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⊥Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
⊗National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
∥Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
¶Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495,
Japan
#Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland

*S Supporting Information

ABSTRACT: On-surface synthesis provides an effective
approach toward the formation of graphene nanostruc-
tures that are difficult to achieve via traditional solution
chemistry. Here, we report on the design and synthesis of
a nonplanar porous nanographene with 78 sp2 carbon
atoms, namely C78. Through a highly selective oxidative
cyclodehydrogenation of 2,3,6,7,10,11-hexa(naphthalen-1-
yl)triphenylene (2), propeller nanographene precursor 1
was synthesized in solution. Interestingly, although 1
could not be cyclized further in solution, porous
nanographene C78 was successfully achieved from 1 by
on-surface assisted cyclodehydrogenation on Au(111).
The structure and electronic properties of C78 have been
investigated by means of scanning tunneling microscopy,
noncontact atomic force microscopy, and scanning
tunneling spectroscopy, complemented by computational
investigations. Our results provide perspectives for the on-
surface synthesis of porous graphene nanostructures,
offering a promising strategy for the engineering of
graphene materials with tailor-made properties.

Graphene nanostructures (also called “nanographenes”)
have gained increasing attention due to their great

potential toward tailor-made organic materials with applica-
tions in electronics,1 optoelectronics,2 spintronics,3 chemical
sensing,4 gas storage,5 etc. The synthesis of graphene
nanostructures via top-down methods such as exfoliation6a,b

presents well-known disadvantages such as nonregular edge
structures or uncontrollable sizes. In contrast, the bottom-up
organic synthesis approach has emerged in the last decades as a
powerful tool to design structurally well-defined nano-
graphenes.6c−e The properties of nanographenes are largely
determined by their structural characteristics including their
size and edge structure. The controlled introduction of lattice
defects/nanopores in the basal plane of the sp2 carbon skeleton
represents an alternative strategy to influence the properties of

such nanographenes.7 Depending on their internal substruc-
ture, nanopores can be planar or nonplanar.8 Typically, planar
nanopores9 exhibit internal zigzag and armchair like sub-
structures (Figure 1, red, A−D). Differently, nonplanar

nanopores contain the so-called cove-type subunits (Figure
1, blue, E−G). In addition, the presence of these nanopores in
graphene nanostructures facilitates the access to fascinating
properties with potential applications in water desalination,
sensing, and gas separation.4,5,10

Despite the progress made in recent years, the bottom-up
synthesis of graphene nanostructures6c−e with well-defined
nanopores is a remaining challenge.9,11,12 Specifically, large
precursors of polyphenylenes may present a mismatching of
topology which leads to partial cyclodehydrogenation.13

Recently, we reported the introduction of a planar nanopore
(type A in Figure 1) into a graphene nanostructure, C216, via
solution-based cyclodehydrogenation of a polyphenylene
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Figure 1. Examples of planar (red, A−D) and nonplanar (blue, E−G)
nanopores in graphene.
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precursor with preinstalled porous macrocycle, which leads to
an increased HOMO−LUMO gap compared to that of its
parent nanographene C222.11 Although a few graphene
nanostructures containing planar nanopores have been
achieved through on-surface14 synthesis,9 the access to
nanographenes containing nonplanar nanopores is still missing.
Herein, we introduce an exemplary approach toward the

design and on-surface formation of a nonplanar, porous
nanographene, namely the C78, studied on a coinage metal
surface under ultrahigh vacuum (UHV) conditions (Scheme
1). Compound C78 can be considered as a derivative of C84,

which has a planar configuration with 84 sp2 carbon atoms, by
removing three double bonds from its carbon framework and
forming three nanopores with the topology of the rim of a
pyrene molecule (type E in Figure 1 and Scheme 1). The
target molecule C78 was successfully achieved via surface-
assisted cyclodehydrogenation of the propeller precursor 1,
which was synthesized via regioselective cyclodehydrogenation
of 2,3,6,7,10,11-hexa(naphthalen-1-yl)triphenylene (2) in
solution. The structure of C78 is evidenced by scanning
tunneling microscopy (STM), and complemented by density-
functional theory (DFT) calculations. The chemical structure
of the final porous nanographene is determined by noncontact
atomic force microscopy (nc-AFM), and its electronic
properties are studied by scanning tunneling spectroscopy
(STS), which indicates an increased bandgap from 2.4 eV for
the planar C84 (obtained by GW calculations) to 3.0 eV for
the nonplanar porous C78 on Au(111).
Compound 2 was synthesized in solution via 6-fold Suzuki

coupling with a 96% yield (Scheme S1, Table S1, and Figures
S1−S8 in the Supporting Information). Our preliminary
attempts to use 2 directly for the on-surface formation of
C78 via cyclodehydrogenation were not successful. Specifically,
the sublimation of a submonolayer coverage of 2 onto the

