model (JCM) [79], which describes
the interaction between the TSL and the HO with the rotating wave approximation
(RWA). Even with the simplification brought on by the RWA in the JCM, one can
see that the discrete nature of the bosonic mode leads to interesting features. These
features include, the ‘collapse and revival’ of Rabi oscillations, demonstrated by atoms
in microwave and optical cavities [12, 45, 80, 81], or coupling of the internal degree of
freedom to the center-of-mass motion of ions [14, 15, 82]. The non-linearity induced by
the two-level system causes an effective Kerr non-linearity. This leads to squeezing [83,
84], superpositions of coherent states of the oscillator [85], and, similar to classical
nonlinear systems, bistability and phase transitions are also present in the JC model
[86, 87].

We have investigated the generation of squeezed states by adiabatic evolution of a
JC system subject to a slowly varying coherent drive on the oscillator component, in
Sec. 2.4. In addition, we supplement the analysis of the oscillator with the study of a
single two-level system coupled to a large spin. Which might describe, for example, a
central spin coupled to the collective symmetric states of other spin 1/2 particles in a
spin-star configuration [88].

Collective spin squeezed states [89–91] have non-classical correlations (entangle-
ment) between their spin 1/2 constituents [92, 93], and they have been proposed for
use in precision clocks and magnetometers, and as entanglement sources for quantum
information protocols [6]. Spin squeezing of atomic ensembles may be obtained by
suitably engineered interactions. Using Rydberg blockade interactions, the use of laser
excitation pulses have been proposed to implement adiabatic protocols to drive a large
system of atoms into spin squeezed and entangled states [94, 95].

In Section 2.5, we study a case analogous to the JCM, namely that of a classically
driven spin interacting with a single two-level system, and we identify the states ex-
plored by this system under adiabatic variation of the interaction parameters. Unlike
for the oscillator, the states of the large spin are always normalizable, but they evolve
through spin squeezed and very non-classical quantum states.
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2.3 Concepts and methods

In this section, we are going to review the technical backgrounds of a few subjects
needed by the main part of the study. Firstly, we introduce the basics of quantum
harmonic oscillator and its squeezed states in Subsection 2.3.1. This is followed by
a brief review of the phase space representation of quantum states, which we use to
visualize our results in this chapter. Then we proceed to use the Jaynes-Cummings
model to describe the interaction between a two-level-system and the harmonic oscil-
lator. In Subsection 2.3.4 we introduce the properties of the large collective spins, the
spin squeezed states and their connections to harmonic oscillator.

2.3.1 Properties of quantum harmonics oscillators

Firstly we’ll review some important properties of the HOs, and uncertainty relations in
different states of HOs. Secondly, we define the phase space representations, so that it
can be used to visualize the quantum states in a intuitive way. These are the concepts
needed in Section 2.4.

The Hamiltonian of a harmonic oscillator can be written as

HHO =
P 2

2m
+

1

2
mω2X2 = ~ω(a†a+

1

2
), (2.1)

where X is the position operator, and P ≡ −i~∂/∂X is the momentum operator.
These operators follow the canonical commutation relation [X,−i~∂/∂X] = i~.

The dimensionless annihilation operator a and its adjoint a† for the HO are defined
as

a ≡
√
mω

2~

(
X +

i

mω
P

)
, a† ≡

√
mω

2~

(
X − i

mω
P

)
, (2.2)

so that they follow the simple commutation relation
[
a, a†

]
= 1.

The exact values of m and ~ are irrelevant to the discussions, in the rest of this
chapter. The will be set to ~ = 1, m = 1. I will also use observable x, p which
correspond to position and momentum operator respectively,

x = (a+ a†), p = (a− a†)/i. (2.3)

With the definition of the HO, we are going to study the uncertainty of the observables
in the different states of HOs including the Fock state, the coherent state and the
squeezed state.

The uncertainty principle

The uncertainty of an observable is define by its standard deviation

∆A =

√〈
A2
〉
−
〈
A
〉2
, (2.4)

where A is an Hermitian operator and 〈A〉 its expectation value.
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One can show that [96]

∆A2∆B2 ≥ |〈δAδB〉|2 =
1

4
|〈[A,B]〉|2 +

1

4
|〈{δA, δB}〉|2, (2.5)

where δA ≡ A− 〈A〉. This leads to the familiar uncertainty principle

∆A∆B ≥ 1

2
|〈[A,B]〉|. (2.6)

Now we can see this uncertainty relation in the HO case. For the eigenstates of
(2.1), i.e., the Fock state a†a |n〉 = n |n〉, the uncertainty of x and p is simply

∆x2n = ∆p2n = 2n+ 1 (2.7)

The ground state of HO, also called the vacuum state, |n = 0〉, reachs the equal sign
in Eq. (2.6).

Coherent states

Coherent states of harmonic oscillators are the eigenstates of the non-hermitian anni-
hilation operator in [97–99], defined as

a |α〉 = α |α〉 . (2.8)

Unlike number states with n ≥ 0, coherent states can be generated by applying a
spatially homogeneous periodic driving force to the harmonics oscillator, thus is the
most ‘classical’ pure state.

Let D(α) be a unitary displacement operator

D(α) ≡ exp
(
αa† − α∗a

)
= e−|α|

2/2eαa
†
e−α

∗a, (2.9)

The a coherent state can be generated by applying the unitary displacement operator
D(α) on the ground state |0〉, i.e.

|α〉 = D(α) |0〉 = e−|α|
2/2
∑ αn√

n!
|n〉 , (2.10)

where a |0〉 = 0.
One can use a variation of the Baker–Campbell–Hausdorff formula to evaluate the

transformation property of an operator. It reads

eζBAe−ζB = A+ ζ[B,A] +
ζ2

2!
[B, [B,A]] + · · · , (2.11)

where B is an operator and ζ a number [100].

D†(α)aD(α) = a+ α, D†(α)a†D(α) = a† + α∗ (2.12)

The variance of the two quadrature in a coherent state |α〉 should be the same as
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the ones in the vacuum state |0〉

∆x2coh = ∆p2coh = 1. (2.13)

Eq. (2.13) is the theoretical limit of variance for a classically driven harmonic oscil-
lator or light, to further lower this value, one has to use non-classical quantum states,
which are the squeezed states.

Squeezed state of a quantum harmonic oscillator

A squeezed state in general refers to the state in which one observable’s fluctuation is
reduced even compared to that of the coherent state [101, 102]

∆A <
1

2
|〈[A,B]〉|. (2.14)

Here the fluctuation of A is reduced at a cost of the increasing fluctuation in the other
observable B.

Squeezed light is important for modern quantum applications, because it reduces the
fluctuation of light to be below the classical limit. It allows us to push the precision of
measurements further than what is allowed by using coherent light. One can read more
about the development of squeezed light in quantum optics in the review papesr[103,
104].

One way of generating a squeezed state is by applying a unitary transformation of
higher power of a and a†. For example

S(ζ) = exp
[
1
2
(ζ∗a2 − ζa†2)

]
= exp

(
i
2
r(XφYφ+π/2 + Yφ+π/2Yφ)

)
, (2.15)

where ζ = rei2φ for r, φ ∈ R.
S(ζ) has the useful transformation property:

S†(ζ)aS(ζ) = cosh ζa+ sinh ζa† = a cosh r − a†e2−iφ sinh r (2.16)

which shows that 1) one can reduce the uncertainty of one quadrature by applying
squeezing operator to a coherent state. 2) the eigenstate of linear combination of a and
a† can be obtained using D(α) and S(ζ).

It is useful to define

b ≡ ua+ va† = cosh ζa+ sinh ζa†, (2.17)

which can have the canonical commutation relation
[
b, b†

]
= 1 if the constraint |u|2 −

|v|2 = 1 is imposed. The uncertainty the two quadratures for the eigenstates of b is

Var(x) = |u− v|2, Var(p) = |u+ v|2, (2.18)

when both µ and ν are real. These eigenstates of b are also called the generalized
coherent state [75, 105, 106].
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The squeezing of an arbitrary state is quantified by the squeezing parameter

ξ2 = 2 min
θ∈(0,2π)

Var(Xθ) = min
θ

Var(ae−iθ + a†eiθ), (2.19)

and for squeezed state S(ζ) |α〉 the squeezing parameter is

ξ = cosh ζ − sinh ζ = exp(−ζ), (2.20)

for ζ > 0.

2.3.2 Quasi-probability representation of quantum states and
visualization

A quantum state cannot have a real probability distribution in the phase space in
the same way as in a classical system, because the probability of finding a particle
in a certain position and momentum in the same time is not well-defined. However,
when relaxing the axiom of probability one may define quasi-probability distributions
in the phase space to represent a quantum state in the phase space, such that . In this
chapter, we choose to use Wigner function and Husimi Q-function to visualize the state
which represents expectation values of symmetrically ordered and anti-normal ordered
characteristic functions respectively [107, 108].

An arbitrary mixed or pure quantum state is defined by density matrix

ρ =
∑
i

pi |ψi〉〈ψi| , (2.21)

where the probabilities pi are non-negative and add up to one.
The quasi-probability representation of ρ can be defined by Fourier transforms of the

representations’ corresponding characteristic functions [67]. For one-dimensional sys-
tems, the characteristic functions for the Wigner-function and the Husimi Q-function
are

χ(η) ≡
〈
eηa
†−η∗a

〉
= Tr

(
ρeηa

†−η∗a
)
, (2.22a)

χA(η) ≡
〈
e−η

∗aeηa
†
〉

= Tr
(
ρe−η

∗aeηa
†
)
, (2.22b)

which are the expectation values of the displacement operator in Eq.(2.9). The operator
in χA(η) is called anti-normal ordered, since the all the creation operators a† are placed
on the right side compared to the one in χ(η).

Here we denote α ≡ (x+ ip)/2 as the coordinates in the phase space. The Wigner
function W (α) and Husimi Q-function Q(α) naturally relate to their characteristic
functions by the Fourier transforms:

W (α) =
1

π2

∫
exp(η∗α− ηα∗)χ(η)d2η (2.23a)

Q(α) =
1

π2

∫
exp(η∗α− ηα∗)χA(η)d2η. (2.23b)
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Both W (α) and Q(α) have clear physical interpretations. One can recover the
probabilities P (x) = 〈x|ρ|x〉 or P (p) = 〈p|ρ|p〉 by integrating over the variables p and
x respectively

P (x) =

∫ ∞
−∞

dpW (x, p), P (p) =

∫ ∞
−∞

dxW (x, p), (2.24)

where we denote W (x, p) ≡ W (α)/4 by convention.
In FIG. 2.1 we plot the Wigner functions of the vacuum state, a coherent state, a

squeezed state, and a superposition of two coherent states (a cat state). In particular,
in panel (d) we can see the oscillation between positive and negative values in W (0, p),
hinting that the interference pattern one would observe in the function P (p).

The Q-function Q(α) can also be interpret as the overlap between ρ and a coherent
state |α〉. The equivalent definition for Q(α) reads

Q(α) =
1

π
〈α|ρ|α〉 . (2.25)
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Figure 2.1: Wigner function representation of various pure states|ψi〉. (a) vac-
uum state |ψa〉 = |0〉; (b) a coherent state |ψb〉 = D(α = 2) |0〉;(c) a squeezed
state|ψc〉 = S(ζ = −1/2) |0〉 ;(d) a superposition of two coherent states |ψd〉 =
1√
2
(D(−2) +D(2)) |0〉.

In FIG. 2.2 we plot the Q-functions of the vacuum state, a coherent state, a squeezed
state, and a superposition of two coherent states (a cat state). As opposed to W (α),
Q(α) is non-negative. The Q-function provides a more direct measure of how the
quantum state ρ is related to the set of coherent states |α〉.

2.3.3 JCM and the coupling between a TSL and a HO

After reviewing the properties of the harmonics oscillator and its phase-space represen-
tations, in this subsection, we are going to introduce the interaction between the TSL
and the HO and the JCM. This kind of interaction is common in many experiments.
To give two examples, in Jaynes and Cummings’ original paper [79], the atom interacts
with a photon field inside an optical cavity via the electric dipole interaction. When
the atom resonates at the same frequency as the cavity, excitations can be coherently
exchanged between them. If the speed of this exchange exceeds dissipation, we say
that it is in the strong coupling regime.
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Figure 2.2: The Q-function representation of various pure states|ψi〉. (a) a vac-
uum state: |ψa〉 = |0〉; (b) a coherent state: |ψb〉 = D(α = 2) |0〉;(c) a squeezed
state|ψc〉 = S(ζ = −1/2) |0〉 ;(d) a superposition of two coherent states |ψd〉 =
1√
2
(D(−2) +D(2)) |0〉.

For trapped ions or electrons on Helium, instead of photons in optical cavity, the
HO degrees of freedom can be used to describe the center-of-mass motion or the Lan-
dau Levels respectively. In this case, the TLS and the HO have different excitation
energies. Because of energy conservation, the energy transfer between these two sys-
tems is facilitated by an external electromagnetic field that oscillates at the difference
of the resonant frequencies of the TSL and the HO.

The JC Hamiltonian for an atom in an optical cavity in the Schrödinger picture
reads

HJC = ωaa
†a+

1

2
ω0σz + g1(σ+a+ σ−a

†), (~ = 1) (2.26)

where a and a† are the annihilation and creation operators for a single radiation mode
in the cavity resonator with frequency ωa, and the σ±,z are the spin operators for the
spin ±/z components for the two-level atom with frequency ω0. The Pauli matrices
are written explicitly as σz = − |g〉〈g| + |e〉〈e|, σ+ = |e〉〈g|, and σ− = |g〉〈e|, where we
define |g〉 and |e〉 as the ground and excited states of the atomic TLS. The eigenstates
of a†a are labeled by |n〉, where n is the photon number. We denote |n,m〉 = |n〉⊗ |m〉
as the product states of the TLS and HO, where |m〉 = |g〉 or |e〉.

