
Okinawa Institute of Science and Technology
Graduate University

Thesis submitted for the degree

Doctor of Philosophy

Total stochastic gradient algorithms
and applications to model-based

reinforcement learning

by

Paavo Parmas

Supervisor: Kenji Doya

January, 2020

Declaration of Original and Sole
Authorship

I, Paavo Parmas, declare that this thesis entitled Total stochastic gradient algorithms
and applications to model-based reinforcement learning and the data presented in it are
original and my own work.

I confirm that:

• No part of this work has previously been submitted for a degree at this or any
other university.

• References to the work of others have been clearly acknowledged. Quotations
from the work of others have been clearly indicated, and attributed to them.

• In cases where others have contributed to part of this work, such contribution
has been clearly acknowledged and distinguished from my own work.

• None of this work has been previously published elsewhere, with the exception
of the following:
1. Parmas, P., Rasmussen, C. E., Peters, J., & Doya, K. (2018, July). PIPPS:
Flexible Model-Based Policy Search Robust to the Curse of Chaos. In Interna-
tional Conference on Machine Learning (pp. 4062-4071).
2. Parmas, P. (2018). Total stochastic gradient algorithms and applications in
reinforcement learning. In Advances in Neural Information Processing Systems
(pp. 10204-10214).

Date: January, 2020

Signature:

iii

Abstract

Total stochastic gradient algorithms and applications to model-
based reinforcement learning

Optimizing via stochastic gradients is a powerful and flexible technique ubiquitously
used in machine learning, reinforcement learning, control, operations research, etc.
In many of these applications, the gradients are estimated through a stochastic sam-
pling process, and the learning performance hinges on the accuracy of the estimated
gradients. This thesis develops a collection of several novel statistical algorithms to
acquire improved gradient estimation accuracy. The need to develop such algorithms
was motivated from a model-based reinforcement learning (MBRL) scenario, where
I observed that chaotic properties of the dynamics caused the gradient variance to
explode when using standard gradient estimation techniques, such as reparameteriza-
tion gradients. The new techniques sometimes improve the accuracy by 106 times and
more. The methods rely on both new gradient estimators, as well as clever algorithms
to take advantage of the graph structure of the computations to combine estimators
in a statistically principled way. While the work started by trying to solve a specific
problem related to MBRL, the proposed solutions are general and applicable to any
other stochastic computation graph. The problems with chaos have recently been also
observed in other tasks, such as meta-learning or protein folding software, and the
solutions may prove useful in those domains as well. The main contributions are 1) an
MBRL framework called PIPPS, which is similar to the PILCO algorithm, but lifts all
of its restrictions by swapping the cumbersome moment-matching computations with
a particle sampling approach while achieving the same learning performance with no
down-sides, 2) the total propagation algorithm, which is a replacement for backpropa-
gation that prevents the exploding gradient problem by combining gradient estimators
in the backwards pass, 3) the probabilistic computation graph framework, which is
an intuitive visual method to reason about total gradients on graphs, 4) new policy
gradient estimators derived by using the probabilistic computation graph framework,
5) some theoretical discussion about control variates for gradients, a unified theory
of reparameterization and likelihood ratio gradient estimators, and an optimal im-
portance sampling scheme for reducing likelihood ratio gradient variance. I hope this
work may lead towards new software frameworks that go beyond backpropagation, and
implement more advanced methods for estimating gradients.

v

Acknowledgment

I am grateful to my supervisor Kenji Doya who trusted me enough to let me do whatever
I wanted, and provided me with an excellent environment to pursue my research.

I would also like to thank Carl Edward Rasmussen at the University of Cambridge,
Jan Peters at TU Darmstadt, Jun Morimoto at the Advanced Telecommunications
Research Institute International (ATR), Masashi Sugiyama at the University of Tokyo
and RIKEN-AIP for hosting me at their labs for several months. Jan Peters was also the
external examiner for my thesis proposal exam, and gave good recommended reading.
In particular the suggestion to write down all of the shortcomings of PILCO was
useful, as it helped me identify that getting particle sampling methods to work would
solve all of the problems, and is thus a highly impactful research topic. Carl Edward
Rasmussen had some prior experience with particle methods. In particular he had
supervised Andrew McHutchon attempting to use particles in PILCO-like approaches,
and gave some good suggestions. For example, he suggested to plot the landscape and
the gradients of the objective in Figure 4.2. What I did differently from McHutchon,
was that I performed a more careful experimental design, adding errorbars on my plots
and fixing the random number seeds, and this allowed me to elucidate the problems.
Carl was also my supervisor during my undergraduate studies’ final year project, and
taught me a lot about machine learning. Masashi Sugiyama gave several useful pieces
of advice on mathematical notation and clarity in writing.

I would also like to thank my external examiners Thomas Dietterich and Hidetoshi
Shimodaira whose careful reading of the thesis helped me improve the clarity and style.

I am happy to have had the opportunity to do an internship at DeepMind Paris
lead by Remi Munos. It was a pleasure to work with my collaborators Karl Tuyls,
Daniel Hennes and Shayegan Omidshafiei.

I thank the other members of the Neural Computation Unit for a supportive envi-
ronment. I greatly enjoyed our discussions during teatime. I thank Jiexin Wang, who
built a mobile phone robot, which I used in experiments with PILCO in the early days
of my PhD studies. I thank the unit administrators, Kikuko Matsuo, Emiko Asato and
Misuzu Saito, without whose support nothing would get done.

I thank the members at the Fujita lab at the Tokyo Institute of Technology, where
I spent my first month in Japan during an OIST gap program. I could not have asked
for a warmer welcome to Japan.

Finally, I would like to thank all the staff at the Graduate School Office for their
constant support. In particular, I am grateful for having been able to help with outreach
activities such as the yearly Science Challenge workshops, which I enjoyed immensely.

vii

Abbreviations

PILCO Probabilistic Inference for Learning Control
PIPPS Probabilistic Inference for Particle-based Policy Search

w.r.t. with respect to
s.t. such that

MBRL model-based reinforcement learning
MM moment matching
RL reinforcement learning
RP reparameterization
LR likelihood ratio

SLRG slice ratio gradient
BLR likelihood ratio gradient for a Beta distribution
BRG slice ratio gradient for a Beta distribution

TRRG truncated ratio gradient
TP total propagation
GR Gaussian resampling
GS Gaussian shaping

GLR likelihood ratio Gaussian shaping gradient
GTP total propagation Gaussian shaping gradient
DEL density estimation likelihood ratio gradient
PCG probabilistic computation graph
SCG stochastic computation graph

ES Evolution Strategies
Q.E.D. quod erat demonstrandum (what was to be shown)

GP Gaussian process
iff if and only if

pdf probability density function
cdf cumulative distribution function

SGD stochastic gradient descent
BFGS Broyden-Fletcher-Goldfarb-Shanno (a quasi-Newton optimizer)

ix

Glossary

Machine learning A scientific discipline dealing with comput-
ers/machines that learn from data.

Reinforcement learning A subfield of machine learning dealing with learn-
ing to take actions to maximize rewards.

Agent An entity taking actions in an environment, trying
to maximize the rewards it receives.

Model-based reinforcement learning A type of reinforcement learning, where the agent
concurrently learns to make predictions about
what will happen in the environment when par-
ticular actions are taken.

Deep learning A type of machine learning, where the model con-
sists of multiple layers of information processing
usually learning a representation of the data.

Exploding gradient problem A phenomenon in deep learning where the magni-
tude of the gradient of a model becomes very large,
leading to large gradient steps and problems in the
optimization.

Curse of Chaos Phenomenon in which the backpropagated gradi-
ent variance explodes due to chaotic dynamics.

Chaotic gradients Another name for the curse of chaos phenomenon.
Moment matching A method for approximating a distribution by a

Gaussian by matching the mean and variance to
the exact mean and variance of the true distribu-
tion.

Monte Carlo method A method that uses sampling to solve problems.
Reparameterization gradient One type of Monte Carlo gradient estimator of an

expectation of a function using samples of the gra-
dient of said function.

Likelihood ratio gradient One type of Monte Carlo gradient estimator of
an expectation of a function using samples of the
value of said function.

Baseline A method for reducing likelihood ratio gradient
variance, by subtracting a value, the baseline, from
the sampled points.

xi

Nomenclature

x state of system
u control/action
A matrix
a vector
a scalar
â an estimator of a scalar

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance Σ
GP Gaussian process model
R reward function
rt reward at time t

Gt return
∑T

h=t rt (sum of rewards until end of episode)
c cost function

∂f(x,y)
∂x

partial derivative of f w.r.t. x
∂f(x,y)
∂x

∣∣∣
y

partial derivative of f w.r.t. x while keeping y constant

df(x,y)
dx

total derivative of f w.r.t. x: df(x,y)
dx

= ∂f(x,y)
∂x

∣∣∣
y

+ ∂f(x,y)
∂y

∣∣∣
x

dy
dx

D state dimension
F action dimension

E [x] expectation of random variable x
V [x] variance of random variable x

p (x; θ) probability distribution of x with parameters θ
p (x|y) probability distribution of x conditioned on random variable y

xiii

I dedicate my thesis to my family,
Ivar, Kaupo, Piret, Erika and Ivo.

Contents

Declaration of Original and Sole Authorship iii

Abstract v

Acknowledgment vii

Abbreviations ix

Glossary xi

Nomenclature xiii

Contents xvii

List of Figures xxi

List of Tables xxiii

Introduction 1

1 Background 5
1.1 Episodic policy search . 6

1.1.1 Model-free policy gradient algorithms 7
1.1.2 Model-based policy gradients 9

1.2 Model-based policy search . 9
1.3 PILCO . 10

1.3.1 Model learning . 11
1.3.2 Moment matching prediction . 12
1.3.3 Literature on PILCO . 12
1.3.4 Shortcomings of PILCO . 14
1.3.5 PILCO as a trajectory tracker 17
1.3.6 How to overcome the challenges in PILCO? 18

2 Gradient estimators through a single sampling operation 21
2.1 Interpretations of LR and RP gradients 22

2.1.1 A probability “boxes” view of LR and RP gradients 22

xvii

xviii Contents

2.1.2 A unified probability flow view of LR and RP gradients 25
2.2 Importance sampling for gradient estimators 29

2.2.1 Slice integral importance sampling 29
2.2.2 Slice ratio importance sampling 31

2.3 Experiments with slice ratio gradients 42
2.3.1 Experiments to verify theoretical results 43
2.3.2 Experiments in evolution strategies 44

2.4 Baseline techniques for variance reduction 50
2.4.1 Preliminaries: Optimal baseline 50
2.4.2 Bias in gradient estimator with an estimated baseline 51
2.4.3 Effect of the variance of the baseline estimator 54

2.5 Toy experiments to test theory . 55

3 Probabilistic computation graphs for gradient estimation 57
3.1 Total stochastic gradient theorem . 58

3.1.1 Explanation of framework . 58
3.1.2 Derivation of theorem . 59
3.1.3 Gradient estimation on a graph 60

3.2 Relationship to various gradient estimators 61
3.2.1 Relationship to policy gradient theorems 61
3.2.2 Parameter-space sampling based methods 62
3.2.3 Model-based gradient estimators 63
3.2.4 Relationship to “Generalized policy gradient theorem” 64

3.3 New gradient estimators . 65
3.3.1 Density estimation likelihood ratio gradient (DEL) 65
3.3.2 Distributional/Gaussian shaping gradients (GS) 66

4 Model-based reinforcement learning with particle predictions 69
4.1 Preliminaries: model, prediction and gradients 70
4.2 Explaining the Curse of Chaos . 73

4.2.1 Value estimator landscape view of chaotic dynamics 73
4.2.2 A trajectory distribution view of chaotic dynamics 79

4.3 Resampling-based trajectory prediction 79
4.3.1 Resampling from a Gaussian . 79
4.3.2 Resampling from a mixture of Gaussians 81
4.3.3 Why resampling based methods are undesirable 83

4.4 Total propagation algorithm . 83
4.4.1 Gradient variance evaluation . 89

4.5 Learning experiments . 90
4.5.1 Optimizers: . 90
4.5.2 Task Descriptions . 91
4.5.3 Experimental setup . 93
4.5.4 Learning experiment results . 93

4.6 Discussion . 95
4.6.1 Learning Experiments . 95
4.6.2 The Curse of Chaos in Deep Learning and elsewhere 97

xix

Conclusion 99

A Gaussian process models 101

B Basic vector calculus and fluid mechanics 105

Bibliography 107

List of Figures

1.1 Reinforcement learning illustration . 5
1.2 Cart-pole system illustration . 6
1.3 Model-based policy search . 10
1.4 Moment-matching predictions can be vastly wrong. 16
1.5 Comparing particles to analytic predictions 19
1.6 Swapping moment matching with particle sampling 20

2.1 Comparing what LR and RP views do to the probability boxes. 23
2.2 Probability flow lines when µ and σ are perturbed. 26
2.3 New importance sampling distributions to reduce gradient variance . . 31
2.4 Illustration of slice ratio sampling method. 33
2.5 Slice ratio distribution for the Beta distribution with α = 1.5. 35
2.6 Truncated ratio distribution for c ∈ [0.01, 0.1, 0.3,0.5, 1.0, 2.0, 5.0] . . . 40
2.7 Scaling of truncated ratio gradient accuracy with the dimension (2.7b)

and the truncated ratio distribution for various c (2.7a). 41
2.8 Scaling of LR gradient estimator variance with importance sampling . . 43
2.9 Environments used in evolution strategies experiments. 47
2.10 Cart-pole swingup evolution strategies learning performance no.1 . . . 48
2.11 Cart-pole swingup evolution strategies learning performance no.2 . . . 48
2.12 Biped evolution strategies learning performance no.1 48
2.13 Biped evolution strategies learning performance no.2 49
2.14 Mean baseline bias . 55
2.15 LR gradient signal-to-noise ratio . 56

3.1 Graph for φ(x) . 59
3.2 Example gradient paths . 60
3.3 Probabilistic computation graph for model-free gradient estimation . . 62
3.4 Model-based and parameter sampling probabibilistic computation graphs. 63
3.5 Relationship to “Generalized policy gradient theorem” 65
3.6 Computational paths in Gaussian shaping gradient 66

4.1 Particle predictions are a solution to problems caused by moment match-
ing. 70

4.2 Reparameterization gradients can be ill-behaved 74
4.3 Fractal pattern experiment setup . 75
4.4 Explaining chaotic gradients . 76
4.5 Likelihood ratio gradients are robust to chaos 77

xxi

xxii List of Figures

4.6 Bifurcations in chaotic trajectories . 78
4.7 Comparing Gaussian resampling to Gaussian shaping 80
4.8 Ratio Gaussian resampling gradients 81
4.9 Mixture of Gaussians resampling . 81
4.10 Illustration of backpropagation. 86
4.11 Illustration of total propagation. 87
4.12 Likelihood ratio gradients and total propagation are robust to chaos. . 89
4.13 Variance comparison of estimators . 90
4.14 Illustrations of the systems used in my simulations experiments. 92
4.15 Illustrations of the costs used in the cart-pole task. 92
4.16 PIPPS using TP matches PILCO in data-efficiency. 94
4.17 Data-efficiency and performance of learning algorithms on cart-pole tasks. 95

A.1 Gaussian process prior on functions. 102
A.2 Posterior Gaussian process distribution on functions. 102

B.1 Illustration of the divergence theorem. 106

List of Tables

2.1 Guidelines for choosing the offset parameter c for the truncated ratio
gradient. 42

2.2 Cart-pole evolution strategy experiment no.1 46
2.3 Cart-pole evolution strategy experiment no.2 46
2.4 Cart-pole evolution strategy experiment no.3 46
2.5 Cart-pole evolution strategy experiment no.4 46
2.6 Biped evolution strategy experiment no.1 47
2.7 Biped evolution strategy experiment no.2 47

4.1 Angle cost. Success rate of learning cart-pole swing-up 94
4.2 Tip cost. Success rate of learning cart-pole swing-up 94
4.3 Success rate of learning cart-pole swing-up: comparing to Gaussian

shaping . 94
4.4 Success rate of learning unicycle balancing 95

xxiii

Introduction

Learning with gradient descent

The deep learning revolution (LeCun et al., 2015; Schmidhuber, 2015a) was built using
gradient descent and backpropagation (Werbos, 1974; Rumelhart et al., 1988). Gradi-
ent descent provided a simple, efficient, general and scalable learning algorithm that
allowed training neural networks while taking advantage of the increasing computa-
tional resources. While this approach has worked great for supervised learning, credit
assignment across long sequences of computations, such as those arising in decision
making and control are still challenging avenues of research.

Might the same approach also allow optimizing the behavior of intelligent decision
makers? Reinforcement learning (Sutton and Barto, 1998) is a general field, which
deals with such decision makers, called agents trying to find the behavior that maxi-
mizes their rewards in some environment. In that scenario, standard backpropagation
cannot be used to efficiently compute gradients, because the computations may not be
differentiable, or there may be stochasticities in the computations, meaning that an es-
timator of the gradients will be necessary. Among reinforcement learning algorithms,
there also exist gradient based methods, such as policy gradient algorithms (Sutton
et al., 2000), which allow learning with gradient descent even when the computations
are not directly differentiable; however, the typical gradient estimation schemes are not
efficient. The main topic of my thesis is the investigation of better gradient estimators,
hoping to create efficient algorithms for agents such as robots to learn optimal decision
making and behavior in various environments. But first, in the next section I will
explain why robots should learn at all.

Why should robots learn?

Robots have become an integral part of the modern world through increasing manufac-
turing accuracy and efficiency at factories. They can perform fast and precise motion
to assemble products according to programmed guidelines. This approach works well
in a controlled environment, where unexpected events are rare. However, if robots were
to be put into the same diverse situations as people meet in their daily lives, the num-
ber of different cases to consider would be so large that it is not feasible to explicitly
program a solution to every problem that the robot might encounter. Some examples
are care robots for elderly people—these would ideally be as nimble as humans—or
movement assisting devices, which would have to adapt to each individuals movement

1

2 Introduction

patterns. If we desire practical service robots that can help humans in our daily lives,
these robots need to be able to learn the correct motions by themselves from expe-
rience. The bottom line is that control theory has been around for a century, but I
still do not have a robot in my kitchen. In my thesis, I investigate model-based re-
inforcement learning methods, which are a particularly data-efficient way of learning
motion control. Moreover, they allow for more efficient forms of gradient computation
by utilizing backpropagation (Jordan and Rumelhart, 1992).

Why should learning be model-based?

If you ask a model-free agent why it performed a particular action, it might say:
“Because I thought I will get a large reward in the long-term if I perform this action.”
Such kind of primitive thought patterns could hardly be used to describe an advanced
agent acting intelligently. For any agent to be called intelligent, it should be able to
make better predictions about the future, to reason about the outcomes of its actions,
and be able to predict outcomes without having to try every possible behavior. For
any agent to be intelligent, it should use model-based learning algorithms.

There are many advantages of model-based learning algorithms: data-efficiency,
safety, transfer learning. Data-efficiency: for example the model-based reinforcement
learning algorithm PILCO (Deisenroth and Rasmussen, 2011) showed incredible data-
efficiency solving tasks using several orders of magnitude less data than model-free
alternatives. This algorithm is also a main target of my investigations. Safety: if an
agent has a model, it is able to detect when the environment has changed, and it is
thus possible to implement counter-measures to failures. Interpretability: the model
predictions can be used to improve interpretability of the agent’s behavior, as it is
possible to predict exactly what the agent thinks will happen. Transfer learning: if
there are multiple tasks in the same environment, but with a different reward function,
the same learned dynamics model can be used among the different tasks, thus allowing
for transfer learning.

There are no real downsides to model-based reinforcement learning, except for
maybe added complexity, and the only question is how to get such algorithms to work
effectively. In my thesis I elucidate several issues, which may have been preventing
more wide spread use of model-based reinforcement learning.