Au(111) substrate held at room temperature and subsequently
annealed to 250 °C to induce cyclodehydrogenation gave
mostly rise to the unexpected formation of individual ill-
defined nanostructures which coexist with ∼5% of triblade-like
propeller molecules (Figure S9). To the best of our knowledge,
the formation of pentalene units observed in the triblade-like
moleculehas not been reported in on-surface synthesis, and it
may offer a new way to access pentalene containing
nanographenes. The flexibility and high reactivity of the
naphthyl groups in compound 2, as well as the steric
congestion of the target C78 molecule may account for this
unexpected result.
To overcome the limitations observed in the on-surface

formation of C78 starting from 2, we designed precursor 1,
which has a more rigid preplanarized structure and less reactive
sites. The synthesis of 1 was carried out by oxidation of 2 using
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in a mix-
ture of dichloromethane and triflic acid at 0 °C in 75% yield
(Scheme S2 and Figures S10−S14). Our attempts of solution
cyclodehydrogenation toward C78 from 1 was unfortunately
unsuccessful. The propeller structure of 1, which pushes the
C−H bonds in the rims far away from each other, may account
for the challenge of the solution process.
After sublimation of compound 1 under UHV conditions

onto an atomically clean Au(111) surface held at room
temperature, large-scale STM images (Figure 2a) reveal the

Scheme 1. Concept, Design, and Synthesis of the
Nonplanar, Porous Nanographene C78 via On-Surface
Synthesis*

*(a) DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 3.6 equiv),
CH2Cl2/CF3SO3H (9/1), 0 °C to room temperature, 15 h, 75%. (b)
On Au(111), 350 °C.

Figure 2. Identification of 1 after deposition on Au(111). (a,b)
Overview STM topography images of the surface after room
temperature deposition of 1. Vb = −1.0 V and −2 mV, It = 100 pA,
scale bar = 20 and 3 nm, respectively. (c) Magnified view of one of
the rounded species observed in panel (a,b) evidencing the presence
of three bright peripheral lobes per molecule. Vb = −0.1 V, It = 25 pA,
scale bar = 1 nm. (d) DFT-simulated STM image of the molecule
highlighted in panel c. (e) Top (upper panel) and side (lower panel)
views of the DFT equilibrium geometry of 1 on Au(111).
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presence of several self-assembled chains that follow the
Au(111) herringbone reconstruction, along with sporadically
distributed individual molecules. Figure 2b shows a high-
resolution STM image where rounded molecular species,
which present three bright peripheral lobes with a maximum
apparent height of 2.5 Å (measured at a sample bias of −1 V),
interact between them due to the nonplanar conformation
adopted by the molecules on the surface. Additionally, high-
resolution STM images acquired with a CO-functionalized tip
allow us to discern R and S enantiomers within the same image
(Figure S15). The experimental features of an individual
molecule observed in Figure 2c are well reproduced by the
DFT-optimized geometry and the corresponding STM
simulation of 1 on the Au(111) surface (Figure 2d,e), which
shows that 1 adopts a consecutive “up and down”
configuration (with an adsorption height of 3.4 Å with respect
to the underlying surface), indicating a typical propeller-type
conformation on the surface.15

Annealing the substrate at 180 °C does not give rise to
significant modifications in the molecular structure of 1 and
just a small number of molecules (∼10%) present a different
appearance (Figure S16). Only after a second annealing step to
350 °C, the subsequent formation of the targeted porous C78
molecule is achieved by the cyclodehydrogenation of 1. Figure
3a,b depicts the high-resolution STM images where the
molecular species appear as circularly shaped molecules
without any prominent lobes which is attributed to the
formation of C78 (63% out of 150 molecules). It should be
noted that some of the molecules remained with one
protrusion, implying an incomplete cyclodehydrogenation of
the molecular precursor.
To confirm the chemical structure of C78, noncontact