Note that for the Hamiltonian (2.26) the total excitation number operator N ≡
a†a+ 1

2
+ 1

2
σz commutes with HJC , making the total excitation number N a conserved

quantity. As a result, HJC can be written in a block diagonal form, in which each block
is an invariant subspace spanned by {|n, e〉 , |n+ 1, g〉} except for the first block which
is spanned only by {|0, g〉}.

In order to discuss the eigenstates and eigenvalues of HJC , it is convenient to use a
rotating frame, i.e., an interaction picture, in which HJC is split into two parts

HJC,S = H0,S +H1,S, (2.27a)

H0,S = ωa(a
†a+

1

2
σz), (2.27b)

H1,S = δ
1

2
σz + g1(aσ+ + a†σ−), (2.27c)
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where δ ≡ ω0 − ωa is the detuning between the cavity and the atom.
For this we use the rule that an operator A is transformed under a unitary operation

as
AI = U−1ASU, U = exp(−iH0,St), (2.28)

which for Eq. (2.26), and with U = exp
[
−iωat(a

†a+ 1
2
σz)
]
, it yields

HI,1 = δaa
†a+ g1(aσ+ + a†σ−). (2.29)

We can diagonalize Eq. (2.29) using the fact that it has the conserved quantity N .
In the rotating frame the block Hamiltonian H(N) reads

H
(N)
I =

(
−δa/2 g1

√
n+ 1

g1
√
n+ 1 δa/2

)
. (2.30)

which has the eigenstates

|0〉 = |g, 0〉 ,
|N,±〉 = sin(θn/2) |n+ 1, g〉 ± cos(θn/2) |n, e〉 , (2.31)

where θn ≡ arctan
(
2g1
√
n+ 1/δ

)
.

The eigenvalues of H1,I , i.e., the ‘equasi-eigenergy’ are

E0 = 0

EN,± = ±1

2

√
δ2 + 4g21N, N = 1, 2, . . . .

(2.32)

As shown in Eq. (2.31), the ground state of JCM is a product state while the
excited states are entangles states between |g, n+ 1〉 and |e, n〉. In particular the
energy splitting between the |0, g〉 → |1,±〉 transition, 2g1, when δa = 0, is called the
“vacuum” Rabi splitting [109].

We have to bear in mind that the conservation of excitation number N is often the
result of applying the rotating wave approximation (RWA). This is because without
the RWA, the interaction between atoms and the linearly polarized photon mode is

H1,Rabi(t) = g1(a+ a†)(σ+ + σ−), (2.33)

which does not commute with the operator N . We approximate H1,Rabi by ignoring
the counter rotating term aσ− + a†σ+, which is valid when g1 � ω0.

If the HO corresponds to the center of mass motion of a charged particle in a
harmonic trap or to the Landau Levels of electrons on helium, the HO frequency ωa is
much less than that of the TLS one ω0. This case the full Hamiltonian in the Schrödinger
picture is given by (2.34), which can produce the same interaction term in the rotating
frame as the one in (2.29).

In the case of a single trapped ion, which is coupled to a standing wave radiation
field, as demonstrated in [15, 110]. This classical radiation field drives a lower sideband
optical transition between |n, e〉 and |n+ 1, g〉, where |n〉 are the eigenstates of the
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center-of-mass motion in a harmonic trap. The Hamiltonian reads

Hion = ωaa
†a+

1

2
ω0σz +

Ω

2
sin[η(a+ a†)]

(
σ+e

−iωrt +H.c.
)
, (2.34)

where ωr is the angular frequency of the external radiation field, η is defined as the
Lamb-Dicke parameter, and Ω is the Rabi frequency for the atom-light interaction.
When η(a + a†) is small, we can approximate sin[η(a + a†)] ≈ η(a + a†) and use a
unitary operator

U(t) = exp
(
−iωaa

†at
)

exp[−i(ωrt)σz/2] (2.35)

to transform (2.34) into a time independent Hamiltonian in the interaction picture by
neglecting the counter-rotating terms.

H1,I =
1

2
δσz +

1

2
Ωη(aσ+ + a†σ−), (2.36)

where δ = (ω0 − ωa)− ωr. This is of the same form as (2.29).

JCM with external drive

In the JCM, we can add a linear drive term to describe the external field driving the HO
degree of freedom directly. In this situation, the combined excitation number N may
no longer be conserved, and therefore the system has more complicated eigenstates
and eigenvalues. For example, when the oscillator is coupled to a classical field the
Hamiltonian is given by

Hd = H0 +HJC(t) +Hf (t), Hf (t) = g2(a+ a†) cos(ωf t). (2.37)

This driven JCM is often discussed in the context of cavity or circuit QED, in
which the harmonic oscillator term represents the photons in a resonator, [111–113].
In this model the presence of the TSL gives rise to a nonlinearity for the cQED system,
which enables feature like bistability and dynamic quantum phase transition. In par-
ticular, the eigenstate and eigenergies for when the frequency of the external drive is
on-resonance, i.e., ωa = ωf , was solved by [114]. In section 2.4 we will study this model
in detail, in the context of using its property to generate squeezed states mentioned
above.

2.3.4 Collective spin systems

Besides the squeezing phenomena in bosonic systems (harmonics oscillators), squeezing
of spin (or angular momentum) systems is also an interesting and useful topic for
quantum applications [89–91, 115]. In the most general sense, the spin systems have
finite dimensions which only host 2s+ 1 states, as opposed to the harmonic oscillator
systems. For experiments, a collective spin can be constructed by an ensemble of
TLSs or a combination of two HOs. I will consider the adiabatic generation of non-
classical states including spin-squeezed states in Section2.5. The relevant concepts will
be reviewed in this subsection, including the intuitive explanation for the Dicke state,
the coherent spin state and the squeezed spin state.
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Here let us consider an ensemble of N two-level-system or spin-1/2 particles. A
total angular momentum operator for the spin ensemble is given by

J =
1

2

∑
i

σi, (2.38)

where σi is the vector containing three Pauli matrices for the i-th particle.
The spin operators follow the commutation relations for Lie algebra of the special

unitary group SU(2)
[Ji, Jk,=]iεijkJk, (2.39)

where the εijk is the Levi-Civita symbol. To specify, εxyz = 1, εxzy = −1.
We also define the spin raising and lowing operators J± ≡ Jx± iJy, which have the

commutation relation reads

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (2.40)

The Hilbert space formed by all the individual spins combined can be divided
further into invariant subspaces form by the degenerate eigenstates of J2, which have
eigenvalues j(j+1). Since J2 commutes with Jx,y,z, we may choose to use the eigenstates
of Jz, with eigenvalue m to label states within the degenerate subspace of J2. These
states |j,m〉 are known as Dicke states [116], and one can use the Dicke states |j,m〉
as a new basis to describe the collective spins.

The Dicke states are analogous to the Fock states of photons. A Dicke state with
m 6= ±j by definition is in a superpostion state composed by all the possible combina-
tion of individual spin configurations which produce the same quantum number j and
m. This superposition of product states cannot be factorized and there is entanglement
between the individual component. Therefore these states are non-classical and can be
used as a reliable witness of the existence of entanglement [93, 117].

Besides fundamental research, these non-classical states of collective spins can be
used to enhance the precision of measurements in a Mach-Zehnder interferometer and
Ramsey spectroscopy, for example as described in the paper by Wineland and co-
workers [91]. In short, there are two limits of relative sensitivity in phase or excitation
population that one can get by using N two-level system compared to use only one TLS.
The minimal scaling of noise for N uncorrelated (classical) TLSs is 1/

√
N , which is

known as the shot-noise limit. This limit can be obtain optimally by using coherent spin
states(CSS) [118]. By using N correlated TLSs, however, in the best case scenario, one
can reach the Heisenberg limit 1/N [91, 119, 120]. A maximally spin-squeezed state,
like a Dicke state with j = N + 1/2 and m = 0, can be used to generate measurement
with precision up to this Heisenberg limit. The quantitative description of this property
is written in the following subsections.

Uncertainty, measurement, and squeezing parameter(work in progress)

This subsection is going to define the degree of squeezing and its impact for improving
measurements quantitatively.

Following the general case given in Eq. (2.6), the Heisenberg uncertainty relation
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involving J is

∆Jx∆Jy ≥
1

2
|〈Jz〉|, (2.41)

which is true for other combinations of Jx,y,z. The uncertainty is related to the quantum
states’ sensitivity to rotation.

Recall that the coherent state of a HO can be used to describe a classical coherent
state of light. The coherent spin states (CSS) describes a classical state of a spin ensem-
ble, in which there is no quantum correlation (entanglement) between the spins [118].
The CSS is a product state of N individual spins all pointing at the same directions
specified by spherical coordinate (θ, φ).

|θ, φ〉 =
N⊗
l=1

(cos
θ

2
|0〉l + eiφ sin

θ

2
|1〉l), (2.42)

in which |0〉 and |1〉 are the eigenstates of σz with eigenvalues −1 and 1. Note that
some literature might use the opposite convention.

By the given definitions, CSS can also be described by rotating the eigenvectors of
the Dicke state |j,m〉. Let R(θ, φ) be the rotation operator

R(θ, φ) ≡ exp(ζJ+ − ζ∗J−) = exp{1
2
θ[exp(−iφ)J+ − exp(iφ)J−]}, (2.43)

where ζ = −(θ/2) exp(−φ).

Figure 2.3: Bloch sphere representation of a coherent spin state R(θ, φ) |j,−j〉.

Using Eq. (2.11) we can derive the transformation properties of J under a rotation
along the z axis [121].

exp (Jzθ) J± exp (−Jzθ) = J±e
±θ (2.44a)

exp (Jzθ) Jx exp (−Jzθ) = Jx cosh θ + iJy sinh θ, (2.44b)
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and get

|θ, φ〉 ≡ R(θ, φ) |j,−j〉 = (1 + |η|2)−j
j∑

m=−j

(
2j

j +m

)1/2

ηj+m |j,m〉 , (2.45)

where the Dicke state |j,m〉 are eigenstates of Jz of eigenvaluem, and η = − tan(θ/2) exp(−iφ).
For interferometry purposes, one can prepare the system in an CSS |θ = π/2, φ〉, and

measure the angle φ as an output of the interferometer. This represents the best case
scenario for N uncorrelated TLSs in terms of minimizing the uncertainty ∆φ, which
can reach the shot noise limit 1/

√
N . However, if one uses an entangled ensemble of

N TLSs, in theory, the uncertainty can be lowered to the Heisenberg limit 1/N . To
quantify this improvement one can use the spin squeezing parameter ξR define by[91]

ξR =
√

2J ∆ Jy/|〈Jz〉|. (2.46)

For a squeezed spin state, there is relation ∆φ = ξR/
√
N , when ξR < 1 the phase

sensitivity to rotation is improved over CSS.

Similar improvement is also manifested by the spin population statistics
∣∣∣〈ψ|j,m〉y∣∣∣2.

A coherent spin state will follow a binomial distribution, which implies the spin is un-
correlated; while the a squeezed spin state can follow a sub-binomial distribution.

Note that, there are other commonly used but different spin-squeezing parameters
defined by other authors, for example, [90].

On the other hand, measuring the the uncertainty in these spin state observable
can serve as a sufficient witness of entanglement within the ensemble[117],[93].

Connection to harmonic oscillators

Besides physical spin ensemble, on can use the combination of two HOs to construct
a large spin. This mapping allow us to describe Mach-Zehnder type of interferometry
using angular momentum eigenstates [89, 91, 122]. These two different physical systems
are connected because they follow the same SU(2) or SU(1, 1) symmetry. To construct
large spin using harmonic oscillators, one may introduce Schwinger’s oscillator model
of angular momentum [123]. We define abstract operators:

J+ ≡ a†1a2, J≡a
†
2a1, (2.47)

and
Jz ≡ (a†1a1 − a†2a2)/2. (2.48)

Defining the total j to be
j ≡ (a†1a1 + a†2a2)/2, (2.49)

leads to
J2 = J2

z +
1

2
(J+J− + J−J+) = j(j + 1). (2.50)

This way we associate j with the total excitation number of the two HOs, and
associate Jz with the difference between the excitation number of the two HOs.
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2.3.5 Adiabatic time evolution

If the time-dependent Hamiltonian H(t) of a quantum system varies slowly, at a time
scale T such that h/T is small compared to the gaps between eigenenergies. The
system will be following the eigenstates of the instantaneous Hamiltonian, as stated in
the well-known adiabatic theorem[124].

To show the properties of time-dependent Hamiltonian, let |n; y〉 be the instanta-
neous eigenstates of H(t).

H(t) |n; t〉 = En(t) |n; t〉 (2.51)

Let |α; t〉 ≡ ∑n cn exp(iθn) |n; t〉 be a general state evolving under H(t), where θn ≡
−(
∫ t
0

dt′En(t′))/~ is the dynamic phase.
If |n; t〉 is not degenerate, rearranging the Shrödinger equation i~∂t |α; t〉 = H(t) |α; t〉

gives the differential equation for the “mixing” of eigenstates due to the time evolution.