Contributions

The main focus of my work was on trying to overcome the limitations of the PILCO
algorithm caused by its inflexible use of moment matching predictions, which are not
generally applicable, e.g., the predictions cannot be used with expressive neural net-
work based models, severely limiting the applicability of such algorithms. To overcome
such limitations, I attempted using flexible Monte Carlo particle sampling based pre-
dictions instead, which are generally applicable. By tackling this task, I stumbled on a
more general problem of effective gradient estimation—even though using particle pre-
dictions is easy, computing good gradients is not straightforward. Through my work,

3

I was able to uncover that chaotic properties of long chains of computations can ren-
der backpropagation-like gradient estimators useless, and worked towards new better
gradient estimation schemes.

The main contributions are:

• A unified view of likelihood ratio and reparameterization gradient estimators.

• An optimal importance sampling scheme to reduce likelihood ratio gradient vari-
ance.

• Analysis of baseline techniques for reducing likelihood ratio gradient variance.

• The probabilistic computation graph framework, which generalizes previous “pol-
icy gradient theorems”, and provides a visual and intuitive method for deriving
gradient estimators.

• New gradient estimators including the density estimation likelihood ratio gradient
as well as the Gaussian shaping gradient method.

• An analysis of how chaotic properties of long chains of computations cause back-
propagation gradients to become ill-behaved.

• The total propagation algorithm, which is an elegant solution to the issue with
chaos, and allows combining gradient estimators during the backwards computa-
tion of gradient estimation.

• The Probabilistic Inference for Particle-based Policy Search (PIPPS) model-based
reinforcement learning algorithm that uses particles for predictions instead of the
cumbersome moment matching predictions in the PILCO algorithm.

Structure of thesis

The thesis starts with background information in Chapter 1 including typical explana-
tions of gradient estimators and PILCO, as well as explanations of the shortcomings of
PILCO. Chapters 2–4 give the main novel contributions. In Chapter 2 I explain novel
views of gradient estimators through a single sampling operation, including explana-
tions of likelihood ratio and reparameterization gradients. Chapter 3 discusses how to
use the estimators in Chapter 2 for gradient estimation on graphs of computations.
In particular, I discuss my new probabilistic computation graph framework. Finally,
Chapter 4 utilizes these gradient estimators in model-based reinforcement learning
using particle predictions. I discuss how the performance of gradient estimators is
problem dependent, how chaotic properties can cause backpropagation-like gradient
estimators to become ill-behaved, and how to effectively combine estimators using my
total propagation algorithm.

Chapter 1

Background

Figure 1.1: In reinforcement learning (RL), an agent is in a state x in an environment,
and it can move around by picking actions u (although the agent does not necessarily
know the outcomes of its actions). The agent’s goal is to maximize long-term rewards,
by picking the appropriate actions. The difficulty lies in the fact that actions have
long-term consequences (an action taken now may lead one into a good situation in
the future, where they can acquire lots of reward), but it is difficult to know which
actions in the past contributed to the current situation.

5

6 Background

1.1 Episodic policy search

F

Figure 1.2: Cart-pole: common benchmark task in control and reinforcement learning

Here I give the background to how gradient based learning algorithms can be applied
to train systems to improve their control policy πθ (a function that determines what
action to apply depending on the situation). The methods in my thesis are applicable
to many tasks, such as stochastic variational inference (Hoffman et al., 2013), price
sensitivity estimation in finance (Fu and Hu, 1995), etc. but I focus on robot control
in my exposition.

In the episodic learning setting, an agent, such as a robot, is given multiple attempts
at solving a task. Each attempt is given a numerical score, which I call the return G.
The agent’s goal is to find a behavior that gives the best expected return. For a concrete
example, consider the cart-pole robot system in Figure 1.2. The task is to move the
cart back and forth so as to swing up the pendulum and keep it balanced in the upright
position. This is a common benchmark task in control and reinforcement learning, and
I use it as a basic example in my explanations and many of my experiments.

I consider discrete time systems which at any time step t can be described by
the state vector xt, for example the position of the cart s, angle of the pendulum
β and the velocities ṡ, β̇; and the applied action/control vector ut, for example the
force applied on the cart F . An episode starts by sampling a state from a fixed
initial state distribution x0 ∼ p (x0), for example with the cart in the center and
the pendulum hanging downwards. The policy πθ is a function parameterized by θ,
and it determines what action is applied ut ∼ p (ut) = π(xt; θ). Having applied an
action, the state transitions to a new state according to an unknown dynamics function
xt+1 ∼ p (xt+1) = f(xt,ut). Both the policy and the dynamics may be stochastic and
nonlinear. Actions and state transitions are repeated for up to T time-steps, giving
rise to a trajectory τ , which is the sequence (x0,u0,x1,u1, ...,xT).

1.1 Episodic policy search 7

Each episode is scored according to the return function G(τ). Often, the return
decomposes into a sum of rewards for each time-step G(τ) =

∑T
t=0 rt in which case the

goal is to optimize the policy parameters θ to maximize the expected return J(θ) =
Eτ∼p(τ ;θ) [G(τ)]. In my work I consider the equivalent problem of minimizing a cost

G(τ) =
∑T

t=0 c(xt), where c(x) is the cost function. I do not consider cost functions
that explicitly depend on the actions u, though they would be trivial to include. In the
cart-pole case, there are many possible ways to define the cost, e.g. the cost may be to
maximize the height of the pole, or to minimize the distance of the tip of the pendulum
to the position of the tip of the pendulum when the cart-pole system is upright. Note
that in the general case, the return function may not be differentiable and need not
consist of a sum of terms for each time step, but could be a function of the whole
trajectory. For example a robot might be given a task to jump as high as it can, and
the return to maximize would be the height at the peak of the trajectory. Many of the
previous approaches described in my thesis, such as PILCO, are not easily extended to
work in such a setting, whereas the new methods I develop could be directly applied.

Learning proceeds by alternating between executing the policy once or multiple
times on the system, then updating the parameters with the aim of improving the per-
formance on the following attempts. There exist many different methods of updating
the parameters, but perhaps the most obvious idea is to directly estimate the gradient
of the objective function d

dθ
J(θ) and use it for optimization—so called policy gradient

methods. In Sections 1.1.1 and 1.1.2 I explain model-free and model-based policy gra-
dients respectively.

Remark: Policy search is not restricted to Markov Decision Processes (MDPs)

Often, RL is explained in terms of the formalism of Markov Decision Processes,
which essentially just says that the next state x′ and reward r depend only on
the current state x and action u, not on anything that happened earlier. But
RL is a more general problem. The essence of RL is about an agent learning to
obtain rewards in an environment, no matter what properties the environment
has. Many RL algorithms, such as Q-learning (Watkins, 1989) require this MDP
assumption; however, an advantage of episodic policy gradient algorithms is that
they work directly even if the MDP assumption is lifted. The environment could
be either only partially observable (POMDP), or the state transitions or rewards
could depend also on past states and actions, but episodic policy search methods
would still be applicable without major modifications.

1.1.1 Model-free policy gradient algorithms

To use policy gradient methods, one must somehow estimate the derivative of the
expected return w.r.t. the policy parameters d

dθ
J(θ) = d

dθ
Eτ∼p(τ ;θ) [G(τ)]. Here I ex-

plain the likelihood ratio gradient method (Glynn, 1990; Williams, 1992)—a general
technique to estimate the gradient of the expectation of an arbitrary function φ(x)
with respect to the parameters of the sampling distribution d

dθ
Ex∼p(x;θ) [φ(x)]. This

estimator is sometimes also called the score function estimator, but I prefer the name

8 Background

“likelihood ratio gradient”, because it is more informative about the mechanism behind
the estimation technique. This technique relies on using a stochastic policy π(u|x; θ),
e.g. Gaussian noise could be added to the action. We will see that by doing so, it is
possible to estimate the gradient without knowing anything about the environment.

Likelihood ratio gradient (LR): The desired gradient can be written as
d
dθ
Ex∼p(x;θ) [φ(x)] =

∫ dp(x;θ)
dθ

φ(x)dx. Multiplying and dividing by p (x; θ) we get:∫
dp(x; θ)

dθ
φ(x)dx = Ex∼p

[
dp(x;θ)
dθ

p(x)
φ(x)

]

= Ex∼p
[

d log p(x; θ)

dθ
φ(x)

]
The LR gradient often has a high variance, and has to be combined with variance
reduction techniques known as control variates (Greensmith et al., 2004). A common
approach subtracts a constant baseline b from the function values to obtain the esti-
mator Ex∼p

[
d
dθ

(log p(x; θ)) (φ(x)− b)
]
. If b is independent from the samples, this can

greatly reduce the variance without introducing any bias. In practice, the sample mean
is a good choice b = E [φ(x)]. When estimating the gradient from a batch, one can es-
timate leave-one-out baselines for each point to obtain an unbiased gradient estimator
(Mnih and Rezende, 2016), i.e. bi =

∑P
j 6=i φ(xj)/(P − 1). In Section 2.4 I perform my

own analysis of the effect of using baselines.

LR policy gradient in a trajectory setting: The probability density p(τ) =
p(x0,u0,x1,u1, ...,xT) of observing a particular trajectory can be written as
p(x0)π(u0|x0; θ)p(x1|x0,u0)...p(xT |xT−1,uT−1).

To use LR gradients, note that p(τ) is a product, so log p(τ) can be transformed
into a sum. Denote Gh(τ) =

∑T
t=h c(xt). Noting that (1) only the action distributions

depend on the policy parameters, and (2) an action does not affect costs obtained at pre-

vious time steps leads to the gradient estimator: E
[∑T−1

t=0

(
d
dθ

log π(ut|xt; θ)Gt+1(τ)
)]

In particular, note that as the p (xt+1|xt,ut) terms do not depend on θ, it is not nec-
essary to know the transition dynamics to estimate the policy gradient.

Deterministic policy gradients: For completeness, I note that there exists an
alternative model-free method of estimating the gradient, which takes advantage of
function approximation, and can even be used with deterministic policies (Silver et al.,

2014). The gradient estimator is given by: d
dθ
E [G] = E

[∑H−1
t=0

dut
dθ

dQ̂t(ut,xt)
dut

]
, where

Q̂t(ut,xt) is a function approximator for the Q-value defined as

Qt(u,x) = E [Gt|ut = u,xt = x] .

Later in my thesis, in Chapter 3 I describe my probabilistic computation graph frame-
work, which allows to intuitively explain the relationship between deterministic policy
gradient methods and LR gradients.

1.2 Model-based policy search 9

1.1.2 Model-based policy gradients

Model-based methods differ from model-free methods, in the sense that one has access
to either the model f or an approximation of it f̂ . A naive approach to model-based
policy gradients may simply apply the same model-free methods in simulations using
the model; however, having access to the model allows for fundamentally different
policy gradient algorithms. In particular, consider the case when the dynamics are
deterministic. In such a case the full trajectory could be differentiated by applying
the chain rule, and dG

dθ
could be computed by using backpropagation. In the general

case though, the dynamics are not deterministic. What to do when the dynamics are
stochastic? One approach is to differentiate through the stochastic sampling operations
using the reparameterization trick explained next.

Reparameterization gradient (RP): Consider sampling from a univariate Gaus-
sian distribution. One approach first samples with zero mean and unit variance
ε ∼ N (0, 1), then maps this point to replicate a sample from the desired distribution
x = µ+σε. Now it is straightforward to differentiate the output w.r.t. the distribution
parameters θ = [µ, σ], namely dx

dµ
= 1 and dx

dσ
= ε. Averaging samples of dφ

dx
dx
dθ

gives an

unbiased estimate of the gradient of the expectation Ex∼p(x;theta) [φ(x)], for any function
φ(x). This is the RP gradient for a normal distribution. For a multivariate Gaussian,
the Cholesky factor (L, s.t.Σ = LLT) of the covariance matrix can be used instead of
σ. See (Rezende et al., 2014) for non-Gaussian distributions.

Such reparameterization gradients often yield much more accurate gradient esti-
mates compared to LR gradients (Rezende et al., 2014). In particular, the reparame-
terization gradient scales well with the dimension of the sampling space. For example,
consider the case when φ(x) is a linear function. In this case, a single sample yields
an exact gradient of the expectation w.r.t. µ with the RP trick irrespective of the di-
mension. In contrast, the LR gradient variance will grow linearly as the dimension is
increased. It is thus desirable to incorporate gradients computed using the RP method
into the RL learning framework.

1.2 Model-based policy search

Section 1.1.2 explained how one can use a model to estimate the policy gradient.
But where does this model come from, and how does it fit together into a learning
framework? One approach is to perform learning by iterating between attempting to
solve the task on the real system, model learning and policy optimization in simulations
as explained in Algorithm 1 and Figure 1.3. In the first episode, the agent has no data
and acts almost randomly. Before the next episode, the agent uses all of the data it has
accumulated until that point to learn a predictive model f̂ . Then, using the learned
model, it can imagine the outcome of an episode for any policy parameters θ, and uses
simulations to optimize θ, so that it could try out a new behavior in the next trial. In
practice one can perform hundreds of simulated trials to optimize the policy per one
real trial, which is used to learn the model.

10 Background

1

23
Figure 1.3: Illustration of an iterative model-based policy search framework

Algorithm 1 Episodic policy search with optimization using model-based gradients

Input: initial policy parameters θ0, episode length T , initial state distribution p(x0),
number of optimization steps N , cost function c(x), policy π, s.t. u ∼ π(x; θ).
repeat

1. Execute policy on system, attempting to solve task, store data.
2. Train dynamics model f̂ , s.t. p(xt+1) = f̂(xt,ut).
3. Optimize policy parameters:
for n = 1 to N do

Predict: {p(xt) | t ∈ 1...T} with π(x; θn), f̂ , p(x0)
Compute objective and gradient:

J(θn) =
∑T

t=0 E [c(xt)] ,
d
dθ

(J(θn))

Update: θn+1 = function
(
θn, J(θn), dJ(θn)

dθ

)
end for

until stop criterion, e.g. policy converges

1.3 PILCO

PILCO (Deisenroth and Rasmussen, 2011) is a model-based policy search method,
which follows the framework in Section 1.2. It is a remarkable algorithm, which
achieved incredible data-efficiency at learning continuous control problems from
scratch, e.g. cart-pole swing-up and balancing in 20s. The success was based on
two components:

1. A principled consideration of model uncertainty using Gaussian process (GP)
models (Rasmussen and Williams, 2006). See also Appendix A for an explanation
of GPs.

2. An analytic approximation of the trajectory distribution based on Gaussian mo-
ment matching, together with an analytic estimation of the expected cost and its
gradient.

1.3 PILCO 11

Algorithm 2 Analytic moment matching based trajectory prediction and policy eval-
uation (used in PILCO)

Input: policy π with parameters θ, episode length T , initial Gaussian state distri-
bution p(x0), cost function c(x), learned dynamics model f̂ .
Requirements: if the input distribution is Gaussian, can analytically compute the
expectations and variances of the outputs of π(x), f̂(x,u), c(x), and differentiate
them.
for t = 0 to T − 1 do

1. Using p(xt) and π compute a Gaussian approximation to the joint state-action
distribution:

p(x̃t) = N (µ̃t, Σ̃t), where x̃t = [xTt , u
T
t]T

2. Using p(x̃t) and f̂ compute a Gaussian approximation to the next state dis-
tribution:

p(xt+1) = N (µt+1,Σt+1)
3. Using p(xt+1) and c(x) compute the expected cost:
E [c(xt+1)]

end for
Gradient computation: d

dθ

(∑T
t=1 E [c(xt+1)]

)
is computed analytically during the

for-loop by differentiating each computation separately, applying the chain rule, and
accumulating the gradients.

The higher level view of PILCO follows Algorithm 1 and the moment matching
based policy evaluation is detailed in Algorithm 2. As analytic gradients are obtained,
any deterministic optimizer (Nocedal and Wright, 2006), such as BFGS (Broyden-
Fletcher-Goldfarb-Shanno) can be used to optimize the policy parameters. In the
following sections I provide additional details about the learned models, and the mo-
ment matching predictions. For other details refer to Algorithms 1 and 2, and the
original paper (Deisenroth and Rasmussen, 2011).

1.3.1 Model learning

I follow the original PILCO, which uses Gaussian process dynamics models to predict
the change in the state from one time step to the next, i.e. p(∆xat+1) = GP(xt,ut), where
a ∈ {1...D}, xa denotes the ath dimension of the state-space, and ∆xat+1 = xat+1 − xat .
A separate Gaussian process is learned for each dimension a. A squared exponen-
tial covariance function is used throughout ka(x̃, x̃

′) = s2
a exp(−(x̃− x̃′)TΛ−1

a (x̃− x̃′)),
where s2

a and Λa = diag([la1, la2, ..., laD+F]) are the function variance and length scale
hyperparameters respectively. I use a Gaussian likelihood function with noise hyperpa-
rameter n2

a. The hyperparameters are optimized to maximize the marginal likelihood.
Note that in my experiments I use additive observation noise, and the models are
trained to predict the next observation given the current observation. One could obtain
more confident predictions by explicitly modeling the latent state using a state-space
model—this approach is for example used by McAllister and Rasmussen (2016). The
PILCO approach is not so much defined by what model is being used—any applicable
probabilistic model is acceptable. The key distinct feature is the moment matching

12 Background

Gaussian approximations of the state distributions explained in the next section.

1.3.2 Moment matching prediction

Moment matching refers to a method for approximating the output distribution when
an input distribution is mapped through a function. In general, when a Gaussian
distribution is mapped through a nonlinear function, the output distribution will be
intractable and non-Gaussian; however, in some cases one can analytically evaluate
the mean and variance of the output distribution. With Gaussian moment matching,
one approximates the output distribution as a Gaussian distribution by matching the
mean and variance to be the same as that of the true distribution. During each time
step, moment matching is performed twice: once during evaluating the state-action
joint distribution, the second time during evaluating the output of the dynamics
function f̂ . The framework for predicting the trajectory and computing the gradient
is explained in Algorithm 2. Note that even though the state-dimensions are modeled
with separate functions f̂a, the moment matching is performed jointly, and the state
distributions can include covariances (for example if two of the functions f̂a were the
same, their outputs would have a high covariance, because as the input point varies,
the mean of the predictions would be the same for both functions).

Remark: Moment matching is perhaps the biggest issue in PILCO

While moment matching (MM) provided a deterministic method for computing
trajectory distributions in PILCO, and hence allowed for efficient optimization,
throughout my thesis I find that MM is restrictive, prevents one from building
more advanced algorithms, and even gives overly conservative predictions.

1.3.3 Literature on PILCO

To give a flavor for what can be done with PILCO, and what sort of challenges it
faces, I review some of the recent literature. PILCO was started in Deisenroth’s PhD
Thesis (Deisenroth, 2010). At that time, all of the key ingredients of PILCO were
already present, and it achieved good results in problems such as cart-pole swing-up,
a unicycle balancing task, etc. Later it was published in more compact form at the
ICML conference (Deisenroth and Rasmussen, 2011) and in a journal (Deisenroth et al.,
2014). After creation of the basic PILCO algorithm, various related works have been
published.

PILCO was applied to a block-stacking task where a low-cost robotic arm manip-
ulator was used to stack toy blocks on top of each other (Deisenroth et al., 2011).
Feedback of the position was acquired using a cheap Kinect-style depth sensor. The
paper included a straight forward introduction of constraints to the path planning prob-
lem, by adding penalties into the cost function in regions where a collision would occur.
Adding this penalty not only greatly reduced collisions when moving the arm (close to
0), but also improved the block-stacking performance. Essentially, this is one of the
many demonstrations that a good reward/cost function can improve performance.

1.3 PILCO 13

The framework was applied to learn a single controller that would work for multi-
ple targets (Deisenroth and Fox, 2011). In this case the controller was a function of
both the state and the target. The method was successfully applied to the cart-pole
swing-up problem as well as block-stacking. The authors noted that typically methods
for blending local controllers together did not achieve the same performance as the
presented method.

The multiple target version was applied to solving a challenging throttle valve
control task (Bischoff et al., 2013). In addition to multiple targets, multiple start
locations were also used, and a controller to perform trajectory tracking was learned.
The work showed that PILCO can be applied to challenging real world problems in
industry.

