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Abstract

Whispering gallery mode resonators (WGMRs) are ultrahigh quality optical resonators,
where Q-factors higher than 107 are easily achieved. They can be used as compact
optical sensors, laser sources, and experimental platforms to study optomechanics and
nonlinear optics, for example. A type of WGMR with a hollow structure first appeared
in the literature in 2010. Such a WGMR is called a microbubble resonator (MBR)
named after its geometrical structure. The wall thickness of an MBR is, typically, quite
thin and this leads to several interesting properties: (i) the resonant frequency can be
tuned by inserting air pressure, (ii) geometrical dispersion is changed from normal bulk
WGMRs, and (iii) when the bubble is filled with water (or other liquids), the resonant
optical field can be distributed within, and have an interaction with, the liquid core.
In this thesis, we discuss the fabrication method for MBRs and their application in a
coupled cavity system, as a tunable laser, and for frequency comb generation at near
visible wavelengths. In future, transient sensing may be achieved in a liquid core MBR
and different patterns of cascaded Raman scattering may be controlled by inserting
air pressure into the MBR. Preliminary work on these topics is also included in this
dissertation.
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c Speed of light (2.997 924 58× 108 [m/s])
µ Permeability
ε Permittivity
E 3-dimensional electrical field
E 1-dimensional electrical field
B Magnetic field
H Magnetic field intensity
D Electric displacement field
r Radial distance
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ω Angular frequency of light (ω = 2πf)
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Chapter 1

Introduction

1.1 Whispering Gallery Mode Resonators
Generally speaking, electromagnetism is the most common interaction of the four in-
teractions in the standard model, and it is observed in our daily life. Light is the fastest
and cheapest way to convey electromagnetic waves. The weakness is that light tends to
only have subtle interactions with materials. Therefore, for example, resonant circuity
was used to amplify light signals in early telecommunication technologies. In 1960, the
discovery and invention of the laser enhanced the interaction greatly [1]. This later
enabled light to selectively cool or control particles, provide stable and fast optical
communication through optical fibers, etc.

Whispering gallery mode (WGM) resonators are optical microcavities named after
the study of acoustic resonances in the whispering gallery of St. Paul’s Cathedral
(London) by Lord Rayleigh [2]. Instead of the acoustic wave in the original whispering
gallery, light is confined in WGM optical resonators due to total internal reflection
(TIR) and forms a 3-dimensionally distributed optical mode. The frequencies of the
modes have discrete values characterized by the mode number, which is determined by
the solution of the Helmholtz equation for the particular cavity geometry - more details
on this are given in Chapter 2. Other than at resonance frequencies, light cannot be
coupled into WGM resonators (WGMR) due to destructive interference of the different
pathways. This technique using cavities is amongst one of the most efficient ways of
enhancing the interaction between light and materials.

Compared to other optical cavities, such as Fabry-Pérot interferometers [3], pho-
tonic crystal microcavities [4], and microring resonators [5], WGMRs made from silica
have a superior quality (Q-) factor. The Q-factor indicates the quality of energy stor-
age in an optical resonator, where a high value of Q means low energy loss. While a
Q-factor of 0.8× 1010 is the theoretical limit in a high-purity, fused silica microsphere
[6], a Q-factor of 107 is easily achieved in standard silica WGM cavities, such as mi-
crotoroids [7–9], microbubbles [10–14], microbottles [15–19], and microspheres [7, 20].
Silicon WGM resonators initially had relatively low Q-factors because of the surface
chemistry treatment used. However, a Q-factor of 109 can now be routinely achieved
by exploiting a newly invented polishing method [21].Such a high Q-factor and the
small mode volume [22] invoke strong light-matter interactions. An ultrahigh finesse
of 106 [23] is also a remarkable characteristic of WGM cavities.
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Different whispering gallery cavity geometries have different advantages. One of the
easiest ways of achieving a high Q is to fabricate a microsphere. However, in order to
get stronger interaction between light and matter, a microtoroid resonator is preferred,
since light is more tightly confined therein than in a microsphere [7–9]. An alternative
resonator geometry is the microbubble, a hollow structure with a thin wall. For these
devices, resonant modes can be shifted by applying internal air pressure, and sensing
applications are easily envisioned by inserting a solution of a target molecule inside the
cavity [11–14, 24]. Especially for the biosensing application, the hollow structure can
be included in a microfluidic system, as well as a microbottle resonator with a thin
wall hollow structure [19].

SiO2 (silica) is widely used in this field because of its low cost and low loss in the
telecommunications waveband. At such wavelengths, Kerr nonlinearity of silica can
be exploited in a WGM cavity to study nonlinear optics. However, other materials
may also be used to make WGM cavities. For example, transparent liquid droplet
cavities have better tunability [25–29], chalcogenide glasses (As2Se3) have a wider
transparency window in the mid-infrared wavelength [30], lithium niobate (LiNbO3)
enables second-order nonlinearity applications [31–34], and calcium fluoride crystalline
(CaF2) resonators can have extreme Q-factors of 1013 in the ultraviolet band [35].

All of these facts lead to applications of WGMRs from ultralow threshold nonlinear
optics [36, 37] and lasing [38], to bio/chemical sensing [39–42], telecommunications [43,
44], quantum optics [32], and optomechanics [45–47]. For example, a frequency comb
can be generated using the concept of nonlinear optics and it can be used as an optical
clock to improve the precision of time measurements. A microlaser may be used as
a sensor, communication or operation system in micro-robotics. Bio/chemical sensing
using WGM cavities can retrieve information on particles or their reaction without
interruption, thus monitoring the physical condition of a patient without dosage may
be possible. WGMRs may also be used as a fundamental logic element in an integrated
optical device for performing ultrafast computation.Apart from technical applications,
these devices have also proven to be test-beds for fundamental physics in areas as
diverse as chaos theory [48] and quantum mechanics [49, 50].

1.1.1 Hollow Whispering Gallery Mode Resonators

The microbubble resonator is a relatively recently developed geometry of WGMRs
[10]. It can be fabricated by tapering and expanding a silica capillary. The resonator’s
main features are its hollow structure and wall thickness as small as 0.4 µm, while still
maintaining a high Q [13]. Such features can be used for sensing and nonlinear optics
application.

1.2 Whispering Gallery Mode Sensors

Optical sensors are one of the major applications of optical devices. For example, in
the field of fiber optic sensors, fiber optic Bragg grating sensors have been developed
as they are small (and, therefore, lightweight), have multiplexing capability, and are
immune to electromagnetic interference (EMI) [51]. The sensitivity of an optical sensor
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depends on the strength of interaction between light and the target. In that sense,
optical resonators, in particular WGM cavities, can confine light inside a micron-scaled
cavity for a long time duration. For example, light can be confined inside a silica
microsphere of diameter ∼ 100 µm for ∼ 500 ns. This results in an ultrathin linewidth
in the transmission spectrum. Any change to the transmission spectrum can be clearly
detected and, therefore, extremely high sensitivity to the perturbation of the resonance
condition is achieved. The perturbation by a target results in a change to the resonance
condition: for example, a refractive index change in a surrounding medium can shift the
resonant frequency [52], or adhesion of a nanoparticle can result in resonance linewidth
broadening [53] and mode splitting [54]. In an experimental setup, a resonance mode of
a WGM cavity is monitored as a transmission dip, by scanning the input laser frequency
(see Fig.1.1(a)). In this system, the perturbation can be monitored as a frequency shift,
bandwidth broadening, and mode splitting of the resonant transmission dip (see Fig.
1.1(b)). The frequency shift, or resonant wavelength shift, can be brought about by
several changes: for example, thermal expansion of the cavity or a refractive index
change in the surrounding medium. These are termed as dispersive changes, or for the
purpose of sensing, dispersive sensing. Linewidth broadening is when an additional
loss is introduced to the cavity, for example, when a nanoparticle is attached to the
cavity and absorbs light. This is termed as a dissipative change or dissipative sensing.
Mode splitting is due to reflection of light inside the cavity, where degenerate clockwise
and counter-clockwise optical modes undergo different shifts; this can also be caused
by the presence of a nanoparticle.

The experimental study of WGM-based sensors has mainly been done in biosensing.
For example, pioneer work by Vollmer et al. used a microsphere to detect bovine serum
albumin (BSA) protein and the binding event of streptavidin protein to BSA in 2002
[55]. To date, many improvements have been done in this context [39, 54, 56–58]: the
mode volume can be decreased using a small cavity [39], the cavity loss (∼linewidth)
can be compensated for by optical gain [54, 57], real-time DNA reactions [59] and
phage protein binding event [60] can be monitored. However, sensing applications
using WGM cavities are not limited to biomolecules. Refractive index sensing [52, 61],
temperature sensing [12, 62, 63], pressure sensing [64, 65], and stress sensing [66, 67]
are also possible due to the ultrahigh Q of the WGM cavity.

1.2.1 Cavity Ring-Up Spectroscopy Sensing

As already mentioned, by sweeping the laser frequency, the transmission spectrum
through the coupling waveguide can be recorded. Any changes to the frequency, mode
splitting, or linewidth are used to monitor perturbations induced by the physical pa-
rameter that is being sensed. During measurements, the transmission spectrum repre-
sents a steady state of the coupled system due to limitations on the scanning speed,
thereby constraining the time response of the sensor [68–70]. For a WGMR with an
optical Q-factor > 2 × 107, a ringing effect is observable even if the laser is scanned
as quickly as 100 Hz [71]. The ringing spectrum can be used to distinguish between
the overcoupling and undercoupling cases [72]. When the scanning speed is faster than
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Figure 1.1: (a) Input laser frequency is scanned by a laser controller. The laser
light couples into the WGM cavity through the evanescent field of a tapered optical
fiber. When an optical mode exists, a transmission dip can be seen on a digital storage
oscilloscope (DSO). (b) Frequency shift, linewidth broadening, or mode splitting hap-
pens when the resonant condition is changed: for example, deformation of the cavity
geometry, refractive index change or or perturbation by a nanoparticle.
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the character speed, as defined in [70]1, the steady state treatment can no longer be
used to describe the coupled-mode system. For example, if the Q-factor is as high as
107, ∼ 10−7 s are needed to retrieve dispersive and dissipative information by scanning
the laser frequency. If the Q-factor is lower, a longer scanning time is needed. This
is not fast enough to sense certain phenomena such as heat dissipation [73], transient
particle events (for example, we have observed Brownian motion of nanoparticles in a
liquid core MBR that cannot be monitored by an absorption dip change), and fast bio-
chemical events such as methyl proton rotation [74] and hydrated protein relaxation
[74, 75].For example, transient sensing is possible by recording lineshape changes in
the ringing tail of an observed transmission spectrum, either by (i) a scanning probe
laser or (ii) a fixed laser in resonance with a high Q mode [70]. A proof-of-principle
experiment based on the ringing phenomenon has recently been reported [76].

Another possible approach is to send light pulses, which are far detuned from a
WGM resonance, through the optical coupler. The retrieved signal on the coupler’s
output shows an oscillatory lineshape similar to that in [70]; this effect is termed cavity
ring-up spectroscopy (CRUS) [69] and the rising edge of the light pulse leads to tran-
sient broadening. Even though the light is far detuned from the whispering gallery
mode, a fraction can still be coupled into the cavity if the broadening is much larger
than the detuning. The system is not affected by thermal or nonlinear processes which
may arise due to the ultrahigh Q of the mode. The ringing effect occurs within the
lifetime of the WGM and, therefore, can be used for ultrafast sensing. The transient
capability of CRUS has already been demonstrated by measuring the time response
for thermorefractive effects, Kerr nonlinearity and optomechanical vibrations [69]. To
date, there has been no thorough theoretical investigation of CRUS and details, such
as the influence of the pulse’s rise time on the observed spectra, are relatively un-
known. We have used coupled-mode theory to solve the related differential equations
without relying on the steady state assumption. An approximate analytical solution
was obtained and compared to a precise numerical transient solution. The theoretical
results fit well to experimental data that we obtained for a silica microsphere resonator.
The influences of the pulse rise time, the coupling condition, and the detuning on the
ring-up spectrum have been determined given. The possibility of using CRUS in a
low Q (∼ 106) cavity was also explored. This provides a solid foundation for future
applications in transient sensing [77].

1.2.2 Optical Trapping with Whispering Gallery Mode Res-
onators

The sensitivity of a sensor depends on the optical coupling regime. For example, if one
uses a tapered fiber to couple light into the cavity, the linewidth depends on the distance
between the fiber and the WGM resonator, as we will see in Chapter 2. This means
that the cavity can have different responses to the perturbation from a sensing target.
Adjusting the cavity to the most sensitive part, i.e., controlling the position of a WGM
cavity, can improve the sensing performance. In a tapered fiber optical coupling system,
the position of the WGM cavity can be adjusted by a nanostage. However, for practical

1Character speed is γ2, where γ is the decay rate in a cavity.
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purposes, e.g. if one wanted to mass-produce optical devices based on WGM cavity
sensors, controlling the position of the cavity by an optical force could be a realistic,
efficient, and reasonable method. Therefore, investigating optical forces is important
for sensing applications. The optical force can be excited as the interaction induced
by the evanescent field between optical cavities. Several theoretical studies have been
done to investigate optical forces in different optical cavities. In a dual-ring structure,
the dependence of the attractive and repulsive forces on the resonant frequency and the
coupling strength between the structure and input waveguide have been investigated
[78]. The strength of the force also depends on the interacting surface area. This has
been shown by assuming parallel planar waveguides and solving Maxwell’s equation
[79] and making an optical spring2 assumption [80].

Optical forces can also be excited between two adjacent WGM cavities. When two
WGM cavities are adjacent to each other, a so-called supermode can be excited. In this
condition, the optical resonance for each cavity cannot be described separately and the
two cavities should be treated as a single optical resonator [81–83]. An optical mode
is split into symmetric and anti-symmetric supermodes that can be excited depending
on the displacement between the two WGM cavities, c.f. Fig. 1.2(a). The optical
force caused by the supermodes are estimated to be able to control the position of
microcavities [84], where, in the study, 100 nN of force is estimated when the distance
between the two cavities is smaller than 500 nm and the Q-factor is higher than 108.
The electrostatic force is also estimated to be on the order of a few pN, which is
negligibly smaller than the optical force in a silica microsphere cavity. Work based on
numerical calculations shows when two input lasers are slightly blue-detuned from each
supermode, two split supermodes can be described; the symmetric supermode can be
excited when the displacement is large and an attractive force is excited between the
two cavities, whereas the anti-symmetric supermode is excited when the two cavities
are close to each other and the force is repulsive force [85], c.f. Fig. 1.2(c) and (d).

While conventional WGM cavities are fixed to a substrate or a stem, a special type
of microsphere called a micropendulum can undergo a significant displacement change
[86]. In a coupled-cavity system with a fixed WGM cavity and a micropendulum, the
optical force can be used to align the position of the micropendulum and trap it at a
certain distance from the fixed cavity. The center of the trap can be shifted by applying
static charge; therefore, manipulation of the coupling distance is achievable. Another
concern is about the possibility of exciting the supermodes, since the two cavities must
be in resonance for the same frequency. This difficulty can be resolved by using a
microbubble resonator, since its resonance frequency can be easily tuned by internal
air pressure. Therefore, controlling the coupling regime of a micropendulum cavity
using the optical force may be achieved by placing a microbubble resonator adjacent
to a micropendulum resonator, see Fig. 1.2(b).

Further investigation is required to estimate the optical force of the coupled-cavity
system. A theory must be developed to relate the trapping information to the optical
information, so that the optical force can be retrieved by analyzing the transmission
spectrum. The transmission spectra of the supermode for different distances have been
studied in [83]. The information on the optical force can be estimated by the ratio

2The optical force works in the opposite direction to the displacement of the two parallel waveguides.



1.2 Whispering Gallery Mode Sensors 7

Figure 1.2: (a) Two WGM cavities are coupled to each other while the system is
coupled to a tapered optical fiber. (b) One cavity could be a microbubble resonator
and the other could be a micropendulum resonator. (c) The symmetric supermode
is excited, generating an attractive optical force, when the displacement of the two
cavities is large. (d) The symmetric supermode is excited, generating a repulsive force,
when the displacement of the two cavities is small.
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of the frequency shift to the change in displacement [84, 85]. The mechanical oscil-
lation provides a small displacement. However, is large enough to be monitored as a
vibration of the resonant frequency [46]. More generally, the vibration of the resonant
linewidth is mixed with the vibration of the resonant frequency [86]. Therefore, the
trapping force can be estimated using a comprehensive theory that has been developed
based on the study of the transmission spectra of coupled resonators [83, 86]. Subse-
quently, experimental work was needed in order to determine the trapping efficiency.
As a test-bed, a microsphere with a vibrating piezo stage can be used instead of a
micropendulum.

1.2.3 Microbubble Lasers for Pressure Sensing

When observing the change of spectral information of an optical mode for sensing, a
laser mode can have a narrower linewidth than the transmission dip. The lower limit
of the laser linewidth, ∆f , is described by the Schawlow-Townes formula [87] and is
proportional to the square of the inverse of the Q-factor when lasing does not exist:

∆f =
hf 3β

4πP ·Q2
, (1.1)

where P is the output laser power, f is the laser frequency, and β is the spontaneous
emission factor representing how efficiently the spontaneous emission from the medium
material is coupled to the lasing mode. Ultra-narrow linewidth lasing of 4 Hz at
1550 nm wavelength has been reported in [88]. As stated before, WGMRs can have
ultrahigh Q-factors and relatively small mode volumes. Very high Q, low threshold
WGM microlasers can be realized when the resonator is made from a material with
gain [89–91]. For this purpose, many fabrication methods have been developed [92],
one of which is the sol-gel wet chemical synthesis technique. Rare earth ions are
mixed into the sol-gel precursor solution and, based on the hydrolysis and condensation
reactions of metal-alkoxide precursors in aqueous solutions, alcohol, or other media, a
silica film can be formed with the gain medium. Microlasers made from sol-gel coated
microspheres [93, 94] and microtoroids [95] have already been realized. Such active
WGMRs are used for applications such as nanoparticle sensing [54] and fundamental
physics research [9, 96, 97]. Sol-gel is a low-cost, flexible way to functionalize a WGM
resonator and can also be applied to microbubble resonators as we shall discuss in the
following.

Microbubble resonators are a more recently developed geometry of WGMRs [10,
11, 41]. They are hollow, while still maintaining a high Q-factor and small mode
volume. Similar to other WGM resonators, microbubbles can also be used in a wide
variety of applications, such as nonlinear optics [18, 98], sensing [61, 64, 65], and
optomechanics [99]. Active microbubbles have also been developed by injecting dye
solution [100, 101] or other bio-chemical liquids [102] into the core of the resonator such
that lasing emission can be achieved. In order to achieve lasing from the wall instead of
the core, a glass-on-glass wetting technique was developed [16], whereby bulk Er-doped
glass was melted onto the surface of a microcapillary. The wall thickness was limited
in this method. To fabricate a microbubble resonator with a thinner, gain-activated
wall and to improve the attainable sensitivity, alternative methods need to be found.
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In this work, we used a sol-gel coating technique to introduce Er3+ ions onto the wall
of a microbubble and lasing in the 1550 nm band was realized. With a subwavelength
wall thickness, internal aerostatic pressure applied to the wall of the resonator could
provide the lasing frequency shift. Sensing applications using a WGM cavity based
microlaser have already been reported in [54, 92, 103]. However, the hollow structure
of the microbubble allows us to sense changes from the inner surface of the wall. This
has advantages when used in microfluidic systems and can avoid the disturbance that
a sensing target may have to the optical coupling condition.

1.3 Nonlinear Optics with Whispering Gallery Mode
Resonators

The confinement of laser light in WGM cavities strongly enhances interactions between
light and matter. Therefore, the nonlinear polarization of the material plays an impor-
tant role in WGM cavities. The polarization, p, of the material can be expressed in a
Taylor expansion as follows [104]

p = ε0
[
χ(1)A + χ(2)AA + χ(3)AAA + · · ·

]
, (1.2)

where ε0 is the vacuum permittivity, A is the light field and χ(i) are (i + 1)th rank
nonlinear permittivity tensors. For instance, the second term, with χ(2), is expressed
in detail as

(1.3)p
(2)
i (t) = ε0

∑
ijk

χ
(2)
ijkAj(t) · Ak(t),

where i, j, k refer to each component of the parameters in the Cartesian coordinates.
Equation 1.3 describes the second order nonlinearity during the light and matter inter-
actions. If we assume the light field takes discrete values of frequency, ω1 and ω2, as is
usually the case in a WGM cavity, Eq.1.3 predicts the generation of different frequen-
cies. This is the so-called three-wave mixing process that has been extensively studied
[31, 33, 105–107]. For simplicity, we suppose there is only one Cartesian component
and the optical field takes the form A = A1e

−iω1t + A2e
−iω2t + c.c. Terms from A2

with nonzero χ(2) components predict frequency conversions such as second-harmonic
generation (SHG), where ωSHG1 = 2ω1 and ωSHG2 = 2ω2, sum-frequency generation
(SFG), where ωSFG = ω1 + ω2, and difference-frequency generation (DFG), where
ωDFG = ω2 − ω1. Vacuum fluctuation enable ω1 and ω2 to be generated by an optical
pump at frequency ωp, where ωp = ω1 + ω2. This is known as spontaneous parametric
down conversion (SPDC).

Inside an optical cavity, however, these conditions are not automatically satisfied.
Material dispersion shifts frequencies unequally, thus energy conservation may not be
satisfied during the conversion. Nevertheless, many techniques are found and used
to achieve energy conservation, i.e., the phase-matching condition, during the wave
conversion process. SHG has been achieved using a pump near 1550 nm by polling
a pattern on a lithium niobate microtoroid [31]; SPDC has been achieved and a non-
classical signal-idler pair has been generated, separated by 100 nm wavelength near
1060 nm, using a 532 nm pump, by applying temperature and voltage to a MgO-doped
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lithium niobate WGM resonator [33]; SFG has been experimentally demonstrated at
a 1560 nm pump and 780 nm signal by tuning the input polarization in a MgO-doped
lithium niobate microdisk [106]; DFG is expected to be achieved in a GaAs microdisk
by geometrical control of the effective refractive index [105].

The third order nonlinearity term involves various phenomena satisfying the energy
conservation of four waves, ω4 = ω1+ω2+ω3, termed four-wave mixing (FWM). Various
wave generation processes and nonlinear effects are possible in different combinations
of different frequencies and their signs. When ω1, ω2 and ω3 are of the same frequency
and one of the three has a different sign to the other two (since it is the complex
conjugate), then no new wavelength is generated; however, the effective refractive index
may be shifted depending on the laser power. This is called self-phase modulation
(SPM). Cross-phase modulation (XPM) is another mechanism used to shift the effective
refractive index. This is described by terms satisfying, for example ω2 = −ω3. These
phase modulations do not require the phase-matching condition to be satisfied since
no photons at new frequencies are generated. Terms with ω1 = ω2 = ω3 = ω describe
the frequency generation of ωTHG = 3ω, i.e., third harmonic generation (THG). When
two pump photons ωp generate a pair of idler-signal photons (ωi and ωs), possible
due to the vacuum fluctuation, we call it hyper-parametric oscillation or spontaneous
four-wave mixing (SFWM). As long as the phase-matching condition is satisfied, the
photon pair generation process by the hyper-parametric oscillation is cascaded and can
lead to frequency comb generation.