ċm = −cm 〈m|
[
∂t |m〉

]
−
∑
n6=m

cn exp
[
i(θn − θm)

]〈m| Ḣ |n〉
En − Em

. (2.52)

Adiabatic approximation

In the limit of slow evolution the chaange in the Hamiltonian Ḣ is small enough that

〈m|Ḣ|n〉
Enm

� 〈m|∂tm〉 , (2.53)

so the second term in (2.52) can be ignored. Consequently, cm(t) acquires an extra
phase factor associates with 〈m|∂tm〉 while the population |cm(t)|2 is unchanged. [125]

cn(t) = exp(iγn(t))cn(0), (2.54)

where γn(t) is a real number defined by

γn(t) ≡ i

∫ t

0

dt′ 〈n|∂t′n〉 (2.55)

When degeneracy is present, the system evolves adiabatically within the degenerate
subspace. This generates a non-Abelian analog of Berry’s geometric phase[126].

2.4 Jaynes-Cummings Hamiltonian with the oscilla-
tor subject to a resonant, linear drive

We consider a two-level system (TLS) with a ground state |g〉 and an excited state |e〉,
which is described by the raising and lowering operators, σ+ = |e〉〈g| and σ− = |g〉〈e|.
It also interacts resonantly with strength g1 with a quantized oscillator, described by
the operators a and a†, which in turn is subject to a resonant classical driving force
of strength g2. The schematic level diagram shown in Figure 2.4 depicts the product
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Figure 2.4: Energy level diagram.

eigenstates |χ, n〉 = |χ〉 ⊗ |n〉 of the uncoupled systems, where χ = g, e denotes the
state of the TLS and n is the excitation number of the oscillator mode.

As introduced in subsection 2.3.3, in the rotating frame in the interaction picture
(with respect to the bare atom and oscillator Hamiltonians) and with the rotating wave
approximation, the Hamiltonian takes the form [67]

HI = g1
(
σ−a† + σ+a

)
+ g2

(
a† + a

)
. (2.56)

A system of this kind can be implemented in a variety of quantum systems with two-
level and oscillator degrees of freedom. In the case of a single trapped ion, g1 can be
obtained by driving a lower sideband optical transition, while g2 can be implemented
by an electric RF interaction with the charged particle motion. Atoms in cavities are
excited by absorption of a cavity photon with strength g1, while resonant illumination
of the cavity coherently excites the cavity mode with strength g2 [14, 15]. Throughout
the whole section, unless stated otherwise, we only consider the eigenstates in the
rotating frame. The full Hamiltonian is described in subsection 2.3.3.

In the absence of pumping of the oscillator (g2 = 0), the system is governed by the
usual JC Hamiltonian and has the well known dressed eigenstates, 1√

2
(|g, n〉±|e, n−1〉),

with symmetric pairs of energies ±g1
√
n around the zero energy of the ground state

|g, 0〉. The presence of the g2 term in the Hamiltonian (2.56) does not change the
symmetry of the spectrum: for any eigenstate |Ψ〉 of HI with eigenvalue E, it is easy
to verify that (−1)a

†a|ψ〉 is an eigenstate with eigenvalue −E.

All eigenvalues of the Hamiltonian (2.56) for g2 < g1/2,

E0 = 0, E±n = ±√ng1
(

1−
(

2g2
g1

)2
) 3

4

(2.57)

have been identified by Alsing and Carmichael together with expressions for the cor-
responding eigenstates [114].
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Figure 2.5: A few smallest non-negative scaled eigenvalues: En/g1, of the Hamilto-
nian (2.56), in the truncated Fock basis of the oscillator (Ncut = 2000). The spectrum
is symmetric with eigenvalues ±E around zero. The horizontal axis is a transition
parameter u ≡ 2g2/(g1 + 2g2).

2.4.1 The eigenstates

Diagonalizing the Hamiltonian over the full parameter range, we show the 21 lowest
lying non-negative eigenvalues in Fig. 2.5 as function of the parameter u = 2g2/(g1 +
2g2). The numerical results confirm the existence of the zero eigenvalue over the whole
parameter range and the collapse of all eigenvalues to zero when g2 → g1/2 (u →
1/2). In the limit where u = 1, the system is only subject to the linear Hamiltonian
HI = g2(a + a†) = g2 · x, and the resulting, un-normalizable position eigenstates have
a continuum of eigenvalues. Due to the truncation in Fock space at Ncut = 2000 in
the numerical diagonalization, with a resulting largest xrms '

√
Ncut, however, the

eigenvalues show almost equidistant spacing ∝ 1/
√
Ncut in the right hand side of the

figure.
We now turn to the adiabatic evolution of the zero energy state as the driving

strength g2 is gradually increased. We expect to follow the zero energy eigenstate
adiabatically as long as the change of Hamiltonian is slow compared to the energy
gap to the other states, i.e., until we approach g2 = g1/2. Although the full set of
eigenstates is identified in [114], it is instructive to deal separately with the zero energy
eigenstate, and we apply the product state ansatz |Ψ〉 = |χ〉 ⊗ |φ〉 with the two-level
systems parametrized as |χ〉 = (cos θ/2, sin θ/2)T . This yields an equation for each
spin component of the eigenvalue equation, that must both be fulfilled by the oscillator
state |φ〉, [

g1 sin
θ

2
a† + g2 cos

θ

2

(
a+ a†

)]
|φ〉 = 0[

g1 cos
θ

2
a+ g2 sin

θ

2

(
a+ a†

)]
|φ〉 = 0.

(2.58)
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This system has unique solutions for |φ〉 only if they are linearly dependent, which
allows to find the relation

sin θ = −2g2/g1, (2.59)

with real solutions for −π/2 < θ < π/2 as long as |g2/g1| < 1/2. It is worth noting
that the equations (2.58) for the oscillator state can be written in the familiar form(

µa+ νa†
)
|φ〉 = 0, (2.60)

where the real parameters

ν = − sin2(θ/2)
√

sec(θ),

µ = cos2(θ/2)
√

sec(θ),
(2.61)

obey the normalization condition µ2−ν2 = 1. The solutions to eq. (2.60) yield minimum
uncertainty squeezed states [76, 77] with variances in the x = a+ a† and p = i(a† − a)
oscillator quadratures given by

Var(x) =
〈
(a+ a†)2

〉
= (µ− ν)2 = sec θ,

Var(p) =
〈
(i(a† − a))2

〉
= (µ+ ν)2 = cos θ.

(2.62)

By applying a classical field or a coherent drive to a cavity or a mechanical oscillator,
coupled to a two-level system, the oscillator is driven adiabatically into a squeezed state,
and we believe that this may be a robust, practical protocol to achieve appreciable
squeezing. It is remarkable that while the adiabatically varying Hamiltonian passes
between the Jaynes-Cummings Hamiltonian and the x quadrature operator, and one
might hence have expected the zero energy eigenstate to gradually transform into
the x = 0 position eigenstate, we instead observe strong squeezing of the conjugate
observable p, as the system approaches the critical driving strength, g2 = g1/2.

2.4.2 The time evolved quantum state

We have solved the time dependent Schrödinger equation under slow variation of the
coupling strength g2 and as one may expect, we find that beyond a finite degree of
squeezing the system cannot follow the E = 0 eigenstate adiabatically and the factor-
ization in separate TLS and oscillator components fails. The fact that the Hamiltonian
does not even have normalizable eigenstates as we explore values of g2 > g1/2 does not,
however, prevent numerical solution of the Schrödinger equation, and we have explored
the dynamics within a truncated basis of harmonic oscillator states.

We assume the timedependent interaction strengths,

g1(t) = (1− t

T
)g, g2(t) =

1

2

t

T
g, (2.63)

such that u = 2g2/(g1 + 2g2) changes from 0 to 1 linearly in time. The results are
obtained for a time scale T = 100g−1 and a truncation of the oscillator Fock space at
Ncut = 2000. For early times the elliptic shaped Wigner function shows the graduate
squeezing of the vertical p component, cf., the upper panels of Fig. 2.6 As we surpass
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g2 = g1/2 the elliptic shape is distorted, and the non-adiabatic evolution gives rise to
a ‘cat-like’ superposition of components with well defined amplitude which are both
displaced towards negative p values and with negative quasi-probability ’fringes’ along
the x = 0 line, cf. the lower panels of Fig. 2.6.
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Figure 2.6: Wigner function of the time evolved system. Initially the system is
able to follow the momentum squeezed eigenstates of the Hamiltonian adiabatically,
but later non-adiabatic effects distort the phase space distribution and a ’Schrödinger
cat-like’ state appears when the Hamiltonian no longer supports discrete eigenstates

.

2.5 Two-level system coupled to an integer collective
spin subject to a resonant, linear drive

Let us consider the case of a two-level particle coupled to a collective spin J

HI = g1
(
σ−J+ + σ+J−

)
+ g2(J+ + J−), (2.64)

where we define J− ≡ Jx − iJy, J+ ≡ Jx + iJy.
Such a system may be implemented by the electron and nuclear spin in alkali atoms,

and the large spin may also represent symmetric, collective states of a collection of two-
level systems or the Schwinger representation of a pair of oscillators. For any eigenstate
|Ψ〉 ofHI with eigenvalue E, e−iπJz |Ψ〉 is an eigenstate ofHI with eigenvalue−E, so the
spectrum is symmetric around zero as in the oscillator case. For large J, the states close
to the extremal Jz eigenstate |J,M = −J〉, indeed, constitute an oscillator-like ladder
and the weakly driven system shows similarities with the driven JC model. When
driven more strongly, we expect to see deviations from the JC dynamics, and due to
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Figure 2.7: Lowest, non-negative energy eigenvalues for the two-level system coupled
to a collective spin with J = 10 (left) and J = 50 (right). The scaling factor (g1

√
2J)−1

ensures the similarity with Fig. (2.5) for the lowest eigenvalues for values of u < 0.5,
where u ≡ 2g2/(g1 + 2g2).

the finite Hilbert space we obtain discrete, normalizable eigenstates of the Hamiltonian
(2.64) for all coupling parameters.

These properties are confirmed by numerical diagonalization of the Hamiltonian
as illustrated for J = 10 and J = 50 in Fig. 2.7. When the eigenvalues are scaled
by
√

2J , the lowest lying states for g2 < g1/2 show similar behavior as in Fig. 2.5,
while, for g2 > g1/2, the density of eigenstates depends on the finite number of angular
momentum states 2J+1 rather than the numerical truncation of the oscillator system.

Systems with integer spin J described by Eq. (2.64) have an odd number of distinc-
tive eigenvalues, and due to the symmetry between positive and negative eigenvalues,
there always exists eigenstates with eigenvalue 0. When we drive the system param-
eters across the transitional point we explore the transition between the zero energy
eigenstates in the parameter ranges g2 < g1/2 and g2 > g1/2.

2.5.1 The eigenstates

We will study the adiabatic evolution of the system when g2 is gradually turned on,
starting from the zero energy eigenstate |g〉 ⊗ |J,−J〉. The state will initially show
features similar to the ones obtained in the previous section, but here we shall be able
to understand the full dynamics through all parameter values from the behavior of the
adiabatic eigenstates.

The similar structure of Eqs.(2.56) and (2.64) with the operator a replaced by J−
permits use of the same factorization ansatz |Ψ〉 = |χ〉 ⊗ |φ〉 to obtain the zero energy
eigenstates, satisfying HI |Ψ〉 = 0.

In the parameter range 0 < g2/g1 < 1/2, we can use the same expression for the
TLS:

|χ〉 = (cos(θ/2), sin(θ/2))T, (2.65)
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where θ = arcsin(−2g2/g1), such that Eq. (2.64) yields a single equation for |φ〉,

(µJ− + νJ+) |φ〉 = 0, (2.66)

with ν/µ = − tan2(θ/2). The solution of Eq.(2.66) is a minimum uncertainty spin
squeezed state, also known as a generalized intelligent state [121, 127], and it is known
to be of the explicit form,

|φ〉 = C(τ)e−τJzei
π
2
Jx |J, 0〉z = C(τ)e−τJz |J, 0〉y , (2.67)

where τ = log
√∣∣µ

ν

∣∣ = log
(∣∣cot θ

2

∣∣) and C(τ) is a normalization factor to ensure 〈φ|φ〉 =

1. We use |J, 0〉z(y) to denote theJz(y) = 0 eigenstates of the large spin.
The spin component uncertainties in the state |φ〉 are

〈∆Jy〉 =
√

cos θ
√
| 〈Jz〉 |/2

〈∆Jx〉 =
√

sec θ
√
| 〈Jz〉 |/2.

(2.68)

where 〈Jz〉 = C2
τ 〈J, 0|y Jze−2τJz |J, 0〉y in our case.

For g2/g1 > 1/2, we may apply the complex argument solutions to θ = arcsin(−2g2/g1),
but for clarity we shall introduce an alternative parametrization with real arguments,

|χ〉 =
1√
2

(
eiϕ/2 ,−e−iϕ/2

)T
, (2.69)

where tan2 ϕ = 4g22/g
2
1 − 1, 0 < ϕ < π/2, resulting in the large spin equation

(ei(−ϕ−π/2)J− + ei(ϕ+π/2)J+) |φ〉 = 0. (2.70)

The pre-factors on J− and J+ have the same absolute value, and for g2 = g1/2, ϕ = 0,
and |φ〉 is the Jy = 0 eigenstate, while for larger g2 and a finite ϕ, Eq.(15) describes an
infinitely spin squeezed state with M = 0 about an axis in the direction ϕ with respect
to the y-axis in the equatorial plane. As g2/g1 →∞, ϕ approaches π/2 and |φ〉 rotates
towards the (expected) Jx = 0 eigenstate of the large spin. We note that these states
have the explicit expression

|φ〉 = eiϕJzei
π
2
Jx |J, 0〉z = eiϕJz |J, 0〉y . (2.71)

and that they may be attractive for precision measurements [93, 117].