PILCO was applied to learn a controller for legged locomotion (Deisenroth et al.,
2012). The experiments were done on a simulation of a biomechanical walker robot.
The paper included dimensionality reduction to reduce the state-space so as to allow
learning a controller more efficiently.

A mean function for the Gaussian process models was introduced to serve as a prior
belief of the dynamics (Bischoff et al., 2014). In the paper, they made linear predictions
of the position with the mean function, and used the deviation from this position as
the target for the GP. They applied it to simulations of a throttle valve, as well as on a
wheeled robot with a gripper performing an item fetching task, and achieved improved
performance, although the difference did not seem large.

PILCO has been extended to imitation learning (Englert et al., 2013). Essentially
in this work they set the cost function to the KL divergence between expert demon-
strations, and the predicted trajectory based on the GP models. They were able to
learn behavior to bounce a ball on a racket with a robotic arm.

A work which proves stability of controllers based on Gaussian process models was
published (Vinogradska et al., 2016). Before this work, there was no guarantee of
stability for controllers based on Gaussian process models. This may have deterred
people in industry from using such controllers, especially in safety critical situations.
This work made a step towards proving stability. In the work they dealt with uncertain
inputs by using Gaussian quadrature to perform forward predictions, instead of the
moment matching typically used in PILCO. They found that the trajectory distribution
is found more accurately by using this method.

Two works were presented at the data-efficient machine learning workshop at
ICML’16 (Gal et al., 2016; McAllister et al., 2016). The first replaces the Gaussian
process models in PILCO with bayesian neural networks, and achieves still good, but
slightly lower data-efficiency compared to PILCO (3–4 times slower). However, it
achieved better control performance in the end (lower cost of the trajectories). The
second work uses Bayesian optimization objectives such as expected improvement in-
stead of the usual cost in PILCO. As PILCO lacks explicit exploration such objectives
which trade off exploration and exploitation are an important area of research. The re-
sults in the paper online included a mistake (the authors told me at the conference they
had not used enough sample trajectories); however, at the workshop they presented
results that showed a slightly improved performance.

PILCO has also been extended to the partially observable case (McAllister and
Rasmussen, 2016). The work implements a way to optimize a policy while assuming

14 Background

that a filter will be applied during the trial. Typically control problems have noise, but
by using a filter one can over time achieve a better state estimate. If a filter is going
to be used during control, it is better to include this in the policy optimization as well,
and this work does just that.

In addition to these works, I also previously used the algorithm under the supervi-
sion of Carl Rasmussen, one of the key authors of the software. I successfully applied
it to a control problem involving swinging and balancing a pendulum on a cart while
measuring the position of the system using an inexpensive camera. I did this work as
part of my MEng Thesis, but the work has not been published. While Deisenroth and
Rasmussen (2011) had previously applied PILCO on the same system, while measuring
the state using the sensors in the apparatus, in my work, I had to overcome delayed
measurements from the camera. This could be done in a straight-forward manner by
appending previous control signals to the state space used for the model predictions.
Knowing the previously applied control signals, there is sufficient information to pre-
dict what the observation at the next time step will be. While this state space worked
for predictions, it was unsuitable for the controller. A controller could only be learned
when the previous control signals were not a part of the input to the controller.

In my own work, as well as in the literature, every small change to PILCO has
required extensive mathematical derivations, and modifications to the code—it is ap-
parent that PILCO has shortcomings, which I will explain in the following section.

1.3.4 Shortcomings of PILCO

Long computational time: While PILCO can solve some problems, such as cart-
pole swing-up using only 20s of data, the computational time between the trials can
total a few hours. This contrast shows a trade-off between high data-efficiency, and
computational efficiency. The main computational bottleneck is the optimization of the
policy between trials. This computation scales with O(N2(E+F)2E2), where N is the
number of data points, E is the dimensionality of the states that are predicted, and F is
the dimensionality of the control signal (McAllister, 2017). The quadratic scaling with
the number of data points is an issue, because with modern robots, which often operate
at control frequencies of 500Hz, it does not take much time for the amount of data to
become very large. This bad scaling can be lessened by using inducing point methods
(Quiñonero-Candela and Rasmussen, 2005), such as a FITC sparse approximation of
the Gaussian process, but this approximation has flaws (Bauer et al., 2016), and in
practice still has limited scalability.

An even bigger issue is the 4th order scaling with the dimension, which in practice
limits the use of PILCO to situations with fewer than around 20 dimensions. This bad
scaling could be tackled with dimensionality reduction, but it is a difficult problem as
of yet. Another option is to use only a part of the robot in a task—for example when
learning a task that involves moving the arms of a robot, it may not be important to
consider the state of the legs. However, none of these methods will help if the task is
fundamentally high-dimensional.

Restrictions to reward functions: In the standard PILCO setup, the reward func-
tions need to be known (although one could extend the method to learn the reward func-

1.3 PILCO 15

tion as well). Furthermore, the reward function is restricted to functions for which the
expectation can be computed analytically when the input is a Gaussian distributed ran-
dom variable. Such functions include arbitrary polynomials, sums of Gaussians, sums
of sinusoids—fortunately all of which are universal function approximators. While this
class of functions will suffice in many cases, it can be a restriction in some situations.

Restrictions to policy: Similarly to the reward functions, the policy output also
needs to be computable analytically when the input is a Gaussian distribution. This
restriction, for example could prohibit the use of neural network controllers, which are
very popular lately. As another example, differentiable model-predictive controllers
could not be used (Amos et al., 2018). In general, the creativity in choice of policy is
greatly restricted.

Restrictions to model and covariance functions: The model is also limited by
the requirement for analytic moment matching. This limits the covariance function of
the GP to Gaussians, polynomials, etc. PILCO has so far only been used with the
Gaussian kernel, which assumes smoothness of the dynamics—this assumption may
not be good in robotics in many cases. This restriction is a severe limitation as the
choice of model should be based on which model is the most accurate, and not dictated
by some analytic properties of the function.

Analytic moment matching can be a poor approximation: In PILCO, the
state-control distribution at each time step is estimated as a Gaussian distribution.
This moment matching can lead to compounding errors, and cause the estimation of
the state distribution to be poor. Figure 1.4 shows an example comparison between
trajectories predicted through Monte Carlo sampling, and through moment matching
in the cart-pole task. Even though the policy solves the task, and balances the pendu-
lum, the moment matching prediction-errors compound and the predicted trajectory
diverges. Such conservative predictions may lead to underperformance. Other re-
searches have also found that moment matching can be inaccurate: Vinogradska et al.
(2016) used quadrature for predictions, and found that it differs significantly from MM;
and Kupcsik et al. (2014) used particles, and also found that MM is inaccurate. For
example, if the task requires multi modal trajectory distributions, then it would be
impossible to solve if one uses moment matching approximations.

Lack of principled exploration: Finally, an issue with PILCO is its lack of a
principled approach to exploration. Currently PILCO simply optimizes the controller
to achieve the highest possible expected reward. In some situations it can happen
that the trajectory with the highest expected reward passes through regions which
are already completely explored. If the controller does not explore new regions in the
state space, it will not gain new information, which will prevent it from improving the
controller. It would be natural to use the uncertainty of the Gaussian process models
in an exploration scheme, where the policy would be promoted to seek regions in the
state space with a large variance. However, this is difficult to do in the original PILCO
framework, because the state distribution includes not just uncertainty from the

16 Background

10 20 30 40 50

2

3

4

5

6

7

8

9
Moment-matching trajectory prediction
Particle trajectory predictions
Real data from apparatus

Time step

Pe
nd

ul
um

 a
ng

le
 (r

ad
)

Figure 1.4: Moment-matching predictions can be vastly wrong. I compared the
predicted trajectory distribution from moment matching against a Monte Carlo particle
prediction for the same policy and model. The data was obtained from experiments on
a real cart-pole apparatus while I was visiting Carl Rasmussen’s lab at the University
of Cambridge.

model predictions, but also the variance in the trajectory caused by the controller—for
example even if the model were deterministic, a controller which inserts positive
feedback could make an initial Gaussian distribution diverge arbitrarily in time.
Increasing uncertainty in the state distribution may not be linked to exploring regions
in state space where the model is uncertain, so it would not be meaningful exploration.
The correct approach would be to decouple the different sources of uncertainty, and
use only the model uncertainty to promote exploration. Such ideas were explored
by McAllister et al. (2016); however, it is not straightforward with the analytic MM
computations in PILCO.

1.3 PILCO 17

Remark: Is moment matching really that bad?

Based on the above discussion, it seems that moment matching is a severe issue
limiting what can be done with PILCO. To balance out this discussion, I present
a few arguments for why moment matching may actually have been the key to
PILCO’s success. As previously argued by McHutchon (2014), in many robotics
tasks it is probably not necessary to plan a trajectory distribution with different
modes that are far apart (sometimes there can be multiple modes, such as when
a pendulum can fall either left or right from the top balanced position, but the
controller should not allow these modes to move far apart)—if the trajectory
diverges, it means that the controller is probably not performing well. Enforcing
unimodality may be providing a good prior to ease learning.
As another explanation: if multi modal distributions were allowed (e.g., the
prediction is bimodal at each time step), then representing the trajectory distri-
bution would require a number of parameters that is exponential in the length
of the trajectory. This exponential growth in the number of parameters is halted
by the moment matching, so it is not clear whether the moment matching is
a problem, or whether it is actually an important component, without which
learning would not be possible at the same data-efficiency

1.3.5 PILCO as a trajectory tracker

In this section I perform a derivation, which convinced me that moment matching is
too much of a restriction: I show that properties of moment matching essentially imply
that PILCO is learning linear trajectory tracking controllers. In particular, I show
that a time-varying linear controller (a separate linear controller for each time step)
can represent all achievable trajectories when moment matching is used. Basically, it
comes down to the fact that the MM predictions of the next state depend on a Gaussian
approximation of the state and control distribution at the current time step, and the
only purpose of the policy is to simply set the parameters of the covariance at each
time step. My claim can be stated more formally as:

Theorem 1 (PILCO is training trajectory trackers) For every moment match-
ing trajectory distribution prediction p (τ) achieved by a deterministic policy u =
π(x; θ), there exists a different time-varying affine policy u = πtracker(x, t; θ) = Atx+µt,
which achieves the exact same predicted trajectory distribution p (τ).
Proof:

Let the control-state distribution at a time step be given as[
x
u

]
∼ N

([
µx
µu

]
,

[
Σxx s
sT σ2

u

])
(1.1)

We can set s and σu to any values for which the covariance matrix stays a proper
covariance matrix—it must be positive semi-definite. I will show that a linear controller
can represent all of the admissible controllers (a Gaussian noise should be put on the

18 Background

control as well to shift σu around, but I am not sure whether there is any advantage
to such a non-deterministic controller in PILCO). The condition for positive semi-
definiteness is equivalent to there being a Cholesky decomposition, and the proof follows
easily from this idea. We can write

Σ =

[
Lx 0
lT n

] [
LTx l
0 n

]
(1.2)

where l and n are arbitrary parameters. We must find how these parameters relate to
s and σu. A simple multiplication gives s = Lxl and σ2

u = n2 + lT l.
Now, since we know the covariance, and the state, the control signal for a particular
state can be found based on the conditional distribution p (u|x). For a Gaussian
distribution we compute the mean of this conditional distribution as

u = µu + sTΣ−1
xx (x− µx)

=
(
µu − sTΣ−1

xxµx
)

+
(
sTΣ−1

xxx
) (1.3)

Notice that this is a linear controller u = Ax + a, where A = sTΣ−1
xx , and a =

µu−sTΣ−1
xxµx. Replacing s with Lxl we see that there is a one to one mapping between

a and l (because both Σs and Ls are positive-definite, hence invertible), and hence
a time-varying affine controller can represent all admissible trajectory distributions,
which concludes the proof.

Placing noise on the control action allows to also set n arbitrarily high. One could
compute the variance of the controller as σ2 = σ2

u− sTΣ−1
xx s. Replacing s with Lxl and

σ2
u with n2 + lT l, we see that σ2 = n2, and a deterministic controller corresponds to
n = 0.

The control law is equivalent to a trajectory tracker: ut = −At(zt − xt), where
−Atzt = a, and zt is the desired position. This derivation showed that PILCO is
essentially a trajectory optimizer, and it is only learning how to track a trajectory,
rather than learning the optimal actions in any given state. The most general form of
the algorithm can be achieved by using a time-varying linear controller, but the number
of parameters could be reduced by enforcing a shared controller between the different
time steps. While this trajectory tracking property can be lessened by employing
multiple start states in the optimization (Bischoff et al., 2013), the computational time
of PILCO grows linearly with each new start location. As the computational time of
PILCO is already long, this idea does not scale well.

1.3.6 How to overcome the challenges in PILCO?

I explained that PILCO has several shortcomings, and is even conceptually flawed: see
Section 1.3.5. All of these problems were linked to the moment matching requirement.
A straightforward idea to overcome this problem would be to use Monte Carlo sam-
pling instead of moment matching, which is illustrated in Figure 1.5. This has been
attempted before in PILCO (McHutchon, 2014), and it did not work, with the poor
performance attributed to local minima. In my thesis I found that the main prob-
lem was actually the method used for gradient computation. When using sampling it
becomes necessary to differentiate through the stochasticities. It would be natural to

1.3 PILCO 19

Position

V
el

oc
ity

(a) Analytic approximation

Position
(b) Particle approximation

Figure 1.5: One can either perform extensive mathematical derivations to analyt-
ically predict an approximate trajectory distribution, as done in PILCO, or use a
flexible particle approach to predict a stochastic approximation to the true trajectory
distribution.

use reparameterization gradients, as was attempted by McHutchon (2014); however,
I found that this did not work well. The problem is illustrated in Figure 1.6. There
are regions in the policy parameter space, where the reparameterization gradient vari-
ance explodes (Fig. 1.6a), and this is caused by chaotic properties of the dynamics
illustrated by fractal patterns in the input-output patterns (Fig. 1.6b). This kind of
problem is inherent to the dynamics of the task. I discuss the problem in more detail
in Chapter 4. The phenomenon highlighted that one has to consider which kinds of
gradient estimators are suitable for which kinds of situations, and it is not sufficient to
blindly apply backpropagation for computing gradients in every setting. In my thesis
I started with this specific problem in model-based RL, but I stumbled on a more gen-
eral question of appropriate gradient estimation. The next sections in my thesis will
explain my new insights into gradient estimators, and how these lead towards solutions
to the problem of poor gradients in model-based reinforcement learning. In Chapter 2
I will discuss gradient estimators through a single stochastic sampling operation, in
Chapter 3 I will discuss how to put these gradient estimators together in a graph of
computations, and finally in Chapter 4 I will return to this problem of gradients in
model-based RL, and show that even in such highly erratic scenarios, well-behaved
gradients can be estimated using my algorithms.

20 Background

0.5 1 1.5
-5

0

5

10

15

20

25

30
Reparameterisation gradient
True gradient from finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(a) Reparameterization gradients can fail

-0.15 -0.1 -0.05

3.35

3.4

3.45

28.2

28.4

28.6

28.8

Cart position

A
ng

le
 (r

ad
)

(b) Chaotic properties in dynamics

Figure 1.6: Reparameterization gradients can have extremely erratic behavior in some
regions of the policy parameter space (1.6a), and this is caused by inherent chaotic
properties of the dynamics as illustrated by fractal input-output patterns (1.6b).

Chapter 2

Gradient estimators through a
single sampling operation

The key task in policy gradient methods is estimating the gradient of an expectation
d
dθ
Ex∼p(x;θ) [φ(x)] w.r.t. the parameters of the sampling distribution. In this section I

discuss the foundations of estimators for such gradients in the setting when φ(x) is
considered as a single step computation, i.e. we do not know what computations φ(x)
performs internally; however, it may still be possible to query gradients of φ(x).

To give a concrete example of such algorithms, consider Evolution Strategies (ES)
(Salimans et al., 2017). In ES, x are the policy parameters w, and φ(w) is the fitness
or the sum of rewards for one episode φ(w) =

∑H
t=0 r(st), where s is the state.1 The

algorithm samples a set of policy parameters {wi}Pi=1, evaluates the performance of each
wi, by running one episode with each wi, i.e. it computes φ(wi). Then, ES estimates the
derivative of the expected fitness by using the likelihood ratio gradient, and optimizes
by gradient ascent. As another example, the variational autoencoder (Kingma and
Welling, 2013) estimates the derivative of the evidence lower bound by sampling and
using the reparameterization gradient to differentiate through the stochastic operation.

In both of the above examples φ(x) may be deterministic, and the expectation is
necessary only over a single stochastic computation x ∼ p (x; θ). Later, Chapter 3 will
explain how the estimators introduced in this section can be combined in a graph of
computations containing arbitrary stochastic and deterministic computations.

Previously (Sec. 1.1), I explained that the likelihood ratio and reparameteriza-
tion tricks are two methods to estimate the required gradients. The LR gradi-

ent derivation was: d
dθ
Ex∼p(x;θ) [φ(x)] =

∫ dp(x;θ)
dθ

φ(x)dx =
∫
p (x; θ)

dp(x;θ)
dθ

p(x;θ)
φ(x)dx =∫

p (x; θ) d log p(x;θ)
dθ

φ(x)dx = Ex∼p(x;θ)

[
d log p(x;θ)
dθ

φ(x)
]
. On the other hand, the RP gra-

dient was derived by defining a mapping g(ε; θ) = x, where ε comes from a fixed simple
distribution, but x behaves as a sample from the desired distribution. For example, for
a Gaussian distribution, g(ε; θ) = µ + σε, where ε ∼ N (0, 1) and θ = [µ, σ], then the

RP gradient becomes d
dθ
Ex∼p(x;θ) [φ(x)] = d

dθ
Eε∼N (0,1) [φ (g(ε))] = Eε∼N (0,1)

[
dφ(g(ε))
dθ

]
=

Eε∼N (0,1)

[
dg
dθ

dφ(g(ε))
dg

]
. In this equation, dg

dµ
= 1, dg

dσ
= ε and dφ(g(ε))

dg
= dφ(x)

dx
.

1Note that the states s may also be sampled from some initial distribution, but this just manifests
as additional noise in φ(w).

21

22 Gradient estimators through a single sampling operation

Such typical derivations are just mathematical tricks, and do not explain the mech-
anism behind the estimators. What is the meaning of these estimators? In this chapter,
I give a physical interpretation of these two tricks leading to an improved insight and
point towards methods to reduce LR gradient variance by importance sampling from
an optimal distribution.2

Reducing the variance of these gradient estimates is a central problem in this line
of work, because more accurate gradients lead to faster optimization. In addition to
my discussion about importance sampling, I also discuss prior methods of gradient
variance reduction, such as the use of control variates, known as baselines in the RL
literature (Greensmith et al., 2004). I give a new analysis, and explain that simply
trying to estimate the optimal baseline (Weaver and Tao, 2001) from the samples is
not the optimal use of the samples for variance reduction, and attempt to derive better
methods, which end up giving a slight improvement.

The chapter begins by explaining new interpretations of LR and RP estimators
(Sec. 2.1), then explains optimal importance sampling schemes to reduce LR gradient
variance (Sec. 2.2), evaluates importance sampling in experiments (Sec. 2.3) and finally
discusses baseline techniques (Sec. 2.4). The reader only interested in importance
sampling (Sec. 2.2) does not need to read the interpretations in Section 2.1 as the
theory is not strictly necessary, though I think it adds intuition and was my primary
motivation for deriving the importance sampling methods.