1.3.1 Frequency Comb Generation in a Microbubble Resonator

A frequency comb is a light source with equidistant lines in its optical spectrum. It
can be generated from four-wave mixing (FWM) and mediated by hyper-parametric
oscillation. In modern optics, frequency combs have applications in many areas such as
frequency metrology [108], precise optical clocks [109], and biomedical imaging [110].
In the last decade, whispering gallery mode resonators have emerged as excellent de-
vices for frequency comb generation. Frequency comb generation was first introduced
by a fiber laser [111] and a mode-locked laser cavity [112]. The number of comb lines
present is related to the pulse intensity and the spectral distance between comb lines
is inversely related to the cavity size of the laser. Therefore, to generate a broadband
frequency comb, high power and a small laser cavity are required in a fiber or laser cav-
ity system [109]. WGMR-based combs are miniature in size and do not require a high
power fs laser to drive the comb; these benefits arise from their ultrahigh Q-factor and
small mode volume. Frequency combs have been realized near the telecommunications
bands in different types of WGMRs such as microspheres [113], microtoroids [114, 115],
microrings [116], microdisks [109, 117, 118], and microbubbles [119–121]. Frequency
combs in WGMRs require phase matching over a broadband frequency range where the
group velocity dispersion (GVD) plays an important role and is crucial for achieving
the maximum comb bandwidth [122]. In WGMRs, the GVD is determined by (i) the
material dispersion described by the Sellmeier formula and (ii) the geometric dispersion
due to non-equidistant mode distribution in the resonator. By changing the material
and selecting higher-order whispering gallery modes, the zero dispersion wavelength
(ZDW) can be redshifted [123, 124], thus expanding the possibility of frequency comb
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Figure 1.3: (a) Energy diagram representing hyper-parametric oscillation. Two
pump photons are converted to an idler-signal photon pair. (b) The cascaded hyper-
parametric oscillation process. (c) Comb lines in the frequency domain. (d) A Fourier
transformation of the frequency comb, in the time domain.
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generation to the mid-infrared (MIR) range [125–127]. Apart from extending the wave-
length range of a frequency comb towards the infrared, it is also highly desirable to
do the opposite, i.e., move the frequency comb to shorter wavelengths e.g. the visible
region. For example, a frequency comb around 780 nm can be used to lock a laser
to the rubidium D2 transitions [128] as required in atomic clocks. Moreover, in a wa-
ter environment, the light from a near-infrared (NIR) or MIR frequency comb will be
strongly absorbed, whereas the absorption of red or near-red (such as 780 nm) light is
much less. Hence, a frequency comb at 780 nm could also be used for biological sensing
and optical computed tomography imaging [110, 129, 130].

To obtain a Kerr frequency comb, the ZDW must be shifted toward the visible
range. However, this is challenging because of the material dispersion. To date, three
methods for realizing frequency combs in the visible spectral region have been reported.
One method is to use multiple nonlinear processes simultaneously in a material. A
silicon nitride microring was used to generate a NIR comb around 1540 nm, which was
converted to the near visible range by engineering the material so that second-order
optical nonlinearity (SHG and SFG) emerges [131]. The authors observed 17 comb lines
in the 765–775 nm region. In the second method, a frequency comb was generated in
the normal dispersion regime. The possibility of generating a frequency comb in this
regime has been theoretically discussed and has proven to be extremely difficult to
achieve [132]. Nevertheless, assisted by a mode-interaction process, a frequency comb
in the anomalous dispersion regime was used to generate new combs in the normal
regime [133]. Hence, it could be exploited to generate a comb in the visible range.
The third technique relies on engineering the total dispersion of the system. This can
be achieved by out-of-plane excitation of the higher-order bottle modes in WGMRs
with a parabolic lateral profile [134]. In such a situation, the high Q optical modes
propagate along the axis of symmetry. It has been shown that the geometry dispersion
of such modes is strongly related to the lateral profile [120, 134]. By choosing the right
resonator profile, even at a center wavelength of 780 nm, the total dispersion can be
forced into the anomalous regime. Using this technique, a frequency comb centered at
794 nm was observed in a crystalline WGMR [134]. Alternatively, by carefully designing
the lateral profile of a wedged silica microdisk, broad- band dispersion control can be
obtained [135].

Such advances indicate that visible range frequency combs can be achieved. During
this PhD work, we developed a much more controllable method to engineer the disper-
sion by using a microbubble resonator (MBR). In 2013, FWM parametric oscillation
at the telecommunications wavelength around 1550 nm was first reported in an MBR
[120] and, later, frequency comb generation was also realized [120, 121, 136]. In an air-
filled silica MBR, the mode is distributed both in the wall and in the inner air owing
to the evanescent field penetration. By varying the wall thickness, the proportion of
the mode intensity in air can be modified, thus changing the effective index and the
frequency distribution of the cavity modes [24]. It has been theoretically shown that,
by shrinking the wall thickness, the ZDW shifts towards shorter wavelengths [119, 137].
Therefore, it should be possible to generate a frequency comb in the visible range by
optimizing the wall thickness of the MBR.
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Figure 1.4: The energy diagram of (a) Stokes SRS and (b) anti-Stokes SRS. (a)
Stokes SRS is described by ωS = ωS + ωp − ωp, where ωp and ωS are the frequencies
of the pump field and Stokes field. The phase-matching condition is not required. (b)
In contrast, anti-Stokes SRS is described by ωA = ωp + ωp − ωS, where ωA represents
the frequency of the anti-Stokes light field. The phase-matching condition must be
satisfied between three frequencies [104].

1.3.2 Intrinsic Raman Mode Switching Process with Whisper-
ing Gallery Mode Resonators

Light coupled to a WGM resonator can also interact with the vibration of the mate-
rial’s molecules. Light scattered by a long-range lattice wave of the material is called
stimulated Brillouin scattering (SBS). The light scattered by a local molecule displace-
ment vibration is called stimulated Raman scattering (SRS). Those processes can be
described by introducing complex third order susceptibility [104] to the system. SBS
is not likely to be excited in WGM cavities even though the Brillouin threshold is gen-
erally lower than the Raman threshold. The excitation of SBS in a WGM cavity needs
the following conditions to be satisfied: (i) The lattice wave must correspond to one of
the mechanical resonances of the WGM cavity, (ii) there must be an optical mode that
is detuned tens of GHz from the pump mode, where the Brillouin gain band resides
so as to support the scattered light, and (iii) the pump light, the lattice wave, and
the scattered light must satisfy the energy conservation law. In particular, the second
condition is usually not satisfied in a WGM resonator and the other two make the ex-
citation also challenging [138]. Nevertheless, several achievements have been reported
in WGM cavities by using a large optical cavity [138] and by using a high-order optical
mode that belongs to a different mode family than the pump mode [139].

In contrast, SRS is generally seen in a WGM cavity. While the anti-Stokes SRS
needs to satisfy the phase-matching condition, StokesSRS usually has a broad gain band
and can be excited without constraint, once the pump power is above a certain threshold
in WGM cavities. Therefore, various WGM cavities support SRS, e.g. microdroplets
made from different materials [27–29], CaF2 crystalline WGM cavities [140, 141], silica
WGM cavities [142–144], As2S3 glass microspheres [145], polymer coated microspheres
[146], and Er3+-ion doped microtoroids [95]. The cascaded process can also be easily
excited at different wavelengths [140, 143, 146], therefore supporting a wide range of
frequency generation. Generally, the frequencies of excited SRS modes are not equally
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spaced. However, by carefully tuning the pump laser parameters and cavity dispersion,
an equally spaced Raman comb is possible [147]. Note that the dynamics of the Ra-
man formation is relatively unstudied. During this PhD, we have studied interactions
between excited Raman modes, theoretically, numerically, and experimentally. For a
fairly simple case, we predicted and experimentally demonstrated a mode-switching
process.

1.4 Motivation
In this dissertation, the primary motivation is to explore applications of microbubble
resonators, especially in developing them as sensors and as tools for nonlinear optics.
Chapters 2 and 3 contain general theory and experimental details that are needed
when working with WGMRs and, more specifically, MBRs. This then leads into the
main works presented within the framework of this dissertation. In Chapter 4, we
show how the MBR can be used as an excellent platform for transient sensing, one of
the primary applications for which the resonators are suitable. Next, in Chapter 5,
we discuss how the MBR can be used in a system where two cavities are coupled for
studying optical forces under certain resonance conditions. Applications of the MBR
as a tunable microlaser or as a pressure sensing platform are presented in Chapter 6.
Then, in Chapter 7, we show that the zero dispersion wavelength can be engineered
by playing with the wall thickness of the bubble and this facilitates applications in
nonlinear optics, such as frequency comb generation. Finally, in Chapter 8, we show
that different patterns of Raman scattering within an MBR can be tuned, leading to
the observation and modeling of further nonlinear optics phenomena. The thesis is
concluded by putting the work into context for future advances in the field.



Chapter 2

Wave Theory of Whispering Gallery
Mode Cavities

2.1 Introduction
In this chapter, we will introduce the theory associated with the intracavity field dis-
tribution of light in a microsphere, as essential for WGMs. Next, coupled-mode theory,
which has been used to describe experimental work during the course of this PhD, will
be introduced. These theories also appear in many other works. For example, the
intracavity field distribution theory can be found in [148, 149] and the coupled-mode
theory can be found in [150, 151].

2.2 Field Distribution in a Microsphere
In an isotropic medium, where we suppose a permittivity, ε, and permeability, µ, are
constant, free of charges, and there is no current, Maxwell’s equations are given by

∇ ·B = 0, (2.1)

∇×E +
∂B

∂t
= 0, (2.2)

∇ ·D = 0, (2.3)

∇×H − ∂D

∂t
= 0. (2.4)

Using standard notation, H = B/µ stands for the magnetizing field and D = εE is
the electric displacement field. Taking the curl of Eq. 2.2 yields

0 = ∇×
(
∇×E +

∂B

∂t

)
(2.5)

= ∇(∇ ·D/ε)−∇2E + µ∇× ∂H

∂t
, (2.6)

then substituting Eq. 2.3 and Eq. 2.4 into Eq. 2.6, we get

0 = ∇2E − µε∂
2E

∂t2
. (2.7)

15
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As we are more interested in the spatial distribution of the electric field, we assume that
the time dependence of the field is simply eiωt. The Helmholtz equation is obtained on
setting k = ω

√
µε such that

∇2E + k2E = 0. (2.8)

We can get a similar relation for the magnetic field by transforming Eq. 2.4 and
substituting Eqs. 2.1 and 2.1 into it.

2.2.1 Maxwell’s Equations in Spherical Coordinates

If we assume a TE or TM mode1, as is normally the case in a cavity, the vector field
description can also be dropped so that only the vector component parallel to the
sphere surface remains. Then, using the separation of variables approach, either the E
or B field is expressed as Ψ(r, θ, φ)eiωt, where the spatial distribution is

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ). (2.9)

Note we are using spherical coordinates, where the radial, polar, and azimuthal com-
ponents are represented by R(r), Θ(θ) and Φ(φ), respectively. Then Eq. 2.8 becomes

1

R

d

dr
(r2dR

dr
) +

1

Θsinθ

d

dθ
(sinθ

dΘ

dθ
) +

1

Φsin2θ

d2Φ

dφ2
+ k2r2 = 0. (2.10)

Equation 2.10 can be separated into its variables by following the transformation:

1

R

d

dr
(r2dR

dr
) + k2r2 = − 1

Θsinθ

d

dθ
(sinθ

dΘ

dθ
)− 1

Φsin2θ

d2Φ

dφ2
≡ l(l + 1), (2.11)

sinθ

Θ

d

dθ
(sinθ

dΘ

dθ
) + l(l + 1)sin2θ = − 1

Φ

d2Φ

dφ2
≡ m2. (2.12)

This yields three equations related to r, θ and φ:

d2R

dr2
+

2

r

dR

dr
+ (k2 − l(l + 1)

r2
)R = 0, (2.13)

1

sinθ

d

dθ
(sinθ

dΘ

dθ
) +

[
l(l + 1)− m2

sin2θ

]
Θ = 0, (2.14)

d2Φ

dφ2
+m2Φ = 0. (2.15)

The constants l(l + 1) and m2 are introduced to solve the equation. When l is a
non-negative integer (i.e., l = 0, 1, 2 . . . ) and m is an integer whose absolute value is
smaller than or equal to l (i.e., m = 0,±1,±2, . . . ,±l), Eq. 2.13 is known as a spherical
Bessel differential equation and Eq. 2.14 is known as a spherical harmonic differential
equation. The general solution of Eq. 2.13 is known to be given by a linear combination

1TE and TM modes are transverse electric and magnetic modes. When the electric field is parallel
to the sphere surface, the resonant mode is called the TE mode. When the magnetic field is parallel
to the sphere surface, the resonant mode is called the TM mode
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of the spherical Bessel functions, jl, and spherical Neumann functions, nl. Considering
the spherical Neumann functions diverge at r = 0, the solution becomes:

R(r) = Ajl(kr) = A

√
π

2kr
Jl+ 1

2
(kr) = A

√
π

2kr

∞∑
p=0

(−1)p

p! Γ(p+ l + 3/2)

(
kr

2

)2p+l+ 1
2

,

(2.16)
where A is a constant, Jl is a Bessel function of l-th order and Γ(x) is the gamma
function. Although l appears in the radial component, it is a polar mode number.
The radial mode number, n, corresponds to the number of radial field amplitude local
maxima. This is related by applying the boundary condition of the cavity, i.e., n is
determined and depends on k solved according to the boundary condition, c.f. Fig.
2.1.

The solution of Eq. 2.14 is related to Legendre polynomials, i.e., Θ(θ) is propor-
tional to Pm

l (cosθ). Together with Eq. 2.15, that can be solved easily, it is generally
expressed as the normalized spherical harmonics function:

Θ(θ)Φ(φ) = Y m
l (θ, φ) = ClmP

m
l (cosθ)eimπ, (2.17)

with the normalization constant, Clm, noting that m is the azimuthal mode number.

2.2.2 Characteristic Equation

Now we are going to involve the boundary condition in our discussion. We set the
center of the spherical coordinate system to correspond to the center of a microsphere
with radius, r0. We suppose that the microsphere has an ultrahigh Q so that losses
are negligible and the theory described in the previous section applies. The boundary
condition is that the field and its derivative are continuous at r = r0. For r > r0,
the wave travels outwards. This condition is described by the outgoing spherical Han-
kel functions, h(1)

l (ikr) = jl(ikr) + inl(ikr). Then, the boundary condition gives the
characteristic equation:

α
1

jl(nsk0r0)

∂jl(nsk0r)

∂r

∣∣∣
r=r0

=
1

h
(1)
l (inak0r0)

∂h
(1)
l (inak0r)

∂r

∣∣∣
r=r0

, (2.18)

where k0 (corresponding to k/ns in the microsphere and k/na in the surrounding
medium) is the wavenumber of light in vacuum. ns and na are the refractive indices
of the microsphere and the surrounding medium, respectively, where for silica glass we
use ns and for air or nitrogen gas we use na in this thesis. α is the ratio of the refractive
indices inside and outside of the sphere. For TE modes α = na/ns and for TM modes
α = ns/na.2 The resonant k0 value and the radial field distribution can be obtained
numerically or approximately as reported in other works [150, 152–155]. Here, Fig. 2.1
is plotted by computing Eq. 2.18 numerically in MATLAB. The resonant value for k0

is important as it is related to phase-matching and, thereby, it is a key parameter for
frequency comb generation. We will revisit this point later in Chapter 7

2The right hand term of Eq. 2.18 always takes a real value even if the numerator and the denomi-
nator are generally complex. This can be proven by finding out the recurrent relations and recurrent
derivative relations of spherical Hankel functions and applying to h(1)

0 (ikr) = −(1/kr)e−kr.
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Figure 2.1: Resonant modes obtained by solving the characteristic equation in MAT-
LAB (see Appendix A for details). The diameter of the microsphere is 25 µm for all
plots. (a)-(d): The resonant wavenumber, k0, is 4.04 × 106 rad/m, where n = 1 and
l = 136 is decided by the value of k0. (e)-(h): k0 = 3.99×106 rad/m, n = 2 and l = 127.
The azimuthal mode number, m, can take any integer between −l and l, including 0.
The total number of field amplitude maxima is n× (l−|m|+1)×|m|. The blue lines in
(a) and (e) are norms of the corresponding spherical Bessel functions that describe the
intracavity field amplitude and the red lines are norms of the corresponding spherical
Hankel functions that describe the evanescent field amplitude.
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2.2.3 Free Spectral Range (FSR)

Roughly speaking, the azimuthal mode number, m, relates to the cavity diameter, r0,
and the wavelength, λm, by mλm = 2πnsr0. Then, we see that

mc = 2πnsr0fm, (2.19)
(m+ 1)c = 2πnsr0fm+1, (2.20)

where fm = c/λm and fm+1c/λm+1, with c being the speed of light in vacuum. Sub-
tracting Eq. (2.20) from Eq. (2.20) we get

1 =
2πnsr0

c
(fm+1 − fm) = 2πnsr0

λm − λm+1

λmλm+1

. (2.21)

The free spectral range is defined as

∆λFSR ≡ |λm − λm+1|=
λmλm+1

2πnsr0

. (2.22)

Strictly speaking, the intracavity field is not distributed on the equator of the sphere
but slightly inside. Therefore, the real wavelength, λ, is smaller than what we get by
assuming the relationships in Eqs. 2.20 and 2.20. For example, using r0 and m in
Fig. 2.1(d), the approximate wavelength is λ = 1.67 µm, whereas the real wavelength
obtained from the value of k0 is 1.55 µm. The free spectral range, ∆λFSR, obtained in
Eq. 2.22 is also slightly larger than the real value. It is estimated to be 12 nm in Eq.
2.22) and 11 nm in reality. An effective refractive index may be defined and used to
compensate for the difference.

2.3 Optical Field Distribution in a Microbubble Res-
onator

In a bulk WGMR, the dispersion of the cavity is almost fixed and largely depends on
the material. With MBRs it is possible to engineer the geometrical dispersion due to
its hollow structure and thin wall. In this context, the resonant k0 in a capillary was
explored numerically by Meldrum and Marsiglio in 2014 [156]. While the theory was
developed for a microcapillary, it can also be applied to a microbubble resonator when
the optical field is confined to the equator. In this section, we reproduce the theory
developed by Meldrum and Marsiglio in [156].

Neglecting the axial part (i.e., ∂/∂z = 0), Maxwell’s equations for TE resonances
are rearranged in cylindrical coordinates to give

1

r

∂

∂r

(
r
∂E(r, φ)

∂φ

)
+

1

r2

∂2E(r, φ)

∂φ2
+ k2

0nrE(r, φ) = 0, (2.23)

where E is the field amplitude, r is the radial distance, φ is the azimuthal angle and
nr is the refractive index of the medium. Using the separation of variables approach,
the azimuthal component is solved, and E(r, φ) becomes

E(r, φ) = R(r)exp(±imφ). (2.24)
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Substituting Eq. 2.24 into Eq. 2.23 yields the Bessel differential equation:

r2dR(r)

dr2
+ r

dR(r)

dr
+ (k2

0n
2
rr

2 −m2)R(r) = 0, (2.25)

where m is the azimuthal mode number. The solution of the radial component of the
electric field is known as a cylindrical Bessel function or simply a Bessel function of the
first, Jm(nrk0r), and second, Ym(nrk0r), kind. Now we consider a capillary with inner
diameter and outer diameter given by r1 and r2, respectively. Generally, the capillary
may be filled with liquid. The refractive index, which depends on the radial positions,
is given by:

nr =


nl (r < r1)

ns (r1 < r < r2)

na (r > r2),

where nl, ns, and na are the refractive indices of the intracavity medium (liquid), sil-
ica glass, and air, respectively. For r < r1, R(r) should not diverge to ∞, therefore
the second kind of Bessel function, Ym(nlk0r), is not included. In the silica capil-
lary, there are both incoming, H(2)

m (nsk0r) = Jm(nsk0r) − iYm(nsk0r), and outgoing,
H

(1)
m (nsk0r) = Jm(nsk0r) + iYm(nsk0r), waves. Outside the capillary, the wave is trav-

eling outward. Therefore, the solution of the Bessel differential equation in a silica
capillary is expressed as

R(r) =


AmJm(nlk0r) (r < r1)

BmH
(2)
m (nsk0r) + CmH

(1)
m (nsk0r) (r1 < r < r2)

DmH
(1)
m (nak0r) (r > r2).

Here, Am, Bm, Cm and Dm are proportionality constants. H
(1)
m and H

(2)
m represent

outgoing and incoming waves and are called Hankel functions of the first and second
kind. Then, the boundary condition (i.e., R(r) and its derivative, R′(r), should both
be continuous at both boundaries, r1 and r2) lead to the characteristic equation:

npaH
(1)′
m (nak0r2)

npsH
(1)
m (nak0r2)

=
BmH

(2)′
m (nsk0r2) +H

(1)′
m (nsk0r2)

BmH
(2)
m (nsk0r2) +H

(1)
m (nsk0r2)

. (2.26)

We set Cm to be 1 and include the polarization p, where p = 1 corresponds to TE
modes and p = −1 represents TM modes. The Bm are obtained from

Bm =
npsJm(nlk0r1)H

(1)′
m (nsk0r1)− npl J ′m(nlk0r1)H

(1)
m (nsk0r1)

−npsJm(nlk0r1)H
(2)′
m (nsk0r1) + npl J

′
m(nlk0r1)H

(2)
m (nsk0r1)

, (2.27)

where k0 must satisfy Eqs. 2.26 and 2.27 and is resonant with the capillary.
For tapered fiber optical coupling at the equator of the cavity, the optical field is

mostly confined around the equator. Therefore, the situation can be treated as being
the same as for a capillary. Thence, the theory discussed can be applied to an MBR.

Examples of the optical resonant field of an MBR are shown in Fig. 2.2. When not
filled with an intracavity medium, the optical field is simply distributed on the silica
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(a) (b) (c)

Figure 2.2: Simulated optical field of an MBR for different conditions. (a) The funda-
mental optical mode and (b) a higher order optical mode in an MBR. The intracavity
and surrounding media are simply air. (c) The core of the MBR is filled with ethanol.
The resonant optical field can be pushed into the core to form the quasi-droplet regime
[24]. The simulation is done in COMSOL.

wall (Fig. 2.2(a)(b)). However, the refractive index of the core can be increased by
filling a liquid into the cavity. In this regime, the resonant optical field can also be
distributed in the core of the MBR and we call it the quasi-droplet regime [24] (see
Fig. 2.2(c)).

2.4 Optical Coupling through a Waveguide

The input light is coupled to WGM cavities through the evanescent field of a waveguide,
such as a prism [157], a polished optical fiber [158, 159], or a tapered optical fiber [160].
In this section, we introduce coupled-mode theory in order to describe the situation
[151]. The change in the intracavity field over time is determined by

dA

dt
= iω0A− (

γin
2

+
γex
2

)A+
√
γexse

iωLt, (2.28)

where A is the unified intracavity electromagnetic field (so |A|2 corresponds to the
intracavity energy), ω0 and ωL are the resonant frequencies of the optical mode under
analysis (which we term the pump mode in this thesis) and the input light, respectively,
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γin and γex are intrinsic and external decay rates, κ is a coefficient describing the optical
tapered fiber coupling strength, and s is related to the degree of the input field power.
This equation means that the time evolution of the amplitude of the intracavity field,
dA/dt, depends on the input field, s, and the decay rates, γin, due to the cavity loss,
and γex, due to the optical coupling.

2.4.1 Transmission Spectrum

Applying the rotating frame approximation, Eq. 2.28 transforms to

da

dt
= i∆ω0a− (

γin
2

+
γex
2

)a+
√
γexs, (2.29)

where a = Ae−iωLt and ∆ω = ω0 − ωL represents the frequency detuning between the
pump mode and the input laser light. This lead to a Lorentzian dip in the transmit-
tance, T, which is given by

T = 1− γinγex
(γin + γex)2/4 + ∆ω2

(2.30)

=
(γin − γex)2/4 + ∆ω2

(γin + γex)2/4 + ∆ω2
. (2.31)

Equation 2.31 can be used to describe signals collected from the output light while the
input laser frequency is scanned. Depending on the degree of optical coupling, γex,
three regimes can be characterized, see Fig. 2.3 for illustrations.

Undercoupling: γex < γin
The coupling is weak. The decay of the intracavity light field is mainly due to intrinsic
loss in the cavity due to impurities and deformations. A large fraction of the pump
light is not coupled into the cavity, but is transmitted through the waveguide.

Critical coupling: γex = γin
When the intrinsic loss and the cavity loss due to the waveguide are equal to each other,
destructive interference between the transmitted pump light and the π phase-shifted
cavity leakage annihilate the transmission.

Over-coupling: γex > γin
In addition to intrinsic losses in the cavity, a large fraction of light coupled to the cavity
can be coupled back to the waveguide. This causes a relatively short photon lifetime
in the cavity.

2.4.2 Q-Factor

To evaluate the cavity quality, the following definition of the Q-factor is widely used:

Q = 2π
Energy stored

Energy loss in a cycle
. (2.32)

Suppose the energy damping rate is γ, i.e., (Energy stored)×γ = (Energy loss), then

A(t) = A0e
iω0− γ2 t, (2.33)

|A(t)|2 = A2
0e
−γt. (2.34)
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Figure 2.3: The transmission spectra for the three different coupling regimes.