2.5.2 Degeneracy of the E = 0 eigenstates

So far, we have disregarded an important fact in the description of the system: the
energy eigenvalues for the Hamiltonian are two-fold degenerate for all values of the
coupling strengths. This has the consequence that any weak coupling is sufficient to
drive rotations of the state in the two-dimensional E = 0 subspace and must be taken
into account to properly describe the time evolution of the system, even if g1 and g2
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change infinitely slowly.
The degeneracy of the Hamiltonian eigenstates follows from the fact that the Hamil-

tonian (2.64) commutes with the operator Rx = exp(−iπ(Jx + σx/2)), which applies a
180 degree rotation around the x axis to both the two-level spin vector and the large
angular momentum. This implies that for any eigenstate |Ψ〉 of HI , Rx |Ψ〉 is also an
eigenstate of HI with the same energy.

For integer values of J , R2
x = ei(2π(1/2+J)) = −1, and i(−1)JRx thus has the eigenval-

ues ±1. It follows that assuming the zero energy product states |Ψ〉 = |χ〉⊗|φ〉 defined
in the previous subsection, we can construct an orthonormal pair of joint eigenstates
for HI and i(−1)JRx (eigenvalues ∓1),

|Ψ±〉 =
|Ψ〉 ± i(−1)JRx |Ψ〉√

2
√

1± γ
, (2.72)

where γ is the real part of the state vector overlap γ = Re(〈Ψ| (iRx(−1)J |Ψ〉)). We
shall denote these eigenstates |Ψ(1)

± 〉 and |Ψ(2)
± 〉 in the domains 0 < g2/g1 < 1/2 and

g2/g1 > 1/2, respectively.
As the initial state |Ψ〉 for g2 = 0 is orthogonal to Rx |Ψ〉 and hence γ = 0, we can

expand it as

|Ψ〉 =
1√
2

(|Ψ(1)
+ 〉+ |Ψ(1)

− 〉), for g2 = 0. (2.73)

A general theory for adiabatic evolution with degenerate subspaces was presented
in [126], but in our problem symmetry arguments suffice to obtain the approximate
time dependent states (ignoring transitions to adiabatic eigenstates with non-vanishing
energy). Linearity of quantum mechanics, and the fact that the time dependent HI

commutes with Rx and hence does not couple the |Ψ±〉 eigenstates, ensures that the
system will adiabatically evolve as the equal weight superposition of the symmetrized
energy eigenstates, |Ψ〉 = 1√

2
(|Ψ(1)

+ 〉+ |Ψ(1)
− 〉), as g2 is slowly increased towards the value

g2 = g1/2.
At g2 = g1/2 a basis transformation to the eigenstates |Ψ(2)

± 〉 takes place. With
our convention (2.65,2.67) and (2.69,2.71) for the eigenstate |Ψ〉, we find that when
approaching g2 = g1/2 from opposite sides, the limiting eigenstates obey the identities

|Ψ(1)
+ 〉 = |Ψ(2)

+ 〉
|Ψ(1)
− 〉 = −i |Ψ(2)

− 〉 , (2.74)

where the first expression follows easily, while the second one requires a more careful
analysis of the first order dependence of the states on the angle variable on either side
of g2 = g1/2.

Assuming that transitions to states with different energies are suppressed, we obtain
the adiabatic approximation to the time dependent solution of the problem:

|Ψ〉 =


1√
2

(
|Ψ(1)

+ 〉+ |Ψ(1)
− 〉
)
, g2 < g1/2;

1√
2

(
|Ψ(2)

+ 〉 − i |Ψ(2)
− 〉
)
, g2 > g1/2.

(2.75)
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2.5.3 The time evolved quantum state
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Figure 2.8: The result of time evolution of the TLS and a large spin with J=20,
subject to the Hamiltonian (2.64), with time varying coefficients g1(t) and g2(t) as in
the previous section. The result is represented by the Husimi Q-function of the reduced
density matrix of the large spin ρφ, shown for different values of u ≡ 2g2/(g1 + 2g2).
While increasing g2 and decreasing g1, the collective spin subsystem starting form
|J,−J〉 (u = 0), evolves along spin squeezed states and spin eigenstates determined by
the analytical arguments and expressions in the main text. (a) u=0.1; (b) u=0.4; (c)
u=0.49; (d) u=0.499; (e) u=0.501; (f) u=0.6; (g) u=0.7 (h) u=1.0.

We have numerically tested the validity of the restriction of the dynamics to the
E = 0 subspace and the formation of superposition states in this subspace. Using the
temporal ansatz (8), with a duration T > 10000g

−1 we find good agreement through-
out the entire time evolution between the numerical solution of the time dependent
Schrödinger equation and our analytical eigenstate expressions. Fig. 2.8 shows results
obtained with T = 50000g−1, and we observe how the state occupied for g2 < g1/2 first
develops into a highly spin squeezed state in the xz-plane and then a Jy = 0 eigenstate
as shown by the Husimi Q-function in the upper panels in Fig. 2.8. For g2 > g1/2 the
numerical solution reveals an intricate patterns of two vertical rings that rotate in op-
posite direction, cf., the lower panels in Fig. 2.8. These rings are the M = 0 eigenstate
components Eq.(2.71) with opposite angular argument ϕ, populated simultaneously
in Eq.(2.75) and finally coalescing into the Jx = 0 eigenstate. The simultaneous oc-
cupation of two differently oriented spin squeezed states is similar to the observation
in Fig. 2.6 of the progression from a momentum squeezed state of the time evolved
harmonic oscillator into two position squeezed wave packet components. In the limit
of g2 � g1, when the two angular momentum states coincide in the Jx = 0 eigenstate,
the TLS occupies a superposition of |χ1〉 and |χ2〉, forming the TLS ground state |g〉.

To further illustrate how the system evolves from a product state to an entangled
superposition state and back to a product state, we shown the time evolution of the
reduced density matrix of the TLS subsystem, ρχ(t), in the left panel of Fig. 2.9,
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Figure 2.9: The result of slow time evolution by the Hamiltonian (2.64) illustrated
by the reduced density matrix elements of the two-level subsystem ρχ(t) and its von
Neumann entropy. The horizontal axis is the transition parameter u ≡ 2g2/(g1 + 2g2).

corresponding to the Husimi Q-Function shown in Fig. 2.8. The rapid oscillation
between density matrix element ρgg and ρee, is caused by interference terms in the
scalar product 〈φ|e−iπJx|φ〉 of the two M = 0 states with respect to the rotated axes
and is only reproduced correctly by the analytical E = 0 superposition states Eq.(20) if
the proces duration is longer than 10000g

−1. The right panel in Fig. 2.9 shows the von
Neumann entropy of the state of the TLS, confirming the emergence and disappearance
of entanglement of the joint quantum state of the system.

2.6 Discussion

To summarize, we have analyzed the dynamics of a two-level system coupled resonantly
to an oscillator and to a large spin. We have shown that factorized zero energy states
exist under the resonant driving of the oscillator or large spin, and that the adiabatically
evolved state becomes squeezed and entangled as the driving amplitude is gradually
increased. These results supplement related ideas for generation of squeezed and non-
classical states in the literature [94, 95] and due to the generic Hamiltonians assumed
in this work they may inspire experimental protocols for squeezing of field and motional
oscillators and collective spins in a variety of quantum systems.

Our method of solution may go well beyond the Hamiltonians studied in this article
and apply to the coupling of a TLS and any ancillary system with a Hermitian adjoint
pair of operators K† and K,

HI ≡ g1
(
σ−K† + σ+K

)
+ g2

(
K† +K

)
. (2.76)

The similarity with Eqs. (2.56,2.64) invites use of the product state ansatz: |Ψ〉 =
|χ)〉⊗|φ〉 for an E = 0 eigenstate, where |χ〉 = (cos θ/2, sin θ/2)T , leads to two equations
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[
sin

θ

2
K† +

g2
g1

cos
θ

2

(
K +K†

)]
|φ〉 = 0[

cos
θ

2
K +

g2
g1

sin
θ

2

(
K +K†

)]
|φ〉 = 0,

(2.77)

and with the constraint sin θ = −2g2/g1, we find that |φ〉 must solve the equation,(
µK + νK†

)
|φ〉 = 0, (2.78)

where ν/µ = − tan2(θ/2).

2.6.1 Outlook

In trapped ions lower sideband excitation can be used to implement the JC model
and upper sideband excitation leads to the so-called anti-JC model with interaction
∝ (σ−a+σ+a†) [128]. Simultaneous driving of both sidebands then implements ladder
operators among squeezed Fock states (Bogoliubov transformed linear combinations of
a and a†) [129] with Hamiltonians that are also explicitly of the form of (2.76). To
obtain similar results as in the present work, we recall that one must verify the existence
of the E = 0 product state which will depend on the properties of the ancillary system
(e.g., it does not occur for Eq.(9) with a half integer spin) and of the operator K.

The adiabatic time-evolution is a useful and robust method to prepared engineered
quantum states, because it allows us to ignore the details ofH(t), and thus tolerates im-
perfections in a real experiment. For future works, the adiabatic method can be easily
extended to a faster process by shortcut to adiabaticity or optimal-control. For exam-
ple, the unwanted transition created by a finite speed H(t) can be canceled by applying
a counter adiabatic term, which is known as transitionless quantum driving[130].

Further applications may go well beyond quantum optics as, e.g., Gutiérrez-Jáauregui
and Carmichael [131] have emphasized the interesting formal equivalence between the
driven Jaynes-Cummings Hamiltonian and the Dirac Hamiltonian of a charged parti-
cle subject to an external electromagnetic field and where a similar transition between
discrete and continuous spectra appear.



Chapter 3

Coupling between Rydberg states and
Landau Levels of surface electrons

The coupling between the Rydberg states of electrons trapped on the surface of liquid
helium and the equidistant Landau Levels of the electron cyclotron motion induced by
a perpendicular magnetic field is usually small. However, this coupling can be signif-
icantly enhanced by applying a non-zero component of magnetic field parallel to the
surface. In this chapter we provide necessary theoretical background and describe an
experimental realization of such a coupling. It is shown that it leads to the renormaliza-
tion of the energy spectrum of the electron orbital motion and a plethora of interesting
phenomena known in the Atomic and Molecular Optics (AMO), such as the dressed
states and avoided crossings of energy levels in the Rydberg spectrum, the light shifts
and sideband transitions in coupled system, etc. The strong non-linearities of the cy-
clotron motion of electrons introduced by such coupling can be used for cQED-type
experiments in such electron systems coupled to the optical resonators described in
Chapter 1.

3.1 Motivation

As was demonstrated in Chapter 1, two-dimensional electrons on liquid helium coupled
to a single-mode optical resonator and subject to a static perpendicular magnetic field
can be a suitable systems for cQED-type of experiments providing there are appreciable
non-linearities in the system. Also, in Chapter 2 we described some hypothetical model
systems where coupling between a strongly nonlinear TLS and an oscillator mode can
be used to create and study non-classical states of matter and light. The Rydberg
states of electrons on helium with their non-equidistant energy spectrum can poten-
tially provide a source of strong non-linearity in our system. Although the coupling
between the Rydberg states and the Landau levels of the quantized cyclotron motion
can be mediated by the scattering of electrons from ripplons, it is very weak. How-
ever, the significant coupling can be introduced by applying a static in-plane magnetic
field in addition to the perpendicular field. The effect of tilted magnetic field on the
electron energy spectrum was first investigated by Fang and Stiles for 2DEG in silicon
inversion layers [132], and subsequently probed by electrical transport measurements

57
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in several experiments in semiconductors [133]. Recently it was demonstrated that a
tilted magnetic field applied to the surface electrons (SE) on liquid helium leads to
the renormalization of the electron’s Rydberg spectrum due to the coupling to the
cyclotron oscillator mode, which can be seen as an analog of the Lamb shift [134].
This can provide a new interesting avenue for our future experiments with electrons
on helium coupled to microwave cavity resonators.

Here we theoretically and experimentally study the effect of the in-plane magnetic
field on the Rydberg states of electrons on liquid helium. We provide a thorough analy-
sis of the coupled states, which are described by a Jaynes-Cummings-type Hamiltonian,
using both the second-order perturbation theory and numerical diagonalization calcula-
tions. Several theoretical predictions which came from our analysis are then compared
with the experimental data which were obtained using the spectroscopic detection of
the Rydberg states of electrons on liquid 3He in tilted magnetic fields. Our studies
confirm that the tunable coupling induced by the in-plane magnetic field introduces
strong non-linearity in the cyclotron oscillator spectrum, which potentially can be used
in our future cQED-type of experiments with the electrons-on-helium system.

3.2 Electrons on helium in tilted magnetic fields

This section provides a thorough theoretical analysis of the eigenstates of electrons
on helium subject to a tilted magnetic field. The predictions of our treatment will
be compared with the experimental results in Section 3.4. For the sake of simplic-
ity, throughout this chapter we will omit the hat notations for quantum mechanical
operators.