atomic force microscopy (nc-AFM) measurements using a
CO-functionalized tip were performed.16 Figure 3c depicts the
resulting constant-height frequency-shift image. Herein, the
nonplanarity which arises due to the intramolecular H−H
steric hindrance is clearly manifested. The periphery of the
molecular backbone shows three features of increased
frequency shift while the center of the molecule is closer to
the gold surface and therefore no obvious features could be
discerned in the nc-AFM image. In addition, the simulated nc-
AFM image depicted in Figure 3d yields excellent
correspondence to the experimental image. This nonplanarity
is well visible in the DFT-optimized structure (Figure 3e) of
C78 on Au(111), which shows how the new C−C bonds
formed after cyclodehydrogenation are slightly bent out-of-
plane (a dihedral angle of 4.4°, with an adsorption height of 3.1
Å with respect to the underlying surface). Altogether, this
provides conclusive evidence for the structural assignment of
the porous C78 molecule on the Au(111) surface.
Next, we performed STS measurements on C78 to probe its

electronic structure. Voltage-dependent differential conduc-
tance spectra (dI/dV vs V) display peaks in the density of
states at −1.2 and +1.8 V (Figure 4a), which are attributed to
the positive and negative ion resonances (PIR and NIR,
respectively) deriving from the highest occupied and the
lowest unoccupied molecular orbitals (HOMO and LUMO) of
C78. Therefore, the measured gap of this nonplanar porous
nanographene is 3.0 eV on Au(111), which is in good
agreement with the value of 3.1 eV obtained by applying image
charge corrections to the eigenvalue self-consistent GW gap
calculated for the isolated molecule adsorbed on Au(111).
This value contrasts with the gap of 2.4 eV calculated for the

planar, nonporous C84, which isdue to the extended π-system
being disrupted by the pores and by the nonplanarity of the
molecule.
To investigate the impact of nonplanar nanopores such as

those observed for C78 on the electronic properties of
extended 2D graphene, we performed tight-binding and DFT
band structure calculations. The results show that such pores
introduce flat bands and open a band in pristine graphene
(Figure S17). The band gap opening is analogous to the
increase of the HOMO−LUMO gap of C78 with respect to
C84. Constant-height maps of the dI/dV signal of a C78 on
Au(111)acquired with a CO-functionalized tip at the energetic
positions of the PIR (top) and the NIR (bottom), together
with the corresponding STM topography images are reported
in Figure 4b (see Figure S18 for comparison with the constant-
current dI/dV maps of C78). In addition, the DFT-calculated
local density of states (LDOS) maps of the HOMO and the
LUMO of C78 (Figure 4b, right), evaluated at a height of 3 Å
above the molecular plane, indicate a notable agreement with
the experimental dI/dV maps, which allows us to conclude that
the conductance features observed in the dI/dV maps can be
correlated with the spatial distribution of the probability
densities of the corresponding frontier orbital wave functions.

Figure 3. On-surface synthesis of C78 on Au(111). (a) Overview
STM topography image of the surface after annealing at 350 °C,
showing the predominant presence of C78 molecules. Vb = −1.2 V, It
= 175 pA, scale bar = 4 nm. (b) High-resolution STM image of an
isolated molecule. Vb = 0.1 V, It = 200 pA, scale bar = 1 nm. (c)
Constant-height frequency-shift nc-AFM image of panel b acquired
with a CO-functionalized tip (z offset −35 pm below STM set point:
5 mV, 10 pA). Scale bar = 1 nm. (d) Simulated nc-AFM image of
panel c. (e) Top and side views of the DFT equilibrium geometry of
C78 on Au(111). Bonds and atoms highlighted in red show an out-of-
plane bending contributing to the distinguishing features in the nc-
AFM images.
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In conclusion, we demonstrated a synthetic pathway for the
on-surface synthesis of a well-defined triple-porous nano-
graphene on Au(111). Based on the parent propeller precursor
1, the nonplanar, porous C78 molecule has been achieved via
on-surface cyclodehydrogenation and its structure has been
clearly elucidated by STM and nc-AFM. STS studies together
with theoretical calculations revealed that the C78 molecule
exhibits an experimental electronic gap of 3.0 eV (3.1 eV
obtained by GW calculations), which differs from the 2.4 eV
calculated for the planar, nonporous C84. This porous
nanographene can serve as a model structure and help to
understand the effect of nonplanar nanopores in graphene
nanostructures. Our future work will focus on the synthesis of
nanographenes with various nanopores and larger π-systems, as
well as porous graphene nanoribbons, where the dependence
of the intrinsic electronic properties on the topology and the
symmetry of atomic sites allow for the engineering of novel
functionalities.
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(9) (a) Bieri, M.; Nguyen, M.; Gröning, O.; Cai, J.; Treier, M.; Aït-
Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M.;
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A.; Meyer, G. Bond-Order Discrimination by Atomic Force
Microscopy. Science 2012, 337, 1326−1329.

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.9b03554
J. Am. Chem. Soc. 2019, 141, 7726−7730

7730

http://dx.doi.org/10.1021/jacs.9b03554