The Fourier transform yields the energy stored as

|A(ω)|2 =

∣∣∣∣∫ ∞
∞

A0e
iω0t− γ2 te−iωtdt

∣∣∣∣2 (2.35)

=
A2

0

γ2/4 + (ω0 − ω)2
. (2.36)

Comparing this to the transmittance in Eq. 2.31, where we assume the same situation,
we can view γ as corresponding to γin + γex and ω0 − ω is ∆ω. Then, Eq. 2.36
is proportional to the subtracted part as a dip in the signal. The full-width-at-half-
maximum (FWHM) yields the damping rate, γ. Multiplying by the time period of one
oscillation cycle, 1/f0, where f0 is the resonant frequency, we obtain the quality factor
of a resonant optical mode related to the FWHM:

Q =
2π

γ/f0

=
ω0

γ
. (2.37)

Note that, in common notation, ∆ω is used instead of γ, but for consistency of the
notation in this thesis, where ∆ω is frequency detuning, we use γ.

2.5 Conclusion
In this chapter, we introduced some of the theory describing optical resonances and
coupled-mode theory for WGM resonators. A function describing a resonant mode is
chosen once the resonant value, k0, is obtained from the characteristic equation. Terms
such as free spectral range (FSR) and the quality factor (Q-factor) have been introduced
as they play important roles in later chapters. However, the term mode volume has
not been explicitly introduced here, since it can have several different definitions so we
will discuss this in later chapters. Generally speaking, a small mode volume indicates
that the light field is confined in a small region and WGM cavities generally have small
mode volume where strong light-matter interactions are invoked. Further discussion
on this issue can be found in [142, 150, 157, 161].





Chapter 3

Experimental Methods

In this chapter, the standard experimental methods related to whispering gallery device
fabrication for this thesis work will be discussed. This will include details on optical
tapered optical fibers and different WGM geometries.

3.1 Tapered Optical Fiber Coupling System

Laser light is coupled into WGM cavities through the evanescent field of a waveguide.
Amongst several coupling methods, such as prism coupling [157] and polished optical
fiber coupling [158, 159], tapered optical fiber coupling [160] is believed to be the most
efficient for coupling the laser light to the WGM cavities up to now. It has three major
advantages compared to other coupling methods: (i) an optical mode can be selectively
excited due to the thin fiber waist profile, (ii) the coupling strength is controllable by
adjusting the gap between the tapered fiber and the WGM resonator, and (iii) the
output information is transmitted during the coupling process and is easily collected
by a detector. For our work, the tapered fiber is fabricated from a normal commercial
optical fiber [162]. We use fibers with 125 µm cladding diameter, such as S630-FP
single-mode fiber, 1550BHP single-mode fiber, or FG105LCA multimode fiber from
Thorlabs, depending on the purpose. A stripped section of the optical fiber is placed
on two pulling stages. The center of the stripped part is heated by a H:O flame
while the custom-built fiber pulling rig tapers the fiber down to the desired thickness.
During the pulling process, laser light is sent through the fiber and the transmittance
is monitored. For our purposes, the thickness of the waist is usually around 1 µm.

During the pulling process, the region where the fiber is heated by the flame is
called the hotzone. The easiest way of pulling the tapered fiber is to set the hotzone
to have a constant value. While the pulling speed remains constant, the fraction of
fiber in the hotzone get smaller during the process, thereby leading to an exponential
decay of the fiber volume in the hotzone. The fiber thickness, as a function of the
position in the tapered region, is also roughly following the exponential profile. Thus
the method is produces what is termed an exponential taper. For example, if we set
the hotzone to be 3 mm, the pulling length is 33 mm to get ∼1 µm waist. With this
method, more than 90% of transmittance can be achieved after the tapering process.
However, it is also possible to explore other geometrical profiles for the tapered fiber.
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Figure 3.1: (a) Exponential tapered fiber; (b) Linear tapered fiber.

Light traveling through the tapered fiber can be scattered by a sudden change of the
fiber diameter. The exponential tapered fiber has a relatively steep region in the
thicker part where losses are created. To avoid such loss, tapered fibers with a linear
decaying diameter have been developed [162, 163]. Linear tapered fibers have a waist
region whose thickness is constant. The waist region is sandwiched between two regions
linearly decaying toward the waist region (see Fig.3.1(b)). To fabricate such a fiber
profile, the hotzone length varies during the pulling process - this can be computed
[162] and submitted to the rig controlling program1.

3.1.1 Transmission Spectrum and Q-Factor Measurement

After the tapered fiber fabrication, it is placed adjacent to a WGM cavity using nanopo-
sitioner stages. Laser light is sent through the tapered fiber and the transmitted light
is collected on the other end using photodiodes, the type used depending on the pur-
pose. For example, PDA10A-EC or DET10C photodiode detectors from Thorlabs can
be used to detect laser light at 780 nm or 1550 nm, respectively. The 818-BB-35F
detector from Newport has a short rise time of 25 ps so it can be used to measure tran-
sient light signal changes. Next, the information of the light intensity is transducted to
voltage information and monitored on a digital storage oscilloscope (DSO, for exam-
ple, the DSO5012A from Agilent Technologies). To observe the transmission spectrum
through the fiber and find an optical mode in a WGM cavity, the laser frequency is
scanned in a triangular wave across a few GHz using a function generator and a laser
controller. We use the TLB-6712 and TLB-6728 diode lasers and their accompanying
laser controllers connected with the 33250A arbitrary function generator from Aligent
Technologies. To avoid thermal mode broadening effects [73], the laser power is kept
low so the selected mode reveals its Lorentzian shape.

The optical Q-factor can be estimated by measuring the full-width-at-half-maximum
(FWHM) of the Lorentzian transmission dip, see Fig. 3.2. While the transmission
data is collected in the time domain is in agreement with the laser frequency scan, ghe
FWHM in the time domain, ∆t, can be transducted to the frequency domain, ∆f ,
by scanning the frequency, F , (of the triangular wave), scanning the voltage peak-to-
peak from the function generator, Vpp, and the ratio of the applied voltage to the laser
frequency change, ρf/V , such that:

∆f = 2ρf/V · Vpp · F ·∆t. (3.1)

1This is a LabVIEW program developed by unit members over more than a decade.
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Figure 3.2: Plot of transmission through a tapered fiber as a function of laser fre-
quency. The FWHM is used to determine the Q-factor.

The factor ’2’ in the equation is since we assume that scan back and forth takes the
same time as the triangular wave scan. As shown in Section 2.4.2, ∆f equals γ/2,
the damping rate, divided by 2π and the Q-factor is obtained from Q = f/∆f , for a
laser frequency, f . For example, in Fig. 3.2, ∆t is ∼ 8 µs; the scanning frequency, the
scanning voltage, and the frequency-to-voltage ratio in this measurement are F = 40
Hz, Vpp = 6 V, and ρf/V = (85 GHz)/(20 V). Thence, ∆f ∼ 1.6 s−1 and the Q-factor
is Q = 2.4× 108, for a laser wavelength of 780 nm.

3.2 Whispering Gallery Mode Resonators

3.2.1 Silica Microspheres and Micropendulums

The microsphere can be viewed as the most fundamental geometry amongst WGM
cavities. A high Q-factor of 108 was achieved in the early days [157] and, by now, the
Q-factor is reaching the theoretical limit [6]. A silica microsphere is relatively easily
fabricated by melting the tip of an optical fiber using a CO2 laser (we used the 48-2
model from SYNRAD). The fabrication takes four steps (see Fig. 3.3): (i) Stick a
weight on the tip of a segment of fiber and set it vertically; (ii) use a CO2 laser to
melt the fiber so that the weight pulls the fiber to form a thin stem that sustains
the microsphere; (iii) high power CO2 laser light is applied to cut off the weighted
part, leaving a fragment of the fiber; (iv) the fragment is melted by the CO2 laser so
the surface tension of the silica forms a spherical shape. The laser power of the CO2
depends on the focus condition and can be optimized according to personal preference.
For example, we use a ZnSe lens with a focal length ∼60 mm. When the fiber length
is ∼70 mm, ∼2.5 W is used for pulling the stem, ∼5 W is used to cut the weight, and
∼4 W is used for finally making the sphere. A fabricated silica microsphere is shown
in Fig. 3.4(a).

A micropendulum is a microsphere with an ultrathin stem of diameter around 2
µm, so the stem can oscillate [86]. To make such a thin stem, the focus of the CO2
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Figure 3.3: Microsphere and micropendulum fabrication process. (a) The sphere
fabrication setup. The focal length of the ZnSe lens is ∼60 mm. (b) A optical fiber is
melted and transformed to a microsphere or a micropendulum by following step (i) to
(iv).

laser needs to be well adjusted. An off-focus CO2 laser can only make a thick stem,
while a focused laser can easily cut the stem. Empirically, the lower bound of the
stem diameter depends on the focus of the laser. This means that if the focus is well
adjusted, one can always fabricate a smooth thin stem. Due to such a thin stem, the
pressure of the CO2 laser beam can push the position of the fiber fragment out of the
focus. The fragment vibrates between the in and out of focus area of the laser, slowly
melting and reaching a spherical shape. A fabricated silica micropendulum is shown
in Fig. 3.4(b).

3.2.2 Silica Microbottle and Microbubble Fabrication

A microbottle resonator is a unique WGM cavity since the resonant field is widely
distributed over its 2D surface [15]. The condition for the free spectral range (FSR)
is different than for other WGM cavities; thus, the zero dispersion regime resides
in shorter wavelengths than for conventional WGM cavities [120]. Another unique
geometry is the microbubble resonator [10]. The resonant frequency of the microbubble
can be tuned by applying internal air pressure. Microbubbles have been used as a
platform for sensing applications [11–13]. However, as we will see in Chapters 5 and
7, they can also be used to excite supermodes of coupled resonators and to generate
frequency combs.

Both microbottles and microbubbles can be fabricated in a similar way using a silica
capillary. The fabrication setup includes two pulling stages to taper the capillary, a
CO2 laser, a 50:50 ZnSe beam splitter, three mirrors2 and two ZnSe lenses. The
CO2 laser is split into two beams by a 50:50 ZnSe beam splitter and both beams are
reflected off of mirrors so that they are counter-propagating at the center of the pulling
stages (see Fig. 3.5(a)). We use two types of silica capillary for the work in this
thesis, TSP250350 and TSP100375, both from Molex. TSP250350 has an inner/outer

2Mirrors made from copper, silicon, or molybdenum can be used.
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Figure 3.4: Fabricated microsphere (a) and micropendulum (b). The typical diameter
of a microsphere fabricated in our laboratory ranges from 40 µm to 200 µm. The
typical diameter of a micropendulum diameter ranges from 80 µm to 120 µm, with a
stem length and stem thickness from 100 µm to 500 µm and 1 µm to 3 µm, respectively.

diameter of 250/350 µm and TSP100375 has an inner/outer diameter of 100/375 µm.
The capillary is tapered to tens of µm, depending on the required dimensions of the
bubble, using a CO2 laser and a pulling stage setup. High pressure N2 gas is inserted
through one end of the capillary. By applying a counter-propagating CO2 laser again to
the tapered part, the capillary melts and expands due to the applied inner air pressure,
see Fig. 3.5(b). To manage the bubble or bottle dimensions, the CO2 laser power is
finely adjusted while the process is monitored on a CCD camera. Once the capillary
is tapered, several bubbles or bottles can be made on the tapered region. We show a
fabricated microbubble and microbottle in Fig. 3.6.

The bubble wall thickness, ∆r, is roughly estimated from the bubble diameter, r,
the inner diameter, rin, and the outer diameter, rout, of the tapered capillary:

∆r = r −
√
r2 − (r2

out − r2
in). (3.2)

We assume that the ratio of the inner to outer diameter stays the same after tapering3

(e.g., for TSP250350 rin = (250/350)rout). Hence, the inner diameter after pulling can
be estimated by the ratio and the outer diameter can be measured using an optical mi-
croscope. Bubbles are relatively easier to fabricate with TSP250350. With TSP100375,
the bubble is closer to spherical shape. However, we need to use a higher applied air
pressure to expand the bubble, otherwise the tapered capillary would shrink due to
surface tension. This makes it harder to control the bubble diameter. The empirical
smallest diameter of a bubble or bottle by this method is around 10 µm, as it is thought
to be the limit given by the CO2 laser with a wavelength of 10.6 µm. Microbubbles or

3The same profile as for a tapered fiber should roughly be applied to the capillary [163]. Even the
normal component of the pulling force, that is canceled when pulling a fiber, is not canceled in the
case of the capillary; however, as the adiabatic condition is satisfied, the effect should be negligible.



30 Experimental Methods

Figure 3.5: Microbubble and microbottle fabrication process. (a) The setup with
CO2 laser for the fabrication. (b) A microbubble and a microbottle fabricated from a
tapered silica capillary following steps (i) to (iii).

Figure 3.6: Fabricated microbubble (a) and microbottle resonator (b). The diameter
of a microbubble resonator fabricated in our setup ranges from 100 µm to 200 µm and
the wall thickness is between 0.5 µm to 2 µm. The typical diameter of a microbottle
resonator is between 30 µm and 120 µm.
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microbottles with smaller diameters have not been achieved. The wall thickness of the
microbubble can be as little as 0.5 µm, while the Q-factor can be as high as 107 [13].

3.2.3 Microtoroid Fabrication4

A microtoroid resonator is a widely used WGM resonator. It is sometimes preferred
due to its small mode volume, clean transmission spectrum, and ultra-high Q of 108

[8, 9, 22, 43, 164]. The microtoroids that were used were fabricated on a silicon wafer
covered by 1-2 µm of a silica layer. The fabrication process has eight steps (see Fig.
3.7). (i) Firstly, the well-cleaned silica surface of the wafer is spin-coated by HDMS
(Hexamethyldisilazane) to promote surface adhesion; (ii) Photoresist (SHIPLEY 1813)
is spin-coated for photolithography and the solvent is evaporated and removed by
baking the wafer at 115◦C for one minute; (iii) In the photolithography step, the wafer
is exposed to a UV ramp with a mask with arrays of disks printed; (iv) The exposed
part of the photo resist is washed off in developer (MIF-319); (v) After cleaning the
developer, HF etching is executed to remove silica other than the disk part. HF needs
specific handling - gloves and safety mask are mandatory. A TEFLON container and
tweezers are used and the etching must be done in a ventilated environment; (vi) The
HF and mask are cleaned; (vii) The wafer is exposed to XeF2 etching. In this step, the
silica microdisk is etched out from the silicon substrate. A chamber is filled with XeF2
and the pressure is set to 3 Torr. Every two minutes, impure gas with by-products (i.e.,
Xe and SiF4) are replaced with clean XeF2. The total etching takes 6 hours; (viii)
Finally, a CO2 laser irradiates each microdisk. The rough edge of the disk is melted
to form a smooth toroidal shape.

3.3 Conclusion
In this chapter, we introduced the tapered fiber optical coupling method and fabri-
cation methods to make microspheres, micropendulums, microbubbles, microbottles,
and microtoroids. This will help the reader to understand the experiments conducted
in later chapters. Although only microspheres and microbubbles are used for the work
in the following chapters, other geometries are also considered for further studies.

4This fabrication method was done in the Micro/Nano Photonics Laboratory, Department of Elec-
trical and Systems Engineering, Washington University in St. Louis, USA during a 3-month research
visit.
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Figure 3.7: Microtoroid fabrication process is illustrated in panels (i)-(viii). Panel
(a) shows a fabricated microtoroid resonator. A microtoroid is fabricated from a silica-
silicon wafer by photolithography. The diameter of the toroids are typically 100 µm
and the minor diameter is 10 µm depend on the mask plate and XeF2 etching time.



Chapter 4

Cavity Ring-Up Spectroscopy1

4.1 Introduction

Whispering gallery mode (WGM) resonators are widely used for a number of applica-
tions, one of which is sensing [41, 58]. As mentioned in Chapter 1, to measure transient
phenomena, e.g. a chemical reaction near a WGM cavity, cavity ring-up spectroscopy
(CRUS) based transient sensing could be used [69]. Examples of events that could rely
on such sensing techniques include biochemical phenomena in a liquid solvent. For
such quick processes in fluids, the microbubble resonator is clearly a suitable platform
- the solvent can be inserted into the cavity and stable optical coupling can be achieved
from the outside. In this case, the Q-factor of the liquid core cavity can be around 106

[24]. Therefore, a method of investigating the transient response to a perturbation in
a low Q cavity is an important step towards liquid core, MBR transient sensing. As an
MBR is a relatively complicated system, in this work we have investigated CRUS first
in a microsphere as a test-bed for later developing a transient sensing technique with
an MBR. In this chapter, we provide a theory, developed from coupled-mode theory,
to describe CRUS in a high Q WGM resonator. We assume that CRUS is obtained
by sending a rectangular pulse with a rising time of ∼ 1 × 10−9 s. Numerical simula-
tions are performed to verify the theory and to predict the response to the change of
the resonance condition in a low Q cavity. Experimental work verifies the theory and
numerical simulations in a high Q cavity and some indication of the process in a low
Q cavity is also presented.

4.2 Coupled-Mode Theory

A typical CRUS setup is shown in Fig. 4.1(a). The WGR is coupled evanescently
to a tapered optical fiber through which light from a laser propagates. The light

1This work is published in Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. Nic Chormaic,
"Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode
resonator", Appl. Phys. B 122, 291 (2016) and as a chapter in: D. Meschede, T. Udem and T.
Esslinger (eds) "Exploring the World with the Laser", Springer, Cham (2018) [77, 165]. S. Kasumie
contributed to the numerical simulations of the model and writing the manuscript. Later, S. Kasumie
found an analytical solution for the given model as contained herein.
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couples into the resonator and is monitored at the opposite end of the fiber. The
coupling dynamics can be described using coupled-mode theory. The amplitude of
the intracavity electromagnetic field, A(t), changes in time according to the following
[70, 166, 167]

dA(t)

dt
= iω0A(t)− (

γin
2

+
γex
2

)A(t) +
√
γexSin(t), (4.1)

where i =
√
−1, the resonant frequency of the WGM is ω0, and γex and γin represent

the external and intrinsic coupling rates, respectively. The total damping rate of the
cavity is given by γ = γex + γin and τ = 2π/γ is the intracavity lifetime. In order to
arrive at the transient response of the WGR, the laser light is pulsed with a temporal
profile, Sin(t). The laser frequency, ωL, is far detuned, i.e., ωL − ω0 � γ. The pulsed
input field can be separated into a slowly varying and a fast varying term so that

Sin(t) = sin(t)e−iωLt. (4.2)

Here, the slowly varying part, sin(t), represents the temporal profile of the pulse and,
in the following discussions, it takes the form of a Guassian function where

sin(t) =


0, t < t0

αinexp

(
−4[t− t0 − tr]2

ln2 · t2r

)
, t0 < t < t0 + tr

αin, t > t0 + tr.

(4.3)

The pulse is illustrated in Fig. 4.1(b). The pulse starts at time t0 and follows a
Gaussian profile with a rise time, tr � τ . At time t = t0 + tr, the total power of the
pulse reaches its maximum, |αin|2, and, for later times, the laser can be treated as a
continuous light source over the lifetime of the cavity mode.

4.2.1 A Simple Model: Large Spectral Broadening Bandwidth

The temporal profile of Sin(t) can be obtained from Eq. 4.2 and Eq. 4.3 and Fourier
expanded by eiωt as follows:

Sin(t) =


0, t < t0√
ln2

π

trαin
4

∫ +∞

−∞
e−

ln2t2r(ωL−ω)
2

16 ei[(ωL−ω)(t−t0−tr)]dω, t0 < t < t0 + tr

αine
−iωLt, t > t0 + tr.

(4.4)

It can be seen that, for a time interval, t ∈ [t0, t0 + tr], the rise time of the pulse induces
sideband frequencies even though the laser source is monochromatic. As the Fourier
transform of a Gaussian function is a Gaussian, the laser pulse is expanded transiently
with a bandwidth, B ∼ 1/tr.

In our experiments, the pulse has a rise time ranging from several tens of ps to ∼1
ns. The laser frequency broadening bandwidth, B, is of the order of GHz, and, for a
WGM with Q > 107, γ ∼ MHz. As B � γ, we can assume that only the portion of
the broadened laser source at the resonant frequency, ω0, can be efficiently coupled to
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Figure 4.1: (a) Schematic of a taper coupled WGR system for transient sensing
using CRUS. A pump laser of frequency ωL, far off resonance with the WGM, ω0, is
coupled through the tapered fiber with a temporal profile, Sin(t). The pulse profile is
depicted in (b); the laser pulse starts at a time t0 and rises up to its maximum within
a time tr. The mathematical description of the pulse is given in Eq. (4.3). (c)-(e)
Transient frequency of the laser pulse for different time intervals. (c): t = [0, t0]; (d):
t = [t0, t0 + tr]; (e): t = [t0 + tr,+∞). At the rising edge of the pulse, the laser source
is transiently broadened (d), so a fraction of the pump signal couples to the WGM and
contributes to a beat signal between it and the pump source (e).
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the WGM, as illustrated in Fig. 4.1(c)-(e). The WGM acts as an infinitely narrow,
bandpass filter so that we only need to consider the frequency at ω0, see Fig. 4.1(d).
This gives an intuitive explanation of how light is coupled to the cavity during the
ringing period.

4.2.2 Analytical Solution

To analytically solve the given model, we can start from a useful mathematical formula:

da(t)

dt
+ Ωa(t) = e−Ωt d

dt

(
a(t)eΩt

)
. (4.5)

In a rotating frame, we define a(t) = A(t)eiωLt and Ω = i∆ω+γ/2. Also, for simplicity,
we shift t = t0 + tr to t = 0 in this section. Then the transformation of the coupled-
mode equation follows:

da(t)

dt
= −Ωa(t) +

√
γexsin(t) (4.6)

da(t)

dt
+ Ωa(t) = e−Ωt d

dt

(
a(t)eΩt

)
=
√
γexsin(t) (4.7)

d

dt

(
a(t)eΩt

)
=
√
γexsin(t)eΩt. (4.8)

At this stage, both sides of Eq. 4.8 can be integrated. This needs to be done step-by-
step so that the effect of the ringing up survives after integration. For t < 0 (i.e., in
the model, Eq. (4.3), this corresponds to t < t0 + tr), the integration of the left term is

∫ 0

−∞

d

dt

(
a(t)eΩt

)
dt = a(0). (4.9)

As there is no intracavity light field for t = −∞, we choose a(−∞) = 0. In the
proposed model and in actual experimental conditions, there is no input field before
t0; however, we extend the Gaussian input profile to −∞ < t < t0, so that integration
is possible and can be evaluated. This does not change the essence of the method. The
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right term can be integrated2:

√
γex

∫ 0

−∞
sin(t)eΩtdt = αin

√
γex

∫ 0

−∞
e−βt

2

eΩtdt (4.10)

' αin
√
γex

∫ 0

−∞
(1 + Ωt)e−βt

2

dt (4.11)

=
αin
√
γex

2

(√
π

β
− Ω

β

)
. (4.12)

Here, β ≡ 4/(ln2 · t2r). The approximation in Eq. 4.11 is valid when |Ω| is sufficiently
smaller than 1/tr. However, when Q is low or when the detuning is large, the expansion
is not valid. Let us suppose that |Ω|� 1/tr.