3.2.1 Stark shift of energy levels in a perpendicular electric
field

‘
The energy eigenvalues of the Rydberg states of quantized motion perpendicular to

the liquid surface were described for electrons on helium in the Introduction. Here we
describe the effect of an electric field E⊥ applied perpendicular to the surface. Such a
field is usually present in the experiments due to a positive bias applied to the back-
gate electrode placed beneath the liquid surface, e.g. see Chapter 1. In addition, the
linear dc Stark shift due to such a field provides a convenient way to tune energy
difference between Rydberg states for their spectroscopic studies, as will be described
in Section 3.3.

In a uniform electric field E⊥, the electron’s Hamiltonian for z-motion reads

Hz =
p2z

2me

+ V (z) + eE⊥z, e > 0, (3.1)

where V (z) includes the effect of the positive image charge in the liquid and the repul-
sive barrier at the helium surface, see the Introduction. For sufficiently small values
of E⊥, the energy shift for n-th Rydberg state without the electric field is given by
∆E

(1)
n = eE⊥znn, where znn is the mean value of the coordinate operator z for this
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state. It is clear that the dc Stark shift is linear due to the inversion symmetry break-
ing in z-direction imposed by the repulsive barrier at the liquid surface. Already for
moderate fields E⊥ ∼ 10 V/cm the perturbation theory does not provide accurate esti-
mates for the shifts, therefore one has to numerically solve the 1D eigenvalue problem
with the Hamiltonian (3.1). The energy eigenvalues and probability densities for the
corresponding eigenstates calculated for E⊥ = 15 V/cm for an electron above liquid
3He are shown in Fig. 3.1(b) and can be compared with corresponding quantities for
E⊥ = 0, see Fig. 3.1(a). From this comparison it is clear that even the moderately
small electric fields lead to the large shifts of energy levels and strong reduction of the
electron localization length in z-direction.
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Figure 3.1: Energy eigenvalues (in GHz) and probability densities (in a.u.) for a
surface electron on liquid 3He for two values of the perpendicular electric field: E⊥ = 0
(a) and E⊥ = 15 V/c (b).

The linear dc Stark shift described above provides a very convenient way to tune
the transition energies for the Rydberg states in resonance with applied MW radia-
tion [135]. This is a technique that will be used for spectroscopic studies of electrons
on helium described in Section 3.3.

3.2.2 Hamiltonian of SE in a tilted magnetic field

When SE are subject to a static magnetic field B = Bzez applied perpendicular to the
liquid surface, the in-plane orbital motion is quantized into a set of LLs with equidistant
energy spectrum ~ωc(l+1/2), l = 0, 1, .. (see Section 1.2.2). Typically, the in-plane and
out-plane motions of an electron are uncoupled, and the full Hamiltonian describing
the electron’s orbital motion reads

H = Hz +
(p+ eA)2

2me

=
∑
n

En |n〉〈n|+ ~ωc
(
b†b+

1

2

)
, (3.2)

where p is the operator of in-plane momentum and A is the vector potential which
can be chosen, for example, in the Landau gauge A = (0, Bzx, 0). The corresponding
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eigenstates are the product states |n, l〉, where b†b |l〉 = l |l〉. Throughout this chapter
we will disregard the spin state of electron because the spin-orbit interaction for SE on
liquid helium is negligibly small [40], so the spin degree of freedom is always uncoupled
from the orbital motion.

When an additional component of static magnetic field is applied parallel to the
liquid surface, in other words when the magnetic field B is tilted with respect to z
axis, the eigenstates are no longer the product states |n, l〉. For certainty, let’s consider
non-zero components of the applied static magnetic field only in y and z directions and
use the Landau gauge for the corresponding vector potential A = (Byz,Bzx, 0). The
total Hamiltonian now reads

H = Hz +
1

2me

(p+ eA)2

= Hz +
1

2me

[
(px + eByz)2 + (py + eBzx)2

]
= Hz +

1

2me

[
p2x + 2eBypxz + e2B2

yz
2 + p2y + 2eBzpyx+ e2B2

zx
2
]
,

(3.3)

where the term eBypxz/me provides the coupling between the in-plane momentum px
and coordinate z. The physical picture of this coupling is clear. In the presence of
non-zero magnetic field By in y direction, an electron experience the Lorentz force in z
direction due to the in-plane momentum px. This force provides coupling to the orbital
motion in z direction.

To simplify the full Hamiltonian (3.3) we notice that with the above choice of the
gauge, the canonical momentum operator py commutes with H, thus the corresponding
eigenvalue py is the good quantum number. Note that only the kinematic momentum
πy = py + eAy, which was introduced in Chapter 1, is gauge invariant and thus corre-
sponds to the physical observable. The gauge transformation A → A + ∇f(r) does
not change physical observables, in particular the Hamiltonian, but can change the
Hamiltonian eigenstates. Choosing the eigenstates of (3.3) as the products of |py〉,
where py |py〉 = py |py〉, and the rest, we can separate (3.3) into the terms

H = Hz +Hxy +HI

= Hz +

[
p2x

2me

+
meω

2
c (x− x0)2
2me

]
+
eBypxz

me

= Hz + ~ωy
(
b†b+

1

2

)
+

~ωy√
2lB

(b† + b)z,

(3.4)

where ωy = eBy/me, x0 = py/(meωc) (−∞ < py < ∞), and the new (renormailzed)
Hamiltonian Hz for the orbital motion in z direction reads

Hz =
p2z

2me

+ V (z) + eE⊥z +
mω2

yz
2

2
=
∑
i

εi |φi〉〈φi| . (3.5)

Note that each eigenstate of (3.4) is infinitely degenerate with respect to the x co-
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ordinate of the cyclotron orbit x0 or, equivalently, with respect to the eigenvalue of
momentum py is the y-direction.

The Hamiltonian (3.4) is reminiscent of the Jaynes-Cummings Model commonly
used in cQED [136]

HJC =
~ω12

2
σz + ~ωc

(
b†b+

1

2

)
+ ~g(b† + b)(σ+ + σ−), (3.6)

which describes coupling (with the coupling constant g) between a two-level atom and
bosonic field of an optical cavity mode. This analogy can be seen by expanding the
operator z in (3.4) using the completeness relation for the eigenstates |φi〉 as z =∑

ij zij |φi〉 〈φj|, where zij = 〈φi|x |φj〉. Our system can be thought of as an atom with
the Rydberg states (renormalized by the diamagnetic term meωcz

2/2) coupled to the
bosonic field of the electron cyclotron motion [134], with the coupling strengths tuned
by the value of in-plane field By. Although it is tempting to apply the same intuition,
we note that the inversion symmetry breaking for z direction in the electron-on-helium
system makes the physical picture somewhat different. That is, the non-zero diagonal
matrix elements zii make contributions to the eigenvalues and eigenstates of the coupled
system described by (3.4), while it is usually not the case for atoms in a cavity.

The eigenvalues and eigenstates of (3.4) can be obtained numerically, for example
by the diagonalization of the matrix representation of (3.4) constructed on a sufficiently
large Hilbert sub-space. However, when By is not too large, it will be instructive to
use the perturbation theory with the basis |n, l〉 as the eigenstates of the unperturbed
Hamiltonian. Then, we can intuitively consider |n〉 and |l〉 as two separate degrees of
freedom coupled by the small perturbation proportional to By. Below, we will present
results of both approaches and discuss validity of the perturbation approach.

3.2.3 Dimensionless quantities

As usual, in order to do numerical calculations it is convenient to introduce dimen-
sionless quantities corresponding to real physical ones. Here, we briefly describe the
dimensionless quantities used in our calculations and their relation to experimentally
measured quantities. In the following, we will use the tilde ( �̃ ) symbol to denote
normalized dimensionless quantities.

First, we define the normalized z coordinate according to z̃ = zr−1B , where rR =
~2/(Λme) is the effective Bohr radius for SE, see the Introduction. Similarly, we define
the normalizes energy using the Rydberg energy Er = meΛ

2/(2~2). The normalized
potential energy in the z direction reads

Ṽ (z̃) = V (z)/Er = −2

z̃
+ Ẽ⊥z̃, (3.7)

where Ẽ = eE⊥rB/Er is the dimensionless electric field.
The perpendicular magnetic field Bz can be represented by the normalized cyclotron

angular frequency defined by ω̃c = ~ωc/Er = ~eBz/(meEr). Similarly, for the in-plane
magnetic field By we define ω̃y = ~ωy/Er = ~eBy/(meEr).

Using these notations, we can rearrange the full Hamiltonian of the system (3.4)
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into the dimensionless format

H̃ = (Hz +Hxy +HI)/ER

= H̃z + ω̃y

(
b†b+

1

2

)
+

√
ω̃c
2
ω̃yz̃
(
b† + b

)
,

(3.8)

where

H̃z = − ∂2

∂z̃2
− 2

z̃
+ Ẽ⊥z̃ +

ω̃2
y

4
z̃2. (3.9)

Note that this format is valid for electrons above either liquids 3He or liquid 4He. This
is simply determined by the numerical values of the effective Bohr radius rB and the
Rydberg energy Er, see Table 3 .

3.2.4 Energy eigenstates of SE in a tilted magnetic field

With the above choice of the gauge, we can separate the contribution of a non-zero
in-plane magnetic field By in the full Hamiltonian (3.4) into two parts. The first part,
which is quadratic in z, appears in the Hamiltonian (3.5) for electron’s z motion, thus
leads to the renormalization of the corresponding energy eigenvalues εi. It is clear that
this contribution comes from the term quadratic in the vector potential A, thus can
be called the diamagnetic term in analogy with the CQED model. This term competes
with the potential energy of interaction between electron and liquid V (z) and electron
and static electric field eE⊥z. For highly excited states, for which the mean value
(z2)ii is large, the diamagnetic term dominates. Therefore, the Hamiltonian (3.5)
is close to that of a quantum harmonic oscillator and the energy eigenvalues εi are
approximately proportional to By. Oppositely, for the ground and low-lying excited
states, the diamagnetic term can be treated as a perturbation for moderate values of
By. Correspondingly, the energy eigenvalues experience a small shift proportional to
B2
y . For the sake of comparison, Fig. (3.2) shows the energy eigenvalues for five lowest

eigenstates of (3.5) calculated for a surface electron on liquid 3He in the perpendicular
electric field E⊥ = 15 V/cm using the first-order perturbation theory (dotted lines)
and numerical solution of the 1D eigenvalue (Schrodinger) equation (solid lines).
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Figure 3.2: Five lowest energy eigenvalues (in GHz) of the Hamiltonian 3.5 for SE
on liquid 3He in the perpendicular electric field E⊥ = 15 V/cm versus the in-plane
magnetic field By calculated using the first-order perturbation theory (dashed lines)
and numerical solution of the eigenvalue equation (solid lines).

The second contribution of By, which is a subject of our major interest, appears as
the interaction part HI in the full Hamiltonian 3.4 and describes the coupling between
the electron’s z motion and its cyclotron motion in xy plane due to the perpendicular
magnetic field Bz. The simple product states |φi, l〉, which are the eigenstates of the
Hamiltonian without the coupling term, are no longer the eigenstates of 3.4. In other
words, the coupling term HI leads to mixing of different product states. It will be
convenient for us to use the basis |n, l〉 of the eigenstates of Hamiltonian (3.2) rather
than the basis |φi, l〉. In Fig. 3.3 we show the energy eigenvalues of the full Hamiltonian
3.4 versus Bz calculated for several values of By = 0, 0.1, and 0.2 T using the numerical
diagonalization of the Hamiltonian’s matrix representation in a sub-set of |n, l〉 with
1 ≤ n ≤ 6 and 0 ≤ l ≤ 50. For By = 0, there is a manifold of energy levels
En,l = En + ~ωc(l + 1/2) for each n-th Rydberg state, each shifting linearly with Bz

with the slope proportional to l. The largest effect of the non-zero By can be seen at
the crossings of energy levels of different manifolds. The coupling leads to the avoided
crossing of energy levels, which implies the strong mixing between the corresponding
product states. Following our CQED analogy, we can talk about the ’dressed states’
whose energies at the crossing point are separated by a gap proportional to By. This
dressed states are a mixture of product states |n, l〉, thus in general are entangled states
of the electron’s z motion and in-plane cyclotron motion.
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Figure 3.3: Energy eigenvalues (in GHz) of the full Hamiltonian (3.4) for SE on
liquid 3He in the perpendicular electric field E⊥ = 15 V/cm versus the perpendicular
magnetic field Bz. Different colors correspond to the different values of By = 0 (black
lines), 0.1 (red lines), 0.2 T (blue lines).

Using analogy with the CQED model we can say that the above situation, which
appears near the level crossings, describes the resonant case of coupling between an
atom (the Rydberg states of SE) and a cavity mode (the cyclotron motion of SE).
However, even far from the level crossings (the non-resonant case) there is appreciable
shift of the energy levels induced by the coupling, which is the anologue of the ’light
shift’ (or ac Stark shift) in CQED [137]. As will be seen later, this light shifts are on
the order of 1 GHz, therefore can be hardly distinguished in Fig. 3.3. However, they
can be clearly seen in our experiments as will be described later.

Below, we address the non-resonant and resonant cases of coupling in more details
and calculate corresponding shifts, which will be compared with the experimental data
in Section 3.4 .