2.1 Interpretations of LR and RP gradients

2.1.1 A probability “boxes” view of LR and RP gradients

Here I give the first of my two explanations of the link between LR and RP gradients.
The explanation relies on a first principles thinking about the effect that changing the
parameters of a probability distribution θ has on infinitesimal “boxes” of probability
mass (Fig. 2.1). Both LR and RP are trying to estimate d

dθ

∫
p (x; θ)φ(x)dx. A typical

finite explanation of Riemann integrals is performed by discretizing the integrand into
“boxes” of size ∆x, and summing:

d

dθ

N∑
i=1

p (xi; θ) ∆xiφ(xi). (2.1)

Taking the limit as N →∞ recovers the true integral. In this equation,

∆pi = p (xi; θ) ∆xi (2.2)

is the amount of probability mass inside the “box”, and φ(xi) is the function value
inside the “box”. A finite approximation of the derivative w.r.t. θ can be performed by
perturbing by δθ, and estimating the change in the integral. When such a perturbation
is performed, depending on how the “boxes” are defined, we will end up with either
the RP gradient or the LR gradient.

2Note that my method differs from the typical use of importance sampling, where it is used for
reusing samples from other policies. I instead modify the sampling distribution to reduce the gradient
variance.

2.1 Interpretations of LR and RP gradients 23

(a) RP box (b) LR box

Figure 2.1: Comparing what LR and RP views do to the probability boxes.

RP: Such a view can be used to explain RP gradients. In this case, the boundaries
of the “box” are fixed with reference to the shape of the probability distribution, i.e.
for each i. I define the center of the box as xi = g(εi; θ), and the boundaries as
g(εi ± ∆ε/2; θ), where εi is the reference position on a fixed simple distribution p (ε).
Now, note that as θ is perturbed, the amount of probability mass assigned to each
“box” stays fixed at

∆pi = p (ε) ∆ε ; (2.3)

however, the center of the “box” moves, so the function value φ(xi) inside each “box”
changes by

δφi = φ (g(εi; θ + δθ))− φ (g(εi; θ)) = φ(xi + δxi)− φ(xi). (2.4)

The full derivative can then be expressed as

d

dθ
Ex∼p(x;θ) [φ(x)] ≈ 1

δθ

N∑
i=1

∆piδφi =
N∑
i=1

∆pi
δφi
δxi

δxi
δθ
. (2.5)

Taking the infinitesimal limit as N → ∞, and noting that ∆pi = p (xi; θ) ∆xi, we

obtain the RP gradient estimator
∫
p (x; θ) dφ(x)

dx
dx
dθ

dx. We see that the RP gradient
estimator essentially estimates the gradient by keeping the probability mass inside each
“box” fixed, but estimating how the function value φ inside the “box” changes as the
parameters θ are perturbed.

LR: The LR gradient, on the other hand, keeps the boundaries of the “boxes” fixed,
i.e. the center of the box is at xi, and the boundaries at xi ± ∆xi/2. Now, as the
boundaries are independent of θ, the function value φ(xi) inside the box stays fixed,

24 Gradient estimators through a single sampling operation

even as θ is perturbed by δθ; however, the probability mass inside the box changes,
because the density changes by

δpi = p (xi; θ + δθ)− p (xi; θ) . (2.6)

The full derivative can be expressed as

d

dθ
Ex∼p(x;θ) [φ(x)] ≈ 1

δθ

N∑
i=1

∆xiδpiφ(xi) =
N∑
i=1

p (xi; θ) ∆xi
δpi/δθ

p (xi; θ)
φ(xi). (2.7)

Where we have multiplied and divided by p (xi; θ). Taking the infinitesimal limit re-

covers the LR gradient
∫
p (x; θ)

dp(x;θ)
dθ

p(x;θ)
φ(x) dx = Ex∼p(x;θ)

[
dp(x;θ)
dθ

p(x;θ)
φ(x)

]
. The transfor-

mation p (x; θ)
dp(x;θ)
dθ

p(x;θ)
= p (x; θ) d log p(x;θ)

dθ
is known as the log-derivative trick, and it may

appear to be the essence behind the LR gradient, but actually the multiplication and
division by p(x; θ) is just a special case of the more general Monte Carlo integration
principle. Any integral

∫
f(x) dx can be approximated by sampling from a distribution

q(x) as
∫
f(x) dx =

∫
q(x)f(x)

q(x)
dx = Ex∼q(x)

[
f(x)
q(x)

]
. Rather than thinking of the LR

gradient in terms of the log-derivative term, we think it is better to think of it as simply
estimating the integral

∫ dp(x;θ)
dθ

φ(x) dx by applying the appropriate importance weights
to samples from p(x; θ). Thus, we see that in the discretized case, the LR gradient picks
q(x) = p (x; θ) (Jie and Abbeel, 2010) and performs Monte Carlo integration to ap-
proximate the integral 1

δθ

∑N
i=1 ∆xiδpiφ(xi) by sampling from P (xi) = ∆xip (xi; θ). To

summarize: LR estimates the gradient by keeping the boundaries of the boxes fixed,
measuring the change in probability mass in each box, and weighting by the function
value in the box: φ(xi)δp.

Sometimes, the LR gradient is described as being “kind of like a finite difference
gradient” (Salimans et al., 2017; Mania et al., 2018), but here we see that it is a
different concept, which does not rely on fitting a straight line between differences of φ,
but estimates how probability mass is reallocated among different φ values via Monte
Carlo integration by sampling from p (x; θ).

To highlight this point further, I show the concrete equations for the ES gra-
dient estimator, which is a type of LR gradient used in evolutionary computation.
The ES gradient estimator uses a Gaussian p (x; θ) and estimates d

dθ
Ex∼p(x;θ) [φ(x)] =

Ex∼p(x;θ)

[
d log p(x;θ)
dθ

φ(x)
]
. The gradient estimator is derived as

log p (x; θ) = −1

2
log(2π)− log(σ)− (x− µ)2

2σ2
,

d log p (x; θ)

dµ
=
x− µ
σ2

=
ε

σ
,

where x = µ+ εσ and ε ∼ N (0, 1).

(2.8)

ES uses antithetic sampling, i.e. it samples points x in pairs opposite to each other,
s.t. x+ = µ + σε and x− = µ− σε. The gradient estimator w.r.t. the mean parameter

averaged across the two samples becomes 1
2

(
ε
σ
φ(x+) + (−ε)

σ
φ(x−)

)
, which is

ε (φ(x+)− φ(x−))

2σ
. (2.9)

2.1 Interpretations of LR and RP gradients 25

Finite difference methods, on the other hand estimate the derivative by estimating
the change in φ:

dφ(x)

dx
≈ φ(x+)− φ(x−)

∆x
. (2.10)

In the antithetic sampling case, ∆x = 2σε, so the estimator is

dφ(x)

dx
≈ φ(x+)− φ(x−)

2σε
. (2.11)

This result is clearly different from the LR gradient estimator in Equation (2.9), as the
ε is in the wrong place.

To highlight the difference further, note that if φ is truly linear φ(x) = ax, then
the finite difference gradient will always exactly estimate the derivative as a; however,
the LR gradient has variance V

[
ε2aεσ

2σ

]
= V [ε2a] = E [ε4a2] = 3a2, which is non-

zero. While certainly, the likelihood ratio and finite difference gradient estimators
resemble each other, as both use the function values φ(x) to estimate the derivative, the
mechanism they use to perform this estimation is completely different, and I hope that
my explanation could lead to better gradient estimators combining the good properties
of both.

2.1.2 A unified probability flow view of LR and RP gradients

In this section, I give my second explanation of LR and RP gradients. The appeal of
this theory is that both LR and RP gradients come out of the same derivation, thus
showing a link between the two. In particular, I define a virtual incompressible flow of
probability mass imposed by perturbing the parameters of the probability distribution,
which can be used to express the derivative of the expectation as an integral over this
flow. LR and RP gradient estimators turn out to correspond to duals of this integral
under Stokes’ theorem.3 See Appendix B for basics about vector calculus and fluid
mechanics. Note that a similar theory was proposed by Jankowiak and Obermeyer
(2018), but their derivation and motivation are different. They focused on deriving new
RP gradient estimators, whereas I focused on LR gradient estimators, and the duality
between RP and LR. Their derivation does not perform a height reparameterization
(explained next), and instead requires that the flow continuity equation is satisfied. In
general I think that their derivation is quite sleek and practical in terms of deriving new
RP gradients; however, their boundary conditions can be confusing for non-physicists.
My derivation is more visual, gives a bit more insight, and has good symbiosis with
the importance sampling methods that I explain later in this chapter.

The main idea is similar to the RP trick, but in addition to reparameterizing the
sampled x location, I sample a height h from the uniform distribution for each point:
h = εhp (x; θ), where εh ∼ unif(0, 1). Thus, the sampling space is extended with an
additional dimension for the height x̃ = [xT , h]T , and I am uniformly sampling in the
volume under the curve defined by p (x; θ). The transformation g(εx) is redefined to

3Stokes’ theorem is the high-dimensional generalization of the divergence theorem, often used in
electrodynamics and fluid mechanics. It relates the flux in and out of a volume to the change in
density inside the volume.

26 Gradient estimators through a single sampling operation

−1.0 −0.5 0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
ro

b
ab

ili
ty

d
en

si
ty

Probability flow

Surface normals

(a) µ flow lines

−1.0 −0.5 0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
ro

b
ab

ili
ty

d
en

si
ty

Probability flow

Surface normals

(b) σ flow lines

Figure 2.2: Probability flow lines when µ and σ are perturbed.

g(εx, εh) = [g(εx)
T , εhp (x; θ)]T = x̃. Moreover, φ(x̃) := φ(x) does not depend on the

height h. The expectation turns into:

d

dθ

∫
p (x; θ)φ(x)dx =

d

dθ

∫
εx

∫
εh

p (εx) p (εh)φ (g(εx, εh)) dεxdεh

=

∫
V

∇x̃φ(x̃)∇θg(εx, εh)dV.

(2.12)

In Equation (2.12), V is the volume under the curve. The method somewhat resem-
bles rejection sampling. The expectation in the reparameterized integral is uniformly
sampling under the curve, so another way to express the probability density is 1/V ,
where V is the total volume. However, as the volume is determined by a probability
distribution, then V = 1, so the expectation is just the integral in the second line.
Each column i of ∇θg(εx, εh) corresponds to a vector field induced by perturbing the
ith component of θ. The red lines in Figure 2.2 show the induced flow fields for a
Gaussian distribution as the mean and variance are perturbed. The other member of
the integral ∇x̃φ(x̃) is the grad of the scalar field φ(x̃). As φ does not depend on the
height h, the grad will always be parallel to the x axes with magnitude dφ

dx
.

According to Stokes’ theorem, the volume integral in Equation (2.12) can be turned
into a surface integral over the boundary of the volume S (I use dS as a shorthand for
n̂dS, where n̂ is the surface normal vector). Stokes’ theorem states:∫

V

∇ · FdV =

∫
S

F · dS. (2.13)

In this equation, F is any vector field. A common corollary arises by picking
F = φv, where φ is a scalar field, and v is a vector field. I choose v = ∇θg(εx, εh)δθ,
where δθ is an arbitrary perturbation in θ, so that F = φ(x̃)∇θg(εx, εh)δθ, in which

2.1 Interpretations of LR and RP gradients 27

case ∇x̃ ·F = ∇x̃ · (φ(x̃)∇θg(εx, εh)δθ) = ∇x̃φ(x̃)∇θg(εx, εh)δθ+φ(x̃)∇x̃ ·∇θg(εx, εh)δθ.
Note that the term ∇θg(εx, εh)δθ corresponds to an incompressible flow (because the
probability density does not change at any point in the augmented space). As the
div of an incompressible flow is 0, then ∇x̃ · ∇θg(εx, εh)δθ = 0, and the second term
disappears. Noting that δθ can be cancelled, because it is arbitrary, we are left with
the equation: ∫

V

∇x̃φ(x̃)∇θg(εx, εh)dV =

∫
S

φ(x̃)∇θg(εx, εh)dS. (2.14)

Now I explain how the left-hand side of Equation (2.14) gives rise to the RP gradient
estimator, while the right-hand side corresponds to the LR gradient estimator. The
RP estimator follows quite easily, while the LR estimator is slightly more involved.

RP estimator: Consider the ∇x̃φ(x̃)∇θg(εx, εh) term. As the scalar field φ(x̃) is
independent of the height location h, the component of the grad in that direction is 0,
and φ(x̃) = φ(x). As the h-component is 0, then the value of g in the h-direction is mul-
tiplied by 0, and is irrelevant for the product, so ∇x̃φ(x̃)∇θg(εx, εh) = ∇xφ(x)∇θg(εx),
which is just the term used in the RP gradient estimator. Hence, the left-hand side of
Equation (2.14) corresponds to the RP gradient.

LR estimator: I will show that the LR estimator tries to integrate∫
S
φ(x̃)∇θg(εx, εh)dS. First, note that dS = n̂dS, and it is necessary to express the

normalized surface vector n̂. A sufficient condition for the normal vector is that it
should be perpendicular to two tangent vectors. I will find the vector perpendicular
to two tangent vectors, one that points downhill, and another one that points along
the contour line. To do so, I first express the tangent vector downhill t, then change
the height component of this vector to obtain a vector perpendicular to the tangent
vector. This vector will also be perpendicular to the tangent vector along the contour
by construction, and hence, it will be the normal vector.

The vector tangent and downhill to the surface is given by t = [−dp
dx
,−
(

dp
dx

) (
dp
dx

)T
].

The normal vector n is [−dp
dx

;h], such that t · n = 0. Therefore, h must be such that(
dp
dx

) (
dp
dx

)T − (dp
dx

) (
dp
dx

)T
h = 0 ⇒ h = 1. Finally, we normalize the vector:

n̂ = [−dp
dx
,1]/
√

(dp
dx)(dp

dx)
T

+1. (2.15)

Next, we perform a change of coordinates from the surface elements dS to cartesian
coordinates dx. When projecting a surface element dS with unit normal n̂ to a plane
with unit normal m̂, the projected area is given by dx = |n̂ · m̂| dS, therefore we need

dx = dS

∣∣∣∣∣∣ 1√
(dp
dx)(dp

dx)
T

+1

[−dp
dx
, 1] · [0, 1]

∣∣∣∣∣∣ = dS/
√

(dp
dx)(dp

dx)
T

+1, from which we get

dS =

√(
dp

dx

)(
dp

dx

)T
+ 1 dx. (2.16)

28 Gradient estimators through a single sampling operation

Plugging Equations (2.15) and (2.16) into the right-hand side of Equation (2.14)
we get

∫
X

φ(x̃)∇θg(εx, εh) ·
[−dp

dx
, 1]√(

dp
dx

) (
dp
dx

)T
+ 1

√(
dp

dx

)(
dp

dx

)T
+ 1 dx =

∫
X

φ(x̃)∇θg(εx, εh) ·
[
−dp

dx
, 1

]
dx

(2.17)

Recall that the last element of g(εx, εh) is εhp (g(εx); θ), and that εh at the bound-
ary surface is 1, then the ∇θg(εx, εh) · [−dp

dx
, 1] term turns into −∇θg(εx) · dp

dx
+

∂εhp(g(εx);θ)
∂θ

∣∣∣
εx=const,εh=1

. The last term ∂p(g(εx);θ)
∂θ

∣∣∣
εx=const

can be thought of as the rate

of change of the probability density while following a point moving in the flow in-
duced by perturbing θ. This quantity can be expressed with the material derivative
∂p(g(εx);θ)
∂θ

∣∣∣
εx=const

= dp(x;θ)
dθ

+∇θg(εx) · dp
dx

. Finally, substituting into Equation (2.17):∫
S

φ(x̃)∇θg(εx, εh) dS =

∫
X

φ(x)
dp (x; θ)

dθ
dx (2.18)

We have already seen that if one performs a Monte Carlo integration of the right-
hand side of Equation (2.18) using samples from p (x; θ), this gives rise to the LR
gradient estimator. Thus, the RP gradient estimator and the LR gradient estimator
are duals under Stokes’ theorem. To further strengthen this claim we prove that the LR
gradient estimator is the unique estimator that takes weighted averages of the function
values φ(x).

Theorem 2 (Uniqueness of LR gradient estimator) g = p (x; θ) d log p(x;θ)
dθ

is the
unique function g, s.t.

∫
g(x)φ(x) dx = d

dθ

∫
p (x; θ)φ(x) dx for any φ(x).

Proof: Suppose there exist g(x) and q(x), s.t.
∫
φ(x)g(x) dx =

∫
φ(x)q(x) dx

for any φ(x). Rearrange the equation into
∫
φ(x) (g(x)− q(x)) dx = 0, then pick

φ(x) = g(x) − q(x) from which we get
∫

(g(x)− q(x))2 dx = 0. Therefore g = q.
Q.E.D.

From this result, we see that Equation (2.18) was immediately clear by inspection
without having to go through the calculation, because we knew that it must equal
d
dθ
Ex∼p(x;θ) [φ(x)] by the construction based on reparameterization.

What happens if we perform the same kind of analysis for the RP gradient? Simi-
larly, suppose that there exist u(x) and v(x), s.t.

∫
∇φ(x) ·u(x) dx =

∫
∇φ(x) ·v(x) dx

for any φ(x). Rearrange the equation into
∫
∇φ(x) · (u(x)− v(x)) dx = 0. Then, if

we can pick ∇φ(x) = u(x) − v(x) it would lead to u = v, which would show the
uniqueness. However, it is not necessarily possible to pick such a φ(x). In particular,
the integral of ∇φ(x) over any closed path is 0, but this is not necessarily the case for
u − v. Therefore, the same kind of analysis does not lead to a claim of uniqueness.
Indeed, concurrent work (Jankowiak and Obermeyer, 2018) showed that there are an

2.2 Importance sampling for gradient estimators 29

infinite amount of possible reparameterization gradients, and the minimum variance is
achieved by the optimal transport flow.4

2.2 Importance sampling for gradient estimators

2.2.1 Slice integral importance sampling

From Theorem 2 we saw that unlike the RP gradient case, the weighting g for function
values φ(x) with x ∼ p (x; θ) to obtain an unbiased estimator for the gradient d

dθ
E [φ(x)]

is unique. The only option to reduce the variance by changing the weighting would then
be to sample from a different distribution q(x; θ) via importance sampling. Motivated
by the resemblance of the “boxes” theory in Section 2.1.1 to the Riemann integral, I
propose to sample horizontal slices of probability mass resembling the Lebesgue inte-
gral. Such an approach appears attractive, because if the location of the slice is moved
by modifying the parameters of the distribution (e.g., by changing the mean), then the
derivative of the expected value of the integral over the slice will depend only on the
value at the edges of the slice (because the probability density in the middle would not
change). To obtain the gradient estimator, it will only be necessary to compute the
probability density pL (x; θ). I derive such a “slice integral” distribution corresponding
to the Gaussian distribution. I call the new distribution the L-distribution, and it is
plotted in Figure 2.3b. I chose the naming based on the first letter of Lebesgue due to
the resemblance to the Lebesgue integral.

Derivation of the pdf of the L-distribution: One way to sample whole slices of
a probability distribution would be to sample a height h between 0 and pmax propor-
tionally to the probability mass at that height. The probability mass at a height h is
just given by 2|x− µ| where x is such that p (x;µ, σ) = h, i.e. 2|x− µ| is the distance
between the edges of p (x;µ, σ). The probability mass corresponding to x is then given
by 2|x− µ|dh. Performing a change of coordinates to the x-domain, and splitting the

mass between the two edges of the slice, we get |x− µ|dh = |x− µ|
∣∣∣dp(x;µ,σ)

dx

∣∣∣ dx. This

gives a closed-form normalized pdf for the L-distribution:

pL (x;µ, σ) = |x− µ|
∣∣∣∣dp (x;µ, σ)

dx

∣∣∣∣ = |x− µ|p (x;µ, σ)
|x− µ|
σ2

=
|x− µ|2√

2π σ3
exp

(−(x− µ)2

2σ2

) (2.19)

One can recognize that Equation (2.19) is actually just a Maxwell-Boltzmann dis-
tribution reflected about the origin with the probability mass split between the two
sides.

Sampling from the L-distribution: To sample from this distribution, it is neces-
sary to sample points proportionally to the length of the slices. It suffices to sample

4By minimum variance, I mean the minimum variance achievable if one does not assume any
knowledge of φ(x), or alternatively that ∇φ(x) ≈ 1.