Now we move to t > 0 (i.e., t > t0 + tr in Eq. 4.3). The left term of Eq. 4.8 is
integrated to yield: ∫ t

0

d

dt′

(
a(t′)eΩt′

)
dt′ = a(t)eΩt − a(0), (4.13)

and the right term is:

√
γex

∫ t

0

sin(t′)eΩt′dt′ = αin
√
γex

∫ t

0

eΩt′dt′ (4.14)

= αin
√
γex

(
eΩt′

Ω
|t′=t −

eΩt′

Ω
|t′=0

)
(4.15)

=
αin
√
γex

Ω

(
eΩt − 1

)
. (4.16)

An important feature appears in Eq. 4.15. The value of the integrated function at
t = 0 (i.e., the second term) does not correspond to what was obtained in the rising
pump integration (see Eq. 4.12). In the steady state, this term was canceled out for
the steady intracavity field, a(0). However, if we suppose the time dependence of the
intracavity field is continuous, a(0) in Eq. 4.13 and Eq. 4.9 must correspond to each
other and can be canceled out by adding together:∫ t

−∞

d

dt′

(
a(t′)eΩt′

)
dt′ =

∫ 0

−∞

d

dt′

(
a(t′)eΩt′

)
dt′ +

∫ t

0

d

dt′

(
a(t′)eΩt′

)
dt′ (4.17)

= a(t)eΩt. (4.18)

2It is also possible to obtain the integration of higher orders of the expansion, as follows:∫ 0

−∞
e−βt

2

eΩtdt =

∫ 0

−∞
e−βt

2

(
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Ω2t2

2!
+

Ω3t3

3!
+ . . .
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dt∫ 0

−∞
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2

t2mdt =
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∂βm
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dt =
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1

2

√
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2

t2m+1dt =
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∂βm

∫ 0
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∂βm
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dt
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2
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)
dt =
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(
− 1
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)
.
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We can also equate the right-hand side terms:

√
γex

∫ t

−∞
sin(t)eΩtdt ' αin

√
γex

(
1

2

√
π

β
− Ω

2β
+
eΩt − 1

Ω

)
(4.19)

≡
αin
√
γex

Ω

(
eΩt − I

)
, (4.20)

with

I ≡ 1− Ω

2

√
π

β
+

Ω2

2β
. (4.21)

One may also include higher orders of the integration into I. As long as |Ω|� 1/tr is
satisfied, higher order integration is negligible. The form of the rising up input signal is
not really important in reality. Experimentally, the rising up signal will always have an
error; however, the experimental results do not largely depend on the error. Therefore,
one can always suppose an integrable function similar to the Gaussian during the rising
up period, to build a valid theory. In this case, the integration term is also included in
I.

Finally, the intracavity field is obtained as:

a(t) =
αin
√
γex

Ω

(
1− Ie−Ωt

)
. (4.22)

Now, as discussed above, the second term in Eq. 4.15, while normally canceled out in
a steady state, remains. From a mathematical point of view, this is the critical reason
of the transient transmission vibration phenomenon in CRUS in the given model.

The output signal, sout(t), can be calculated using the input–output relationship
[151]:

sout(t) = −sin(t) +
√
γexa(t). (4.23)

Here, we are interested in the output signal after the pulse reaches its maximum value.
In the rotating frame, this is just αin. The transient transmission is obtained as:

T (t) =

∣∣∣∣soutsin

∣∣∣∣2 =
∣∣∣γex

Ω
− 1− γex

Ω
Ie−Ωt

∣∣∣2 (4.24)

' 4∆ω2 + γ′2

4∆ω2 + γ2
+

4γ2
ex|I|2e−γt

4∆ω2 + γ2

+
4γex|I|e−γt/2

4∆ω2 + γ2
{γ′cos(∆ωt)− 2∆ωsin(∆ωt)}, (4.25)

with γ′ = γin − γex. The first term is the normal Lorentzian transmission dip. The
second term shows there is an additional nonbeating signal from the intracavity field.
The third term is the transient beating signal or ringing effect in CRUS. The beating
frequency is given by the frequency detuning, ∆ω. As the cavity leaves the CRUS phase
and moves to an equilibrium state, the signal components described in the second term
and then the third term fade out. A typical wave form is plotted in Fig. 4.2(a).
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Figure 4.2: (a). A typical CRUS signal. The beating happens according to the second
term and third term of Eq.(4.24). This is due to the frequency broadening at the rising
edge of the input signal. We can treat the WGM as an ultra-narrow filter; therefore,
only the on-resonance, ω = ω0, component in the broadened pump laser signal can be
stored in the WGM as shown in (c). (b) The CRUS signal when there is modal coupling
with coupling strength, g. The beating is modulated by a trigonometric envelope of
period (2g)−1. (d) On the other hand, the modulation also happens when there are
two cavity modes separated by 2g.
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4.2.3 The Mode Mixing Case

In practice, multiple WGM resonances may fall within the transient spectral broadening
bandwidth. In the following, the case in which two modes mix will be investigated.
There are two different types of mode mixing that we consider. The first situation is
that where two modes exist quite close to each other in the spectrum. In the following
discussion, we assume that both modes lie within the transiently broadened spectrum
bandwidth, B, while satisfying the narrow bandpass filter approximation made in Sec.
4.2.1. Defining the two modes as ω1 and ω2, with a separation between them of δ, the
coupled-mode equations for each mode are given by

dAi
dt

= iωiAi(t)−
γin,i + γex,i

2
Ai(t) +

√
γexSin,i(t)e

−iωLt, (4.26)

where i = 1, 2 and represents the two modes. Since there is no spectral overlap of
the two modes, the mode equations are decoupled and can be solved separately. This
yields the same expressions as in Eq. 4.24 and each mode beats with Sin(t) separately.
The total beating signal, Tb(t), is simply:

Tb(t) =
∑
i=1,2

Ti,b(t) (4.27)

=
∑
i=1,2

4γex,i|Ii|e−γit/2

4∆ω2
i + γ2

i

{γ′icos(∆ωit)− 2∆ωisin(∆ωit)}. (4.28)

Tb(t) is a linear combination of the two individual beat signals. The amplitudes of
the signals with different frequencies are determined from the detunings, ∆ωi, of the
resonances relative to the laser source. If δ is large, then one of the beat signals will
be much larger than the other since the ∆ωi in the denominator are different. In this
case, the weaker signal can be ignored. In contrast, if the two modes are similar to each
other so that δ � ∆ωi and γ1 ' γ2 = γ then, for simplicity, we set ∆ω1 ≈ ∆ω2 = ∆ω
and the coupling rates, γex,i, are approximately equal. From Eq. 4.28, the total beat
signal, Tb(t), is:

(4.29)Tb(t) '
4γex|I|e−γt/2

4∆ω2 + γ2
[(1 + cos(δt)){γ′cos(∆ωt)− 2∆ωsin(∆ωt)}

− sin(δt) {γ′sin(∆ωt) + 2∆ωcos(∆ωt)}] .

The expression is complex, however, we are able to read the beating frequency of δ.
The other possible case to consider is that where the two modes are coupled. This

is often the case in traveling wave resonators, such as WGRs. Degenerate modes in the
resonator represent clockwise and counter-clockwise propagation. Due to scattering
along the propagation path, the two modes can indirectly couple to each other; this
effect is called modal coupling and leads to normal mode splitting [168, 169]. Here,
we define a modal coupling strength, g, and the coupled-mode equations for the two
modes are given by acw and accw, representing the two opposing propagation directions.
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The two coupled-mode equations can be written as

dAcw
dt

= iω0Acw(t)− γin + γex
2

Acw(t)− igAccw(t) +
√
γexSin(t);

dAccw
dt

= iω0Accw(t)− γin + γex
2

Accw(t)− igAcw(t).

(4.30)

The two modes should have the same values of γin, γex and detuning. By letting
A1(t) = Acw(t) + Accw(t) and A2(t) = Acw(t) − Accw(t), these two equations can be
transformed into two uncoupled equations [169]:

dA1(t)

dt
= i(ω0 − g)A1(t)− γin + γex

2
A1(t) +

√
2κeSin(t)

dB(t)

dt
= i(ω0 + g)A2(t)− γin + γex

2
A2(t) +

√
2κeSin(t).

(4.31)

Here, the original two traveling modes generate two equivalent standing wave modes
with frequency shifts, ±g, as illustrated in Fig. 4.2(d). Usually, the modal coupling
strength is in the MHz range for silica WGRs, i.e., the frequencies of the two standing
waves are quite close to each other. Since B � 2g, we can assume that the two modes
have the same transient components at the rising edge time, as in the previous case.
Also, in the actual experiments, we measure the light transmitted through the tapered
fiber, so that T (t) = |(1−√γexacw(t))/Sin(t)|2, where acw = 1/2(A1(t) + A2(t)). Tb(t)
is a beat signal between the initial signals with frequencies, ∆ω and ∆ω ± g, and has
the following form

(4.32)
Tb(t) ' −

4γex|I|e−γt/2

4∆ω2 + γ2

[
(1 +

1

2
cos(2gt)){γ′cos(∆ωt)− 2∆ωsin(∆ωt)}

− 1

2
sin(2gt) {γ′sin(∆ωt) + 2∆ωcos(∆ωt)}

]
.

From the above equation, when there is mode splitting due to intrinsic scattering,
the transient signal has a trigonometric form of frequency, ∆ω, and is modulated by
a slowly oscillating envelope with a frequency of 2g. This yields a similar waveform
to that obtained in the uncoupled modes’ case. Comparing Eq. 4.32 to Eq. 4.29, we
see that there is a factor of 1/2 difference. When modal coupling is present, the two
modes interfere with each other, whereas for the uncoupled case, the beating of the
two modes has no coherent property.

4.3 Numerical Methods

For a more precise simulation of the transient system, we should solve the coupled-
mode equations numerically. Equation 4.1 can be transformed into a rotating frame of
reference, with an angular frequency, ωL, such that

da(t)

dt
= −i∆ωa(t)− γ

2
a(t) +

√
γexsin(t). (4.33)
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The input-output relationship for the rotating frame is sout(t) = −sin(t) +
√
γexa(t).

For simplicity, we rescale the time by tr in the following discussion and we assume
that the WGR is critically coupled to the external coupler, unless we explicitly men-
tion otherwise. All of the simulations are done in MATLAB using the Runge-Kutta
methods. All analytical plots are based on Eq. 4.21 and Eq. 4.24 (see Appendix B
for details). First, let us assume that the lifetime of a WGM is about 250 ns. Three
different responses under various detunings are plotted in Fig. 4.3(a), ranging from
∆ω = 3γ to ∆ω = 9γ. After the rising up, there is a sharp peak followed by a dip,
and then a ringing peak that is less sharp. For the rest of the text in this chapter,
we term the sharp peak as a "sharp peak", whereas we call the less-sharp peak, sim-
ply a "peak" (for example, "the peak height of the less-sharp peak" is just "the peak
height"). The unique waveform is due to the negative sign of the sine function in Eq.
4.24. The oscillation period follows the detuning, so that a larger detuning yields a
higher oscillation frequency, which represents the beating between the laser and WGM
frequencies, as discussed in Section 4.2.

First, we evaluate the peak height (i.e., the height of the less-sharp peak; for ex-
ample, when ∆ω = 3γ, the second peak it shown in Fig. 4.3(a))3. When Q is high,
γ is small, and the detuning is sufficiently large (see Fig. 4.3(b)). This evaluation is
possible and valid as the sine curve is dominant. The peak is always higher than the
sharp peak in this regime. The height of the second peak reduces when the detuning
increases. However, when the detuning is too small, the peak height decreases and the
evaluation of the peak height for sensing purposes loses its validity. The analytical and
numerical results match each other quite well when the detuning ∆ω is smaller than
1/tr. When ∆ω is large, the curves from the analytical and numerical plots start to
diverge, as predicted by Eq. 4.21. If ∆ω is fixed at ∆ω � 1/tr while the ratio γex/γ
is changed, the peak height is roughly linear to γex/γ, as we can see in Fig. 4.3(c). A
more comprehensive numerical simulation is shown in Fig. 4.3(e). This ensures that
evaluating the peak height is always valid when the detuning is between 5 to 20 times
γ in the high Q situation. The bandwidth of the transient broadening is determined
by tr; therefore, it controls the peak height relationship to detuning, as illustrated in
Fig. 4.3(d). Significant bandwidth shrinkage is visible only if the rise time increases
by more than a factor of 10. This verifies the behavior we assumed in Section 4.2. In
essence, it is the broadening from the rise time of a detuned pulse that allows light to
couple into the WGM and leads to the subsequent beat signal.

Research projects within our group include nanoparticle sensing in a so-called quasi-
droplet silica microbubble [24]. In a microbubble, a nanoparticle approaching the
inner wall surface is expected to be detected through the intracavity evanescent field.
The evanescent field can be extended and, thereby, sensitivity can be improved, by
decreasing the wall thickness. However, when the wall thickness is decreased, the
photon lifetime is also decreased. This can be partially compensated by filling the
microbubble with water (quasi-droplet regime). With this compensation, the Q-factor
of a silica microbubble can be maintained to more than 106 in the 780 nm waveband
(i.e., τ > 2 ns) near the lower limit of the wall thickness (∼0.5 µm). To evaluate the
possibility of transient sensing in a quasi-droplet silica microbubble, CRUS signals in

3This differs from the original manuscript [77].
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Figure 4.3: (a). The transient response of a pulse detuned to the high Q WGM. The
legend shows the detuning (normalized to γ) for different curves. (b) The peak heights
(less-sharp peak), for different detunings in (a). The peak height decreases when the
detuning is smaller than 4γ. If this is the case, the evaluation of the peak height for
sensing loses its validity. (c) The peak heights at different coupling conditions, γex/γ.
(d) Peak heights as a function of detuning for certain coupling conditions with different
pulse rise-up times, tr. (e) A comprehensive simulation of the peak height showing that
evaluation of the peak height is valid when the detuning is between 5γ and 20γ in a
high Q cavity.
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a short photon lifetime regime (i.e., for τ ∼ 2 ns) are also numerically investigated.
We suppose the photon lifetime is 3 ns, or the Q-factor ∼ 1 × 106, with a pump

laser at 780 nm wavelength. The numerical simulation results of the CRUS signal for
different detunings, Fig. 4.4(a), and different external decays, Fig. 4.4(b), are plotted.
In Fig. 4.4(a), γex is fixed to 0.5γ, and in Fig. 4.4(b), ∆ω is fixed to 0.5γ. In a low Q
cavity, the transient signal decays quickly and reaches equilibrium level, as we can see
in Fig. 4.4. The evaluation of the peak height4 is not valid for a low Q cavity. The
static transmission level decreases as a function of decreased detuning.

Next, we evaluate the possibility of dissipative transient sensing. The equilibrium
transmission level does not have a consistent signature of increase or decrease along
with the increase of γex. (Note this is described as the transmission spectrum in a
different coupling regime, c.f. Section 2.4.1.) However, the sharp peak of the CRUS
signal (shown by a black arrow in Fig. 4.4(b)) may be negatively related to the increase
of the external decay. This needs further analysis and discussion because the sharp
peak may not appear, as we see in Fig. 4.4(a), when ∆ω = 2γ, the blue double-dashed
curve.

4.4 Experiment

To confirm the above theory, we performed an experiment using an ultrahigh Q silica
microsphere. The experimental setup is depicted in Fig. 4.5. A 30 µW, 1550 nm laser
was initially modulated using an intensity modulator with an EOM (Thorlabs model
LN63S-FC, with rise-up time 50 ps). For this purpose, a pulse generator providing
a pulse with a rise time of 5 ns, a width of 500 ns, and a delay of ∼100 ns was
used. The modulated light was coupled to the microsphere’s WGM using a fiber taper.
The transmission through the fiber was detected with a fast photodetector (Newport
model 818-BB-35F) with a typical rise time of 500 ps. The signal was retrieved on
a digital storage oscilloscope (DSO) and recorded at a sampling rate of > 1 GS/s.
The microsphere had a diameter of 80 µm and the fiber waist was ∼1.2 µm. We
chose a high Q silica microsphere with a lifetime of ∼500 ns. To study the detuning
effects on the CRUS, the microsphere and the fiber taper were aligned to be in contact
coupling mode, therefore the coupling condition γex/γ is fixed. The coupling regime
is determined by the diameter of the tapered fiber. In our case, the diameter is ∼1
µm and the coupling regime is over-coupling. The detuning of the laser with respect
to the whispering gallery mode was changed so that its frequency approaches that of
the WGM in finite steps. The results were normalized to get the peak heights and are
plotted in Fig. 4.6.

We made a separate measurement of the transmission spectrum of the WGM being
probed, as illustrated in Fig. 4.6(a). From the transmission efficiency of the mode
(80%), and assuming that the system is in the undercoupled regime, it can be deduced
that γex/γ = 0.3. The FWHM of the mode is 1.5 MHz using Lorentz fitting to the dip
in Fig. 4.6(a). The peak height decreases when the pump laser is far detuned. This
matches the theoretical prediction illustrated in Fig. 4.3(b).

4Shown in Fig. 4.4(a)
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Figure 4.4: Numerical simulation results when the photon lifetime is 3 ns. (a) CRUS
signal with different detunings. The external decay rate, γex, is set to be 0.5γ. (b)
CRUS signal with different external decays. The frequency detuning, ∆ω, is set to be
0.5γ.
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Figure 4.5: The experimental setup used for cavity ring-up spectroscopy. A 1550 nm
laser is intensity modulated and coupled to the microsphere cavity and the transmitted
light pules are detected using a fast detector, with the signals recorded on a fast digital
storage oscilloscope (DSO).

We also evaluated the peak height with different coupling gaps by varying the gap
using a closed-loop, piezo nanopositioner (Smaract SLC1730s-416). The relative posi-
tion of the taper from the microsphere was determined using a nanopositioner controller
(Smaract MCS-3D). Here, γin is a constant, while γex satisfies a near exponential curve
to the coupling gap [166], as shown in the inset of Fig. 4.6(c). The corresponding
peak heights for different coupling conditions plotted in Fig. 4.6(c) show a near-linear
relationship.

From Fig. 4.6(c), we see that when the coupling gap is increased the period of the
CRUS becomes larger. The taper introduces a dispersive red-shift to the microsphere’s
resonance [86]. In our experiments, the laser is blue-detuned relative to the resonance
and fixed. The larger the distance between the WGR and the taper, the less the disper-
sion introduced; thus, the cavity mode shifts relative to the laser, thereby decreasing
the beat frequency. In Eq. 4.24, the peak height should be related to both the cou-
pling condition and the detuning. However, supposing the detuning is large, slightly
changing its value will not influence the peak height significantly, see Fig. 4.3(b). In
the experiment, we deliberately chose an initial large detuning; therefore, the peak
height is still linear with γex/γ despite the dispersive disturbances. When the system
is strongly overcoupled, the results deviate from the linear relationship, as seen when
γex/γ = 0.75. In the supplementary material of Ref. [86], it was shown that the disper-
sive shift rate increases exponentially when moving to a strongly overcoupled regime.
This means that the dispersive influence of the taper will induce a very large frequency
shift for the cavity mode and cannot be neglected. As a consequence, the peak height
does not vary linearly with γex/γ.

Next we show several data that match the theoretical and numerical predictions in
Sections 4.2.1 and 4.3. As mentioned in Section 4.3, to apply the transient sensing to
the so-called quasi-droplet silica microbubble [24], we experimentally collected several
sets of data using the same experimental setup as described in Fig. 4.5 5. This time,
the profile of the rectangular pulse is 1 ns of rise time, 120 ns of pulse width, and 500
µs of delay time.

5Only the sample is different; instead of a microsphere, a microbottle with a diameter of 57 µm
was used.
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Figure 4.6: (a) The transmission spectrum of the microsphere which has an ultrahigh
Q WGM. (b) The peak height measured at different laser detunings simulating a dis-
persive shift of the microsphere. The red curve is the theoretical fitting based on the
published theory [77]. (c)The peak satisfies a linear relationship to γex/γ. The inset
shows the external coupling coefficient as an exponential function of the coupling gap.
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Figure 4.7: Normalized transmittance signal of CRUS. (a) When the detuning is
relatively large, a small sharp peak can be seen following the rising up. (b) When
the detuning is decreased, the ringing frequency decreases and the sharp peak become
more pronounced.

First, we coupled light to a high Q mode, where its Q-factor is estimated to be
∼ 108 (lifetime ∼ 500 ns). We can see the sharp peak soon after the rising up in Fig.
4.7(a). This was not fully understood when the data was originally analyzed. Now
we see the sharp peak corresponds to the simulation result in Fig. 4.3(a). Next, we
decrease the detuning and the sharp peak becomes more pronounced as the dip become
deeper, see 4.7(b). This tendency can also be seen in Fig. 4.3(a).

Finally, we show the results when we coupled light to a low Q mode, intended to
push forward the plan of transient sensing in the quasi-droplet regime. The Q-factor
of the optical mode is estimated to be ∼ 106 (lifetime ∼ 5 ns). From all of the plots in
Fig. 4.8, we see that the ringing up signal decays quickly and reaches the equilibrium
transmission level. Then, as the detuning is decreased, the equilibrium transmission
level decreases, see Fig. 4.8(a)-(d). This corresponds to the simulation results plotted
in Fig. 4.4(a). We also see the case where the sharp peak is almost hidden, in Fig.
4.8(a), by the black arrow, as predicted in Fig. 4.4(a) by the blue double-dashed line.
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Figure 4.8: Transient signal of CRUS in a low Q (∼ 106) cavity with different detu-
ining. (a) When the frequency is far detuned, the sharp peak cannot be seen clearly.
(b)-(d) As the detuning become smaller, the equilibrium transmission level decreases,
and the sharp peak become obvious.
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4.5 Discussion

Similar to the work in [70], the deduced formula of CRUS here shows that it also
provides redundant information if the cavity’s intrinsic Q-factor is high and known.
Instead of doing a time-consuming fast Fourier transform (FFT) of the transient re-
sponse signal [69], one can record the maximum of the transient signal to retrieve the
information for sensing, assuming that one can measure all the other parameters, such
as γex, γin, and tr, from the steady-state transmission spectrum. This significantly
reduces the complexity of the data processing and decreases the burden for data acqui-
sition. In this sense, the acquisition speed can be further improved. For sensing based
on reactive/dispersive interactions [39], the sensitivity can be optimized by choosing
the correct laser detuning. In order to obtain valid sensing, while the sensitivity is
maintained, the pump laser frequency should be chosen so that the detuning is near
ten times the decay rate, γ. For example, in Fig. 4.3(b), when ∆ω ∼ 10γ, the sensitiv-
ity is dH/d∆ω ∼ 0.005/γ (where H is the peak height). Also, from Fig. 4.3(d), when
tr is longer, the curve is steeper; this also improves the sensitivity.

For dissipative sensing [53], measuring the peak height for a fixed detuning will
also yield valid results. As numerically shown in Fig. 4.3(e), the peak height changes
almost linearly with γex/γ in a high Q cavity, with sufficiently large detuning. If the
system experiences an intrinsic dissipation change due to environmental conditions,
the peak height should maintain an inverse relationship to intrinsic dissipation under
a certain coupling condition, i.e., the gap between the taper and the microsphere in
our case. In a more complicated scenario, where both dispersion and dissipation exist,
extracting dissipative (or dispersive) information from the mixed information may not
be efficient only by measuring the peak height. One may suppress the dispersive
change by increasing the detuning in order to purify the dissipative information. From
Fig. 4.3(e), we are able to see this also suppresses the sensitivity to the dissipative
information. Either dispersive or dissipative sensing has to be done by evaluating
other parameters, for example the ringing frequency, or performed by other methods,
in order to attain reliable sensing. Recently, we become aware that the peak actually
decreases when the detuning is small, as illustrated in Fig. 4.3(b), while the equilibrium
level should follow a Lorentzian profile, as mentioned in Eq. 4.25. Therefore, instead
of viewing the evaluation of the peak height to be invalid, the decrease of the peak
height may be directly used for sensing, and the sensitivity should be as high as that
achievable for steady-state sensing. In this case, the highest sensitivity can be achieved
when the detuning is small, and the mix between dispersive and dissipative information
may be resolved. The temporal resolution needed is a few tens of ns to resolve the peak
height.

On the other hand, in a low Q cavity (again, Q∼ 106; or τ ∼ 3 ns), dispersive
sensing can be simply done by measuring the equilibrium level of the transmission,
which is reached quickly due to a short photon lifetime. Dissipative sensing may also
be possible by measuring the height of the sharp peak, following the rising up. This
requires further comprehensive research about the height dependence of the sharp peak
to the dissipative change in a low Q cavity. However, as we can see in Fig. 4.4(b), the
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sharp peak dependence on γex is certain6. The sharp peak may only be obscured when
the detuning is large. This perspective is true from the current scope of analysis, as
seen in Fig. 4.4(a) and Fig. 4.8(a).

Recently, we have also come to realize that the Kerr and thermal effects are, in
fact, not negligible in Fig. 4.7 and Fig. 4.8 [69], in contrast to our earlier assumptions.
Thence, the experimental data should be further analyzed. When the Q-factor is as low
as 106, based on simulation results, the sharp peak height change can be as sensitive
as (0.6 pulse height)/γ and the equilibrium level change is (0.9 pulse height)/γ, and
γ = 2× 109 s−1. The temporal resolution is also from a few to tens of nanosecond for
the pulse level to reach equilibrium.

The sensitivity follows the same trend as conventional steady-state sensing: scan-
ning the laser frequency and monitoring the change of the absorption spectrum should
be sufficient. Therefore, if Q drops the sensitivity will also drops. The sensitivity can
be resolved by the pulse height and noise level, similar to the fixed frequency case in
[70].