Non-resonant regime of coupling: the light shift

First, it is instructive to consider the non-resonant case far enough from the level
crossing where the coupling HI can be treated as a perturbation. Also, we will be
considering sufficiently small values of Bz such that the diamagnetic term meω

2
yz

2/2
can be treated as a perturbation as well, see Fig. 3.2. As before, it will be convenient
to use the basis |n, l〉 as the eigenstates of the unperturbed Hamiltonian, therefore
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the Hamiltonian H1 = meω
2
yz

2/2 + HI as a perturbation. Then, the shift of the
unperturbed energy eigenvalues E(0)

n.l is the sum of the first-order correction ∆E
(1)
n,l due

to the diamagnetic term and the second-order correction ∆E
(2)
n.l due to the coupling

term:

∆E
(1)
n,l =

meω
2
y(z

2)nn

2
, (3.10a)

∆E
(2)
n,l =

~2ω2
y

2l2B

∑
(n′,l′)6=(n,l)

|znn′ |2
∣∣ 〈l′|b† + b|l〉

∣∣2
E

(0)
n − E(0)

n′ + ~ωc(l − l′)
, (3.10b)

where we denote (z2)nn = 〈n|z2|n〉 and znn′ = 〈n|z|n′〉.
It is interesting that there is strong cancellation between the first and second-

order terms, which is reminiscent of the calculations of the Lamb shift in the Hydrogen
atom [138] or calculations of the ripplonic Lamb shift in electrons on liquid helium [139].
To see this cancellation, it is convenient to expand (z2)nn appearing in (3.10) using the
completeness relation for basis |n〉:

〈n|z2|n〉 =
∑
n′

〈n|z|n′〉 〈n′|z|n〉 =
∑
n′

|znn′|2. (3.11)

We will also use 〈l′|b† + b|l〉 =
√
l + 1δl′,l+1 +

√
lδl′,l−1. Using the above relations,

Eqs. (3.10) become

∆E
(1)
n,l =

meω
2
y

2

[
|zn1|2 + |zn2|2 + |zn3|2 + . . .

]
, (3.12a)

∆E
(2)
n,l =

meω
2
y

2

[
−|znn|2 +

∑
n′ 6=n

|znn′|2
(

l

E
(0)
nn′/~ωc + 1

+
l + 1

E
(0)
nn′/~ωc − 1

)]
. (3.12b)

where we introduced E(0)
nn′ = E

(0)
n −E(0)

n′ , the energy difference between two unperturbed
Rydberg states, to shorten notations. It is clear that the leading term in the first-order
correction proportional to |znn|2 is canceled by the corresponding term in the second-
order correction. The remaining shift of energy eigenvalues to the second order reads

∆En,l = ∆E
(1)
n,l + ∆E

(2)
n,l =

meω
2
y

2

∑
n′ 6=n

|znn′|2
(

1 +
l

E
(0)
nn′/~ωc + 1

+
l + 1

E
(0)
nn′/~ωc − 1

)
.

(3.13)

As a particular example, let us consider the shift in the transition frequency (E2,0−
E1,0)/~, which corresponds to situation when SE occupy the lowest LL with l = 0.
Setting l = 0 in Eq. (3.13), we obtain



66Coupling between Rydberg states and Landau Levels of surface electrons

∆E1,0 =
meω

2
y

2

[
|z12|2

(
1 +

1

E
(0)
12 /~ωc − 1

)
+ |z13|2

(
1 +

1

E
(0)
13 /~ωc − 1

)
+ . . .

]
,

(3.14a)

∆E2,0 =
meω

2
y

2

[
|z12|2

(
1 +

1

E
(0)
21 /~ωc − 1

)
+ |z23|2

(
1 +

1

E
(0)
23 /~ωc − 1

)
+ . . .

]
,

(3.14b)

and the corresponding shift in the transition energy ∆0 = ∆E2,0 −∆E1,0 is

∆0 =
meω

2
y

2

[
|z21|2

(
2~ωcE(0)

21

E
(0)
21 − ~ωc

)
+ |z23|2

(
E

(0)
32

E
(0)
32 + ~ωc

)
+ |z31|2

(
E

(0)
31

E
(0)
31 + ~ωc

)
+ . . .

]
.

(3.15)
For typical fields Bz . 1 T used in the experiments we have E(0)

21 >> ~ωc, therefore
the above shift is always positive. The shift ∆0/~ is an anologue of the Lamb shift in
the CQED model [137]. It represents the shift of the transition frequency between the
Rydberg states of SE due to their interaction with the ’vacuum’ state (l = 0) of the
cyclotron motion. This shift can be experimentally observed and will be discussed in
more details in Section 3.4.1.

For the sake of comparison, let us also consider the shift in the transition frequency
(E2,1 − E1,1)/~ for SE occupying the first excited LL with l = 1. Setting l = 1 in
Eq. (3.13), we obtain

∆E1,1 ≈
meω

2
y

2

[
|z12|2

(
1 +

1 + 3(E
(0)
12 /~ωc)

(E
(0)
12 /~ωc)2 − 1

)
+ |z13|2

(
1 +

1 + 3(E
(0)
13 /~ωc)

(E
(0)
13 /~ωc)2 − 1

)
+ . . .

]
,

(3.16a)

∆E2,1 ≈
meω

2
y

2

[
|z12|2

(
1 +

1 + 3(E
(0)
21 /~ωc)

(E
(0)
21 /~ωc)2 − 1

)
+ |z23|2

(
1 +

1 + 3(E
(0)
23 /~ωc)

(E
(0)
23 /~ωc)2 − 1

)
+ . . .

]
,

(3.16b)

and the corresponding shift in the transition energy ∆1 = ∆E2,1 −∆E1,1 is

∆1 =
meω

2
y

2

[
|z21|2

(
6E

(0)
21

(E
(0)
21 )2 − (~ωc)2

)
+ |z23|2

(
E

(0)
32 (E

(0)
32 − 3~ωc)

(E
(0)
32 )2 − (~ωc)2

)
+ . . .

]
. (3.17)

While for the range of the field Bz considered here the first term in the above equation
is positive, the following terms can be either positive or negative. Therefore, the light
shift ∆1/~ in the transition frequency corresponding to the coupling of the Rydberg
states to the cyclotron oscillator field with one quantum of excitation (l = 1) can be
either positive or negative, depending on the range of the field Bz and E⊥. In our
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Figure 3.4: The frequency shift of the |1, 0〉 → |2, 0〉 transition (blue line) and |1, 1〉 →
|2, 1〉 transitions (orange line) obtained by the numerical diagonalization of the full
Hamiltonian Eq. (3.4) for SE on liquid 3He in the perpendicular magnetic field Bz =
0.65 T and perpendicular electric field E⊥ = 15 V/cm. For the sake of comparison,
dashed lines show corresponding shifts obtained from the second order perturbation
theory.

experiments described in Section 3.4, electrons mostly occupy the lowest (l = 0) LL,
so the observed shift in the transition frequency is positive, see Section 3.4.1 The light
shift in the transition frequency due to occupation of the first excited (l = 1) LL was
observed in Ref. [134] and indeed has negative sign for the considered ranges of fields.

The perturbation approach is valid only for sufficiently low coupling magnetic fields
By. For large values of By one needs to proceed with the diagonalization of the full
Hamiltonian (3.4) to deduce the values of the light shifts. The shifts ∆0 and ∆1 cal-
culated using the perturbation theory, Eqs. (3.15) and (3.17), are plotted in Fig. 3.4.
For the sake of comparison, the shifts calculated using the numerical diagonalization
procedure described earlier are plotted on the same figure. It is clear that the pertur-
bation theory does not give adequate description for By & 0.2 T. Comparison with our
experimental results will be presented in Section 3.4.1.

Resonant regime: the level anti-crossing

Now, we consider the resonant regime of coupling between the Rydberg states and
Landau levels of SE, which is of particular interest to us. This regime is realized at the
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crossings of energy levels of uncoupled motion, see Fig. 3.3, where the coupling leads to
the strong mixing of corresponding eigenstates. Therefore, the perturbation approach
is not valid. However, we can obtain essential results by considering only a subspace
of degenerate eigenstates of uncoupled motion and perform diagonalization of the full
Hamiltonian (3.4) in this subspace. This procedure is similar to the one for JCM [136].
In the resonant regime of coupling, we can consider zero-order perturbation limit with
respect to the diamagnetic term, meω

2
yz

2/2, thus neglect difference between eigenstates
|φi, l〉 of the Hamiltonian (3.5) and the eigenstates |n, l〉 for zero By.

First, it will be convenient to introduce the coupling constants gnn′ defined by the
expression for the coupling matrix element

〈n, l|HI |n′, l′〉 = δl+1,l′gnn′
√
l + 1 + δl−1,l′gnn′

√
l. (3.18)

Using the coupling Hamiltonian from Eq. (3.4) we obtain

gnn′ =
~ωy√
2`B

znn′ =

√
~meω2

yωc

2
znn′ . (3.19)

At the crossing of energy levels En,l+1 and En′,l, the matrix elements of the full Hamil-
tonian (3.4) in the subspace of degenerate uncoupled eigenstates |n, l + 1〉 and |n′, l〉
are given by

|n, l + 1〉 |n′, l〉
〈n, l + 1| En,l+1

√
l + 1gnn′

〈n′, l|
√
lgn′n En′,l

(3.20)

It is convenient to perform an unitary transformation on uncoupled eigenstates accord-
ing to (

|+, l〉
|−, l〉

)
= U

(
|n, l + 1〉
|n′, l〉

)
(3.21)

which diagonalizes the subspaces. This unitary transformation can be viewed as an
SU(2) rotation, which leads to a new basis

|+, l〉 = cos(θl/2) |n′, l〉+ sin(θl/2) |n, l + 1〉 ,
|−, l〉 = − sin(θl/2) |n′, l〉+ cos(θl/2) |n, l + 1〉 , (3.22)

where the ‘mixing angle’ θl is given by θl = arctan
[
gnn′
√
l + 1/(En,l+1 − En′,l)

]
. In the

new basis, the matrix elements of the full Hamiltonian (3.4) read

〈±, l|HI |±, l〉 =
1

2

[
(En′,l + En,l+1)±

√
(En,l+1 − En′,l)2 + 4(l + 1)|gnn′ |2

]
,

〈±, l|HI |∓, l〉 =0.

(3.23)

The diagonal matrix elements E±,l = 〈±, l|HI |±, l〉 approximate the energy eigenvalues
of the Hamiltonian (3.4). The coupling produces the energy level anti-crossing with
the splitting given by 2

√
l + 1|gnn′|, which scales with l as

√
l + 1. Note that this result
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is similar to JCM, where the (Rabi) splitting between the energy eigenvalues of the
two-level atom coupled to the cavity scales with the number of photons in the cavity
nph as

√
nph + 1.
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Figure 3.5: (left) Schematic energy level diagram for three lowest Rydberg states.
The upward arrows indicate transitions from the lowest energy eigenstate E1,0. (right)
Energy eigenvalues obtained from the numerical diagonalization of the full Hamiltonian
(3.4) for SE on liquid 3He at the pressing field E⊥ = 15 V/cm.

As a particular example, let us consider the energy level anti-crossing for n = 2 and
n′ = 3. The schematic energy level diagram, which shows the LL manifolds for the
ground, the first excited and the second excited Rydberg states, is shown in Fig. 3.5
(left). The magnetic field Bz is assumed to be adjusted such that is causes alignment of
the LL manifold for i = 2 and j = 3. The coupling leads to the splitting of the aligned
energy levels E2,l+1 and E3,l. The energy eigenvalues obtained from the numerical
diagonalization of the full Hamiltonian (3.4) are plotted versus Bz in Figure 3.5 (right).
As expected from (3.19), the energy splitting at E2,1 = E3,0 increases linearly with By.
In the experiment, the splitting can be observed by looking at the microwave-excited
transitions between the split energy levels and the ground energy level E1,0, as indicated
by the upwards arrows in Fig. 3.5 (left). The comparison with experimental results
will be discussed in Section 3.4.3.

From Fig. 3.3 (right), it is also evident that there are much weaker anti-crossings
involving energy levels E1,3 and E1,4 at sufficiently large coupling field By. This ef-
fects comes from the higher-order mixing between different eigenstates, which can be
captured only by the diagonalization of the Hamiltonian (3.4) on a sufficiently large
subspace of the eigenstates.
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3.2.5 Section summary

In summary, we have calculated the eigenstates and energy eigenvalues of SE subject
to tilted magnetic fields. This allows us to make certain predictions regarding the
spectroscopic properties of this system. In particular, we predict certain features, such
as the off-resonant shifts and resonant avoided crossings in the energy spectrum of SE,
which can be probed in our experiments by employing the Stark spectroscopy method.
More detailed comparison with experimental results also require calculations of the
corresponding transition rates, which will be presented in Section 3.4 .

3.3 Experimental method

MW
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Figure 3.6: Schematic illustration of the experimental setup to perform the Stark
spectroscopy of SE on liquid helium.

To check predictions of our calculations regarding the energy spectrum of SE in tilted
magnetic field we performed experiments with electrons on liquid 3He using the Stark
spectroscopy method. The experimental setup is similar to that which can be found
in literature [135, 140]. The main components of our setup are schematically shown
in Fig. 3.6. The experiment is performed in a leak-tight cylindrical copper cell cooled
down to temperatures below 1 K in a dilution refrigerator. The cell is placed inside
a superconducting vector magnet (not shown) which can produce the static magnetic
field in both y (horizontal) and z (vertical) directions. The cell can be filled with
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the 3He gas through a thin capillary tube from a room temperature storage tank (not
shown). The cell has two side windows located opposite to each other. This windows
serve as input and output ports for microwave (MW) radiation which is used to excite
transitions between energy eigenstates of SE. Both windows are sealed with the Kapton
film using the Stycast epoxy to prevent leakage of helium from the cell into the vacuum
space of the refrigerator.