30 Gradient estimators through a single sampling operation

uniformly in the area under the curve in the space augmented with the height dimen-
sion h, then select the slice on which the sampled point lies. This can be achieved
with the three steps: 1) sample a point from the base distribution: xs ∼ p (x;µ, σ), 2)
sample a height: h ∼ unif (0, p (xs;µ, σ)), 3) sample x from one of the two edges of the
slice at height h, i.e. sample from the set p−1(h;µ, σ) = {x : p (x;µ, σ) = h}, where
p−1(h) inverts the pdf, and computes the set of x that give a probability density h. For
the L-distribution, this can be achieved by sampling εx ∼ N (0, 1) and εh ∼ unif(0, 1)
and transforming these by the equation:

x = µ± σ
√
−2 log(εh) + ε2x (2.20)

Derivation of sampling method for L-distribution: I first derive the inverse of
the probability density p−1(h) as

h =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
log(h) = −1

2
log(2π)− log(σ)− (x− µ)2

2σ2

(x− µ)2 = −2σ2

(
1

2
log(2π) + log(σ) + log(h)

)
x = µ± σ

√
− log(2π)− 2 log(σ)− 2 log(h) .

(2.21)

Now, noting h = p(xs)εh, where εh ∼ unif(0, 1) and xs = µ + σεx, εx ∼ N (0, 1),
we end up with the sampling method:

x = µ± σ
√
− log(2π)− 2 log(σ)− 2 log

(
1√
2πσ

exp(−σ
2ε2x

2σ2
)εh

)
= µ± σ

√
−2 log(εh) + ε2x.

(2.22)

L-distribution LR gradient estimator: It is straightforward to obtain the LR gra-
dient estimator for the L-distribution by applying the appropriate importance weight
to dp

dµ
based on the probability density. Note that as previously shown, the pdf of the

L-distribution is qL(x) = |x− µ|
∣∣∣dp(x;µ,σ)

dx

∣∣∣, and that dp(x)
dµ

= −dp(x)
dx

, then we get

d

dµ
Ex∼p(x;θ) [φ(x)] = Ex∼qL(x)

[
dp
dµ

qL(x)
φ(x)

]
= Ex∼qL(x)

[
1

x− µφ(x)

]

= Ex∼qL(x)

[
sgn(x− µ)

σ
√
−2 log(εh) + ε2x

φ(x)

]
.

(2.23)

It is interesting to note, that this gradient estimator, has the form φ(x)
x−µ , so if an-

tithetic sampling is applied, it becomes φ(x+)−φ(x−)
∆x

, which has the same form as the
finite difference gradient estimator. Therefore, if φ(x) is linear, then this new estimator
will always compute the exact derivative with a single pair of samples; however, the

2.2 Importance sampling for gradient estimators 31

−4 −2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

P
ro

b
ab

ili
ty

d
en

si
ty

(a) Gaussian as reference

−4 −2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

P
ro

b
ab

ili
ty

d
en

si
ty

(b) L-distribution

−4 −2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

P
ro

b
ab

ili
ty

d
en

si
ty

(c) B-distribution

−4 −2 0 2 4
x

0.0

0.1

0.2

0.3

0.4
P

ro
b

ab
ili

ty
d

en
si

ty

(d) W-distribution

Figure 2.3: New importance sampling distributions to reduce likelihood ratio gradient
variance, described in Sections 2.2.1 and 2.2.2. The shaded regions are histograms gen-
erated with the direct sampling methods, and the solid lines are the analytic probability
densities. Both methods match, demonstrating the correctness of the derivations.

sampling distribution qL is adjusted such that the gradient estimator is unbiased for
arbitrary φ(x).

2.2.2 Slice ratio importance sampling

The derivation in Section 2.2.1 appeared quite ad hoc, and it is unclear whether it is a
good distribution to sample from in general. In this section I derive an optimal sampling
distribution to minimize the variance in the situation when we assume no knowledge
about φ(x). The concept of sampling the height introduced in the previous section
will prove useful in this derivation, and in fact the L-distribution turns out to be an
optimal distribution for a 2-dimensional Gaussian base distribution (the L-distribution
is also optimal in 1D if φ(x) is linear).

32 Gradient estimators through a single sampling operation

Optimal importance sampling for minimum variance: We seek a distribution
q(x), s.t. the variance of dp(x;θ)

dθ
φ(x)/q(x) is minimized. As φ(x) is not known a priori,5

we minimize the variance of dp(x;θ)
dθ

/q(x). The derivation is analogous to the standard
result for optimal importance sampling in statistics (Owen, 2013). The variance can

be expressed as
∫
q(x)

(
dp(x;θ)
dθ

q(x)

)2

dx. Adding in the constraint
∫
q(x) dx = 1 with

a Lagrange multiplier λ, and performing a variational optimization by setting the
derivative w.r.t. q to 0 we have:

d

dq

∫ q(x)

(
dp(x;θ)
dθ

q(x)

)2

dx+ λ

(∫
q(x) dx− 1

) = 0

−
(

dp(x;θ)
dθ

q(x)

)2

+ λ = 0 ⇒ q(x) =

∣∣∣∣dp (x; θ)

dθ

∣∣∣∣ /√λ .
(2.24)

From Equation (2.24) we see that the optimal importance sampling distribution is
proportional to the magnitude of the gradient of the base distribution. The questions
are then how to normalize this distribution, and how to sample from it? In general it
is difficult, but I derive methods for some special cases. In particular, for θ = µ is a
location parameter, I find a general method that works for any distribution p (x; θ) if
it is parameterized by a mean shifting parameter (i.e. the location family).

For a Gaussian, one can derive two possible distributions: one for µ and one for σ.
The derivative w.r.t. µ appears more important, so I derive it first. The derivation is
easily extended to location family distributions. Note that dp(x)

dµ
= −dp(x)

dx
(this holds for

all location family distributions), and recall that for the L-distribution in Section 2.2.1,

a transformation from the h-coordinate to the x-coordinate caused a
∣∣∣dp(x)

dx

∣∣∣ term. These

insights allow us to derive the distribution and a sampling method. Namely, to sample
from the distribution: 1) sample h ∼ unif(0, pmax), where pmax = p (µ;µ, σ) is the peak
probability density, 2) sample x from one edge of the slice p−1(h) = {x : p (x;µ, σ) = h}.
This process is illustrated in Figure 2.4 Putting these results together, one obtains the
probability density function, as well as a sampling method:

pB (x;µ, σ) =
|x− µ|

2σ2
exp

(−(x− µ)2

2σ2

)
x = µ± σ

√
−2 log(εh) where εh ∼ unif(0, 1)

(2.25)

I call the derived distribution the B-distribution, because the shape resembles a
sideways B, and it is plotted in Figure 2.3c. Similarly to how the L-distribution was
related to the Maxwell-Boltzmann distribution, the B-distribution is just the Rayleigh
distribution symmetrized about the origin. The full derivation is below.

5Note that other methods, such as adaptive importance sampling could be used to also take into
account for φ(x) when sampling multiple points, but here I focus on the non-adaptive case. Of course
adaptive methods could be combined with my methods to achieve even better performance.

2.2 Importance sampling for gradient estimators 33

Figure 2.4: Illustration of slice ratio sampling method.

Slice ratio gradient derivation for a Gaussian base distribution: The pdf is

p (x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (2.26)

The maximum probability density is at x = µ:

pmax =
1√
2πσ

. (2.27)

The probability density for the slice ratio distribution can be derived by performing
a change in coordinates from the h value to x. The probability mass at a slice dh split
between two sides is dh/2pmax, so

1

2pmax

dh =
1

2pmax

∣∣∣∣dpdx

∣∣∣∣ dx. (2.28)

From this we get

q(x) =

√
2πσ

2

∣∣∣∣ 1√
2πσ

exp

(
−(x− µ)2

2σ2

) −(x− µ)

σ2

∣∣∣∣
=
|x− µ|

2σ2
exp

(
−(x− µ)2

2σ2

)
,

(2.29)

which is the pdf in Equation (2.25).
To derive the sampling method, first, the inverse of the probability density p−1(h)

was previously provided in Equation (2.21) as

x = µ± σ
√
− log(2π)− 2 log(σ)− 2 log(h) . (2.30)

34 Gradient estimators through a single sampling operation

Now, noting h = pmaxεh, where εh ∼ unif(0, 1), we end up with the sampling
method:

x = µ± σ
√
− log(2π)− 2 log(σ)− 2 log

(
1√
2πσ

εh

)
= µ± σ

√
−2 log (εh) ,where εh ∼ unif(0, 1).

(2.31)

Optimal importance sampling distribution for d
dσ

: For completeness, I also
derive the optimal sampling distribution for the derivative w.r.t. σ. First note that
dp(x)
dσ

= σ d2p(x)
dx2

(this condition is specific to Gaussian distributions). This expression
means that if we apply the same height sampling concept as used for µ on the dis-

tribution proportional to
∣∣∣dp(x)

dx

∣∣∣, we would obtain samples with probability density

proportional to
∣∣∣d2p(x)

dx2

∣∣∣, and would hence be sampling from the desired distribution.

The required base distribution is just the B-distribution (Eq. 2.25), so I can perform
the required derivation. The result is given below:

pW (x;µ, σ) =

√
e

4σ

∣∣∣∣exp

(−(x− µ)2

2σ2

)(|x− µ|2
σ2

− 1

)∣∣∣∣
x = µ± σ

√
W (−ε2h/e) where εh ∼ unif(0, 1)

(2.32)

In the above equation, W (x) is the Lambert W function (Corless et al., 1996)—a
function s.t. z = W (zez). The solution for W is picked with equal probability from the
−1 and 0 branches of W , and the ± is also sampled randomly with equal probability.
Efficient implementations of W are available in common numerical computation pack-
ages, such as scipy (Jones et al., 01) or MATLAB. I call the result the W-distribution,
because the sampling method includes the W function, and the pdf is plotted in Fig-
ure 2.3d. To the best of my knowledge, this distribution does not exist in the literature.

Derivation of W-distribution: I first derive the probability density pW (x), then
the sampling scheme. The base distribution is pB (x), and I apply a transformation by
which I sample the height h, and transform this to a point x by using the inverse x ∼
p−1
B (h), and sampling uniformly between the x values that satisfy the equation, e.g. for

the B-distribution in Figure 2.3c there are usually 4 points for each h value. Therefore

dh = 1
4max(pB)

∣∣∣dpB(x)
dx

∣∣∣ dx and pW (x) = 1
4max(pB)

∣∣∣dpB(x)
dx

∣∣∣. The required derivative is

given by

∣∣∣∣dpB (x)

dx

∣∣∣∣ =
sgn(x− µ)

2σ2
exp

(−(x− µ)2

2σ2

)
− |x− µ|

2σ2
exp

(−(x− µ)2

2σ2

)
(x− µ)

σ2
(2.33)

Setting the derivative to 0 gives the locations of the peaks at x = µ±σ. Evaluating
pB (x) at these locations in Equation (2.25) gives the peak value as

max(pB) =
1

2σ
exp (−1/2) (2.34)

2.2 Importance sampling for gradient estimators 35

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

P
ro

b
ab

ili
ty

d
en

si
ty

Beta slice ratio distribution

Beta distribution

Figure 2.5: Slice ratio distribution for the Beta distribution with α = 1.5.

Combining these results gives the density in Equation (2.32). Deriving the sampling
method, requires inverting pB (x):

h =
|x− µ|

2σ2
exp

(−(x− µ)2

2σ2

)
, let t =

(x− µ)2

2σ2
, then

h =
t1/2

σ
√

2
exp (−t)

h2 =
t

2σ2
exp (−2t)

−4σ2h2 = −2t exp (−2t)

W
(
−4σ2h2

)
= −2t

(2.35)

Now recalling that h = pmaxεh, εh ∼ unif(0, 1), where pmax = 1
2σ

exp (−1/2)
from Equation (2.34), and plugging in the value of t, gives the sampling method in
Equation (2.32).

Slice ratio sampling for the symmetric Beta distribution: The slice ratio
sampling method is crucial in some situations. For example, consider a distribution
such as the symmetric Beta distribution (Fig. 2.5):

pβ (x) =
xα−1(1− x)α−1

B(α, α)
. (2.36)

When α tends to 1 from above, this distribution tends to the uniform distribution
between 0 and 1. Consider a distribution with the same shape, but where the mean
is shifted, s.t. it is symmetric about a parameter µ, instead of x = 1/2. In this case,

36 Gradient estimators through a single sampling operation

as α tends to 1, the variance of the gradient w.r.t. µ will tend to ∞, because
dpβ(x)

dµ
is

around 0 in most of the sampling range, but very large at the edges of the distribution.
I derived the optimal pdf, sampling method and gradient estimator:

pβR (x) =
α− 1

2× 0.25α−1
(x− x2)α−2|1− 2x|,

x = 0.5± 0.5

√
1− ε1/(α−1)

h where εh ∼ unif(0, 1),

d

dµ
Ex∼pβ(x) [φ(x)] = Ex∼q(x)

[
sgn(x− 0.5)

2× 0.25α−1

B(α, α)
φ(x)

]
, for α > 1.

(2.37)

For a shifted, stretched and centered distribution, replace x with k(x−0.5)+µ, and
the gradient estimator needs to be scaled down by k. For the base distribution to have
a variance σ2, set k to 2σ

√
2α + 1. Derivation: The variance of the Beta distribution

is given by α2

(2α)2(2α+1)
= 1

4(2α+1)
. We need k2 1

4(2α+1)
= σ2 ⇒ k = 2σ

√
2α + 1. The full

derivations for the gradient estimator are below.

Slice ratio gradient for a symmetric Beta distribution derivation: The pdf
is

pβ (x) =
xα−1(1− x)α−1

B(α, α)
=

(x− x2)α−1

B(α, α)
. (2.38)

The maximum probability density is at x = 0.5:

pmax =
0.25α−1

B(α, α)
(2.39)

Similarly to Equation (2.29), the pdf of the slice ratio distribution is q(x) = |dp
dx
|/2pmax:

q(x) =
B(α, α)

2× 0.25α−1

∣∣∣∣(x− x2)α−2

B(α, α)
(α− 1)(1− 2x)

∣∣∣∣
=

α− 1

2× 0.25α−1

∣∣(x− x2)α−2(1− 2x)
∣∣ , (2.40)

which is the pdf in Equation (2.37).

To derive the sampling method, first derive the inverse of the probability density
p−1(h) as

h =
(x− x2)α−1

B(α, α)

h
1/(α−1) =

(x− x2)

B(α, α)1/(α−1)

x2 − x+ (hB(α, α))
1/(α−1) = 0

x =
1

2
± 1

2

√
1− 4(hB(α, α))1/(α−1) .

(2.41)

2.2 Importance sampling for gradient estimators 37

Now, noting h = pmaxεh, where εh ∼ unif(0, 1), we end up with the sampling
method:

x =
1

2
± 1

2

√
1− 4

(
εh

0.25α−1

B(α, α)
B(α, α)

)1/(α−1)

=
1

2
± 1

2

√
1− ε1/(α−1)

h ,where εh ∼ unif(0, 1).

(2.42)

Multidimensional Gaussian Slice ratio gradient In multiple dimensions the
optimality equation in Equation (2.24) is still valid, but the method to derive the
normalized distribution and sampling method have to be modified. For simplicity, I
consider the case of optimal sampling for the derivative w.r.t. µ for a spherical Gaussian.
Motivated from the derivation for a single dimension, consider a method which would
sample a unit vector on a sphere for a direction r̂, as well as a height h, then invert the
distribution s.t. x = p−1(h, r̂), where p−1 is a function s.t. p (x) = h and x = rr̂, i.e., it
picks x in the direction r̂, which gives the desired probability density. The conversion

from the h-coordinate to the x-coordinate would still give the desired
∣∣∣dp(x)

dx

∣∣∣ term;

however, due to the change in the surface area as the radius r is increased, there is an
additional factor r−(D−1), where D is the dimensionality. In other words, the sampling
method has to be modified to cancel out this new factor, and the required distribution

must have the property: q(x) ∝ rD−1
∣∣∣dp(x)

dx

∣∣∣. For a Gaussian base distribution we get

q(x) ∝ rD exp(− r2

2σ2). The required distribution is the chi distribution:

q(z; k) =
1

2(k/2−1)Γ(k/2)
zk−1 exp

(
−z

2

2

)
where r = σz and k = D + 1. (2.43)

In fact, the Rayleigh distribution (corresponding to the B-distribution) is a special
case of this distribution for D = 1, and the Maxwell-Boltzmann distribution (cor-
responding to the L-distribution) is the case for D = 2. Note that if one performs
this sampling procedure, but while using D̃ = D − 1, then the sample comes exactly
from the original Gaussian distribution p (x;µ,Σ). This remark highlights that there
are diminishing returns to changing the sampling distribution as the dimensionality of
the space is increased, because the optimal sampling distribution tends to the original
Gaussian distribution. For this reason, I propose to sample each dimension separately
from the B-distribution, potentially allowing for a bias, but while reducing the variance
of the gradient estimator.

In general, I believe that such a technique will be necessary for other distributions
as well if the dimension grows high. To see this, consider the importance weighted
likelihood ratio gradient estimator for a factorized distribution p (x; θ) =

∏
i pi (xi; θi):

38 Gradient estimators through a single sampling operation

d

dθi
Ex∼p(x) [φ(x)] = Ex∼q(x)

[
p (x)

q(x)

d log p

dθi
φ(x)

]
= Ex∼q(x)

[
p\i
(
x\i
)
pi (xi)

q\i(x\i)qi(xi)

d log pi (xi)

dθi
φ(x)

]
,

where p\i is
∏
j 6=i

pj (xj; θj) .

(2.44)

While q can be modified to reduce the variance of pi(xi)
qi(xi)

d log pi(xi)
dθ

, this will increase

the variance of the
p\j(x\j)
q\j(x\j)

terms for j 6= i. If each qj is modified, then the variance

of these terms grows exponentially with the dimension, and any decrease in variance

from having modified qi becomes negligible. My proposed solution is to replace
p\j(x\j)
q\j(x\j)

with its expected value, which is 1. In practice, such a scheme may introduce a small
bias, but drastically reduce the variance. Next I show some fairly general conditions
under which this method still gives an unbiased gradient estimator.

A few sufficient conditions for an unbiased gradient estimator, when ig-
noring importance weights from other dimensions: First, I consider func-
tions of the form φ(x) =

∑D
i=1 φi(xi), and show that ignoring the importance

weights from dimension j 6= i for the derivative w.r.t. θi, still gives an un-

biased gradient estimator. Note that Exi∼q(xi)
[
p(xi)
q(xi)

d log p(xi;θi)
dθi

Exj∼q(xj) [φj(xj)]
]

=

Exi∼p(xi)
[

d log p(xi;θi)
dθi

Exj∼q(xj) [φj(xj)]
]

= 0, because Exi∼p(xi)
[

d log p(xi;θi)
dθi

Y
]

= d
dθi

E [Y] =

0, for Y statistically independent from xi, because the expected value of Y would not
change if the distribution of xi is changed. This result means that if the function φ
has a structure, such that different dimensions affect the function value independently,
then the gradient estimator will still be unbiased.

Next I show that even if the dimensions are not independent, in some cases
the gradient estimator is unbiased. Notably, for a quadratic function φ(x) =
aTx + xTQx + c, the gradient estimator will be unbiased. First note that the di-
agonal terms in the quadratic function are independent, so the gradient of that
portion of the cost will be unbiased based on the previous example. Next con-
sider the off-diagonal terms of xTQx, which are xiQijxj. Note that the distribu-
tions I considered, namely the B, W and L distributions were all symmetric about
the mean value µj. Therefore Exj∼q(xj) [Qijxj] = Exj∼p(xj) [Qijxj], and the deriva-

tive d
dθ
Exi∼p(xi)

[
xiExj∼q(xj)

[
p(xj)

q(xj)
Qijxj

]]
remains unchanged even if one ignores the

p(xj)/q(xj) importance weights, because Exj∼q(xj)
[
p(xj)

q(xj)
Qijxj

]
= Exj∼p(xj) [Qijxj] =

Exj∼q(xj) [Qijxj]. This result implies that if the variance of the distribution σ2 is small,
and φ is smooth, such that φ is roughly quadratic in the range of the sampling distri-
bution, then the gradient estimator will remain approximately unbiased.