4.6 Conclusion
In summary, the dynamical mechanisms behind CRUS in a high Q optical resonator
were investigated by solving the coupled-mode equations for a transient response to a
Gaussian input pulse. The detailed relationship of CRUS to laser detuning, coupling
coefficient, and rise time was determined using approximate analytical solutions. This
was further verified by numerical simulations and experimental measurements.

We also investigated the case when the Q-factor is as low as 106. A theoretical
study shows the possibility of achieving transient sensing in the quasi-droplet regime
with an MBR. Further experimental work needs to be done to verify the theory is
correct and to demonstrate that the MBR can, indeed, be used as a transient sensing
platform.

6This does not apply for a high Q cavity.





Chapter 5

Optical Force Between Coupled
Whispering Gallery Mode Resonators

5.1 Introduction

While the previous chapter dealt with the feasibility of using a microbubble resonator
for transient sensing, here we consider a completely different application by tuning
the resonant frequency of an MBR using internal air pressure. This technique can be
used to match the MBR resonance with that of another WGMR, thereby achieving
co-resonance. In this chapter, we use an MBR to push forward the proposed plan
from previous work of our research group [85]. In a coupled resonator configuration,
symmetric and antisymmetric supermodes can be excited. The symmetric supermode
yields an attractive force and can be excited when two cavities are distant from each
other. The antisymmetric supermode can be excited when the two cavities are near
each other and yields a repulsive force. When two pump lasers are configured so that
their frequencies match those of the two supermodes, the system can provide a trapping
force that keeps the two coupled resonators at a certain distance from each other. The
work presented in this chapter is concerned with investigating the strength of this
trapping force.

First, a brief introduction to the coupled resonators system is given. With the
framework provided in [83], different regimes such as EIT-like, ATS-like, and an inter-
mediate regime will be defined. Next, the analytical expressions for the optomechani-
cal transduction spectrum of the micropendulum will be deduced for the intermediate
regime. The experimental setup of the photonic molecule using a micropendulum and
a pressure-tunable microbubble resonator (MBR) is described and a fit to the exper-
imental results is also given. Note, in this work we used a microsphere instead of a
micropendulum. Finally, the affect of the intermediate regime on the trapping potential
in an ideal, coupled resonator system is examined.

5.2 Theory of Coupled Resonators

In our system, a microbubble resonator is coupled to a tapered fiber and a microsphere
is positioned adjacent to the MBR, see Fig. 5.3. If we use the coupled-mode equation

53
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for two cavities in a steady state, the intracavity field amplitudes, A1 and A2, satisfy
the equations:

(i∆ω1 −
γ1

2
)A1 − iκA2 =

√
γexA0, (5.1)

(i∆ω2 −
γ2

2
)A2 − iκA1 = 0, (5.2)

where γ1 and γ2 are the total cavity losses in the MBR and the microsphere, respec-
tively, with γ1 > γ2 in our experiments and κ is the coupling coefficient between the two
cavities. ∆ω1,2 are the detunings between the pump laser and the resonant frequency
of the MBR, ω1, and microsphere, ω2, respectively. In other words, ∆ω1 = |ω0 − ω1|
and ∆ω2 = |ω0 − ω2|, where ω0 is the laser frequency. The normalized transmission is
approximated to be

T ∼ 1− 2γexIm(χ), (5.3)

with
χ =

ω0 + iα2

κ2 − (ω0 + iα1)(ω0 + iα2)
, (5.4)

where α1 = iω1 + γ1/2 and α2 = iω2 + γ2/2. The intracavity field of the MBR
is expressed as A1 = i

√
γexA0χ. The two coupled cavities have supermodes. The

complex eigenfrequencies, ω±, are defined when the amplitude of the intracavity field
reaches infinity. In reality, the laser frequency has a real value, therefore infinity is
never reached and

ω± =
−i(α1 + α2)± β

2
, (5.5)

where β =
√

4κ2 − (α1 − α2)2. When β = 0, we define the threshold of the coupling
strength, ξ ≡ (γ1 − γ2)/4.

5.2.1 Coupled-Mode Induced Transparency

For κ < ξ, β is imaginary. The real part of the eigenfrequency is Re(ω±) = (ω1 +ω2)/2
and the imaginary part is Im(ω±) = −ζ ± |β|/2 with ζ = (γ1 + γ2)/4. This means
that the supermodes are degenerate with the same frequency, Ω ≡ (ω1 + ω2)/2, but
the linewidths are different for each supermode. The imaginary part of χ is derived to
yield the EIT-like transmission spectrum:

TEIT = 1− 2γex

[
−(1/2 + ξ/|β|)Im(ω−)

∆ω2 + Im(ω−)2
− (1/2− ξ/|β|)Im(ω+)

∆ω2 + Im(ω+)2

]
, (5.6)

with detuning ∆ω = |ω0 − Ω|. We see that two Lorentzians with different signs and
linewidths appear in Im(χ). Note Im(ω±) and (1/2−ξ/|β|) are negative here, therefore
both fraction terms in the square bracket are positive. The Lorentzian with positive
sign has a larger linewidth, 2|ω−|, is the transmission dip. The other term, with
negative sign, has a narrower linewidth, 2|ω+|, and represents a transparency window,
similar to EIT. As the coupling strength, κ, increases, |β| decreases and the linewidth
of the transparency window increases.



5.3 Optomechanical Spectrum in the Coupled Resonators Structure 55

5.2.2 Autler-Townes Splitting

When the coupling strength is much larger than the transition threshold (i.e., κ� ξ), β
is real. Neglecting (α1−α2)2/β2, the complex eigenfrequencies become ω± ∼ Ω−iζ±κ.
The transmission spectrum is given by

TATS = 1− γex
[

ζ

(∆ω − κ)2 + ζ2
+

ζ

(∆ω + κ)2 + ζ2

]
. (5.7)

We see the two Lorentzian dips are located at detunings of ±κ from the center Ω. The
linewidth of the dips are equal to each other. An increase of coupling strength leads
to larger separation of the dips, while the linewidth 2ζ stays the same.

5.2.3 Intermediate Regime

When κ > ξ, we call it the intermediate regime. β is real and the eigenfrequencies are
ω± = Ω− iζ ± β. The transmission spectrum is

(5.8)
Tint = 1− 2γex

[
(∆ω/β − 1/2)ξ

(∆ω − β/2)2 + ζ2
− (∆ω/β + 1/2)ξ

(∆ω + β/2)2 + ζ2

]
− γex

[
ζ

(∆ω − β/2)2 + ζ2
+

ζ

(∆ω + β/2)2 + ζ2

]
.

Both square bracket terms are composed of two Lorentzians located at detunings of
±β/2. The first square bracket term has Lorentzians with different linewidths and the
second square bracket term shows the contribution from the ATS-like regime. Examples
for each regime are shown in Fig. 5.1. As the coupling strength κ increases, the EIT
regime (a), the intermediate regime (b), and the ATS regime (c) appear.

5.3 Optomechanical Spectrum in the Coupled Res-
onators Structure 1

We characterize the swinging motion of a micropendulum in the coupled system using
two terms. Supposing the swinging amplitude is small, we can describe the change of
the coupling strength, κ(x), and the shift of the resonant frequency of the supermode,
Ω, according to the pendulum’s displacement, x. Note, we use the detuning, ∆ω(x),
instead of Ω, as we can always get Ω by adding the laser frequency, ω0, to ∆ω(x):

κ(x) = κ(1 + gκx), (5.9)
∆ω(x) = ∆ω + gωx. (5.10)

According to earlier research [86], the oscillation period of the micropendulum is on the
order of ms. We can assume the resonant light is always in the steady state while the

1The theory was developed by Dr. Y. Yang, a former postdoctoral researcher in the LMI-QT Unit.
The theory was also used for the thesis work of Dr. R. Madugani, a former PhD candidate in the
LMI-QT Unit [170].
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Figure 5.1: (a) The transmission spectrum in the EIT regime; the dashed window
is shown in (d). (b) The transmission spectrum in the intermediate regime. (c) The
transmission spectrum in the ATS regime. Parameters used are γ2 = 1.2 × 107, γ1 =
100γ2 and γex = γ1/3; κ = 10γ2 for the EIT regime, κ = γ1 − γ2 for the intermediate
regime, and κ = 10(γ1 − γ2) for the ATS regime.

pendulum motion is introduced to the coupled system, as the lifetime of light in this
system is on the µs scale. We can start from Eqs. 5.2 and 5.2 and include mechanical
oscillation in each regime.

In the EIT regime, letting κ � ξ as a relatively simple case, |β| is approximated
to become |β|= ξ[2− (κ/ξ)2]. (κ(x)

ξ
)2 ≈ (κ

ξ
2(1 + 2gκx)) and ∆ω(x)2 ≈ ∆ω2 + 2gω∆ωx

also follow. Substituting these transformations into Eq. 5.6 and taking the first order
Taylor expansion of x, the optomechanical transduction spectrum is approximated and
takes the form:

TEIT ≈
∣∣∣{γ′22 γ2(κ/ξ)2 − 2γ′2γ2(κ/ξ)4 + 4γ2(κ/ξ)2∆ω2}gκ − 4γ2(κ/ξ)2∆ωgω

(4∆ω2 + γ′22 )2

− (4∆ω2 + γ2
1)γ1(κ/ξ)2gκ − 4[2γ1 + γ1(κ/ξ)2]∆ωgω

(4∆ω2 + γ2
1)2

∣∣∣, (5.11)

where γ′2 = γ2 + κ2/ξ. A numerical plot is shown in Figs. 5.2(a) and (b).
The optomechanical transduction spectrum when κ� ξ is composed of four peaks.

Starting from the red-detuned side, the first peak appears when the optical coupling
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starts to enter the large transmission dip, i.e., region I in Fig. 5.1(d). Then, the second
peak appears when the detuning reaches the red side of the transparency window, i.e.,
region II in Fig. 5.1(d). Next, another peak at the blue side of the transparency
window appears, i.e., region III in Fig. 5.1(d) and, finally, the last peak appears when
the coupling is leaving the large dip, i.e., region IV in Fig. 5.1(d).

For the ATS-like regime, the same optomechanics is used as for Eq. 5.7 and the
optomechanical spectrum is obtained from the first order term of the Taylor expansion:

TATS ≈
2(∆ω − κ)(gω − gκκ)

[(∆ω − κ)2 + ζ2]2
+

2(∆ω + κ)(gω + gκκ)

[(∆ω + κ)2 + ζ2]2
. (5.12)

A numerical plot of this regime is shown in Figs. 5.2(c) and (d).

Figure 5.2: (a) Transduction noise spectrum (red solid line) and the corresponding
transmission spectrum (blue dashed line) when the system is in the EIT regime. (b) A
zoom-in window of (a) when the detuning is small. (c) Transduction noise spectrum
(red solid line) and the corresponding transmission spectrum (blue dashed line) when
the system is in the ATS regime. (d) A zoom-in window of (c) when the detuning
is around one of the Lorentzian dips. The theoretical plot was generated by Dr. R.
Madugani [170].

For the purpose of trapping, strong coupling, such as in ATS-like regime, is pre-
ferred. But, at room temperature, this regime may not be possible. Static charge is
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estimated to be small [84]; however, thermal vibration can still affect the resonators
and the two cavities will likely come into contact. Obviously, the intermediate regime
can still be studied.

Recall the imaginary part of χ is:

Im(χ) =
(∆ω/β − 1/2)ξ

(∆ω − β/2)2 + ζ2
− (∆ω/β + 1/2)ξ

(∆ω + β/2)2 + ζ2

+
1

2

[
ζ

(∆ω − β/2)2 + ζ2
+

ζ

(∆ω + β/2)2 + ζ2

]
.

(5.13)

The optomechanical transduction spectrum of the first term is:

Tint(
(∆ω/β − 1/2)ξ

(∆ω − β/2)2 + ζ2
) =(

ξ

β

)[
−(gω +Gκ/β)(∆ω − β)2 + (gω −Gκ/β)ζ2

[(∆ω − β)2 + ζ2]2

]
.

(5.14)

Here, Gκ = gκκ
2/β is the effective coupling rate. In the condition that mechanical

oscillation exists, β becomes β + Gκx when the displacement is x and assuming x is
small. Similarly, the transduction spectrum of the second term is obtained as:

Tint(
(∆ω/β + 1/2)ξ

(∆ω + β/2)2 + ζ2
) =(

ξ

β

)[
−(gω −Gκ/β)(∆ω + β)2 + (gω +Gκ/β)ζ2

[(∆ω + β)2 + ζ2]2

]
.

(5.15)

The last term of Eq. 5.8, as we mentioned before, is a contribution from the ATS-like
regime. Therefore, the transduction is also similar and is given by

Tint(ATS − like) = ζ

[
(∆ω − β)(gω −Gκ)

[(∆ω − β)2 + ζ2]2
+

(∆ω + β)(gω +Gκ)

[(∆ω + β)2 + ζ2]2

]
. (5.16)

By adding Eqs. 5.14, 5.15 and 5.16 together, we obtain the optomechanical transduc-
tion spectrum. There are four peaks in the spectrum that appear according to the
frequency detuning. We can see that the peaks appear when the laser frequency is on
the slopes of the red- and blue-detuned sides of the two dips, i.e., in regions I to IV
in Fig. 5.1(b). Depending on the system parameters, the four peaks have different
heights. In order to confirm the theory, experimental work was done and is discussed
in the next section.

5.4 Experimental Implementation with an MBR
To experimentally implement a coupled resonator system, the cavity modes of each
resonator need to be in resonance. This can be done either by careful design and
nanofabrication or by in-situ tuning. In our experiment, an MBR is chosen for in-
situ tuning. By applying internal pressure into the MBR, the cavity is expands, thus
shifting the optical modes [64]. Compared to other tuning mechanisms, pressure tuning
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provides a linear response and long term stability [171]. A wide range of tuning is
achieved in our laboratory in ultrathin walled MBRs with a Q-factor of nearly 107

[13]. Pressure tuning is spatially localized, making it a perfect candidate for realizing
coupled resonators.

The coupled resonator system was achieved by placing a tapered fiber, MBR, and
microsphere together as shown in Fig. 5.3(a). A scanning, narrow linewidth laser, at
1550 nm, was used to excite WGMs in the MBR and the transmitted optical power at
the output of the tapered fiber was detected by a photodiode and monitored on a digital
oscilloscope (DSO). Initially, only the MBR was coupled to the tapered fiber and only
its WGM spectrum was shown on the DSO. When the microsphere was moved close
enough to the MBR, the sphere’s optical modes also appeared in the spectrum. Then,
pressure of the gas inside the MBR was adjusted, see Fig. 5.4, to shift an MBR mode
into resonance with a sphere mode. Mode splitting was observed by moving the sphere
even closer to the MBR. A typical transmission spectrum when the two resonators

Figure 5.3: (a) Experimental setup for transduction measurement. (b) Fabricated
microbubble and (c) microsphere.

from the photonic molecule are co-resonant is illustrated at the bottom of Fig. 5.4.
When the two resonators have a large coupling gap, the coupling strength is weak,
and an EIT-like spectrum can be found with a transparency window occurring at the
center of the resonance. With stronger coupling, and a smaller gap, the system is driven
into the ATS-like regime. The original transmission dip is split into two with nearly
identical linewidths and depths, shown as the upper curves in Fig. 5.4. The frequency
splitting of the modes increases when the gap between the two resonators is decreased.
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Figure 5.4: The normalized transmission spectrum of the coupled resonators when
the two cavities are tuned into resonance. The spectrum shows the transition from the
EIT-like to the ATS-like state.

The linewidth of the MBR and the microsphere were estimated to be γ1 = 2π × 230
MHz and 2π × 58 MHz, respectively, from transmission spectra obtained when the
two modes are far detuned. Numerical fitting with Eq. 5.8 and Eq. 5.13 shows the
coupling strength between the two cavities to be κ = 2π×530 MHz. To experimentally
simulate the motion of a micropendulum, a sinusoidal driving voltage was applied to a
custom-built piezo-actuated stage holding the sphere. This driving voltage moved the
sphere in and out from the MBR with a frequency of 2 kHz. While the laser frequency
was slowly scanned over the resonances of the supermodes, the transduced mechanical
motion was recorded by taking an FFT of the transmitted optical power. The result
shown, with error bars, in Fig. 5.5(b) is the average of 6 measurements. The fitting
parameter shows that the system is in the intermediate regime rather than the ATS-like
regime. The optomechanical transduction noise spectrum in the intermediate regime is
also calculated for a theoretical fit (c.f. the red line in Fig. 5.5(b)). Fitting parameters
is Gκ/gω = 30.

5.5 Conclusion

In summary, we investigated the evanescent coupling of two resonators in order to
estimate the possibility of trapping according to the proposal [85]. An MBR and a
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Figure 5.5: (a) The normalized optical transmission spectrum of the coupled cavities
in the intermediate regime. (b) The normalized optomechanical transduction spectrum
in the optical frequency domain in the coupled system in the intermediate regime. The
theoretical fitting was done by Dr. Y. Yang.

microsphere were fabricated and coupled to each other for the demonstration. The
MBR played a central role to excite supermodes as the resonance frequency can be
tuned by air pressure. The system can be in the EIT-like regime, the intermediate
regime, or the ATS-like regime depending on the coupling strength. The intermediate
regime was experimentally achieved and the transduction spectrum was obtained. The
shape of the transduction spectrum is asymmetric and shows good agreement with
the theoretical prediction. A significant optical force has not been demonstrated and
further investigation is needed. For example, light confinement could be improved by
using smaller cavities and stronger pump power. This work further widens the scope
of [85] and will guide a future experimental implementation of center-of-mass control.





Chapter 6

Microbubble Lasers for Pressure
Sensing1

6.1 Introduction

While in an earlier chapter we considered using an MBR as a sensing platform, it turns
out that the air pressure tunability of an MBR itself can be viewed as a sensor. Here, we
explore how a microlaser made from an MBR is not only a tunable laser, but also acts as
a high sensitivity pressure sensor. Instead of measuring the transmission spectrum from
a WGM cavity mode, sensing can also been done with the WGM microlaser. As lasing
modes have narrower linewidths than expected resonance transmission dip in a WGM
fiber-coupled cavity, a higher sensitivity can be achieved [54, 92, 103]. In this chapter,
we report on an observed frequency shift of microbubble-based microlaser emissions
due to air pressure tuning. The laser tuning is achievable due to the subwavelength
wall thickness of an Er3+-doped microbubble resonator, the fabrication of which is
described in the following.

6.2 Fabrication

Having a high Q cavity mode is a necessary precondition for achieving low threshold
lasing. For a passive MBR, we have previously demonstrated that the Q-factor can
reach 107, close to the theoretical limit [65]. To maintain the high Q after introducing
a gain medium, we dissolved erbium ions into a sol-gel precursor solution and used this
as the gain material, ensuring that the erbium ions are distributed uniformly in the
silica matrix of the MBR after fabrication. The sol-gel precursor solution was made
by mixing erbium(III) nitrate hydrate (i.e. Er(NO3)3 · 5H2O), tetraethoxysilane (i.e.
TEOS), isopropyl alcohol (i.e. IPA), water (H2O), and hydrochloric acid (37% HCl)

1This work is published in Y. Yang, F. Lei, S. Kasumie, L. Xu, J. M. Ward, L. Yang and S. Nic
Chormaic "Tunable erbium-doped microbubble laser fabricated by sol-gel coating", Opt. Express 25,
1308-1313 (2017) [14]. S. Kasumie contributed to develop the fabrication of the erbium-doped MBR
using sol-gel coating and writing of the manuscript. The sol-gel coating is done in the Micro/Nano
Photonics Laboratory, Department of Electrical and Systems Engineering, Washington University in
St. Louis, USA during a 3-month research visit.
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with a weight ratio of 0.03:6.5:6.1:0.7:0.6 for 2 hours at 70◦C [93]. After 24 hours, the
sol-gel precursor was ready to use.

The fabrication steps for the erbium-doped MBR is presented in Fig. 6.1. First,
two counter-propagating CO2 laser beams were focused onto a silica capillary (outer
diameter 350 µm, inner diameter 250 µm) to heat it, thereby allowing us to pull the
capillary into a uniform taper with a waist diameter of around 30 µm. Afterwards, a
droplet of the sol-gel precursor was transferred to the tapered capillary. Finally, the
capillary was filled with compressed air and the CO2 laser was reapplied to reheat it.
With the correct choice of laser power, the section of capillary in the focus of the laser
beams expands to form an MBR. Due to the high temperature, the residual sol-gel
solvent was removed and only silica doped with erbium ions remained; this material
formed the wall of the MBR during the expansion process. The maximum erbium
concentration was 5×1019/cm3 according to the concentration in the sol-gel precursor.

Figure 6.1: Schematic of the fabrication process for a sol-gel coated MBR using CO2

laser heating. (a) A capillary is tapered using a CO2 laser heat source. (b) Erbium ions
are dissolved into a sol-gel precursor, which is drop-coated onto the tapered capillary.
(c-d) The CO2 laser heats the sol-gel and internal air pressure is applied until an MBR
is formed.

6.3 Aero-pressure tuning of the MBR laser

6.3.1 Experimental Setup

The MBR was coupled to a tapered optical fiber that was placed in contact. The laser
source was a broadband, 980 nm laser with a maximum power of 200 mW. The tapered
fiber waist was about 1.1 µm. Since the 980 pump has a linewidth of about 2 nm, even
without fine tuning of the pump laser frequency, some coupling into the MBR modes
can occur. About 10% of the pump power was absorbed after passing the MBR. The
coupled laser light excited 1535 nm lasing in the Er ions. The experimental setup is
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illustrated in Fig. 6.2. The MBR was placed in a dry nitrogen gas environment to
maintain the optical quality. In order to tune the frequency of the MBR, one of its
outputs was sealed with epoxy, while the other end was connected to a compressed air
cylinder. The internal pressure of the MBR was adjustable via a valve and the pressure
reading was recorded on a pressure gauge. During the experiment, the pressure was
changed from 0 bar to 2.5 bar. The lasing spectrum was measured on an optical
spectrum analyzer (OSA), which had a minimum resolution of 0.07 nm.

Figure 6.2: Schematic of the setup for pressure tunable lasing in an MBR. P: pres-
sure gauge; OS: optical switch; PD: photodetector; OSC: oscilloscope; OSA: optical
spectrum analyzer. The inset shows a microscopic image of the sol-gel coated MBR.
The diameter of the MBR is 141 µm.

6.3.2 Experimental Results

First, the lasing threshold for the coated MBR was measured. The pump power was
adjusted from 17.9 mW to 94.7 mW. Because the pump is broadband, it is difficult
to know exactly how much power couples into the modes; therefore, we used the total
pump power to evaluate the threshold. The laser output power at 1535.66 nm was
recorded against the pump power and is plotted in Fig. 6.3(a) - the threshold is
estimated to be about 27 mW. From the fluorescence background (see Fig. 6.3(b)) single
mode lasing occurs (see Fig. 6.3(c)) when the pump power is beyond the threshold. In
reality, the actual threshold must be significantly lower than this stated upper limit as
there are certainly some coupling losses in the system.

By applying aerostatic pressure inside the bubble, the MBR expands so that all
modes are red-shifted [64]. With a maximum applied pressure of 2.5 bar, the laser
emission at 1535 nm was shifted by about 240 pm, as shown in Fig. 6.4(a). The shift
of the modes is much smaller than the bandwidth of the pump. Therefore, even without
tuning the wavelength of the pump, modes can still be excited via the 980 nm source.
In the case here, single-mode lasing was achieved within the pressure tuning range.
The wavelength shift as a function of the applied pressure is plotted in Fig. 6.4(b).
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Figure 6.3: (a) Lasing threshold measurement of a sol-gel coated MBR. The total
power of the pump laser is used for estimation. The threshold is about 27 mW for
the pump laser. (b) The spectrum with the pump power below threshold. (c) The
single-mode lasing spectrum near the threshold.

Note that this measurement is not so accurate since the laser linewidth and the mode
shifts are smaller than the resolution of the OSA. However, a linear relationship is still
obvious, similar to the linear tuning property of the modes of a passive MBR [64]. The
sensitivity is the slope of the pressure tuning curve, which ranges from approximately
6 GHz/bar to 14 GHz/bar, as determined by the error bars in Fig. 6.4(b). For a subtle
change of pressure, so that the OSA cannot resolve the change even if the sensitivity is
increased, a beating effect can be used to measure the frequency shift instead. Active
sensing in WGMRs has already been developed by measuring the beat signal of a split
lasing mode [54]. Here, the mode splitting effect is not caused by pressure. However,
we can input a near-detuned laser so that the beat frequency can be measured, and
thus, a small frequency shift can be determined.