Inside the cell, there are two round metal discs of diameter D = 18 mm which
form a parallel-plate capacitor with the distance between the plates d = 2 mm. 3He
gas, which is introduced into the cell, is condensed in the cooled cell until the surface
of liquid helium covers the bottom disk and the liquid’s level is set approximately in
the middle between the bottom and top disks. Free electrons are injected into the
space above the liquid’s surface from a tungsten filament (shown schematically) by
thermionic emission, while applying a positive voltage VBOT to the bottom disk. As a
result, the injected electrons are attracted towards the liquid surface and form a round
pool of charge on the surface just above the positively biased bottom disk. With a
positive voltage applied to the bottom disk, SE can be held on the surface of liquid
helium infinitely long. In addition, each metal disk is surrounded by a metal ring of
outer diameter 22 mm, which serve as guard rings. By applying a negative voltage
VGURD to the guard rings, electrons can be stronger confined on the liquid surface to
prevent their escape to the grounded walls of the experimental cell.

To excite quantum transitions between the Rydberg states of SE, the MW radiation
in the 100 GHz range is transmitted into the cell from a room-temperature source (not
shown) through a waveguide coupled to the input port of the cell. In the experiment,
the frequency ω of the MWs is fixed, while the transition frequency of SE is tuned, by
means of the DC Stark effect, to match the MW frequency by sweeping the perpendic-
ular electric field E⊥ ≈ VBOT/d. This comprises the essence of the Stark spectroscopy
method.

In our experiments, we measure the absorption of the MW radiation due to resonant
transitions induced in SE by detecting the change in the power of MW radiation trans-
mitted through the cell. In order to measure the transmitted power, the output MW
port of the cell is coupled to a cryogenic hot-electron (InSb) bolometer which changes
its resistance RInSb when it is heated by the incident MW radiation. To observe change
in the bolometer resistance, we pass a DC current I ≈ 100 µA generated by a DC
battery and measure the voltage drop across the bolometer IRInSb. To detect variation
in the transmitted MW power due to the resonant transitions in SE, we apply a small
modulating AC voltage Vac = 40 mVRMS at the frequency fm ≈ 10 kHz to the top
metal disk of the parallel-plate capacitor. Due to the Stark shift, this modulates the
detuning of the transition frequency of SE with respect to the MW frequency, therefore
the MW power absorbed by SE and the MW power transmitted through the cell. The
corresponding modulation of the voltage across the bolometer is then detected using
the conventional lock-in amplifier operated at the modulation frequency fm.

An example of the bolometer signal recorded by the lock-in amplifier for SE at
Bz = 0.7 T, By = 1 T, and under presence of the microwave radiation at the frequency
ω/2π = 90 GHz is shown in Fig. 3.7 (left). For this frequency, the observed signal
corresponds to the transition from the ground (n = 1) state to the first excited (n = 2)
Rydberg state of SE. By keeping an amplitude of the modulating voltage Vac to be much



72Coupling between Rydberg states and Landau Levels of surface electrons

1 5 . 0 1 7 . 5 2 0 . 0 2 2 . 5 2 5 . 0- 2

- 1

0

1

2

V In
Sb

 (µ
V)

E ⊥  ( V / c m )

ω/ 2 π= 9 0  G H z

1 5 . 0 1 7 . 5 2 0 . 0 2 2 . 5 2 5 . 0- 0 . 2

0 . 0

0 . 2

0 . 4
ω/ 2 π= 9 0  G H z

Int
eg

rat
ed

 (a
.u.

)
E ⊥  ( V / c m )

Figure 3.7: (left) Bolometer signal recorded by sweeping the perpendicular electric
field E⊥ exerted on electrons to tune the n = 1 → 2 transition between the Rydberg
states of SE at Bz = 0.7 T, By = 1 T, and in resonance with MWs at frequency
ω/2π = 90 GHz. (right) Integrated bolometer signal which gives the absorption line
due to the n = 1→ 2 transition.

smaller than the width of the transition line, we record the derivative of the transition
line. Then, the transition line can be obtained from the recorded bolometer signal by
the numerical integration, see Fig. 3.7 (right). The center of the line corresponds to
the perpendicular electric field E⊥ ≈ 20 V/cm, which agrees reasonably well with the
expected transition frequency ω12/2π = 90 GHz of the Stark-shifted energy levels of
electrons on liquid 3He.

To measure energy spectrum of SE in tilted magnetic fields, we record transition
lines measured by the above method either for a fixed value of Bz and different values
of By, or for a fixed value of By and different values of Bz. The results will be presented
on 2D color plots of the bolometer signals versus the corresponding B-field (horizontal
axis) and E⊥-field (vertical axis). All data presented here were taken at the temperature
of the cell 0.3 ≤ T ≤ 0.33 K measured by a ruthenium-oxide thermometer attached to
the cell’s top.

3.4 Experimental results and comparison with calcu-
lation

We restrict the scope of our experimental study to the changes in the spectroscopic
properties of the n = 1 → 2 and n = 1 → 3 Rydberg transitions of SE in tilted
magnetic fields1. To summarize our key experimental observations, we reproduced a
few spectroscopic signatures predicted by our theoretical analysis given above:

• The off-resonant Lamb shift in the |1, 0〉 → |2, 0〉 transition, which is approxi-
1The experimental data presented in this section were obtained by Aleksiy A. Zadorozhko.
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mately second order in By.

• The resonant coupling between |3, 0〉 and |2, 1〉, which is approximately first order
in By.

• The sideband transitions, namely the blue sideband, |1, 0〉 → |2, 1〉 and the red
sideband, |1, 1〉 → |2, 0〉, which have increasing transition moments as By in-
creases.

3.4.1 The Lamb shift

First, we address the non-resonant light shift of the n = 1 → 2 transition between
the Rydberg states in tilted magnetic field, see Section 3.2.4. In the experiment, the
shift can be seen by observing the evolution of the transition line at a fixed value of
Bz and different values of By, which changes the coupling between the Rydberg states
and LLs. An example of experimental data taken at Bz = 0.584 T and the excitation
frequency ω/2π = 90 GHz are shown in Fig. 3.8. Fig. 3.8 (left) shows the bolometer
signal recorded by sweeping the perpendicular electric field E⊥ for different values of
0 ≤ By ≤ 1 T, while Fig. 3.8 (right) shows the corresponding transition line obtained
by the numerical integration. The shift of the transition frequency with respect to
its value at By = 0 is plotted in Fig. 3.9. Here, we used the conversion coefficient
α12 = 0.74 GHz·cm/V, which is the slope of the (E

(0)
2 −E(0)

1 )/h versus E⊥ dependence,
which was obtained in the experiment by measuring the transition line for different
values of E⊥ at zero magnetic field.

Figure 3.8: (left) Bolometer signal recorded for SE irradiated by 90 GHz microwave
radiation while sweeping the perpendicular electric field E⊥ for different values of 0 ≤
By ≤ 1 T and a fixed value of the perpendicular magnetic field Bz = 0.584 T. (right)
MW absorption signal obtained by numerical integration of the bolometer signal shown
on the left.

Assuming that the electron system is in the thermal equilibrium with the liquid
helium at temperature T = 0.33 K, for Bz = 0.584 T, which corresponds to the
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spacing between LLs equal to ~ωc/kB = 0.8 K, the electrons mostly occupy the lowest
(l = 0) Landau level. Thus, the shift observed in Fig. 3.9 corresponds to the Lamb
shift ∆0. As expected from our discussion in Section 3.2.4, this shift is positive, see
Eq. (3.15). For the sake of comparison, the solid line shows the shift obtained by the
numerical diagonalization of the full Hamiltonian 3.4.

Figure 3.9: Shift in the n = 1 → 2 transition frequency obtained from data
shown in Fig. 3.8. Blue (orange) solid line is the theoretical result for |1, 0〉 → |2, 0〉
(|1, 1〉 → |2, 1〉) transition obtained from the numerical diagonalization of the full
Hamiltonian (3.4). Dashed lines are results of the second-order perturbation theory,
see Section 3.2.

At T = 0.3 K, there is a small (about 9%) thermal population of the first excited
l = 1 Landau level. Therefore, in addition to the n = 1 → 2 Rydberg transition
for electrons occupying l = 0 state, there is a corresponding transition for electrons
occupying l = 1 state. This transition is visible in our experimental data as a splitting
that appears at By ∼ 0.3 T, see Fig. 3.9. As discussed in Section 3.4.1, the light shift
∆1 of this transition due to the coupling to LLs can have an opposite (negative) sign, as
shown by the solid line obtained from our numerical calculations. In other words, the
coupling of the Rydberg states to the LLs line non-zero By leads to the splitting of the
transition line when there is appreciable population of the excited Landau states. Note
that this splitting in the n = 1→ 2 transition line in non-zero By was also observed in
Ref. [134].
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3.4.2 Sideband transitions

As discussed in Section 3.2.4, the coupling due to the in-plane magnetic field By leads
to the mixing between different eigenstates |n, l〉 of the uncoupled Hamiltonian. This
can be readily seen in the off-resonance regime by applying the first order perturbation
theory to find corrections to the eigenstates |Ψ〉 of the full Hamiltonian (3.4):

|Ψ〉(1) = |n, l〉+
∑

(n′,l′)6=(n,l)

〈n, l|H1 |n′, l′〉
E

(0)
n,l − E

(0)
n′,l′

|n′, l′〉

= |n, l〉+
meω

2
y

2

∑
n′ 6=n

(z2)n′n

E
(0)
nn′

|n′, l〉+
~ωy√
2lB

∑
n′

zn′n

√
l + 1

2
(1± 1)

E
(0)
nn′ ∓ ~ωc

|n′, l ± 1〉

(3.24)

where H1 = meωyz
2/2 + HI. One of the effects of such mixing was discussed in the

previous section. Another prominent effect of the mixing of states is appearance of
the sideband transitions. Without coupling between the Rydberg states and LLs, one
expects to conserve the quantum number l during the radiation-induced transitions
|n, l〉 → |n′, l〉 between the Rydberg states. Indeed, the transition rate in the electrical
dipole (E1) approximation is given by the Fermi’s golden rule

Γn→n′ =
2π

~
|〈n′, l′| |V | |n, l〉|δ

(
E

(0)
n′,l′ − E

(0)
n,l − ~ω

)
, (3.25)

where V = eE0z (E0 is the amplitude of the MW electric field). The transition moment
〈n, l| z |n′, l′〉 = znn′δl,l′ , therefore the transition rate Γn→n′ , is zero when l′ 6= l. It is
clear, however, that when the initial and final states are mixtures of states with different
l, there will be transitions |n, l〉 → |n′, l′〉 with l 6= l′. Again, it is instructive to consider
the perturbative limit of coupling. In the second order perturbation theory, the rate of
transition between an initial state |i〉 = |n, l〉 and a final state |f〉 = |n′, l′〉 reads

Γi→f =
2π

~

∣∣∣∣∣∣
∑
|m〉6=|i〉

[
〈f |V |m〉 〈m|H1 |i〉

E
(0)
n′′,l′′ − E

(0)
n,l

+
〈f |H1 |m〉 〈n′′, l′′|V |i〉
E

(0)
n′′,l′′ − E

(0)
n,l − ~ω

]∣∣∣∣∣∣
2

δ
(
E

(0)
n′,l′ − E

(0)
n,l − ~ω

)
,

(3.26)
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where |m〉 = |n′′, l′′〉 is an intermediate state. For the transitions which change the
quantum number l by 1, that is l′ = l ± 1, we obtain

Γl′=l±1 =
π(eE0~ωy)2

~l2B∣∣∣∣∣∣
∑
n′′

zn′n′′zn′′n
√

1 + 1
2
(l ± 1)

E
(0)
n′′n ± ~ωc

+
zn′n′′zn′′n

√
1 + 1

2
(l ± 1)

E
(0)
n′′n − ~ω

∣∣∣∣∣∣
2

δ
(
E

(0)
n′n ± ~ωc − ~ω

)
.

(3.27)

Figure 3.10: (left) Bolometer signal recorded for SE irradiated by 90 GHz microwave
radiation while sweeping the perpendicular electric field E⊥ for different values of 0 ≤
Bz ≤ 0.6 T and a fixed value of the in-plane magnetic field By = 0.1 T. (right) MW
absorption signal obtained by numerical integration of the bolometer signal shown on
the left.

In particular, this can result in the absorption of the MW radiation due to the ‘blue’
sideband transition, |1, 0〉 → |2, 1〉, and the ‘red’ sideband transition, |1, 1〉 → |2, 0〉.
Indeed, such sideband transitions can be observed in the experiment. Figure 3.10
(left) and Figure 3.10 (right) show the bolometer signal and the absorption signal,
respectively, measured for SE irradiated with 90 GHz microwaves at fixed in-plane
magnetic field By = 0.2 T and different values of the perpendicular magnetic field
0 ≤ Bz ≤ 0.6 T. The absorption signal whose position in E⊥-field does not depend
on the magnetic field correspond corresponds to the resonant |1, 0〉 → |2, 0〉 transition
line. Two branches whose position in E⊥-field varies linearly with Bz correspond to
the sideband transitions. It is convenient to replot the absorption signal as a function
of the cyclotron frequency ωc and the frequency detuning from the |1, 0〉 → |2, 0〉
transition ∆ω21, where ω21 = (E

(0)
2 −E(0)

1 ) see Fig. 3.11. As expected from Eq. (3.27),
the frequencies of sideband transitions, ω21 ± ωc, vary linearly with ωc with the slope
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equal to ±1.