Effect of greater variance of qi: Finally, I point toward another issue with mod-
ifying qi in Equation (2.44). The variance of qi may be larger than the variance of

2.2 Importance sampling for gradient estimators 39

pi, and this could manifest as a larger variance of φ(x), which would act as additional
noise on the other dimensions j 6= i. My proposed solution is to optimize the reduction
in gradient variance while constraining the variance of q. Assuming the mean µ = 0,
this can be performed using a variational optimization with an additional Lagrange
multiplier for

∫
q(x)x2dx = kσ2 analogously to Equation (2.24). The general equation

is derived below:

d

dq

∫ q(x)

(
dp(x;θ)
dθ

q(x)

)2

dx+ λ1

(∫
q(x) dx− 1

)
+ λ2

(∫
q(x)x2 dx− kσ2

) = 0

q(x) =

∣∣∣∣dp (x; θ)

dθ

∣∣∣∣ /√λ1 + λ2x2.

(2.45)

For a Gaussian p (x; θ), this equation can be solved (derivation in next section). I
call the result the truncated ratio gradient (TRRG). The pdf, sampling method and
gradient estimator are below:

ptr (x; c, µ, σ) =
exp(− c2

2
)

1− Φ(c)

1

σ2
√

2π

|x− µ|√
(x− µ)2 + σ2c2

exp

(
−(x− µ)2

2σ2

)
where Φ(c) is the cdf of a unit normal distribution,

x = µ± σ
√
ε2c − c2 where εc ∼ truncG(c,∞)

and truncG(a, b) is the unit normal truncated6between a and b,

d

dµ
Ex∼ptr(x) [φ(x)] = Ex∼q(x)

[
sgn(x− µ)

2εc
σ

1− Φ(c)

exp(− c2

2
)
φ(x)

]
.

(2.46)

This distribution interpolates between a Gaussian distribution and the B-
distribution. The interpolation is controlled by the c parameter: for c = 0 the
distribution is Gaussian, and for c → ∞ the distribution tends to the B-distribution.
One half of the distribution is plotted in Figure 2.6 for several values of c.

Derivation of truncated ratio distribution and gradient: The pdf ptr (x; c, µ, σ)
in Equation (2.46) satisfies the optimality Equation (2.45), therefore, as long as it is a
proper probability density, it is correct. I will show that the proposed sampling method
corresponds to this pdf.

Without loss of generality, let µ = 0. The pdf of εc is given by

p (εc) =
1√
2π

exp

(
−ε

2
c

2

)
1

1− Φ(c)
, between εc ∈ [c,∞]. (2.47)

6By truncated I mean that the probability density is set to 0 outside these bounds, and the
remaining probability distribution has to be renormalized. Such a distribution is implemented, e.g.,
in MATLAB and scipy (Jones et al., 01).

40 Gradient estimators through a single sampling operation

0 1 2 3 4 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
ab

ili
ty

d
en

si
ty

Figure 2.6: Truncated ratio distribution for c ∈ [0.01, 0.1, 0.3,0.5, 1.0, 2.0, 5.0]

Perform a change of coordinates from εc to x and account for the stretching due to
the Jacobian:

x = σ
√
ε2c − c2 ⇒ dx = σ

εc√
ε2c − c2

dεc, (2.48)

note that σεc =
√
x2 + σ2c2, so

x/σ√
x2 + σ2c2

dx = dεc, (2.49)

therefore

p (εc) dεc =
1√
2π

exp

(
−ε

2
c

2

)
1

1− Φ(c)

x/σ√
x2 + σ2c2

dx

=
1√
2π

exp

(
− x2

2σ2
+
c2

2

)
1

1− Φ(c)

x/σ√
x2 + σ2c2

dx

=
exp

(
− c2

2

)
1− Φ(c)

1

σ
√

2π

x√
x2 + σ2c2

exp

(
− x2

2σ2

)
dx.

(2.50)

This result is the desired probability distribution on the half-plane [0,∞]. It is
normalized by construction. Symmetrizing the distribution about 0, and shifting by a
mean parameter µ gives the desired result. The gradient estimator is easily derived by
dp
dθ/q.

Choosing the c parameter based on the expected accuracy: Figure 2.7b shows
how the accuracy of dp

dµ
/q, and the variance of the distribution scale with c (I name

these functions t(c) and v(c) respectively). These functions were computed analytically

2.2 Importance sampling for gradient estimators 41

0 1 2 3 4 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
ab

ili
ty

d
en

si
ty

(a) c ∈ [0.01, 0.1, 0.3,0.5, 1.0, 2.0, 5.0]

0 1 2 3 4 5
Offset parameter c

1.0

1.2

1.4

1.6

1.8

2.0

R
at

io
to

b
as

e
va

lu
e

Increase in variance of distribution

Increase in gradient accuracy

(b) t(c) in teal and v(c) in red

Figure 2.7: Scaling of truncated ratio gradient accuracy with the dimension (2.7b)
and the truncated ratio distribution for various c (2.7a).

(derivation in next section). How should one pick the parameter c? A simple choice
may be to pick c around 0.5, where the accuracy starts increasing slower than the
variance of the distribution. But is there a more principled method based on the
dimensionality?

I give a short analysis of the effect of the variance and guidelines for picking c. For
example, consider the case when φ(x) is linear with slope dφ

dx
= a in every dimension,

the dimensionality is D and the variance is scaled by vc, then the variance of φ(x)
would increase by a factor vc to a2σ2Dvc. The noise from the other dimensions would
scale as roughly vc(D − 1)a2σ2. However, the increase in accuracy tc counteracts this
increase in noise, and the gradient variance of this noise scales as (vc/tc)(D − 1)a2σ2.
Now if we assume that the gradient signal has a variance around a2σ2, and we want
to guarantee that the additional gradient noise from the other dimensions does not
exceed the maximum decrease in variance, then we could pick c s.t. (vc/tc−1)(D−1) ≈
1. In Table 2.1, I show several values of 1/(vc/tc − 1) and the expected increase in
accuracy tc, which can be used as a guideline for picking an appropriate c for the
dimensionality of your problem. One could also estimate the reduction in gradient
signal variance as (1− 1/tc)a2σ2 for a more conservative estimate of D, but in practice,
the reduction in gradient signal variance is greater than 1/tc because of structure in
φ(x). Specifically, φ(x) tends to increase further away from the mean value of x. This
increase means that more of the probability mass should be moved away from the
center, and consequently, the increase in accuracy tends to be larger than when one
does not assume anything about φ(x). In general, for deterministic problems it may be
be better to be conservative and aim for a smaller increase in accuracy with a smaller
c, whereas if φ(x) is stochastic, then the additional variance from other dimensions
may be negligible and higher c values can be used.

Analytic variance and gradient accuracy derivations: The variance is most
easily derived by working with the distribution on εc in Equation (2.47). Note that if
we symmetrize the distribution about 0, then the mean will be 0, and the variance can

42 Gradient estimators through a single sampling operation

Table 2.1: Guidelines for choosing the offset parameter c for the truncated ratio
gradient.

Suggested parameter c 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0
Dimension (D − 1) 4523 676 238 119 71 48 27 19

Exp. increase in accuracy t 1.076 1.144 1.204 1.257 1.302 1.341 1.402 1.447

be estimated as the expectation of x2 when sampling from half the distribution:

V [x] =

∫
x2p (εc) dεc =

∫
σ2(ε2c − c2)p (εc) dεc =

∫
σ2ε2cp (εc) dεc − σ2c2. (2.51)

So, we just need to find E [ε2c] = V [εc] + E [εc]
2. Denote N (x) = N (x; 0, 1) the unit

variance Gaussian distribution, and Φ(x) the cdf of the unit variance Gaussian, then
the mean and variance of the 0 mean truncated Gaussian between [c,∞] can be written

as E [εc] = N (c)
1−Φ(c)

and V [εc] = 1 + cN (c)
1−Φ(c)

−
(
N (c)

1−Φ(c)

)2

. Combining these two results:

E
[
ε2c
]

= 1 +
cN (c)

1− Φ(c)
. (2.52)

Hence, the variance is

v(c) = V [x] = σ2

(
1 +

cN (c; 0, 1)

1− Φ(c)
− c2

)
. (2.53)

Next, I derive the variance of the gradient term dp
dµ
/q. Note that this term is given

in Equation (2.46) as sgn(x− µ)2εc
σ

1−Φ(c)

exp(− c2
2

)
, so the variance is

V
[

dp

dµ
/q

]
= E

(2εc
σ

1− Φ(c)

exp(− c2

2
)

)2
 = E

[
ε2c
](2

σ

(1− Φ(c))

exp(− c2

2
)

)2

=

(
1 +

cN (c; 0, 1)

1− Φ(c)

)
4

σ2

(1− Φ(c))2

exp(−c2)
.

(2.54)

Finally, note that the gradient accuracy t(c) is defined as 1/V
[

dp
dµ
/q
]
.

2.3 Experiments with slice ratio gradients

I conduct experiments both on a simple problem to verify the theoretical results, as
well as on a larger evolution strategies problem to see the applicability of my methods.
The main result is that for a Gaussian distribution at best a modest improvement
is possible, so in practice it may not make much of a difference. However, for non-
Gaussian distributions, the improvement can be arbitrarily large, e.g., for the Beta
distribution with α = 1.5, the gradient accuracy was improved by 100–1000 times.

2.3 Experiments with slice ratio gradients 43

100 101 102 103

of dimensions

10−2

10−1

100

101

102

V
ar

ia
n

ce
of

gr
ad

ie
nt

GLR

SLRG

TRRG

BRG

BLR

(a) Deterministic

100 101 102 103

of dimensions

10−2

10−1

100

101

102

103

V
ar

ia
n

ce
of

gr
ad

ie
nt

GLR

SLRG

TRRG

BRG

BLR

(b) Noisy

Figure 2.8: Scaling of gradient estimator variance on a quadratic problem with de-
terministic and noisy function evaluations. The confidence intervals correspond to one
standard deviation of the estimate.

Even though I believe that it would be naive to think that Gaussians are good enough
for everything, non-Gaussian distributions have until now not found much use in rein-
forcement learning. I believe that my techniques will be necessary for using different
distributions.

2.3.1 Experiments to verify theoretical results

I performed experiments on a quadratic φ(x) to verify the theory. In this experiment,
I emphasize that the slice ratio gradient method is crucial for some non-Gaussian
distributions, e.g., for my example with a Beta distribution.

Setup: φ(x) is a quadratic (x−a)TQ(x−a), where a = 1 and Q = ones(D,D)/D2 is
a matrix of ones, which is scaled, such that φ(x) remains constant at x = 0. I evaluate
a deterministic case, as well as a case when Gaussian noise σ2

n = 1 is added on φ. I
vary the dimension between 1–1000, and plot the variance of the gradient estimators:
GLR—LR gradient with a Gaussian p(x); SLRG—slice ratio gradient with a Gaussian
p(x); TRRG—truncated ratio gradient with c = 0.5; BRG—slice ratio gradient with a
Beta p(x), and α = 1.5, plotted in Figure 2.5; BLR—LR gradient with a Beta p(x),
and α = 1.5. The mean of the distributions was set to 0 and the variance was set to
1 (the Beta distributions were stretched by k = 2σ

√
2α + 1 to achieve this). I used

antithetic sampling, so that the effect of any baseline could be ignored. The gradient
was estimated by averaging 100 samples, and this was repeated for a large number of
times to estimate the variance of the gradient estimator. Bootstrapping was used to
obtain confidence intervals. The results are plotted in Figure 2.8.

Results and analysis: The main result is that using the slice ratio method, the gra-
dient accuracy for the Beta distribution could be increased by 100–1000 times (compare

44 Gradient estimators through a single sampling operation

BRG to BLR), showing that my method is necessary for some non-Gaussian distribu-
tions. In general, the increase in gradient accuracy would tend to∞ as the α parameter
tends to 1 from above; however, even for moderately curved cases, such as α = 1.5
(Fig. 2.5) the improvement in accuracy can be drastic. This result arose from the fact
that likelihood ratio gradients are not suitable for discontinuous p (x; θ), as they would
give a biased gradient estimator. If p (x; θ) has sharp discontinuities, one could deal
with this by sampling at the discontinuous points; however, it is not clear what to do
when p (x; θ) is not completely discontinuous, but instead has sharp cliffs. Slice ratio
gradients would automatically solve the problem in both scenarios.

The results confirm my theoretical analysis: in the deterministic case, the SLRG
method outperforms the standard GLR method, but as the dimensionality is increased,
this reverses; whereas in the high-noise case, SLRG always outperforms GLR. In the
noisy case, the variances at D = 1000 are GLR: 10.10±0.05, SLRG: 6.46±0.03, TRRG:
7.73± 0.04, BRG: 4.14± 0.02 (the errorbars correspond to 1 standard deviation). The
ratios 10.10/6.46 = 1.563 and 10.10/7.73 = 1.307 match the theoretical improvements
in gradient accuracy for the SLRG gradient at large c in Figure 2.7b and for the TRRG
gradient at c = 0.5 in Table 2.1. In the deterministic case, the gradient variances at
D = 1000 are GLR: 0.0803± 0.0004, SLRG: 0.1015± 0.0005, TRRG: 0.0815± 0.0004,
BRG: 0.0864 ± 0.0004, showing that TRRG is more robust than SLRG to problems
arising from increasing the dimension, while it still allows reducing the variance in the
stochastic φ setting. Interestingly, BRG achieved a lower gradient variance than SLRG
in the deterministic setting, and was overall the best in the stochastic setting even
though the variances of the base distributions were the same.

2.3.2 Experiments in evolution strategies

Evolution strategies are a technique based on sampling in the parameter space of a
problem p (w; θ), and applying LR gradients to optimize the objective Ep(w;θ) [φ(w)].
For example w may be the parameters of a neural network policy in reinforcement
learning, and the objective is to find the distribution p (w; θ) over the parameters w
that gives the behavior with the largest expected reward. In this case, φ(w) would be
the return function for a particular parameter set w. One would first sample parameters
w, these would be kept fixed for one episode of the agent’s behavior, the behavior would
be evaluated based on a reward function, and the sum of the reward would be returned
to the algorithm as φ(w). LR gradients can be used to evaluate d

dθ
Ew∼p(w;θ) [φ(w)],

and the objective can be optimized directly using gradient ascent. I implemented my
new importance sampling schemes into David Ha’s Evolution Strategies code available
from https://github.com/hardmaru/estool (Ha, 2017) (note that my methods are not
available from the link yet), and tested my methods on cartpole swing-up and biped
walker tasks illustrated in Figure 2.9.

General setup: In all experiments I used spherical Gaussian base distributions
p (w; θ) for the GLR, SLRG and TRRG methods, while the sampling distributions
q(w) varied based on the importance sampling scheme. For BRG, I used a Beta base
distribution, and applied the Beta slice ratio gradient method. I used antithetic sam-
pling, i.e. I always sampled w in pairs, which are located opposite of each other in

2.3 Experiments with slice ratio gradients 45

the distribution. If such a scheme is used, then any constant baseline b (Greensmith
et al., 2004), which is subtracted from the φ(w) values will cancel out from the opposite
pairs, and the effect of such baselines can be ignored. I did not use weight decay. For
TRRG, c = 0.5, and for BRG, α = 1.1 in all cases. I used the RAIDEN CPU cluster at
RIKEN-AIP for the experiments. Biped tasks were run on 33 cores, and cartpole tasks
were run on 5 cores. All tasks were run for 2000 policy improvement iterations (gradi-
ent steps), and repeated for several different random number seeds (details in tables).
Because the samples from q(x) do not correspond to the objective Ep(x;θ) [φ(x)], I sep-
arately evaluated the performance by sampling from p (x; θ) after every 10 iterations.
Note that this was done only for evaluation purposes, and did not have any effect on
the learning.

Cartpole setup: State dimension: 5; Action dimension: 1; Policy: neural network
with one hidden layer with 10 neurons and tanh activations, total number of parameters
w: 71; Optimizer: basic stochastic gradient ascent with one learning rate parameter;
Number of samples per iteration: 32; Std σ of Gaussian: 0.5. In addition to the
standard cartpole task, I considered a setting where I artificially add noise onto the
φ(w) values to simulate a setting where the rewards can only be observed stochastically,
and test how my importance sampling methods cope with such noisy measurements.
There are additional details in the table and figure captions.

Biped walker setup: State dimension: 24; Action dimension: 4; Policy: neural
network with two hidden layers with 40 neurons each and tanh activations, total number
of parameters w: 2804; Optimizer: Adam (Kingma and Ba, 2014) with β1 = 0.99 and
β2 = 0.999; Number of samples per iteration: 256; Std σ of Gaussian: 0.04. I used
reward normalization (Mania et al., 2018), which is a technique to ensure that the scale
of the rewards stays roughly constant by normalizing these with the standard deviation
of the sampled returns φ, i.e. φ(wi) is replaced with φ(wi)/V [φ(w)], where V [φ(w)] is
the sample variance of the φ values. This appeared to perform better for GLR than
rank standardization as used in (Salimans et al., 2017).7

Results: The results are in the tables and figures. The errorbars in the tables cor-
respond to the sample standard deviation (so divide by the square root of the sample
size to obtain a confidence interval), while the errorbars in the figures are already the
standard deviation of the mean. The results act as a sanity check and show that my
methods do work, while as expected the difference with standard GLR is small, because
the improvement in accuracy is only modest (up to around 1.56 times), especially for
high-dimensional sampling spaces. The experiments also show that SLRG can indeed
have trouble with systems with a low stochasticity, e.g., the cartpole. The results also
confirm that my methods reduce gradient variance in stochastic settings.

7Rank standardization computes the ranks of each sample, e.g. the largest value is changed to 1,
the second largest to 2 and so on. Then the ranks are divided by the total number of samples and
shifted such that the mean is zero.

46 Gradient estimators through a single sampling operation

Table 2.2: Cart-pole swing-up and balancing, no added noise, 32 samples per batch,
SGD optimizer, average reward over whole training run, 10 experimental runs for each
setting

Learning rate 0.001 0.003 0.005 0.008 0.01

GLR 492.7 ± 15.6 694.4 ± 43.2 716.9 ± 77.4 792.6 ± 31.9 782.9 ± 43.1
SLRG 439.0 ± 12.2 580.3 ± 51.4 664.9 ± 55.2 763.2 ± 52.1 747.4 ± 72.7
TRRG 464.1 ± 5.6 676.6 ± 52.4 771.2 ± 31.7 809.5 ± 21.7 747.9 ± 102.1

Table 2.3: Cart-pole swing-up and balancing, no added noise, 32 samples per batch,
SGD optimizer, average reward of last 100 parameter values, 10 experimental runs for
each setting

Learning rate 0.001 0.003 0.005 0.008 0.01

GLR 596.7 ± 39.7 881.2 ± 15.3 840.1 ± 103.2 904.4 ± 3.4 889.6 ± 47.4
SLRG 548.8 ± 7.6 723.1 ± 133.8 845.4 ± 82.0 887.0 ± 57.0 895.8 ± 24.7
TRRG 561.8 ± 16.0 867.1 ± 67.4 901.1 ± 3.5 905.8 ± 1.4 840.0 ± 136.0

Table 2.4: Cart-pole swing-up and balancing, 90 added noise standard deviation,
32 samples per batch, SGD optimizer, average reward over whole training run, the
number of experimental runs for GLR, SLRG, TRRG were [10,10,50,50,10] for the
learning rates from left to right respectively, and 20 runs for BRG in all cases.