In order to obtain a more accurate pressure tuning slope, we measured the trans-
mission spectrum by switching to a finely tunable laser, around 1535 nm (New Focus
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Figure 6.4: (a) The laser spectrum of the sol-gel coated MBR at different pressures.
The arrow shows the direction of the pressure increase. From the bottom to the top
are the laser emission lines from 0 bar to 2.5 bar applied pressure. The resolution of
the spectrum is limited by the OSA. (b) The wavelength shift of the lasing mode as a
function of the applied pressure. The red line is a linear fit and the error bar is set by
the resolution of the OSA.

Velocity 6728), and a photodetector connected to an oscilloscope, as shown in Fig. 6.2.
The transmission spectra of this MBR laser, for different applied pressures, are given
in Fig. 6.5(a), where the mode is indicated by an arrow and the measured Q-factor is
about 106. The resolution of the pressure tuning, measured by monitoring the pump
transmission through the fiber coupler, was limited only by the Q-factor [65] and is
more accurate than measurements made using the spectrum analyzer. By tracking the
resonance positions, shown in Fig. 6.5(b), a tuning sensitivity of 8.2 GHz/bar was
measured. From the microscope image of the MBR, the wall thickness of the MBR
was estimated to be about 1.3 µm. For an MBR with a diameter of 141 µm, the ob-
tainable sensitivity is calculated to be 8.5 GHz/bar [64], which is in accordance with
the measured results.

6.4 Conclusion

By using a sol-gel technique, a layer of Er3+ ions was coated onto the outer surface of
an MBR. We achieved lasing emission at 1535.66 nm when pumped at 980 nm. We
also observed a laser frequency shift when internal air pressure was applied. The lasing
threshold could be further optimized if a narrow linewidth tunable pump laser were
used. When the frequency is shifted by a target to be detected, all modes, including
those modes at the pump wavelength, will shift. Therefore, a narrow band pump is
not so practical for implementing such a sensing application as the pump itself needs
to be locked to the MBR mode. With broad band pumping, the laser remains coupled
to the MBR mode, making the setup simple. Other rare earth ions could be diffused
into the wall of the MBR, thereby expanding the wavelength of the MBR laser to
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Figure 6.5: (a) The transmission spectra at 1535.66 nm for different pressure. From
the bottom to the top are transmission spectra at 0, 1, 1.5, 2 bar, respectively. The
arrow shows the direction of the WGM shift due to the increase of the internal pressure.
(b) Pressure tuning sensitivity fitted from the transmission spectra.

the visible range and into the transparency window for water-based fluids in the core.
This technique can also be viewed as a sensing technique. In such a context, the
linewidth of the laser may be much narrower than the linewidth of the transmission
dip [87], therefore the sensitivity could be much higher than simply using a pump laser
and measuring distortion to the transmission dip. In principle, sensing has also been
achieved in other WGM cavities; for example, refractive index sensing [52, 61], flow
rate sensing [172], and biosensing [19, 39, 54, 56–58], Such applications should also
be possible with an MBR. In particular, for sensing applications with liquids, stable
optical coupling via a tapered fiber on the outside of the bubble can be used, while the
sensing targets flow through the interior of the resonator.



Chapter 7

Frequency Comb Generation in a
Microbubble Resonator1

7.1 Introduction

In this chapter, we exploit some nonlinear optics features of microbubble resonators
to provide a controllable method for frequency comb generation. In an MBR struc-
ture, the resonance condition depends on the wall thickness. The eigenfrequencies
are distorted from the solid bulk microresonators. In a normal silica microsphere res-
onator, the phase matching condition for parametric oscillation can be achieved at
wavelengths near or longer than 1550 nm [124]. This can be pushed to shorter, or even
visible, wavelengths by decreasing the wall thickness of the microbubble [119, 137]. We
experimentally demonstrate comb generation centered near 780 nm using a microbub-
ble, thereby verifying the prediction made in [137] and opening a window for frequency
comb generation at a visible waveband in WGMRs.

7.2 Theory

7.2.1 Four-Wave Mixing

Hyper-parametric oscillation (or spontaneous four-wave mixing) is generated due to
the nonlinear polarization of a medium to a coupled electromagnetic wave. When
laser light is coupled into a medium, the relation between the input electric field and

1This work is published in Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang,
and S. Nic Chormaic, "Four-wave mixing parametric oscillation and frequency comb generation at
visible wavelengths in a silica microbubble resonator", Opt. Lett. 41, 5266-5269 (2016) [173]. S.
Kasumie contributed to the fabrication of the MBR, making measurements, writing of the paper, and,
later, improving the comb generation to extend it further into the visible region. The measurement was
done in the Micro/Nano Photonics Laboratory, Department of Electrical and Systems Engineering,
Washington University in St. Louis, USA during a 3-month research visit by S. Kasumie. Some
sections are also published in S. Kasumie, Y. Yang J. M. Ward, and S. Nic Chormaic, "Toward visible
frequency comb generation using a hollow WGM resonator", Rev. Las. Eng. 46, 92 (2018) [50], a
review article mainly written by S. Kasumie.
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polarization is described using the Taylor expansion as

Pi = ε0

(
χ

(1)
ij Ej + Σjkχ

(2)
ijkEjEk + Σjklχ

(3)
ijklEjEkEl + ...

)
. (7.1)

Here, P is the dielectric polarization density, E is the input electric field, and ε0 is
the vacuum permittivity. The first term describes the linear response to the input
field. The second term describes a second order nonlinearity, which is negligible in
silica glass due to inversion symmetry. We are interested in the third term, where the
first nonlinearity contribution of silica glass exists. The susceptibility tensor, χ, in an
isotropic media, here silica glass, is constant. The equation is simplified as

P = ε0
(
χ(1)E + χ(3)E3 + ...

)
. (7.2)

Here, we substitute two light fields, E = E1

2
ei(k1z−ω1t) + c.c. + E2

2
ei(k2z−ω2t) + c.c., into

the third nonlinearity term. The term with E1E1E
∗
2 describes a (degenerate) four-wave

mixing process
E3 = ...+ E1E1E

∗
2e
i(2k1−k2)z−(2ω1−ω2)x + ... (7.3)

Here, another wave whose frequency and wave vector are ω3 = 2ω1 − ω2 and k3 =
2k1 − k2 is predicted. However, for the predicted wave to exist, energy conservation
and momentum conservation must be satisfied. Momentum conservation is always
satisfied in a WGM resonator as the wavenumber is given by 2πm/r0, with the mode
number m. For energy conservation, we consider the phase matching condition. When
ω1 and ω2 are near each other, suppose the difference is ∆ω = |ω2 − ω1|. Then the
phase mismatching is described as

∆k = 2k1 − k2 − k3 (7.4)
= 2k(ω1)− k(ω1 + ∆ω)− k(ω1 −∆ω) (7.5)

= 2k(ω1)−
[
k(ω1) + ∆ω

dk

dω

∣∣∣
ω1

+
∆ω2

2

d2k

dω2

∣∣∣
ω1

+ · · ·
]

(7.6)

−
[
k(ω1)−∆ω

dk

dω

∣∣∣
ω1

+
∆ω2

2

d2k

dω2

∣∣∣
ω1

+ · · ·
]

(7.7)

= −(∆ω)2 d
2k

dω2

∣∣∣
ω1

. (7.8)

When ∆k = 0, the phase matching condition is achieved and the corresponding wave-
length is called the zero dispersion wavelength (ZDW). The process is cascaded as long
as the phase matching condition is satisfied. In a real laser setup, a single pump laser at
ω1 and the vacuum fluctuation correspond to the two fields. In principle, any frequency
of the vacuum fluctuation can be regarded as the second field. Comb generation is only
achieved when the frequencies correspond to resonant frequencies. If the second field
is at ω2, even if the second light field is weak, the pump power exceeding the threshold
transfers the fluctuation to the third light field at ω3, which then acts as the second
light field where it is subsequently transferred to ω2. The process repeats so that a
single pump laser can excite many resonant modes and generate the frequency comb.

In conventional microresonators, material dispersion is dominant. Therefore, the
waveband of the generated frequency is also restricted by the material dispersion. In a
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Figure 7.1: (a) Total dispersion (in terms of derivation of the FSR) of WGMs in a
microbubble with a wall thickness of 1.5 µm. The gray area is the anomalous dispersion
region. (b) Zero dispersion wavelength of a microbubble with a wall thickness varying
from 1.0 µm to 2.0 µm, simulated in MATLAB. The radius r = 80 µm

silica WGM resonator, the frequency comb is generated near 1550 nm as this is where
its ZDW resides [114, 164]. However, the resonant vacuum wavenumber, k0, is generally
engineerable.

As has been shown earlier in Chapter 2, for the input light field to be resonant
with the MBR, k0 must satisfy the characteristic , Eqn. (2.26) and (2.27). The total
dispersion is obtained by calculating the differences in the free spectral ranges based
on k0. In Fig. 7.1(a), we show the dispersion of an MBR with a diameter of 120 µm
and a wall thickness of 1.5 µm. The TE and TM modes have different dispersions, as
explained in [174]. We see that, for the TM mode, the ZDW is about 790 nm. For
longer wavelengths, the MBR is in the anomalous dispersion regime (shown by the
gray area in Fig. 7.1(a)), where four-wave mixing can be phase matched [119, 122].
The calculated ZDW for different wall thicknesses is plotted in Fig. 7.1(b). To shift
the ZDW to 765 nm, the wall thickness should be reduced to around 1.4 µm. The
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threshold for FWM depends on Q2/V , where V is the WGM volume. Q is lower for
a thinner MBR; therefore, its geometrical parameters should be optimized [137]. In
practice, obtaining an MBR with a high enough Q was a major technical challenge
until an improved fabrication process was developed [13].

7.3 Experiment

The microbubble was fabricated using a CO2 laser. The fabrication method is detailed
in Chapter 3. To obtain the desired wall thickness of around 1.4 µm, we chose a
silica capillary with an inner and outer diameter of 100 µm and 375 µm, rspectively,
which we subsequently tapered down to an outer diameter of 29 µm by a heat-and-pull
technique. The tapered microcapillary was then connected to dry nitrogen gas with an
aerostatic pressure of about 2.5 bars. By heating the microcapillary on both sides using
the CO2 laser beams, its wall softens and swells, and the process can be monitored on
a CCD camera. When the outer diameter of the bubble reached about 120 µm, the
process was stopped. The geometric parameters were estimated under a microscope,
see Fig. 7.2(a). A more precise measurement of the wall thickness was implemented
after the experiment by breaking the microbubble near the middle and performing
scanning electron microscopy (SEM), as seen in Fig. 7.2(b). The cross-section in Fig.
7.2(b) is slightly removed from the equatorial plane of the MBR, and the estimated
wall thickness on the SEM is equal to or less than 1.5 µm. In practice, the inner profile
of an MBR is elliptical and the wall is thinner in the equatorial plane. Therefore, the
actual wall thickness at the equator is even thinner than what was measured here,
thereby guaranteeing anomalous dispersion at 765 nm where the Kerr effect (i.e., self-
phase modulation and cross-phase modulation) can compensate for the phase matching
condition.

A tapered fiber was used to couple light into and out of the MBR; a single-mode
fiber (in the wavelength bandwidth of 780 nm) was tapered down to a diameter of less
than 1 µm. The total light propagation efficiency of the taper was about 70%. The
MBR was placed on a 3D nano-stage to control the coupling between the resonator
and the tapered fiber. In order to excite and measure FWM and the frequency comb
generated in the MBR, a setup as illustrated in Fig. 7.2(c) was used. The pump
power from a tunable laser diode (New Focus TLB-6712-P), centered at 765 nm, was
coupled into the MBR through the tapered fiber. A maximum power of 6 mW could
be coupled into the MBR. After the light coupled out of the MBR, it passed through a
50/50 inline beam splitter (BS). One output of the BS was connected to a photoreceiver
(New Focus 1801), and the other was connected to an optical spectrum analyzer (OSA,
HP 70950B) with a minimum resolution of 0.08 nm. In the measurement, the pump
laser was scanned over 40 GHz around a high Q mode, and the transmission spectrum
was recorded on a digital oscilloscope (Tektronics TDS 3014B). During the experiment,
the coupling fiber was in contact with the MBR at the equatorial plane to maintain
coupling stability.

A typical transmission spectrum and a resonance mode with a Q-factor of ∼ 2×107

are shown in Fig. 7.3. The span of the laser scan was then decreased until only
the selected high Q mode (see inset of Fig. 7.3) was coupled to the MBR. As the
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Figure 7.2: (a) Microscope image of the MBR. The diameter is measured to be 120
µm. (b) SEM image showing the cross-section of the MBR. The typical wall thickness
is 1.5 µm, as shown in the inset. The actual wall thickness should be less than this, as
explained in the main text. (c) Experimental setup for measuring the frequency comb
in the MBR. TLS, tunable laser source; BS, beam splitter; FPC, fiber polarization
controller; PD, photodetector; OSA, optical spectrum analyzer; DSO, digital storage
oscilloscope.
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Figure 7.3: Transmission spectrum of the MBR. The inset shows the transmission of
the pump WGM in the experiment. The red curve is a Lorentzian fit with a FWHM
of about 19 MHz, corresponding to a Q-factor of about 2× 107.

simulation results indicate, the TE and TM modes in the MBR have different ZDWs.
To effectively excite the TM mode, a fiber polarization controller (FPC) was used
between the laser source and the tapered fiber. A typical FWM spectrum is presented
in Fig. 7.4 with an input power of ∼ 3 mW at a pump wavelength of 766.45 nm. The
symmetric equidistant lines on either side of the pump (which is the highest peak of
the spectrum) are separated by 2.1 nm, roughly twice the calculated FSR of 1.1 nm.
Next, we kept increasing the input power of the pump laser and more modes were

excited via the degenerate FWM process and the subsequent, nondegenerate FWM
until parametric oscillation occurred. Figure 7.5 shows the resulting spectrum at a
power level of around 6 mW. Here, 14 peaks are visible, and the separation between
adjacent lines is only one FSR (1.1 nm). More comb lines appear in Fig. 7.5, compared
to Fig. 7.4 due to the complicated nonlinear interactions between modes. In this case,
a natively mode-spaced comb has been generated [175].

7.4 Improvement to the Frequency Comb

To obtain a frequency comb at a shorter wavelength and with more comb lines, a
laser amplifier (Toptica BoosTA) was introduced to the setup. An MBR with 152 µm
diameter and 1.36 µm wall thickness was fabricated. An improved frequency comb
with more than 40 comb lines was obtained, centered at 780 nm wavelength (see Fig.
7.6) The central wavelength is essential to push the comb band to shorter wavelengths;
however, we were unable to achieve this in the experimental setup described in this
thesis, but the work is ongoing in the research unit. A broad bandwidth frequency comb
is related to the flatness of the dispersion curve near the ZDW. This could be improved
by fabricating an MBR with a larger diameter [137]. This also reduces the possibility
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Figure 7.4: Four-wave mixing spectrum of the MBR with a diameter of 120 µm,
shown in Figs. 26(a) and 2(b). The separation between the peaks is 2.1 nm.

Figure 7.5: Frequency comb generation in the MBR at a center wavelength around
765 nm. Up to 14 comb lines are excited.
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Figure 7.6: An improved Kerr frequency comb. More than 40 comb lines have been
observed.

of exciting Raman scattering that competes with the comb generation process. In
this case, mode locking is very likely to be achieved. We assume that light is coupled
to an optical mode that is thermally broadened. There is the possibility that other
optical modes are also involved in this method. However, as the optical mode that
generates the frequency comb is rarely found 2 , we assume that the frequency comb is
generated from a single optical mode. Unfortunately, we lost this optical mode during
our measurements and, therefore, failed to determine its Q-factor. Here, the pump
power was ∼500 mW and was converted to comb lines of around tens or hundreds
of µW. To improve the conversion efficiency, materials with a high third nonlinearity
should be considered. We also need a small minimum ZDW so that the frequency comb
can be generated in the visible range. So far, we have not identified a material that
would greatly improve the generation of a visible frequency comb.

7.5 Conclusion
In conclusion, we have generated a Kerr frequency comb near the ZDW in a silica
MBR by engineering the dispersion through optimizing the wall thickness and diame-
ter of the MBR in a controllable way. The ZDW can be shifted beyond the limitation
of the material’s dispersion. We experimentally demonstrated FWM at 765 nm as a
proof-of-principle. A frequency comb with multiple equidistant lines was generated by
increasing the pump power to enter the parametric oscillation regime. The frequency
comb generation was limited by the total available input power. The spectral band-
width of the frequency comb increased with a higher power. In order to improve the
frequency span of the comb, careful control of the dispersion is required; this could
be implemented by introducing a small amount of curvature to the MBR. In practice,
the wall thickness can be further decreased while still maintaining a high Q-factor [13].

2In this MBR sample, most optical modes produce Raman scattering instead of the Kerr comb.
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Then, the center wavelength of the frequency comb could be shifted to an even shorter
wavelength, until it is eventually limited by the material absorption window. This
mechanism of dispersion engineering could be used for other materials [174], in partic-
ular, glass materials with high nonlinearity [176]. In the future, an improved frequency
comb in the visible wavelength range may be realized and researchers in our unit are
currently pursuing this.





Chapter 8

Raman Laser Switching Induced by
Cascaded Light Scattering1

8.1 Introduction

Finally, as part of this thesis work, we explore how the tunability of a microbubble may
control the dynamics of laser emissions. In particular, we focus on the dynamics of
stimulated Raman scattering. Stimulated light scattering, such as stimulated Raman
scattering (SRS) and stimulated Brillouin scattering (SBS), can lead to the generation
of coherent photons in different materials and geometries [104, 178]. Unlike conven-
tional inversion lasers, the emissions of stimulated scattering lasers are not limited to
specific wavebands, since no real energy levels are required; this provides unique ad-
vantages in many applications, e.g., arbitrary wavelength conversion [142, 179, 180],
high-quality microwave generation [181], gyroscopes [182], sensing [103, 183–186], mode
control [187, 188], etc. Considering that the stimulated gain arises from coherent cou-
pling between a pump field and a Stokes field mediated by another field, e.g., a phonon
field, the newly generated Stokes field may also act as a pump for the generation of
further Stokes fields - an effect known as cascaded light scattering (CLS), resulting
in cascaded Raman and Brillouin lasers [138, 143, 189–191]. Due to the presence of
CLS, stimulated lasers are usually multimode when a high pump power is applied.
Nevertheless, it is generally assumed that the dynamics of stimulated lasers involving
CLS is trivial and usually attention is focused on the interactions of pump and Stokes
waves. This is indeed true for Brillouin lasers because of the phase-matching condition
[138, 139]. However, in Raman lasers, as the phase-matching condition is automatically
satisfied [142], see Fig.8.1(a) [104], CLS could lead to many lasing modes being coupled
together, thence rendering the behavior of such lasers to be quite unique, especially
for multimode lasing [192, 193]. As a specific example, in this chapter, we show, both
theoretically and experimentally, that CLS can induce mode-switching in multimode
Raman lasers. This study illustrates the importance of considering CLS effects for
Raman lasing in dielectric resonators.

1This work appears in S. Kasumie, F. Lei, J. M. Ward, X. Jiang, L. Yang, and S. Nic Chormaic
"Raman laser switching induced by cascaded light scattering", arXiv:1902.02487 (2019) [177]. S.
Kasumie contributed to theory development, experimental verification, and writing the manuscript.
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Figure 8.1: (a) Schematic diagram of the stimulated Raman scattering process. (b)
Schematic of the experimental system. The input laser is coupled to a silica micro-
sphere resonator through a tapered fiber waveguide, with a coupling constant, γex, and
resonator intrinsic loss, γin. Comparison of the gain spectrum and the lasing modes
between (c) a typical homogeneously broadened laser and (d) a silica Raman laser.
Schematic of (e) a cascaded Raman laser in single-mode fashion and (f) a two-mode
Raman laser.

In this work, a whispering gallery mode (WGM) silica Raman laser is chosen as
the experimental platform [194]. As depicted in Fig. 8.1(b), the light fields can be
coupled into and out of the WGM resonator through a waveguide. The Stokes light
(i.e., the Raman laser) can be generated in a WGM resonator as long as the following
requirements are met: (i) the frequency of the Stokes light coincides with a high Q
WGM and (ii) the Stokes mode has sufficient spatial overlap with the pump mode, i.e.,
mode overlap. With a single-mode pump, the Raman gain of a silica matrix can be
considered to be homogeneously broadened if one neglects CLS, see Fig. 8.2(a). Under
this circumstance, only the mode with the highest gain can lase, even if all the modes
have the same losses, i.e., Q-factors, since the gain is clamped at the lasing threshold
[195]. At this point, a question would naturally arise: how can one explain the frequent
occurrence of multimode Raman lasing in a single-mode pumped microresonator?

Here, we show that, due to the existence of CLS, two (or multiple) modes with
unequal gain provided by the pump, but equal cavity loss (more generally, unequal
gain/cavity loss ratio) lase simultaneously, see Fig. 8.2(b). It is noteworthy to point out
that this CLS-assisted, multimode lasing scenario differs from conventional cascaded
single-mode Raman lasing, whereby a single mode is generated for each order of lasing,
as shown in Fig. 8.2(c). The first order Raman lasing mode (Mode I), originating from
the pump, could generate the subsequent Stokes field, i.e., the second order Raman
laser (Mode II), and the typical frequency shift between the pump and Stokes is about
14 THz. In this case, the pump does not provide gain directly to the second (or even
higher order) Stokes field. Hence, the power of this Raman laser usually decreases with
increasing order, and it is impossible to obtain a higher order Raman signal without
the presence of its previous order. The dynamics of such a typical cascaded laser can be
simply treated as a cascaded energy transfer process; therefore it is trivial and does not
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Figure 8.2: (a) a typical homogeneously broadened laser and (b) a silica Raman laser.
Schematic of (c) a cascaded Raman laser in single-mode fashion and (d) a two-mode
Raman laser.

differ much from the conventional single-mode lasing case. However, for the multimode
lasing case, the presence of CLS can modulate the laser dynamics significantly. As
illustrated in Fig. 8.2(d), two adjacent modes in the same mode family are excited
simultaneously by a single-mode pump. Both Raman lasing modes derive their gain
from the pump through SRS, but, at the same time, the first Raman mode interacts
with the second due to CLS. Though the interaction may be weak, it is not negligible
and can account for the existence of multimode Raman lasing, and may even play a
subtle role in Raman laser switching.

Indeed, the CLS-induced coupling between the two lasing modes seems not so obvi-
ous and is easily overlooked. In textbooks, the SRS is usually illustrated with two light
fields and a simplified two level system, as shown in Fig. 8.1(a). However, in real solid
materials, like silica [196], silicon [197], or silicon carbide [198], the Raman gain profile
is not simply composed of only a few discrete peaks, but rather it is a continuum;
therefore, it is natural to introduce a coupling term between the two lasing modes. To
control the emission pattern, such as the observed switching between Fig. 8.2(c) and
Fig. 8.2(d) when using an MBR, the coupling terms should also be introduced.
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8.2 Theory

To understand the multimode Raman laser (see Fig. 8.2(d)), the standard coupled-
mode equations must be modified [143] to include all the CLS terms. Given a certain
jth cavity mode, it couples to the external driving pump in the waveguide via the
overlap of the evanescent fields, and to all the other cavity modes through SRS. We
introduce a summation term into the coupled-mode equations to represent the interac-
tions of the cavity modes. The motion of the intracavity field, Ej, can now be described
as

Ėj =

(
−γj

2
+
∑
i<j

gij|Ei|2−
∑
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gjk
ωj
ωk
|Ek|2

)
Ej

+
√
γex,0δ0,js,

(8.1)

where i, j, and k are mode order indices and the resonant frequencies decrease with
the order (the order of the pump mode is set to be 0). The γj and γex,j denote the total
energy decay rate and the extrinsic decay rate into the waveguide, respectively, ωj is
the resonant frequency, I0 = |s|2 is the input pump power from the waveguide, and δ
is the Kronecker delta function, where δij = 1 if and only if i = j. We set gij as the
intracavity Raman gain coefficient between mode i and j, proportional to the Raman
gain spectrum of the bulk silica, gR(|ωi − ωj|) [143, 196]. Note that the Raman gain
spectrum will not be modified due to the effect of cavity quantum electrodynamics
(cQED) [199]. The second and third terms in Eq. (8.1) describe the gain and the
loss caused by the SRS from the higher and lower frequency modes, respectively. It is
important to point out that the coherent anti-Stokes Raman scattering is not included
in the model since the phase-matching condition is not easily satisfied, as discussed
later.