Figure 3.11: MW absorption signal shown in Fig. 3.10 replotted versus the cyclotron
frequency (horizontal axis) and frequency detuning from the n = 1 → 2 resonance
in zero magnetic field (vertical axis). The white (blue) dashed lines plot the linear
dependence ∆ω21 = ±ωc (∆ω21 = ±2ωc).

Note that at low values of Bz . 0.1 T, the n = 1 → 2 transition line is smeared
in the non-zero in-plane magnetic field By. This effect has been described in the
literature [141] and arises due to the broadening of the transition line in SE subject
to a parallel magnetic field. As electrons move randomly along the surface of liquid
helium with average thermal velocity vx in x-direction, they experience the Lorentz
force in z-direction due to the in-plane field By. This leads to the fluctuating effective
electric field in z-direction with RMS amplitude (E⊥)rms =

√
kBT/meBy, where T is

the electron temperature. For typical temperature of the experiment T ∼ 1 K, the RMS
effective electric field in V/cm is ∼ 37By, where By is in T. Thus, an in-plane magnetic
field By = 0.2 T leads to the large broadening of the transition line ∆E⊥ ≈ 7 V/cm,
see Fig. 3.10 (right). At sufficiently large perpendicular magnetic field Bz, the electron
in-plane motion becomes quantized, so he broadening of the transition line due to the
electron thermal motion becomes suppressed.

In addition to the sideband transitions which are accompanied by change of the
quantum number l by ±1, there should be also much weaker higher-order sideband
transitions which are accompanied by change of the quantum number l by ±2, ±3, etc.
These are indicated in Fig. 3.11 by the dashed blue lines.

3.4.3 Avoided level crossing and interference

Finally, we consider the effect of coupling between the eigenstates |n, l〉 and |n′, l ± 1〉
near their energy level crossing (the resonant regime). As discussed in Section 3.2.4,
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the coupling Hamiltonian HI leads to the avoided crossing of the energy levels of the
coupled (mixed) states. As shown in Fig. 3.3, such an avoided crossing is expected,
for example, for the energy eigenstates with n = 1 and n′ = 2 in the perpendicular
magnetic field Bz ∼ 3 T. Unfortunately, such a large field was beyond specification
limits of our vector magnet. Instead, in our experiment we studied the avoided level
crossing between eigenstates with n = 2 and n′ = 3, see the energy level diagram in
Fig. 3.3 (left). Some exemplary data sets are shown in Fig. 3.12, where the dependence
of the MW absorption signal on the perpendicular magnetic field Bz is shown for several
different values of the in-plane magnetic field: By = 0 (top left), 0.1 (top right), 0.2
(bottom left), and 0.4 T (bottom right). In this experiment, the electrons where excited
from the ground n = 1 Rydberg state using MWs at the frequency ω/2π = 120.5 GHz.
At By = 0, see the top left panel in Fig. 3.12, we observe the absorption signal due to
|1, 0〉 → |3, 0〉 transition, which frequency is independent of the perpendicular magnetic
field Bz. At By = 0.1 T (top right), the ‘blue’ sideband |1, 0〉 → |2, 1〉 transition, whose
frequency intersects that of the |1, 0〉 → |3, 0〉 transition at Bz ≈ 1.18 T, becomes
visible. The avoided crossing between the transition frequencies is clearly observed. As
the coupling field By increases further, see the bottom panels in Fig. 3.12, the sideband
transition becomes stronger and the splitting between two transition line at the level
crossing increases.

Figure 3.13: MW absorption signal measured at the level crossing point Bz = 1.18 T,
see Fig. 3.12, for different values of the in-plane magnetic field 0 ≤ By ≤ 0.9.

As it follows from our discussion in Section 3.2.4, the two transition lines at the
avoided level crossing correspond (in zero-order perturbation limit) to the transitions
from the ground |1, 0〉 Rydberg state to two hybridized states |±, 1〉 = β

(±)
1,2 |2, 1〉 +
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Figure 3.12: MW absorption signal measured for SE irradiated with MWs at the
frequency ω/2π = 120.5 GHz at four different values of the coupling field By = 0 (top
left), 0.1 (top right), 0.2 (bottom left), and 0.4 T (bottom right).

β
(±)
3,0 |3, 0〉. The observed splitting of the transition line at the level crossing is rem-

iniscent to the Auter-Townes effect. It is instructive to plot the split transition line
measured exactly at the uncoupled level crossing, that is at Bz = 1.18 T, for differ-
ent values of the coupling field By. Such a graph is shown in Fig. 3.13. Here, the
absorption signal is plotted for different values of 0 ≤ By ≤ 0.9. The splitting be-
tween two branches increases approximately linearly with By. An unusual feature of
the data shown in Figs. 3.12 and 3.13 is apparent disappearance of the upper branch
in a certain range of By. To understand this effect we have to discuss the transition
matrix element (transition moment) which determines the transition rate according to
the Fermi’s golden rule, see Eq. 3.25. Assuming that in the experiment the MW radi-
ation used to excite transitions in SE is linearly polarized in z direction, the transition
rate is proportional to | 〈i|z|f〉|2, where |i〉 is the initial state and |f〉 is the final state.
In general, due to the coupling Hamiltonian HI and the diamagnetic term meω

2
yz

2/2,
both the initial and final states are the mixtures of different state products |n, l〉. Let
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αn,l ≡ 〈n, l|i〉 and βn,l ≡ 〈n, l|f〉 be the complex coefficients in the expansions

|i〉 =
∑
n,l

αn,l |n, l〉 , |f〉 =
∑
n,l

βn,l |n, l〉 . (3.28)
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Figure 3.14: Calculated squares of the transition moments for transitions shown in
Fig. 3.12. Parameters used for the simulation: fMW = 120 GHz, By = 0.1 T (top left),
0.2 (top right), 0.3 (bottom left), and 0.4 T (bottom right).

Correspondingly, the value of | 〈i|z|f〉|2 is given by

| 〈i|z|f〉|2 =

∣∣∣∣∣∑
n,n′

α∗n,lβn′,lznn′

∣∣∣∣∣
2

. (3.29)

For two different branches in Fig. 3.13, that is for two different sets of complex coef-
ficients βn′,l, the square of transition moment can be larger/smaller depending on the
constructive/destructive interference of different terms in Eqs. (3.29). The transition
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Figure 3.15: Calculated squares of the transition moments for transitions shown in
Fig. 3.13. The value of fMW and Bz are adjusted such that the two branches are at
resonance when By = 0.

moments for transition lines in Figs. 3.12 and 3.13 obtained by numerical diagonaliza-
tion of the full Hamiltonian (3.4) are shown in Figs. 3.14 and 3.15. In this figures, the
calculated square of the transition moment is plotted as the color tone of the line for
the corresponding transition. Our numerical calculations are able to reproduce main
features of the experimental data quite well. In particular, the MW absorption, which
is proportional to the transition rate, therefore the square of the transition moment,
increases for the lower branch and decreases for the upper branch with the increasing
coupling field By. Note that the calculated resonance are shifted towards somewhat
higher values of E⊥ comparing with the experimental data. This agrees with the fact
that the approximate model of infinitely large potential barrier at the surface, which
was used in our calculations, underestimates the transition energies between the Ryd-
berg states, as was discussed in the Introduction.

Finally, in addition to the resonant (non-perturbative) avoided crossings between
coupled states |n, l〉 and |n′, l ± 1〉, we also observed the higher-order (perturbative)
avoided crossings. Fig. 3.16 shows an example of such effects. This data are taken for
SE excited by the MW radiation with frequency ω/2π = 110 GHz at a fixed value of the
coupling field By = 0.3 T. The dark horizontal line at E⊥ ≈ 52 V/cm corresponds to
the |1, 0〉 → |2, 0〉 transition. several sideband transitions are also visible. In particular,
the sideband transition |1, 0〉 → |2, 1〉 shows a pronounced avoided crossing at Bz ≈
1 T where it supposes to cross the |1, 0〉 → |3, 0〉 transition, which occurs at E⊥ =
12 V/cm. In addition, a much smaller avoided crossing is seen for a higher-order
sideband transition |1, 0〉 → |2, 2〉 at Bz ≈ 0.5 T where it is supposed to cross the
|1, 0〉 → |3, 0〉 transition. This also agrees well with our calculations.
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Figure 3.16: MW absorption signal measured for SE irradiated with MWs at the
frequency ω/2π = 110 GHz at a fixed value of the coupling field By = 0.3 T.

3.5 Chapter summary

In this Chapter, we demonstrated that the bound surface (Rydberg) states and the
states of the in-plane motion of SEs on liquid helium can be coupled by an applying
in-plane magnetic field. In case of a sufficiently strong applied perpendicular mag-
netic field, which causes quantization of the in-plane motion, this system realizes the
famous Jaynes-Cummings Model from cQED. In our case, the Rydberg states with
their non-equidistant energy levels represent an atom, while the Landau levels of the
quantized cyclotron motion represent quantized EM field of the cavity mode. The cou-
pling introduced by the in-plane magnetic field produces mixed (dressed) eigenstates
of the orbital motion of SEs, which exhibit many phenomena familiar from AMO. We
predicted this phenomena by our numerical calculations of the eigenstates and corre-
sponding eigenvalues of the coupled orbital motion of SE, as well as confirmed them in
the experiment.

These findings already provide some interesting possibilities, for example simulation
of the cQED models using the orbital states of electrons on helium. As demonstrated
by our experiments, the Stark spectroscopy of the energy levels can be used as a ro-
bust method to obtain information about eigenstates for such models. Another useful
method can be measuring the electrical transport of SE using the conventional capac-
itive coupling (Sommer-Tanner) method, which was described in Chapter 1. However,
the study of electrical transport of SE is beyond the scope of this work. Instead, our
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main interests in the coupled orbital motion of SE in a tilted magnetic field comes from
the possibility to combine this system with our optical (Fabry-Perot) cavities to study
coherent control of the orbital motion of electrons by light. This is briefly discussed in
the next section, which will conclude this thesis.
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Conclusions and Outlook

The results described in this thesis contribute to the current progress towards the goal
of coherent control of charged particles, in particular the surface electrons on liquid
helium, using quantized electromagnetic field. Here, I would like to highlight the main
findings of this work, as well as outline some future directions.

The two experimental works presented here serve as proof-of-concept studies to-
wards the coherent control of SEs on helium by employing the strong coupling regime
of interaction between SEs and EM field of an optical cavity mode. In Chapter 1,
we have demonstrated the strong coupling between the circularly polarized mode in a
microwave (Fabry-Perot) resonator and the cyclotron motion of electrons in a perpen-
dicular magnetic field. In Chapter 3, we have shown that in a tilted magnetic field,
the surface bound (Rydberg) states of SEs couple to the cyclotron motion of electrons.
These two experimental accomplishments open door to realizing the strong coupling
regime of interactions between the Rydberg states of SEs and an EM mode in our
cavity resonators. Owing to the inherent non-linearity of the Rydberg spectrum, it is a
promising plan to realize some cQED-type of experiments using this new and extremely
clean platform.

In the course of this experimental work I developed some comprehensive and useful
theoretical models to describe this system. I confirmed that all predictions of these
models agree well with the data obtained in the experiments. In Chapter 1, I showed
that both the normal-mode splitting, as well as an anomaly appearing in the CR-passive
circularly polarized mode, can be completely accounted by a full quantum mechanical
model, even though in this particular case it is completely equivalent to the classical
treatment. In Chapter 3, I used a physical model that is similar to the JCM to describe
the electrons in a tilted magnetic field. In all theoretical models, there are no adjustable
parameters needed, except the phenomenological scattering time which accounts for the
interaction of SEs with the surface ripplons. Such a robustness and high reliability of
the simple theoretical models stems from the fact that the electrons-on-helium system
is extremely pure and well-defined.

In the future, one can drive the experimental work using this platform in two di-
rections. Firstly, one must develop experimental techniques for the detection and ma-
nipulation of the quantum states of a single electron. This can lead to very interesting
experiments, as well as to some real applications related to quantum information pro-
cess. Secondly, one may include more complicated interactions in future experiments,
as well as in our theoretical analysis, for example, the Coulomb interaction between
electrons and the spin-orbit interaction. One can also extend the scope of this work to
include the electrical transport properties of SEs. This could lead to new insights into
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many-body physics and new experimental realizations of many-body models.
Sometimes, one finds some new and surprising features in well-known theoretical

models, such as the Jaynes-Cummings models, when one look at it from a different
perspective. This was the case for the theoretical project discussed in Chapter 2. In
this project, I developed a proposal to prepare squeezed states and spin-squeezed states
in an abstract system that can be described by the driven JCM. This proposal can be
experimentally tested in systems where the particle states are strongly coupled to light.
Potentially, one may implement the squeezed state preparation protocol presented in
Chapter 2 to the electrons-on-helium system in future work. However, some new
experimental methods need to be developed to do that.

In this thesis, the interaction between the electrons and their environment, in partic-
ular the helium vapor atoms and surface ripplons, was neglected. This can be partially
justified since the coupling strength of the electrons to the EM field is much stronger
than the coupling strength to the environment. In future work, it will be desirable to
also include the interaction term describing the coupling of SEs to the ripplons in order
to account for such experimentally observed quantities as the linewidth of the quantum
transitions and the electrical resistivity of SEs. To fully describe our system we have
to use open quantum system methods such as the quantum master equations.
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