Learning rate 0.001 0.003 0.005 0.008 0.01

GLR 519.4 ± 36.9 668.1 ± 72.6 702.7 ± 66.3 690.3 ± 60.8 637.4 ± 42.8
SLRG 459.7 ± 10.4 608.5 ± 51.2 668.9 ± 70.8 710.5 ± 62.6 696.1 ± 64.9
TRRG 485.5 ± 8.0 658.0 ± 64.7 708.1 ± 64.8 699.2 ± 73.7 682.8 ± 71.4

BRG 409.1 ± 12.5 531.3 ± 16.4 600.8 ± 54.4 662.7 ± 70.6 723.0 ± 67.6

Table 2.5: Cart-pole swing-up and balancing, 90 added noise, 32 samples per batch,
SGD optimizer, average reward of last 100 parameter values, the number of experi-
mental runs for GLR, SLRG, TRRG were [10,10,50,50,10] for the learning rates from
left to right respectively, and 20 runs for BRG in all cases.

Learning rate 0.001 0.003 0.005 0.008 0.01

GLR 639.2 ± 81.6 807.6 ± 101.2 834.0 ± 82.8 810.2 ± 91.2 729.2 ± 103.8
SLRG 552.0 ± 5.9 771.0 ± 115.8 810.4 ± 108.9 845.1 ± 74.2 815.0 ± 83.3
TRRG 574.1 ± 21.4 818.1 ± 107.8 837.0 ± 86.0 814.0 ± 99.1 794.6 ± 121.0

BRG 535.8 ± 8.9 626.6 ± 69.9 736.8 ± 123.0 792.7 ± 115.0 873.5 ± 66.3

2.3 Experiments with slice ratio gradients 47

(a) Cartpole swing-up task (b) Biped walker task

Figure 2.9: Environments used in evolution strategies experiments.

Table 2.6: Biped walker, 256 samples per batch, each parameter sample averaged over
4 episodes, Adam optimizer, reward scaled by standard deviation of rewards, average
reward of whole training run, the number of experimental runs were [20,60,40,40,20]
for the learning rates from left to right respectively

Learning rate 0.005 0.01 0.015 0.02 0.04

GLR 14.6 ± 30.0 223.2 ± 62.1 264.2 ± 45.7 253.0 ± 51.6 260.9 ± 56.6
TRRG 31.6 ± 42.7 230.0 ± 39.5 250.2 ± 43.9 257.4 ± 46.0 251.2 ± 45.5

Table 2.7: Biped walker, 256 samples per batch, each parameter sample averaged
over 4 episodes, Adam optimizer, reward scaled by standard deviation of rewards,
average reward of last 100 parameter values, the number of experimental runs were
[20,60,40,40,20] for the learning rates from left to right respectively

Learning rate 0.005 0.01 0.015 0.02 0.04

GLR 38.4 ± 92.2 390.4 ± 61.5 376.6 ± 48.6 345.5 ± 63.4 347.9 ± 63.0
TRRG 104.1 ± 154.2 394.0 ± 34.1 363.3 ± 58.3 353.8 ± 62.3 352.5 ± 63.1

48 Gradient estimators through a single sampling operation

0 500 1000 1500 2000
Iteration

0

200

400

600

800

C
u

m
u

la
ti

ve
re

w
ar

d

GLR

SLRG

TRRG

(a) Learning performance

0 500 1000 1500 2000
Iteration

0

50000

100000

150000

200000

G
ra

d
ie

nt
va

ri
an

ce

GLR

SLRG

TRRG

(b) Gradient variance

Figure 2.10: Cart-pole swingup, no noise, learning rate: 0.008 for all methods, error-
bars show 1 standard deviation of the mean, TRRG’s c = 0.5.

0 500 1000 1500 2000
Iteration

0

200

400

600

800

C
u

m
u

la
ti

ve
re

w
ar

d

GLR

SLRG

TRRG

BRG

(a) Learning performance

0 500 1000 1500 2000
Iteration

50000

100000

150000

200000

G
ra

d
ie

nt
va

ri
an

ce

GLR

SLRG

TRRG

BRG

(b) Gradient variance

Figure 2.11: Cart-pole swingup; noise with std 90 added on cumulative reward;
learning rates: GLR: 0.005, SLRG: 0.008, TRRG:0.005, BRG:0.01; errorbars show 1
standard deviation of the mean, BRG’s α = 1.1, TRRG’s c = 0.5.

0 500 1000 1500 2000
Iteration

0

100

200

300

400

C
u

m
u

la
ti

ve
re

w
ar

d

GLR

TRRG

(a) Learning rate: 0.01

0 500 1000 1500 2000
Iteration

0

100

200

300

400

C
u

m
u

la
ti

ve
re

w
ar

d

GLR

TRRG

(b) Learning rate: 0.015

0 500 1000 1500 2000
Iteration

600

800

1000

1200

1400

1600

G
ra

d
ie

nt
va

ri
an

ce

GLR

TRRG

(c) Learning rate: 0.01

Figure 2.12: Biped walker; errorbars show 1 standard deviation of the mean, each
parameter sample averaged over 4 episodes, TRRG’s c = 0.5.

2.3 Experiments with slice ratio gradients 49

0 500 1000 1500 2000
Iteration

0

100

200

300

400

C
u

m
u

la
ti

ve
re

w
ar

d

GLR

TRRG

(a) Average results

0 500 1000 1500 2000
Iteration

0

100

200

300

400

C
u

m
u

la
ti

ve
re

w
ar

d
GLR

TRRG

(b) Raw data

Figure 2.13: Biped walker; learning rate: 0.01, errorbars show 1 standard devia-
tion of the mean, each parameter sample from 1 episode, 40 random number seeds,
TRRG’s c = 0.5; the final reward was bimodal, and while TRRG learned faster, more
experiments converged to the lower local minimum.

50 Gradient estimators through a single sampling operation

2.4 Baseline techniques for variance reduction

In this section I discuss another more typical method for likelihood ratio gradient
variance reduction: baseline techniques. The basic idea is that subtracting a baseline
b from the samples φ reduces the gradient variance without introducing any bias. I
discuss two common fallacies in some prior works. Both fallacies arise from the fact
that often b is estimated from data. The first fallacy is that if b is estimated from data,
then the gradient estimator may in fact become biased. The second fallacy is about
optimal baselines (Weaver and Tao, 2001)—the process of simply trying to estimate the
optimal baseline from data does not lead to the optimal gradient estimating technique,
because of variance in estimating the baseline itself.

2.4.1 Preliminaries: Optimal baseline

The LR gradient estimator on its own has a large variance, and techniques must be
used to stabilize it. A common technique is to subtract a constant baseline b from the
φ(x) values, so that the gradient estimator becomes

d

dθ
Ex∼p(x;θ)

[
d log p (x; θ)

dθ
(φ(x)− b)

]
. (2.55)

In practice, using b = Ex∼p(x;θ) [φ(x)] works well, but one can also derive an optimal
baseline (Weaver and Tao, 2001). I outline the derivation below. The gradient variance
when a baseline is used can be expressed as

Vx∼p(x;θ)

[
d log p (x; θ)

dθ
(φ(x)− b)

]
=

Ex∼p(x;θ)

[(
d log p (x; θ)

dθ
φ(x)

)2
]

−2Ex∼p(x;θ)

[(
d log p (x; θ)

dθ

)2

φ(x)b

]
+Ex∼p(x;θ)

[(
d log p (x; θ)

dθ
b

)2
]
.

(2.56)

Taking the derivative of Equation (2.56) w.r.t. b and setting to zero gives the optimal
baseline as

bopt =

Ex∼p(x;θ)

[(
d log p(x;θ)
dθ

)2

φ(x)

]
Ex∼p(x;θ)

[(
d log p(x;θ)
dθ

)2
] . (2.57)

In practice, for example if φ(x) is linear and p (x; θ) is a Gaussian distribution then
bopt = Ex∼p(x;θ) [φ(x)], so the gain from trying to use an optimal baseline is often small.
What would happen to the optimal baseline derivation for my importance sampling
case (Sec. 2.2.2)? The derivation in Equation (2.56) has to be modified such that the

2.4 Baseline techniques for variance reduction 51

sampling distribution p (x; θ) is changed to q(x), and d log p(x;θ)
dθ

is changed to
dp(x;θ)
dθ /q(x),

giving an analogous optimal baseline (Jie and Abbeel, 2010) as

bopt =

Ex∼q(x)

[(
dp(x;θ)
dθ /q(x)

)2

φ(x)

]
Ex∼q(x)

[(
dp(x;θ)
dθ /q(x)

)2
] . (2.58)

Note that if the slice ratio distribution is used, then the optimal baseline takes a

particularly convenient form: q =
∣∣∣dp(x;θ)

dθ

∣∣∣ /√λ, and bopt = Ex∼q(x) [φ(x)].

2.4.2 Bias in gradient estimator with an estimated baseline

It is well known that a constant baseline b can be subtracted from the φ(x) values
without affecting the expected value, while reducing the variance of the estimate. To

see this, note that E
[

d log p(x;θ)
dθ

b
]

= d
dθ
E [b] = 0. However, an often neglected fact is

that if the baseline b is estimated from the data, this may add a bias. Consider the
case of using a baseline b = E [φ(x)]. The estimator E(X), where X is a vector of the
samples xi, for d

dθ
E [φ(x)] while using N samples is given below.

E(X) =
1

N

N∑
i=1

d log p (xi; θ)

dθ

(
φ(xi)−

N∑
j=1

φ(xj)

N

)
. (2.59)

It is easy to see that this estimator will be biased for finite N . For example if one

considers N = 1, the estimator will always be 0! Now note that E
[

d log p(xi)
dθ

φ(xj)
]

= 0,

for i 6= j, if we assume independent samples, and E
[

d log p(xi)
dθ

φ(xi)
]

= d
dθ
E [φ(x)] is an

unbiased estimate of the gradient. Then the expected value of this estimator can be
written with the equation:

E [E(X)] =
1

N

N∑
i=1

E

[
d log p(xi)

dθ

(
φ(xi)

N − 1

N
+

N∑
j 6=i

φ(xj)

N

)]

=
1

N

N∑
i=1

(
E
[

d log p(xi)

dθ

(
φ(xi)

N − 1

N

)]
+ E

[
d log p(xi)

dθ

(
N∑
j 6=i

φ(xj)

N

)])

=
N − 1

N

dE [φ(x)]

dθ
.

(2.60)
The derivation in Equation (2.60) shows that one can obtain an unbiased estimator

by simply rescaling the estimator by N/(N −1). In other words, using the mean of the
samples as a baseline changes the expected magnitude of the gradient estimate, but
does not change the expected direction of the gradient. For example, previous work
suggested estimating two sets of samples, and using one set as a baseline for the other
(Tangkaratt et al., 2014), to obtain an unbiased gradient estimator, but my analysis
shows that such a method is inefficient, because it wastes half of the samples, and the

52 Gradient estimators through a single sampling operation

gradient estimator has an unbiased direction even if the whole set is used. Such a bias
in the magnitude of the gradient is equivalent to a change in the learning rate of the
stochastic gradient procedure, so it is unimportant.

What happens if we use a non-uniform weighting for the returns when estimating
the baseline? Consider only the contribution to the estimator from the baseline:

E

[
1

N

N∑
i=1

d log p(xi)

dθ

(
−
∑N

j=1 w(xj)φ(xj)∑N
j=1w(xj)

)]
. (2.61)

Now, take a step back, and consider just the expected value of the baseline, not the
gradient. Define p(X) = p(x1)p(x2)...p(xN), pi(X−i) = p(x1)...p(xi−1)p(xi+1)...p(xN)
and wi(X) = w(xi)/

∑N
j=1 w(xj). One can write the expected value as below.

E

[∑N
j=1 w(xj)φ(xj)∑N

j=1w(xj)

]
=

∫
X

p(X)
N∑
j=1

wj(X)φ(xj)dX

= N

∫
X

p(X)w1(X)φ(x1) dX

= N

∫
x

p(x1)φ(x1)

(∫
X−1

p1(X−1)w1(X) dX−1

)
dx1

= N

∫
x

p(x1)φ(x1)f(x1) dx1 .

(2.62)

The second line follows from symmetry, and the remaining lines integrate out vari-
ables other than x1. The function f(x1) is the expected normalized weight assigned
to a sample at x = x1. One can see that this will equal E [φ(x)] for a general φ(x) iff
f(x1) = 1/N (for example setting φ(x) = δ(x−x1) to the Dirac delta function will give
this result).8 Note that the expected weight is independent of xi, so w(xi) = const,
which corresponds to the mean baseline. For f(xi) 6= 1/N this will be the expectation
of a different function E [φ(x)f(x)]. What would this imply about the gradient? Before
giving an answer let me introduce a useful trick for explaining such situations.

8The Dirac delta function δ(z) is a function, s.t. δ(z) = 0 for z 6= 0, and
∫ b

a
δ(z) dz = 1 iff 0 lies

between a and b.

2.4 Baseline techniques for variance reduction 53

Remark: Fixing trick

Consider evaluating the gradient of an expectation in the form
d
dθ

∫
p(x; θ)f(x; θ) dx. Usually this will equal

∫ dp(x;θ)
dθ

f(x; θ) dx +∫
p(x; θ)df(x;θ)

dθ
dx, and this leaves it unclear what the component∫ dp(x;θ)

dθ
f(x; θ) dx is equal to. The fixing trick allows to rewrite this term, as a

partial derivative of an expectation. We proceed as follows:

1. Instead of f(x; θ), consider f(x; θ′), where θ′ = θ.

2. Take the partial derivative, while keeping θ′ constant.

3. Write ∂
∂θ

∣∣
θ′

∫
p(x; θ)f(x; θ′)dx =

∫ ∂p(x;θ)
∂θ

∣∣∣
θ′
f(x; θ′) dx +∫

p(x; θ) ∂f(x;θ′)
∂θ

∣∣∣
θ′

dx =
∫ ∂p(x;θ)

∂θ

∣∣∣
θ′
f(x; θ) dx, where the last line

follows because ∂f(x;θ′)
∂θ

∣∣∣
θ′

= 0, as θ′ is kept constant, and because

f(x; θ′) = f(x; θ).

This trick is useful in some of the derivations that I have provided.

Next, I apply the fixing trick to explain which derivative the biased gradient will
correspond to. Write w(xi) = w(xi; θ2) with θ2 = θ. Then the likelihood ratio gradient
is given by:

E

[
1

N

N∑
i=1

d log p(xi)

dθ

(∑N
j=1w(xj)φ(xj)∑N

j=1w(xj)

)]

= E

[
1

N

d log p(X)

dθ

(∑N
j=1 w(xj)φ(xj)∑N

j=1w(xj)

)]

=
∂

∂θ

∣∣∣∣
θ2=const

(
E

[
1

N

(∑N
j=1w(xj)φ(xj)∑N

j=1 w(xj)

)])

=

∫
p(x1)

d log p(x1)

dθ
φ(x1)f(x1; θ2) dx1 .

(2.63)

This is the gradient of the expected value of the function φ(x)f(x; θ2), while keeping
θ2 = const. Similarly to the case with the expectation, one can show that this will equal
the gradient of E [φ(x)] for arbitrary φ(x) if and only if f(x) = 1, and the direction will
be unbiased only if f(x) does not depend on x, which would imply that w(x) = const.
The derivation shows that if one estimates a baseline by a weighted average of all of
the samples, the only baseline that will keep the direction of the gradient unbiased for
general reward functions is the mean of the sample returns.

However, there is an easy fix to this problem. Consider estimating a separate
baseline bi for each point xi, using all of the other points xj|j 6= i. Let Z be an

arbitrary random variable, then as E
[

d log p(xi)
dθ

Z
]

= 0 if d log p(xi)
dθ

and Z are statisti-

cally independent, the method of estimating the baseline for one sample using other
statistically independent samples will provide a baseline without biasing the gradient.

54 Gradient estimators through a single sampling operation

The additional computational cost will usually be negligible. Estimating N separate
baselines for each of the N samples can be evaluated efficiently using roughly 3 times
the amount of operations as is needed to estimate a single baseline by first evaluating
the sums A =

∑N
i=1w(xi) and B =

∑N
i=1w(xi)φ(xi), then evaluating each baseline

bi = (B − w(xi)φ(xi))/(A− w(xi)). This debiasing technique was previously given by
Mnih and Rezende (2016), and I independently rediscovered it. One difference is that
they did not provide the analysis of the magnitude of the bias or the other analyses I
performed.

The optimal baseline is given by
E
[
(
d log p(xi)θ

d)

2
φ(xi)

]
E
[
(
d log p(xi)

dθ
)2
] , so one might be tempted to think

that the optimal way to estimate a baseline would be to use the above trick of using all
but one sample to estimate a separate “optimal baseline” for each sample. However, I
will show next that this is suboptimal.

2.4.3 Effect of the variance of the baseline estimator

The previous derivations have ignored the fact that b is estimated from data, hence
it is itself also a random variable. I give a derivation that considers this below. In
the below derivation, I assume that the leave-one-out technique is used, so that b can
be considered statistically independent from d log p(x;θ)

dθ
. Moreover, I ignore covariance

terms between different samples. The derivation is illustratory to highlight the concept.

V
[

d log p(x)

dθ
(φ(x)− b)

]
=

E

[(
d log p(x)

dθ
(φ(x)− b)

)2
]
− E

[
d log p(x)

dθ
(φ(x)− b)

]2

=

E

[(
d log p(x)

dθ

)2

φ(x)2

]
− 2E

[(
d log p(x)

dθ

)2

φ(x)

]
E [b] + E

[(
d log p(x)

dθ

)2
]
E
[
b2
]

− E
[

d log p(x)

dθ
φ(x)

]2

=

E

[(
d log p(x)

dθ

)2

φ(x)2

]
− 2E

[(
d log p(x)

dθ

)2

φ(x)

]
E [b]

+ E

[(
d log p(x)

dθ

)2
] (

E [b]2 + V [b]
)
− E

[
d log p(x)

dθ
φ(x)

]2

=

V
[(

d log p(x)

dθ

)
φ(x)

]
− 2E

[(
d log p(x)

dθ

)2

φ(x)

]
E [b]

+ E

[(
d log p(x)

dθ

)2
] (

E [b]2 + V [b]
)

(2.64)

The above derivation assumes that b is statistically independent from d log p(x)
dθ

, which

2.5 Toy experiments to test theory 55

Sample size
10 1 10 2 10 3

B
ia

s
in

gr
ad

ie
n
t

-0.5

0

0.5

1

1.5

2

2.5

3
Debiased mean baseline
Mean baseline
True optimal baseline
No baseline
Debiased estimated optimal baseline
Estimated optimal baseline

(a) Bias in estimator

Sample size

10 1 10 2 10 3

B
ia

s
in

an
gl

e
of

gr
ad

ie
n
t
(d

eg
)

-5

0

5

10

15

20

25

30
Debiased mean baseline
Mean baseline
True optimal baseline
No baseline
Debiased estimated optimal baseline
Estimated optimal baseline

(b) Bias in angle of estimator

Figure 2.14: The mean baseline leads to an unbiased gradient direction, but a biased
magnitude.

means one can ignore the b in the last component, i.e., swapping the φ(x) − b to
φ(x) in the last term between the second to third line is valid. Compared to the

standard derivation, my derivation includes an additional E
[(

d log p(x)
dθ

)2
]
V [b] term,

showing that the variance of the baseline estimator itself also matters. Note that the
above derivation is not fully complete because it ignores the covariance terms between
separate members of the gradient samples, i.e., it ignores the covariance terms between
d log p(xi)
dθ

(φ(xi) − bi) and
d log p(xj)

dθ
(φ(xj) − bj) for i 6= j. But the derivation conveys

the main idea that the variance of the baseline estimation technique should also be
taken into account. In the experimental results in the next section, I show that indeed
simply estimating the optimal baseline from the samples can even lead to a worse
gradient estimator than when the mean baseline is estimated from the samples. I have
also performed some preliminary work on obtaining gradient estimators that would
outperform both the mean and optimal baseline estimation techniques, but the work
is preliminary, and the improvement not so significant, so I leave it out of my thesis.