In order to gain insight into this phenomenon, we consider the simplest case, i.e.,
one pump mode and two Raman lasing modes, see Fig. 8.2(d). The intracavity powers
for steady-state are governed by
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where P0, P1, and P2 represent the intracavity power for the pump, the first (Mode I),
and the second lasing mode (Mode II), respectively. There are four different steady-
state regimes as I0 is increased, see Figs. 8.3(a) and (b). Mode I is located in the
vicinity of the peak of the Raman gain profile, while Mode II has a lower resonant
frequency and a relatively lower Raman gain coefficient. Therefore, Mode I lases first,
as long as its gain can overcome its loss (regime II), as shown in Figs. 8.3(a) and (b).
One can see that P1 continues to increase with I0, but the intracavity pump power,
P0, is clamped at γ1/2g01. Thus, Mode II cannot derive sufficient gain solely from the
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Figure 8.3: Simulation results based on Eq. (8.1) (see Appendix C for details).
(a) P0, P1, and P2 represent the intracavity powers of the pump, the first, and the
second Raman fields. The external pump power is increased when detuning is set to
0. Solid lines represent the stable, steady state, while the dashed lines correspond to
unstable cases. (b) The total gain of the two Raman modes and gain fraction from
pump and Mode I to Mode II. The parameters used in (b) are γj = 25.3 µs−1 and
γex,j = 26.2 µs−1 for all j = 0, 1, 2; the angular frequencies are ω0 = 2π × 390.6
THz, ω1 = 2π × 377 THz and ω2 = 2π × 375.3 THz; and the intracavity Raman gain
coefficients are g01 = 3.6 × 1018 s−1J−1, g02 = 2.7 × 1018 s−1J−1 and g12 = 0.5 × 1018

s−1J−1.

pump field to start lasing. However, as shown in Fig. 8.3(b), Mode I can also provide
a gain mechanism for Mode II proportional to P1, the second mode can be excited and
the system undergoes a transcritical bifurcation when

I0,1 =
γ1

8γex,0g01

[γ0 +
1

g12

ω0

ω1

(g01γ2 − g02γ1)]2, (8.5)

which can be obtained by taking P2 = 0 and −γ2/2 + g02P0 + g12P1 = 0 into Eqs.
(8.2)-(8.4).

As a consequence of the appearance of Mode II (regime III), Mode I is gradually
suppressed, since the former opens a loss path for the latter through SRS [104], with
the loss being proportional to P2. When two Raman modes lase simultaneously, P1

and P2 are determined from a simple linear relationship

g01P1 + g02
ω1

ω2

P2 =
(g01γ2 − g02γ1)

2g12

. (8.6)
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Figure 8.4: The output of two Raman lasers and the transmission spectrum (T) of
the pump mode as it evolves with pump detuning. The input power is fixed at I0 = 0.6
mW. Other parameters are the same as those in Fig. 8.3(b).

Clearly, both modes are still influenced by I0. In the two-mode lasing regime, the
intracavity pump power, P0, increases with I0, while P1 reduces with I0 until2
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8γex,0g02

[γ0 +
1

g12
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ω1

(g01γ2 − g02γ1)]2, (8.7)

where Mode I is completely switched off, see Figs. 8.3(a) and (b). Even with further
increasing of the pump, Mode I cannot be turned on again and only Mode II remains
on (regime IV). This counterintuitive phenomenon, can be explained by the fact that
the existence of Mode II reduces the Q-factor of Mode I [188], and, as a result, the
threshold of Mode I increases with P2 and cannot be reached even if the pump power,
I0, keeps increasing. This case has no correspondence with the conventional cascaded
single-mode Raman laser. Therefore, the mode switching induced by CLS cannot be
readily illustrated as an unidirectional energy transfer between two lasing modes, while
in fact it implies that the weak mode interaction could modulate the lasing dynamics
of multimode lasers dramatically.

It is worth mentioning that there is no hysteresis phenomenon when the pump
power, I0, is ramped down; hence, it is possible to control the lasing modes simply
by changing I0. It is convenient to control the intracavity power, P0, by changing the
relative detuning of the pump and cavity modes; therefore, we perform the numerical
calculations for the scanning pump case, as shown in Fig. 8.4(c). It turns out that the
four regimes can be achieved by controlling the detuning. As the detuning decreases,
Mode I is excited first. Further detuning simultaneously turns on Mode II and sup-
presses Mode I. When the system is operated close to resonance, Mode I is annihilated
completely and Mode II keeps growing until maximum coupling is reached.

Generally, the emission pattern is not always identical to what has been considered
above (see Fig. 8.2(d)). If we assume that the emission threshold of each mode is
described by the gain coefficient, gij, which itself depends on the resonant frequency,

2Similar to Eq. (8.5), when the system is at the transition point, P1 = 0 and −γ1
2 + g01P0 −

g12
ω1

ω2
P2 = 0 should be satisfied.
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Figure 8.5: Switching process of the Raman lines is observed by scanning the pump
laser in the blue-detuned region of a cavity mode at 768.1 nm. From (a) to (d), the
detuning of the pump is approximately set at 20 MHz, 18 MHz, 15 MHz and 10 MHz,
respectively. (a) The first Raman laser at 795.9 nm appears (Mode I). (b) The second
Raman line (Mode II) at 799.4 nm appears. (c) Mode I is suppressed while Mode II
becomes stronger. (d) Mode I is annihilated and only Mode II remains.

in principle, we can alter the emission pattern by engineering the resonant frequency.
This can be achieved by using an MBR.

8.3 Experiment

To experimentally confirm the mode switching, we performed measurements using a
silica microsphere with a diameter of around 41.5 µm, fabricated from a standard op-
tical fiber reflowed by a CO2 laser [200]. A tapered optical fiber was used to couple the
pump light into the cavity through evanescent coupling, see Fig. 8.1(b). The output
laser was divided into two paths, one for observing the transmission spectrum of the
WGM resonator and the other for observing the Raman lasing spectrum. The trans-
mission spectrum was recorded using a photodiode connected to a digital oscilloscope,
and was used for locking the pump to the WGM. The Raman lasing spectrum was
measured by an optical spectrum analyzer (OSA). To avoid parametric oscillation and
coherent anti-Stokes Raman scattering, the pump wavelength was set to 768.1 nm -
this corresponds to the normal dispersion regime for silica [161, 201]. The input laser
power was approximately 500 µW, and the laser frequency was finely tuned and ther-
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Figure 8.6: The output powers of Mode I and Mode II are negatively and linearly
correlated with each other.

mally locked to a cavity mode [73] with a Q-factor of 9.7×107. During the thermal
locking process, both the pump and lasing modes were red shifted, thus their frequency
intervals remain nearly unchanged, and the change of the Raman gain can be negligible
as well.

The experimental results are presented in Fig. 8.5. As the laser frequency ap-
proaches resonance, the first Raman lasing mode (Mode I) at 795.9 nm is excited, with
its power increasing as the detuning decreases until the second Raman lasing mode
(Mode II) at 799.4 nm appears. With a further reduction of the detuning, power
switching between the two Raman modes is observed, and, eventually, only Mode II
remains on, as evidenced in Fig. 8.5(d). The output powers of both Mode I and Mode
II during the switching process were measured and are plotted in Fig. 8.6. 3

The powers of these two lasing modes are negatively and linearly correlated with
each other during the switching process, in qualitative agreement with the theoretical
model, see in Fig. 8.3(a) and Eq. (8.6). Note that the frequency spacings between
the pump and two lasing modes are exactly integer numbers of the free spectral range
(FSR), i.e., they belong to the same mode family and, therefore, have near unity mode
overlap. Otherwise, overlap coefficients would need to be introduced into Eq. (8.1).
The mode overlap is particularly important for a standing wave resonator in which the
Raman gain saturation could intrinsically lead to stable, single-mode lasing at a high
power [202]. This is because the CLS may be suppressed due to weak mode overlap as
it may simply be too small to allow CLS to occur.

In these experiments, we selected resonators with a low number of high Q modes

3Note that we have only shown the switching process in the blue-detuned side. The symmetric
switching process should also be observable in the red-detuned side, as shown in the simulation (see
Fig. 8.4). However, this is difficult to measure experimentally due to the presence of thermal effects.
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to avoid an overly complicated WGM spectrum and to reduce the chance of cascaded
lasing beyond the first order. When we used an even higher pump power, or a smaller
detuning, many high order cascaded lasing modes (up to at least 11 modes) were often
observed. In some samples, we also observed the conventional cascaded lasing modes
in single-mode fashion before the appearance of the second Raman lasing modes in the
first order. This can be attributed to the differences in the Q-factors and the FSR for
different resonators. There is an abundance of switching behaviors due to CLS when
multiple lasing modes are involved; this is especially true when the phase-matching
condition is satisfied and other nonlinear optical phenomena occur simultaneously.
Further investigation into this process may be done using the MBR, since the FSR can
be tuned by applying air pressure.

8.4 Conclusion
In conclusion, although a lot of interest has been garnered, and many applications have
been demonstrated, few studies have focused on understanding the details of cascaded
light scattering in Raman lasers. In addition to the switching process observed in the
emission pattern, see Fig. 8.2(c), an MBR may be used to switch between different
emission patterns. Recently, we have become aware of earlier works in a silica fiber
[203] and in a silica rod WGM cavity [204] based on the same model. Here, we provide
an detailed analytic method and insight for the model. In this work, we show that,
aside from the application for extending the frequency range, naturally occurring CLS
has a significant impact on the generation of Raman lasing and cannot be ignored when
multiple modes are involved. Subsequently, it may have an impact on the realization
of Kerr-frequency combs [147, 205–207], phase-locked Raman lasers [147, 208], and
soliton generation [209–211]. Besides Raman lasers, this SRS interaction also exists in
other lasers, such as rare-earth doped microlasers; thence, the mode switching induced
by SRS could provide a strategy to achieve a wavelength-switchable laser via CLS in
a variety of laser systems. Exploring this dynamically related phenomenon [212, 213]
may find direct applications in all-optical, flip-flop memories [214], and switchable light
sources.





Chapter 9

Conclusion

As we have shown in this dissertation, WGM optical resonators are useful tools for
various applications and as test beds for fundamental physics. Light can be coupled into
the WGM cavities through a tapered optical fiber and strong light-matter interactions
with the cavity itself and its surroundings are obtainable. Sensing applications are
possible, primarily due to the resonance condition change. Frequency generation and
phase modulation effects are enhanced due to the material’s nonlinear polarization in
response to a resonant light field. In this thesis, the focus has been on using MBRs to
develop sensing platforms and to study nonlinear optics phenomena.

We have discussed several ways of how MBRs can play a role in sensing. For
example, they may be used as a platform for transient sensing. Until recently, transient
sensing techniques have not been well developed. By assuming that a rectangular light
pulse is coupled to a WGM resonator, we have proposed a theoretical model and
solution when the Q-factor is high. The wave form transmittance in the time domain
is composed of a sharp peak and a damped oscillation following the sharp peak. When
the Q-factor is high, the sharp peak always exists and its height does not change
significantly with dispersion and dissipation changes. In this case, we can evaluate
the height of the less sharp peak for the purpose of sensing, i.e., the first peak of the
damped oscillation region. By evaluating the less-sharp peak height, dispersive and
dissipative transient sensing can be performed separately. When the Q-factor is low
(i.e., Q ∼ 106), the sharp peak height changes as a function of dissipative perturbations
while the damped waveform followed by the sharp peak yields dispersive information.
This give a possibility for sensing in a low Q condition and in the quasi-droplet regime
with an MBR[24].

Alternatively, in a tapered fiber optically coupled system, sensitivity can depend on
the coupling condition. Controlling the coupling condition by an optical force instead
of mechanical stages, such as nanopositioners, would be preferable for practical appli-
cations. An optical force can be generated when two cavities share the same optical
resonance and form a supermode. We reviewed supermodes and developed a theory to
estimate the optical force obtainable. The MBR can play an important role for achiev-
ing excitation of supermodes in the coupled cavity system. An experimental result
shows agreement with our theoretical prediction. However, the optical force attainable
has not reached the level needed for a practical use with our existing WGM samples.
Since the optical force is proportional to the Q-factor [85], it could be optimized by

89



90 Conclusion

using different materials, such as calcium fluoride crystals, where higher Q-factors than
for silica resonators, can be achieved.

We have also presented sensing applications using an MBR-based microlaser. As
the high sensitivity of the WGM cavity is due to the narrow linewidth of the resonant
mode, retrieving information from a lasing mode can yield a higher sensitivity than the
transmission dip through the coupling fiber. We demonstrated pressure sensing using
an erbium ion doped MBR laser. However in principle, the sensing should not limited
to pressure. In particular, when an MBR is filled with liquid (i.e., its in quasi-droplet
regime [24]), stable optical coupling could be maintained while the target inside the
MBR is being detected. Different gain materials could also be used as dopants so the
lasing could happen in a transparency window of the liquid.

Frequency generation is another major topic of study in the field of WGM cavities.
We have generated a near visible frequency comb in an MBR resonator by engineering
the geometrical dispersion of the cavity. The ZDW can be pushed to a shorter wave-
length by reducing the wall thickness of the microbubble, therefore a visible frequency
comb should be possible. With such a purpose in mind, high-quality microbubble
reproducibility, pump power, and pump frequency could be optimized. The slope of
dispersion near the ZDW is gentle when the MBR is large and this can widen the
frequency band of the comb.

Recently, we have seen dark soliton-type frequency combs generated at a 480 nm
wavelength in our laboratory. The generated dark solitons are not as unstable as pre-
viously predicted [132]. This may pave a way for practical use and steady development
of dark soliton frequency combs.

Instead of broadening the possible frequency generation, the dynamics of the gen-
erated frequency are also an interesting topic to investigate. By assuming a simple
model, where the pump laser is interacting with two lasing Raman modes, a switching
process of cascaded Raman scattering has been predicted and studied both analytically
and numerically. An experimental demonstration has verified the proposed switching
process. The MBR should be a suitable platform for further investigation, particularly
since different patterns of emission can be pressure tuned via internal air pressure in
the MBR.

Finally, the frequency generation technique could be used in spectroscopy. The
lasing condition needs to be further studied in order to retrieve detailed information
in relation to this aspect. For example, in Eq. 8.6, the power of excited lasing modes
depends on the Raman gain coefficient and damping rates of each mode. The Ra-
man gain coefficients in whispering gallery modes depend on the resonant frequencies.
Therefore, dispersive and dissipative information may be retrieved from the emission
pattern. Once more, the MBR shows strong capability of supporting such applications.

Overall, this PhD work has covered many aspects behind whispering gallery mode
resonators, with emphasis placed on using microbubble resonators. This has con-
tributed significantly to the use of MBRs for both sensing applications and in nonlinear
optics.
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Appendix A: MATLAB Code for Field
Distribution in a Microsphere

% Solving the resonant wavenumbers in a microsphere.
% This code can easily be extended to solve eigenmodes in microbubbles.

clear all
c = 3e8;
wavelength = 1.55*1e-6;
ref_Idex = 1.444;
r0 = 25e-6;
FSR = wavelength^2/(2*pi*ref_Idex*r0);
wlstep = 0.2*FSR;
WLStart = wavelength-5*FSR;
WLEnd = wavelength+5*FSR;
az_MNum = round(2*pi*r0*ref_Idex/wavelength);
MNspan = 40;
AzMN = [az_MNum-MNspan:az_MNum+MNspan];
MNN = 2*MNspan+1;
k0 = 2*pi/wavelength;
stepkr = 0.01;
kStart = 2*pi/WLEnd;
kEnd = 2*pi/WLStart;
kstep = (kEnd-kStart)/100;
k = [kStart:kstep:kEnd];
nk = ref_Idex*k;
nkr0 = nk*r0;
coff = sqrt(pi./(2*nkr0));
% initialization
filter = round(length(k)/2);
accuracy = 10;
sphrBi = besselj(AzMN(1)+0.5,nkr0);
sphrBj = besselj(AzMN(2)+0.5,nkr0);
sphrBk = besselj(AzMN(3)+0.5,nkr0);
sphrHi = besselh(AzMN(1)+0.5,1,1i*nkr0);
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sphrHj = besselh(AzMN(2)+0.5,1,1i*nkr0);
sphrHk = besselh(AzMN(3)+0.5,1,1i*nkr0);
dsphrBj = (nk.*(sphrBi-sphrBk)-sphrBj/r0)/2;
dsphrHj = (1i*nk.*(sphrHi-sphrHk)-sphrHj/r0)/2;
optTEk = [];
optTMk = [];
TEAzMN = [];
TMAzMN = [];
diffTE = [];
diffTM = [];
TEBj = [];
TEdBj = [];
TEHj = [];
TEdHj = [];
TMBj = [];
TMdBj = [];
TMHj = [];
TMdHj = [];
for i = 1:MNN
kj = k;
BHdiffTE = log(dsphrBj.*sphrHj) - log(ref_Idex*dsphrHj.*sphrBj);
diffPlotTE = BHdiffTE;
absBHdiffTE = abs(BHdiffTE);
Threshold1 = max(absBHdiffTE)/100;
for j = 1:accuracy
sortmsmch = sort(absBHdiffTE);
msmchTH = sortmsmch(filter);
base = absBHdiffTE<msmchTH;
kj = relocX(kj,base); % kj with smaller ’absBHdiffTE’ value is resolved and probed
if j == accuracy
if msmchTH<Threshold1
optTEk = [optTEk;kj];
TEAzMN = [TEAzMN;AzMN(i+1)];
diffTE = [diffTE;diffPlotTE];
TEBj = [TEBj;sphrBj];
TEdBj = [TEdBj;dsphrBj];
TEHj = [TEHj;sphrHj];
TEdHj = [TEdHj;dsphrHj];
end
break;
end
nkj = ref_Idex*kj;
nkjr0 = nkj*r0;
sphrBiTE = besselj(AzMN(i)+0.5,nkjr0);
sphrBjTE = besselj(AzMN(i+1)+0.5,nkjr0);
sphrBkTE = besselj(AzMN(i+2)+0.5,nkjr0);
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sphrHiTE = besselh(AzMN(i)+0.5,1,1i*nkjr0);
sphrHjTE = besselh(AzMN(i+1)+0.5,1,1i*nkjr0);
sphrHkTE = besselh(AzMN(i+2)+0.5,1,1i*nkjr0);
dsphrBjTE = (nkj.*(sphrBiTE-sphrBkTE)-sphrBjTE/r0)/2;
dsphrHjTE = (1i*nkj.*(sphrHiTE-sphrHkTE)-sphrHjTE/r0)/2;
BHdiffTE = log(dsphrBjTE.*sphrHjTE) - log(ref_Idex*dsphrHjTE.*sphrBjTE);
absBHdiffTE = abs(BHdiffTE);
end
kj = k;
BHdiffTM = log(ref_Idex*dsphrBj.*sphrHj) - log(dsphrHj.*sphrBj);
diffPlotTM = BHdiffTM;
absBHdiffTM = abs(BHdiffTM);
Threshold1 = max(absBHdiffTM)/100;
for j = 1:accuracy
sortmsmch = sort(absBHdiffTM);
msmchTH = sortmsmch(filter);
base = absBHdiffTM<msmchTH;
kj = relocX(kj,base); % kj with smaller ’absBHdiffTM’ value is resolved and probed
if j == accuracy
if msmchTH<Threshold1
optTMk = [optTMk;kj];
TMAzMN = [TMAzMN;AzMN(i+1)];
diffTM = [diffTM;diffPlotTM];
TMBj = [TMBj;sphrBj];
TMdBj = [TMdBj;dsphrBj];
TMHj = [TMHj;sphrHj];
TMdHj = [TMdHj;dsphrHj];
end
break;
end
nkj = ref_Idex*kj;
nkjr0 = nkj*r0;
sphrBiTM = besselj(AzMN(i)+0.5,nkjr0);
sphrBjTM = besselj(AzMN(i+1)+0.5,nkjr0);
sphrBkTM = besselj(AzMN(i+2)+0.5,nkjr0);
sphrHiTM = besselh(AzMN(i)+0.5,1,1i*nkjr0);
sphrHjTM = besselh(AzMN(i+1)+0.5,1,1i*nkjr0);
sphrHkTM = besselh(AzMN(i+2)+0.5,1,1i*nkjr0);
dsphrBjTM = (nkj.*(sphrBiTM-sphrBkTM)-sphrBjTM/r0)/2;
dsphrHjTM = (1i*nkj.*(sphrHiTM-sphrHkTM)-sphrHjTM/r0)/2;
BHdiffTM = log(ref_Idex*dsphrBjTM.*sphrHjTM)...

- log(dsphrHjTM.*sphrBjTM);
absBHdiffTM = abs(BHdiffTM);
end
if i>MNN-3
break;
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end
% update function
sphrBi = sphrBj;
sphrBj = sphrBk;
sphrBk = besselj(AzMN(i+3)+0.5,nkr0);
sphrHi = sphrHj;
sphrHj = sphrHk;
sphrHk = besselh(AzMN(i+3)+0.5,1,1i*nkr0);
dsphrBj = (nk.*(sphrBi-sphrBk)-sphrBj/r0)/2;
dsphrHj = (1i*nk.*(sphrHi-sphrHk)-sphrHj/r0)/2;
end
dr = 0.001*r0;
rin = 0*r0:dr:r0;
rout = r0:dr:1.8*r0;
ll = 21;
nn = 10;
l = TEAzMN(ll);
TEk = optTEk(ll,nn);
% all element in optTEk are resonant k,
%many of them are overlap to each other though
RinTE = besselj(l+0.5,ref_Idex*TEk.*rin);
HoutTE = besselh(l+0.5,1,1i*ref_Idex*TEk.*rout);
RoutTE = RinTE(end)*abs(HoutTE)/abs(HoutTE(1));
%plot(rin,RinTE.^2); hold on; %plot(rout,RoutTE.^2);hold off;
TMk = optTMk(ll,nn);
% all element in optTMk are resonant k,
% many of them are overlap to each other though
RinTM = besselj(l+0.5,ref_Idex*TMk.*rin);
HoutTM = besselh(l+0.5,1,1i*ref_Idex*TMk.*rout);
RoutTM = RinTM(end)*abs(HoutTM)/abs(HoutTM(1));
%plot(rin,RinTM.^2);
%plot(rout,RoutTM.^2);hold off;
% legendre polynomials, matlab default ’legendre(l,X)’ become NaN
% when l is too big
m1 = l;
m2 = l-1;
m3 = l-2;
theta = 0:0.001*pi:pi;
P = legendre(l,cos(theta),’norm’);
Plm1 = P(m1+1,:); % +1 is because m=0 exist in the first row of P
Plm2 = P(m2+1,:);
Plm3 = P(m3+1,:);
plot(Plm1);
phi = -pi:0.001*pi:pi;
%%%%%-plot-%%%%%
figure(1)
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plot(rin,RinTE.^2,’b’,’LineWidth’,2); hold on;
plot(rout,RoutTE.^2,’r’,’LineWidth’,2);hold off;
xlim([0.8*r0 1.05*r0]);
ylim([0,1.2*max(RinTE.^2)]);
set(gca,’xtick’,[0 r0]);
set(gca,’xticklabels’,[]);
set(gca,’ytick’,[])
set(gca,’LineWidth’,2);
grid on;
Xin = rin’*sin(theta);
Xout = rout’*sin(theta);
Zin = rin’*cos(theta);
Zout = rout’*cos(theta);
figure(2)
TEAin1xz = RinTE’*Plm1;
TEAout1xz = RoutTE’*Plm1;
maxA1xz = max(max(TEAin1xz));
sqTEAin1xz = (TEAin1xz/maxA1xz).^2;
sqTEAout1xz = (TEAout1xz/maxA1xz).^2;
plot3(r0*sin(theta),r0*cos(theta),theta<100,’w’); hold on;
Sin1xz = surf(Xin,Zin,sqTEAin1xz);
Sout1xz = surf(Xout,Zout,sqTEAout1xz); hold off;
set(Sin1xz,’EdgeColor’,’none’);
set(Sout1xz,’EdgeColor’,’none’);
ylim([-0.4*r0 0.4*r0]);
xlim([0.8*r0 1.04*r0]);
view(0,90);
daspect([1 1 1e5]);
set(gca,’xtick’,[0 r0]);
set(gca,’xticklabels’,[]);
set(gca,’ytick’,[]);
figure(3)
TEAin2xz = RinTE’*Plm2;
TEAout2xz = RoutTE’*Plm2;
maxA2xz = max(max(TEAin2xz));
sqTEAin2xz = (TEAin2xz/maxA2xz).^2;
sqTEAout2xz = (TEAout2xz/maxA2xz).^2;
plot3(r0*sin(theta),r0*cos(theta),theta<100,’w’); hold on;
Sin2xz = surf(Xin,Zin,sqTEAin2xz);
Sout2xz = surf(Xout,Zout,sqTEAout2xz); hold off;
set(Sin2xz,’EdgeColor’,’none’);
set(Sout2xz,’EdgeColor’,’none’);
ylim([-0.4*r0 0.4*r0]);
xlim([0.8*r0 1.04*r0]);
view(0,90);
daspect([1 1 1e5]);
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set(gca,’xtick’,[0 r0]);
set(gca,’xticklabels’,[]);
set(gca,’ytick’,[]);
figure(4)
xin = rin’*cos(phi);
yin = rin’*sin(phi);
xout = rout’*cos(phi);
yout = rout’*sin(phi);
TEAin1xy = RinTE’*cos(m1*phi);
TEAout1xy = RoutTE’*cos(m1*phi);
maxA1xy = max(max(TEAin1xy));
sqTEAin1xy = (TEAin1xy/maxA1xy).^2;
sqTEAout1xy = (TEAout1xy/maxA1xy).^2;
plot3(r0*cos(phi),r0*sin(phi),phi<100,’w’); hold on;
Sin1xy = surf(xin,yin,sqTEAin1xy);
Sout1xy = surf(xout,yout,sqTEAout1xy); hold off;
set(Sin1xy,’EdgeColor’,’none’);
set(Sout1xy,’EdgeColor’,’none’);
xlim([-1.05*r0 1.05*r0]);
ylim([-1.05*r0 1.05*r0]);
view(0,90);
daspect([1 1 1e5]);
set(gca,’xtick’,[]);
set(gca,’ytick’,[]);

%%%%%%%%%%%%%%%%
%% filename = relocX.m %%
%%%%%%%%%%%%%%%%

function newX = relocX(X,base) % e.g. X = [0:10]; % 11 elements
% base = [0,0,1,1,0,0,0,1,1,1,0]; % 11 elements
% x(base>0) = [ 2,3, 7,8,9 ]
% newX = [ 1.5,2.0,2.5,3.0,3.5, 7.0,7.5,8.0,8.5,9.0,9.5 ]
%
% X must be equally spaced in each island: e.g. X = newX

n_sample = length(X);
Xgrid = min(diff(X));
XareaL = sum(base)*Xgrid;
newgrida = XareaL/(n_sample-1);
Xland = X(base>0);
dx = 0;
newX = [];
for i = 1:length(Xland)
Xstart = Xland(i)-0.5*Xgrid+dx;
Xend = Xland(i)+0.5*Xgrid;
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x = [Xstart:newgrida:Xend];
dx = newgrida-(Xend-x(end));
newX = [newX,x];
end
if iscolumn(X)
newX = newX’;
end
end
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Appendix B: MATLAB Code for
Cavity Ring-Up Spectroscopy

%%%%%%%%%%%%%%%%
%% filename = CRUS. m %%
%%%%%%%%%%%%%%%%

function [t,Trans] = CRUS(tau,gamma_ex,detune,tr,maxt)
gamma = 2*pi/tau;
dt = tr/100;
t1 = [0:dt:tr]’;
t2 = [0:dt:maxt*tr]’;
A10 = 0;
ln2 = log(2);
%Runge Kutta A1 = zeros(size(t1));
A1(1) = A10;
for i = 1:length(t1)-1
k1 = -1i*detune*A1(i)-gamma/2*A1(i)...

+sqrt(gamma_ex)*exp(-4*(t1(i)-tr)^2/(ln2*tr^2));
k2 = -1i*detune*(A1(i)+dt*k1/2)-gamma/2*(A1(i)+dt*k1/2)...

+sqrt(gamma_ex)*exp(-4*(t1(i)+dt/2-tr)^2/(ln2*tr^2));
k3 = -1i*detune*(A1(i)+dt*k2/2)-gamma/2*(A1(i)+dt*k2/2)...

+sqrt(gamma_ex)*exp(-4*(t1(i)+dt/2-tr)^2/(ln2*tr^2));
k4 = -1i*detune*(A1(i)+dt*k3)-gamma/2*(A1(i)+dt*k3)...

+sqrt(gamma_ex)*exp(-4*(t1(i+1)-tr)^2/(ln2*tr^2));
A1(i+1) = A1(i)+dt*(k1+2*k2+2*k3+k4)/6;
end
A2 = zeros(size(t2));
A2(1) = A1(end);
for i = 1:length(t2)-1
k1 = -1i*detune*A2(i)-gamma/2*A2(i)+sqrt(gamma_ex);
k2 = -1i*detune*(A2(i)+dt*k1/2)-gamma/2*(A2(i)+dt*k1/2)+sqrt(gamma_ex);
k3 = -1i*detune*(A2(i)+dt*k2/2)-gamma/2*(A2(i)+dt*k2/2)+sqrt(gamma_ex);
k4 = -1i*detune*(A2(i)+dt*k3)-gamma/2*(A2(i)+dt*k3)+sqrt(gamma_ex);
A2(i+1) = A2(i)+dt*(k1+2*k2+2*k3+k4)/6;
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end
S_in1 = exp(-4*(t1-tr).^2/(log(2)*tr^2));
S_in2 = t2==t2;
S_in = [S_in1;S_in2];
A = [A1;A2];
t = [t1;t2+t1(end)];
S_out = - S_in + sqrt(gamma_ex)*A;
Trans = abs(S_out).^2;
end

%%%%%%%%
%% Plots %%
%%%%%%%%

c = 3e+8;
wavelength = 1.55e-6;
tau = 250e-9;
gamma = 2*pi/tau;
tr = 1e-9;
figure(1)
maxt1 = 300;
gamma_ex = 0.5*gamma;
[ta1,Ta1] = CRUS(tau,gamma_ex,3*gamma,tr,maxt1);
[ta2,Ta2] = CRUS(tau,gamma_ex,6*gamma,tr,maxt1);
[ta3,Ta3] = CRUS(tau,gamma_ex,9*gamma,tr,maxt1);
plot(ta1/tr,Ta1,’k-’,’LineWidth’,2);hold on;
plot(ta2/tr,Ta2,’r–’,’LineWidth’,2);
plot(ta3/tr,Ta3,’b-.’,’LineWidth’,2);
ylim([0.5 1.3]);
xlim([-10 maxt1]);
legend(”,”,”,’Location’,’south’);
legend(’boxoff’);
figure(2)
detuneratio = 2:25;
detune = detuneratio*gamma;
maxt2 = 100;
tr1 = 0.5e-9;
tr2 = 5e-9;
tr3 = 10e-9;
tb1 = [];
Tb1 = [];
tb2 = [];
Tb2 = [];
tb3 = [];
Tb3 = [];
peakHb1 = zeros(size(detune));
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peakHb2 = zeros(size(detune));
peakHb3 = zeros(size(detune));
for i = 1:length(detune)
[t1,T1] = CRUS(tau,gamma_ex,detune(i),tr1,maxt2);
tb1 = [tb1,t1];
Tb1 = [Tb1,T1];
peakHb1(i) = max(T1);
[t2,T2] = CRUS(tau,gamma_ex,detune(i),tr2,maxt2);
tb2 = [tb2,t2];
Tb2 = [Tb2,T2];
peakHb2(i) = max(T2);
[t3,T3] = CRUS(tau,gamma_ex,detune(i),tr3,maxt2);
tb3 = [tb3,t3];
Tb3 = [Tb3,T3];
peakHb3(i) = max(T3);
end
plot(detune/gamma,peakHb1,’k-’,’LineWidth’,2);hold on;
plot(detune/gamma,peakHb2,’r–’,’LineWidth’,2);
plot(detune/gamma,peakHb3,’b-.’,’LineWidth’,2);hold off;
xlim([5 25]);
legend(”,”,”,’Location’,’north’);
legend(’boxoff’);
figure(3)
maxt3 = 200;
gammaratio = 0.1:0.1:0.9;
gamma_ex = gammaratio*gamma;
tc1 = [];
Tc1 = [];
tc2 = [];
Tc2 = [];
tc3 = [];
Tc3 = [];
peakHc1 = zeros(size(gamma_ex));
peakHc2 = zeros(size(gamma_ex));
peakHc3 = zeros(size(gamma_ex));
for i = 1:length(gamma_ex)
[t1,T1] = CRUS(tau,gamma_ex(i),5*gamma,tr,maxt3);
tc1 = [tc1,t1];
Tc1 = [Tc1,T1];
peakHc1(i) = max(T1);
[t2,T2] = CRUS(tau,gamma_ex(i),10*gamma,tr,maxt3);
tc2 = [tc2,t2];
Tc2 = [Tc2,T2];
peakHc2(i) = max(T2);
[t3,T3] = CRUS(tau,gamma_ex(i),15*gamma,tr,maxt3);
tc3 = [tc3,t3];
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Tc3 = [Tc3,T3];
peakHc3(i) = max(T3);
end
plot(gamma_ex/gamma,peakHc1,’k-’,’LineWidth’,2);hold on;
plot(gamma_ex/gamma,peakHc2,’r–’,’LineWidth’,2);
plot(gamma_ex/gamma,peakHc3,’b-.’,’LineWidth’,2);hold off;
xlim([0 1]);
ylim([1 1.3]);
legend(”,”,”,’Location’,’northwest’);
legend(’boxoff’);
figure(4)
taul = 10e-9;
maxt5 = 50;
gamma5 = 2*pi/taul;
Qfactor = 2*pi*c/wavelength./gamma5;
gamma_ex5 = 0.5*gamma5;
detune5 = [0.1,0.6,2]*gamma5;
[te1,Te1] = CRUS(taul,gamma_ex5,detune5(1),tr,maxt5);
[te2,Te2] = CRUS(taul,gamma_ex5,detune5(2),tr,maxt5);
[te3,Te3] = CRUS(taul,gamma_ex5,detune5(3),tr,maxt5);
plot(te1/tr,Te1,’k-’,’LineWidth’,2);hold on;
plot(te2/tr,Te2,’r–’,’LineWidth’,2);
plot(te3/tr,Te3,’b-.’,’LineWidth’,2);
figure(5)
taul = 3e-9;
maxt5 = 15;
gamma5 = 2*pi/taul;
Qfactor = 2*pi*c/wavelength2./gamma5;
gamma_ex5 = 0.5*gamma5;
detune5 = [0.1,0.5,2]*gamma5;
[te1,Te1] = CRUS(taul,gamma_ex5,detune5(1),tr,maxt5);
[te2,Te2] = CRUS(taul,gamma_ex5,detune5(2),tr,maxt5);
[te3,Te3] = CRUS(taul,gamma_ex5,detune5(3),tr,maxt5);
plot(te1/tr,Te1,’k-’,’LineWidth’,2);hold on;
plot(te2/tr,Te2,’r–’,’LineWidth’,2);
plot(te3/tr,Te3,’b-.’,’LineWidth’,2);
xlim([-5 maxt6]);
legend(’∆ω = 0.1γ′,′∆ω = 0.6γ′,′∆ω = 2γ′, ...′Location′,′ southeast′);
figure(6)
taul = 3e-9;
maxt6 = 15;
gamma6 = 2*pi/taul;
Qfactor = 2*pi*c/wavelength2./gamma6;
gamma_ex6 = [0.2, 0.5, 0.8]*gamma6;
detune6 = 0.5*gamma6;
[tf1,Tf1] = CRUS(taul,gamma_ex6(1),detune6,tr,maxt6);
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[tf2,Tf2] = CRUS(taul,gamma_ex6(2),detune6,tr,maxt6);
[tf3,Tf3] = CRUS(taul,gamma_ex6(3),detune6,tr,maxt6);
plot(tf1/tr,Tf1,’k-’,’LineWidth’,2);hold on;
plot(tf2/tr,Tf2,’r-.’,’LineWidth’,2);
plot(tf3/tr,Tf3,’b–’,’LineWidth’,2);
xlim([-5 maxt6]);
legend(’γex = 0.2γ′,′ γex = 0.5γ′,′ γex = 0.8γ′, ...′Location′,′ southeast′);
figure(7)
detuneratio = 5:0.5:25;
detune = detuneratio*gamma;
gamma_ex = 0.5*gamma;
maxt7 = 200;
AnalTg = [];
tg = [];
Tg = [];
peakHgN = zeros(size(detune));
peakHgA = zeros(size(detune));
for i = 1:length(detune)
[t,T] = CRUS(tau,gamma_ex,detune(i),tr,maxt7);
tg = [tg;t’];
Tg = [Tg;T’];
peakHgN(i) = max(T);
Omegag = 1i*detune(i)+gamma/2;
Ig = 1 - Omegag*sqrt(pi/beta)+Omegag^2/(2*beta);
AnalSout = -1 + gamma_ex*(1-Ig*exp(-Omegag*(t)))/Omegag;
ATg = abs(AnalSout).^2;
AnalTg = [AnalTg;ATg’];
peakHgA(i) = max(ATg);
end
plot(detune/gamma,peakHgN,’k-’,’LineWidth’,2);hold on;
plot(detune/gamma,peakHgA,’r–’,’LineWidth’,2);hold off;
legend(”,”,’Location’,’north’);
legend(’boxoff’);
figure(8)
detune8 = 10*gamma;
gamma_ex = [0.1:0.1:0.9]*gamma;
maxt8 = 100;
AnalTh = [];
th = [];
Th = [];
peakHhN = zeros(size(detune8));
peakHhA = zeros(size(detune8));
for i = 1:length(gamma_ex)
[t,T] = CRUS(tau,gamma_ex(i),detune8,tr,maxt8);
th = [th,t];
Th = [Th,T];
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peakHhN(i) = max(T);
Omegag = 1i*detune8+gamma/2;
Ig = 1 - Omegag*sqrt(pi/beta)+Omegag^2/(2*beta);
AnalSout = -1 + gamma_ex(i)*(1-Ig*exp(-Omegag*(t)))/Omegag;
ATh = abs(AnalSout).^2;
AnalTh = [AnalTh;ATh];
peakHhA(i) = max(ATh);
end
plot(gamma_ex/gamma,peakHhN,’k-’,’LineWidth’,2);hold on;
plot(gamma_ex/gamma,peakHhA,’r–’,’LineWidth’,2);hold off;
xlim([0,1]);
legend(”,”,’Location’,’northwest’);
legend(’boxoff’);
figure(9)
detune9 = [5:0.5:20]*gamma;
gamma_ex9 = [0.1:0.05:0.9]*gamma;
maxt8 = 100;
[D9,G9] = meshgrid(detune9,gamma_ex9);
peakHh9 = zeros(size(D9));
for i = 1:length(gamma_ex9)
for j = 1:length(detune9)
[t,T] = CRUS(tau,gamma_ex9(i),detune9(j),tr,maxt8);
peakHh9(i,j) = max(T);
end
end
surf9 = surf(D9/gamma,G9/gamma,peakHh9);
set(surf9,’EdgeColor’,’interp’);
colorbar;
ylim([0.1 0.9]);
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Appendix C: MATLAB code for
Raman Switching Model

% ===== Define constant ======
clear all
c = 3e8;
speed_factor = 19;
lambda1 = 768.1*1e-9;
lambda2 = 795.9*1e-9;
lambda3 = 799.4*1e-9;
w10 = 2*pi*c/lambda1;
wp=w10;
wR1 = 2*pi*c/lambda2;
wR2 = 2*pi*c/lambda3;
R = 41.5e-6;
neff = 1.3;
Vp=pi*(1e-6)^2*2*pi*30e-6;
f=0.8;
df12 = (wR1-w10)/(2*pi)*1e-12;
df13 = (wR2-w10)/(2*pi)*1e-12;
df23 = df13 - df12;
g_R=RamanGain([df12 df13 df23]);
g=f*c^2*g_R/2/neff^2/Vp;
g12=g(1);
g13=g(2);
g23=g(3);
% ===== Initialization ======
gamma_1 = 2.494*1e7;
gamma_ex1 = 2.237*1e7;
gamma_in = gamma_1-gamma_ex1;
gamma_2 = gamma_1;
gamma_ex2 = gamma_ex1;
gamma_in2 = gamma_2-gamma_ex2;
gamma_3 = (g13*gamma_1+56*g12*g23*1e-6/gamma_ex2)/g12;
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gamma_ex3 = (46*g13*wR1*gamma_ex2)/(112*g12*wR2);
gamma_in3 = gamma_3-gamma_ex3;
tc = 2*pi*neff*R/c;
yeta = sqrt(2*tc*gamma_ex1);
sqrttc = sqrt(tc);
w0_initial = 2*gamma_1;
Pin = 500e-6;
Ein = sqrt(Pin);
Vs = -85*6*10^6; experiment
Cp =1e-7;
s=1e-4;
a=6e-6;
b=800*Cp*ones(3,1);
gamma_th=7e4*Cp;
theta=w10*5e-6;
Trange = 1400000e-6;
tstep0 = Trange*10^-8/3;
t = [0:tstep0:Trange];
Nstep = length(t);
tstep = diff(t);
y0 = [0.1;0;0;0;w10+w0_initial];
Ein0 = ones(length(tstep),1)*Ein;
Q1 = c*2*pi/((2.5*10^6+2.24*10^7)*780*10^-9);
index = 1:speed_factor:(Nstep+speed_factor);
G12in = g12*tc;
G13in = g13*tc;
G23in = g23;
G12out = wp/wR1*g12;
G13out = wp/wR2*g13;
G23out = wR1/wR2*g23;
Ain1 = -1i*yeta/tc*Ein;
Nin2 = -1i*yeta/tc;
Nin3 = -1i*yeta/tc;
j = 1; y=y0; Y=[]; dYdt=[]; time=[]; t_initial=cputime; T1 = []; T2=[];
for it = 1:length(tstep)
E_raman2=(rand()-0.5)*Ein*1e-10;
E_raman3=(rand()-0.5)*Ein*1e-10; if it<length(tstep)*ScanStop
Ain = [Ain1,Nin2*E_raman2,Nin3*E_raman3];
k1 = RamanSwitch4(t,y,gamma_1,gamma_2,gamma_3,...

Vs,Ain,w10,G12in,G13in,G23in,G12out,G13out,G23out);
k2 = RamanSwitch4(0,y+tstep(it)*k1/2,gamma_1,gamma_2,gamma_3,...

Vs,Ain,w10,G12in,G13in,G23in,G12out,G13out,G23out);
k3 = RamanSwitch4(0,y+tstep(it)*k2/2,gamma_1,gamma_2,gamma_3,...

Vs,Ain,w10,G12in,G13in,G23in,G12out,G13out,G23out);
k4 = RamanSwitch4(0,y+tstep(it)*k3,gamma_1,gamma_2,gamma_3,...

Vs,Ain,w10,G12in,G13in,G23in,G12out,G13out,G23out);
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dy = (k1+2*k2+2*k3+k4)/6;
y = y + tstep(it)*dy;
if sum(isnan(y))== 3
break;
end
if it == 100*index(j)
Y(:,j) = y;
dYdt(:,j) = dy;
time(j) = t(it)*1e6;
Ein_t(j) = Ein0(it);
Tem(j) = y(4);
detuning(j)= y(5)-(w10-theta*y(4));
j = j+1;
end
if mod(it,100000)==0
sim_percentage = 100*it/Nstep
end
end
Transmission = abs((Ein_t(1:length(Y(1,:)))-1i*yeta*Y(1,:))./max(Ein_t)).^2;
Transmission2 = abs(yeta*Y(2,:)./max(Ein_t)).^2;
power1=gamma_ex2*abs(Y(2,:).^2);
power2=gamma_ex3*abs(Y(3,:).^2);
plotRange = [1:length(time)];
Xl = detuning(plotRange)/(2*pi);
Xr = detuning(plotRange)/(2*pi);
Yl1 = power1(plotRange)*1e6;
Yl2 = power2(plotRange)*1e6;
Yr = Transmission(plotRange);
[hAx,pP1,Trns] = plotyy(Xl,Yl1,Xr,Yr);hold on;
pP2 = plot(Xl,Yl2);
hold off;
set(pP1,’LineWidth’,2,’Color’,’r’);
set(pP2,’LineWidth’,2,’Color’,[0,0.5,1]);
set(Trns,’LineWidth’,2,’Color’,[1,0.5,0]);
ylabel(hAx(1),”) ;
ylabel(hAx(2),”);
xlabel(”);
ylim(hAx(1),[0 140]);
ylim(hAx(2),[0.2999999 1]);
set(gca,’linewidth’,2)
hAx(1).YColor = [0,0,0];
hAx(1).YTick = [0:40:140];
hAx(1).LineWidth = 2;
hAx(2).YColor = [0,0,0];
hAx(2).YTick = [0.3:0.2:1];
hAx(2).LineWidth = 2;
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legend(’\gamma_{ex,1}P_1’,’\gamma_{ex,2}P_2’,’T’,’Location’,’west’)
legend(’boxoff’)
grid on;

%%%%%%%%%%%%%%%%%%%
%% filename = RamanGain. m %%
%%%%%%%%%%%%%%%%%%%

function S = RamanGain(df)
c = 3*10^8;
domega = 2*pi*df*10^12;
if iscolumn(df)
domega = domega’;
end
L = length(domega);
CompPos = [56.25;100;231.25;362.5;463;497;...

611.5;691.67;793.67;835.5;930;1080;1215]*10^2;
omega_vi = 2*pi*c*CompPos;
Ai = [1;11.4;36.67;67.67;74;4.5;6.8;4.6;4.2;4.5;2.7;3.1;3];
GFWHM = [52.1;110.42;175;162.5;135.33;24.5;41.5;155;59.5;64.3;150;91;160]*10^2;
Gamma = pi*c*GFWHM;
sqGamma = Gamma.^2;
LFWHM = [17.37;38.81;58.33;54.17;45.11;8.17;...

13.83;51.67;19.83;21.43;50;30.33;53.33]*10^2;
gamma = pi*c*LFWHM;
S_dOmega = zeros(13,L);
for i = 1:13
omega_p = omega_vi(i) + domega;
omega_m = omega_vi(i) - domega;
dt = 1/(10*max(omega_p));
tmax = 10/Gamma(i);
t = [0:dt:tmax]’;
ts = ones(size(t));
T = repmat(t,size(domega));
Omega_p = ts*omega_p;
Omega_m = ts*omega_m;
S_dOmegaT= (cos(Omega_m.*T)-cos(Omega_p.*T))...

.*exp(-sqGamma(i)*T.^2/4-gamma(i)*T);
S_dOmegaTD = [zeros(1,L);S_dOmegaT];
S_dOmegaTU = [S_dOmegaT;zeros(1,L)];
S_dOmega(i,:) = ts(1:end-1)’*(S_dOmegaTU(2:end-1,:)...

+S_dOmegaTD(2:end-1,:))*dt/2;
end
s_omega = Ai’*S_dOmega/2;
if iscolumn(df)
s_omega = s_omega’;
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end
maxs = max(s_omega);
S = s_omega/maxs*10^-13;
end

%%%%%%%%%%%%%%%%%%%%%
%% filename = RamanSwitch4. m %%
%%%%%%%%%%%%%%%%%%%%%

function dy = RamanSwitch4(t,y,gamma_1,gamma_2,gamma_3,...
Vs,Ain,w10,G12in,G13in,G23in,G12out,G13out,G23out)

dy = zeros(5,1);
sqy = abs(y(1:3)).^2;
dy(1) = -(gamma_1 - 1i*(y(5)-w10)).*y(1)...

-G12out*sqy(2).*y(1)-G13out*sqy(3).*y(1)+Ain(1);
dy(2) = -gamma_2*y(2) + G12in*sqy(1).*y(2)-G23out*sqy(3).*y(2)+Ain(2);
dy(3) = -gamma_3*y(3) + G13in*sqy(1).*y(3)+G23in*sqy(2).*y(3)+Ain(3);
dy(4) = 0;
dy(5) = Vs;
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