2.5 Toy experiments to test theory

Testing bias when using baselines: To test the theory of the bias when using
baselines introduced in Section 2.4.2, I performed a simple toy experiment. I chose
φ(x) to be a mixture of two Gaussian basis functions with centers at m1 = [0, 1] and
m2 = [5, 0], and covariances of Σ = 0.5I, where I is the identity matrix. The weights
assigned to the basis functions were 10 and 2000 respectively. The sampling distribution
p (x; θ) was a Gaussian with its center at µ = [0, 0] and a covariance Σ = I equal to
the identity matrix. I estimated the bias by computing the exact gradient analytically,
and estimating the expected deviation squared from this exact gradient by repeatedly
sampling the estimators for a large number of times. I estimated confidence intervals

56 Gradient estimators through a single sampling operation

Sample size
10 1 10 2

S
ig

n
al

to
n
oi

se
ra

ti
o

of
gr

ad
ie
n
t

10 -2

10 -1

10 0

10 1

10 2

10 3

True optimal baseline
Debiased mean baseline
Debiased "estimated" optimal baseline
Estimated "optimal baseine"
Linear mean baseline

Figure 2.15: Comparing signal-to-noise ratios of LR gradient variance using different
baselines on a 10-dimensional quadratic problem

using bootstrapping. The result is in Figure 2.14. As can be seen, the mean baseline
has a biased magnitude, but an unbiased direction of the gradient. When adding my
N/(N − 1) correction factor, the bias in the magnitude also disappears. On the other
hand, the optimal baseline has both a biased magnitude and direction, but when the
leave-one-out bias removal is applied, it becomes unbiased.

Signal-to-noise ratio of optimal baseline estimator: To test the theory about
the variance of the baseline affecting the result in Section 2.4.3, I performed a simple
toy experiment, where I estimated the signal-to-noise ratio of the gradient estimators
by repeatedly sampling the estimator many times, and using bootstrapping to estimate
the confidence intervals. φ(x) was a quadratic with dimension D = 10. The function
was given by φ(x) = xTBx + Ax + b, where B was generated as Q + QT + 5I, where
Q was a matrix of size D × D, where each entry was sampled from a unit variance
Gaussian; A was a vector of length D, where each member was sampled from a unit
variance Gaussian; and b = 10. The sampling distribution was Gaussian with µ = 3×1,
and Σ = 2I + 0.2ε, where ε ∼ N (0, I). The results are in Figure 2.15. As can be seen,
using the mean baseline actually outperforms the estimated optimal baseline in terms
of signal-to-noise ratio at low sample sizes. Moreover, it is not much worse than using
the true optimal baseline, when this is perfectly estimated. I also compared to a linear
baseline fit onto the samples by linear regression, and this performed better, so it seems
that such more advanced baselines are a good topic for further research.

Chapter 3

Probabilistic computation graphs
for gradient estimation

In Chapter 2, I explained methods for estimating gradients of an expectation through
a single sampling operation: d

dθ
Ex∼p(x;θ) [φ(x)]. However, usually gradient estimators

are needed not just through a single computation, but through a computation graph
containing arbitrary stochastic and deterministic computations. Previously, I assumed
that the details of the computations performed by φ(x) are not known. However,
typically such information is available. So we should take advantage of this information
to construct better gradient estimators. The main topic of this chapter is an intuitive
visual framework for reasoning about gradients on graphs of computations to enable
deriving such better new gradient estimators.

An overview of application areas of gradient estimators on graphs of computations
is given by (Schulman et al., 2015). The same authors also provided a method to ob-
tain gradient estimators on stochastic computation graphs (SCG) by differentiating a
surrogate loss. While the work provided an elegant method to obtain gradient estima-
tors using automatic differentiation, the resulting framework has formal rules, which
uniquely define one specific type of estimator, and it is not suitable for describing
general gradient estimation techniques. For example, deterministic policy gradients
(Silver et al., 2014) or total propagation (Parmas et al., 2018) are not covered by the
framework. While later, shortly after my work described in this chapter, the frame-
work was extended to include also some other estimators (Weber et al., 2019), each
new estimator requires a new derivation, and the notation in the graphs becomes cum-
bersome compared to the original framework. In contrast, in probabilistic inference,
the successful probabilistic graphical model framework (Pearl, 2014) only describes the
structure of a model, while there are many different choices of algorithms to perform
inference. In this chapter, I aim for a similar framework for gradient computation,
which I call probabilistic computation graphs. My framework uses the total derivative
rule df

da
= ∂f

∂a
+ ∂f

∂b
db
da

to decompose the gradient into a sum of partial derivatives along
different computational paths, while leaving open the choice of estimator for the partial
derivatives.

I begin with explaining my framework in Section 3.1, then discuss relationships
to previous gradient estimation techniques in the literature, and finally show how
my method can be used to derive new gradient estimators by giving two examples:

57

58 Probabilistic computation graphs for gradient estimation

1. Gaussian shaping gradients (GS), 2. density estimation likelihood ratio gradients
(DEL). Experimental results will be postponed until Chapter 4.

3.1 Total stochastic gradient theorem

Here I explain how my framework helps with decomposing the gradient of a complicated
graph of computations into smaller sections, which can be readily estimated using the
methods for gradient estimation in Chapter 2. In my framework, I work with the
gradient of the marginal distribution—instead of looking just at how the expectation
E [φ(x)] changes as some parameters in the computation graph are perturbed, I consider
the change in the whole distribution of φ(x). This more general problem directly gives
one the gradient of the expectation as well, as the expectation is just a function of the
marginal distribution.

3.1.1 Explanation of framework

I define probabilistic computation graphs (PCG). The definition is exactly equivalent
to the definition of a standard directed graphical model, but it highlights my methods
better, and emphasizes my interest in computing gradients, rather than performing
inference. The main difference is the explicit inclusion of the distribution parameters
ζ, e.g. for a Gaussian, the mean µ and covariance Σ. Previously, θ served the role
of the distribution parameters, but here I introduce a new notation to emphasize that
each node in the PCG will have some parameterized distribution and to highlight
the difference from the policy parameters in reinforcement learning, which are usually
denoted by θ.

Definition 1 (Probabilistic computation graph (PCG)) A directed acyclic
graph with nodes/vertices V and edges E, which satisfy the following properties:

1. Each node i ∈ V corresponds to a collection of random variables with marginal
joint probability density p(xi; ζi), where ζi are the possibly infinite parameters of
the distribution. Note that the parameterization is not unique, and any parame-
terization is acceptable.

2. The probability density at each node is conditionally dependent on the parent
nodes: p(xi|Pai) where Pai are the random variables at the direct parents of
node i.

3. The joint probability density satisfies: p(x1, ...,xn) =
∏n

i=1 p(xi|Pai)

4. Each ζi is a function of its parents: ζi = f(Pzi) where Pzi are the distribution
parameters at the parents of node i. In particular:
p(xi; ζi) =

∫
p(xi|Pai)p(Pai; Pzi)dPai

I emphasize that there is nothing stochastic in my formulation. Each computation
is deterministic, although they may be analytically intractable. I also emphasize that
this definition does not exclude deterministic nodes, i.e., the distribution at a node may
be a Dirac delta function (a point mass). Later I will use this formulation to derive
stochastic estimates of the gradients.

3.1 Total stochastic gradient theorem 59

3.1.2 Derivation of theorem

x

φ

Figure 3.1: Graph
for φ(x)

I am interested in computing the total derivative of the dis-
tribution parameters at one node ζi w.r.t. the parameters at
another node dζi/dζj, e.g., nodes i and j could correspond to
φ and x in the expectation equation Ex∼p(x;θ) [φ(x)]. In this
case, ζi = θ, and ζφ are the parameters describing the full dis-
tribution of φ, and is obtained by pushing the distribution of x
through the mapping φ(x) (Fig. 3.1). Note that the expecta-
tion of φ is one possible choice of parameters in the vector ζφ.
Hence, the gradient of an expectation reduces to my explana-
tion, and I am describing a more general problem. By the total
derivative rule: dζi

dζj
=
∑

ζm∈Pzi
∂ζi
∂ζm

dζm
dζj

. Iterating this equation

on the dζm/dζj terms leads to a sum over paths from node j to
node i:

dζi
dζj

=
∑

Paths(j→i)

∏
Edges(k,l)∈Path

∂ζl
∂ζk

(3.1)

This equation holds for any deterministic computation graph and is also well known
in, e.g., the optimal Jacobian accumulation community (Naumann, 2008). This equa-
tion trivially leads to the total stochastic gradient theorem, which states that the sum
over paths from A to B can be written as a sum over paths from A to intermediate
nodes and from the intermediate nodes to B. Figure 3.2 provides examples of the paths
in Equation (3.2) below.

Theorem 3 (Total stochastic gradient theorem) Let i and j be distinct nodes in
a probabilistic computation graph, and let IN be any set of intermediate nodes, which
block the paths from j to i, i.e., IN is such that there does not exist a path from j to i
that does not pass through a node in IN . We denote, {a→ b} the set of paths from a
to b, and {a→ b}\c the set of paths from a to b, where no node along the path except
for b is allowed to be in set c. Then the total derivative dζi/dζj can be written with the
equation:

dζi
dζj

=
∑
m∈IN

 ∑
s∈{m→i}

∏
(k,l)∈s

∂ζl
∂ζk

 ∑
r∈{j→m}\IN

∏
(p,t)∈r

∂ζt
∂ζp

 (3.2)

Equations (3.1) and (3.2) can be combined to give:

dζi
dζj

=
∑
m∈IN

(dζi
dζm

) ∑
r∈{j→m}\IN

∏
(p,t)∈r

∂ζt
∂ζp

 (3.3)

Note that an analogous theorem could be derived by swapping r ∈ {j → m}\IN
and s ∈ {m→ i} with r ∈ {j → m} and s ∈ {m→ i}\IN respectively. This leads to

60 Probabilistic computation graphs for gradient estimation

j

m

i

(a) {j → m} paths may not pass through
green nodes.

j

m

i

(b) {m → i} paths may pass through green
nodes.

Figure 3.2: Example paths in Equation (3.2). The green nodes correspond to the
intermediate nodes IN .

the equation below:

dζi
dζj

=
∑
m∈IN

 ∑
r∈{m→i}\IN

∏
(p,t)∈r

∂ζt
∂ζp

(dζm
dζj

) (3.4)

I will refer to Equations (3.3) and (3.4) as the second and first half total gradient
equations respectively.

3.1.3 Gradient estimation on a graph

Here I clarify one method how the partial derivatives through the nodes m ∈ IN in the
previous section can be estimated. Before explaining how to combine the estimators
on a graph, I introduce the categorization of pathwise gradient estimators and jump
gradient estimators. The pathwise gradient estimator naming is well-known (Schulman
et al., 2015), whereas the term jump gradient estimator is new. The categorization is
based on the following properties of the estimators:

• Pathwise derivative estimators compute partial derivatives through a single edge,
e.g., ∂ζm

∂ζj
(Fig. 3.2). For example, RP gradients belong to this category.

• Jump gradient estimators sum the gradients across all computational paths be-
tween two nodes and directly compute total derivatives, e.g., dζi

dζm
(Fig. 3.2). For

example, LR gradients or deterministic policy gradients (Sec. 1.1.1) belong to
this category.

By appropriately combining these estimators, various different gradient estimation
schemes can be created. Below, I outline just one possibility. The task is to estimate the
derivative of the expectation at a distal node i w.r.t. the parameters at an earlier node
j: d

dζj
Exi∼p(xi;ζi) [xi], through an intermediate node m. Note that E [xi] can be picked as

one of the distribution parameters in ζi. The true ζ are intractable, so I perform an an-
cestral sampling based estimate ζ̂, i.e., I sample sequentially from each p(x∗|P∗) to get
a sample through the whole graph, then ζ̂∗ will simply be the parameters of p(x∗|Pa∗).
I refer to one such sample as a particle. I use a batch of P such particles ζ̂∗ = {ζ̂∗,c}Pc to

3.2 Relationship to various gradient estimators 61

obtain a mixture distribution as an approximation to the true distribution. Such a sam-

pling procedure has the properties p (x; ζ) =
∫
p
(
x; ζ̂
)
p
(
ζ̂
)

dζ̂ and Exi∼p(xi;ζi) [xi] =

Eζ̂i∼p(ζ̂i;ζj)
[
Exi∼p(xi;ζ̂i) [xi]

]
. For simplicity in the explanation, I further assume that

the sampling is reparameterizable, i.e. p
(
ζ̂m; ζj

)
=
∫
f(ζ̂m; ζj, εm)p (εm) dεm. One can

write d
dζj

Eζ̂i∼p(ζ̂i;ζj)
[
Exi∼p(xi;ζ̂i) [xi]

]
= Eεm∼p(εm)

[
∂ζ̂m
∂ζj

d

dζ̂m
Exi∼p(xi;ζ̂i) [xi]

]
. The term

∂ζ̂m
∂ζj

will be estimated with a pathwise derivative estimator. The remaining term
d

dζ̂m
Exi∼p(xi;ζ̂i) [xi] will be estimated with any other estimator, e.g., a jump estima-

tor could be used.
I summarize the process for creating gradient estimators from j to i on the graph:

1. Choose a set of intermediate nodes IN , which block the paths from j to i.

2. Construct pathwise derivative estimators from j to the intermediate nodes IN .

3. Construct total derivative estimators from IN to i, and apply Equation (3.3) to
combine the gradients.

3.2 Relationship to various gradient estimators

My framework is a general scheme to decompose the total derivative into partial deriva-
tives in any scenario. It is thus not surprising that most other gradient estimators in
the literature can be cast into my framework. Indeed, I have not been able to find a
gradient estimator that could not be described by my framework. In this section, I
discuss several connections to existing estimators in prior work.

3.2.1 Relationship to policy gradient theorems

Recall the typical model-free RL scenario (Sutton and Barto, 1998): an agent per-
forms actions ut ∼ π(u|xt; θ) according to a stochastic policy π, transitions through
states xt, and obtains costs ct (or conversely rewards). The agent’s goal is to find the
policy parameters θ that optimize the expected return G =

∑H
t=0 ct for each episode.

The probabilistic computation graph corresponding to this scenario is provided in Fig-
ure 3.5a.

In the literature, two “gradient theorems” are widely applied: the policy gradient
theorem (Sutton et al., 2000), and the deterministic policy gradient theorem (Silver
et al., 2014). These two are equivalent in the limit of no noise (Silver et al., 2014).

62 Probabilistic computation graphs for gradient estimation

x0 x1

u0 u1

x2

u2

x3

c1 c2 c3

G

θ

Figure 3.3: Probabilistic computation graph for model-free LR gradient estimation.

Policy gradient theorem

d

dθ
E [G] = E

[
H−1∑
t=0

d log π(ut|xt; θ)
dθ

Q̂t(ut,xt)

]
. (3.5)

Deterministic policy gradient theorem

d

dθ
E [G] = E

[
H−1∑
t=0

dut
dθ

dQ̂t(ut,xt)

dut

]
. (3.6)

Q̂t corresponds to an estimator of the remaining return
∑H−1

h=t ch+1 from a particular
state x when choosing action u. For Equation (3.5) any estimator is acceptable, even a
sample based estimate could be used. For Equation (3.6), Q̂ is usually a differentiable
surrogate model. Figure 3.3 shows how these two theorems correspond to the same
probabilistic computation graph. The intermediate nodes are the actions selected at
each time step. The difference lies in the choice of jump estimator to estimate the
total derivative following the intermediate nodes—the policy gradient theorem uses an
LR gradient, whereas the deterministic policy gradient theorem directly differentiates
a surrogate model that approximates the remaining cost. I believe that the derivation
based on a PCG is more intuitive than previous proofs (Sutton et al., 2000; Silver et al.,
2014), which consist of a page of algebra.

3.2.2 Parameter-space sampling based methods

Previously, I introduced the evolution strategies algorithm (Salimans et al., 2017),
which is essentially the same but a scaled up version of a prior work, parameter explor-
ing policy gradients (Sehnke et al., 2010). These algorithms sample in the parameter
space, rather than in the action space. The PCG is given in Figure 3.4a. Basically,
the methods directly estimate the total derivative from θ to the objective node G, by
applying the likelihood ratio gradient with samples of θ.

3.2 Relationship to various gradient estimators 63

x0 x1

u0 u1

x2

u2

x3

c1 c2 c3

G

θ

(a) PGPE/ES

x0 x1

u0 u1

x2

u2

x3

c1 c2 c3

G

θ

(b) Model-based policy gradients

Figure 3.4: Probabilistic computation graphs for policy gradients with parameter
exploration (PGPE)/evolution strategies (ES) (3.4a), as well as for model-based state
space policy gradient estimation (3.4b).

3.2.3 Model-based gradient estimators

In Section 3.2.1, I showed how the PCG framework can be used to explain model-
free policy gradient algorithms. In this section, I show that if one has access to a
differentiable model of the dynamics p (xt+1|xt,ut), then a different type of model-
based policy gradient estimator can be created. The PCG is in Figure 3.4b. As can
be seen, it is necessary to differentiate through the model—one requires the terms
d log p(xt+1|xt,π(xt;θ))
dθ

= d log p(xt+1|xt,ut)
dut

dut

dθ
, where the action ut = π(xt; θ) is given by

the policy function. Here, I have assumed that the policy is deterministic, but it
would be straight forward to also use a stochastic policy and use reparameterization
to differentiate through the sampling. The full gradient estimator becomes

Model-based policy gradient theorem

d

dθ
E [G] = E

[
H∑
t=1

d log p(xt|xt−1,ut−1)

dut−1

dut−1

dθ
V̂t(xt)

]
. (3.7)

In the above equation V̂t(xt) is the value function, which is an estimator for the
remaining return Gt =

∑H
h=t ch from a particular state xt. Notice that unlike the

model-based case, the return is not conditioned on the action. Similarly to the model-
free case, a version of the gradient estimator that directly differentiates a surrogate
model V̂t(xt) can be constructed:

Deterministic model-based policy gradient theorem

d

dθ
E [G] = E

[
H∑
t=1

dV̂t(xt)

dxt

dxt
dut−1

dut−1

dθ

]
. (3.8)

In the above equation, it is again necessary to differentiate through the dynamics
model to obtain the gradient dxt

dut−1
. This kind of gradient estimator has been considered

64 Probabilistic computation graphs for gradient estimation

previously in the literature as a value gradient method (Fairbank and Alonso, 2012),
and it is for example used in the stochastic value gradients algorithm (Heess et al.,
2015), which combines model-free trajectories with a model-based gradient estimator
by conditioning the actions on the true trajectory.

3.2.4 Relationship to “Generalized policy gradient theorem”

In this section, I discuss how my framework can be used to interpret another recent
attempt at generalizing policy gradient theorems (Ciosek and Whiteson, 2017). While,
the work discussed the concept of Rao-Blackwellizing the gradient estimator, i.e. rather
than sampling a single action at each state, the quantity d log π(ut|xt;θ)

dθ
Q̂t(ut,xt) can be

integrated out across the action at each time step in the trajectory. If Q̂t(ut,xt) is a
function approximator, this marginalization can be performed locally, without having
to sample a separate trajectory for each choice of action, and the resulting gradient
estimator is strictly better than the version that does not integrate the action. While
this concept makes sense, and is useful, the work contained a “Generalized policy
gradient theorem”, which I would like to criticize in this section.

The generalized policy gradient theorem is written as:

d

dθ
E [G] =

∫
s

dρ(s)

(
dV

dθ
−
∫
a

dπ(a|s)dQ

dθ

)
, (3.9)

where s is the state, a the action, and ρ(s) the state distribution over the trajectory, and
where the authors denoted dρ(s) to mean integration with respect to the probability
measure ρ(s). One could equivalently write ρ(s)ds. I can explain this theorem in terms
of my total stochastic gradient theorem.

First note that dQ
dθ

= d
dθ

∫
dp(s′|s, a) (r + V (s′)) =

∫
dp(s′|s, a)dV (s′)

dθ
, where s′ is

the next state. One can then write

d

dθ
E [G] =

∫
s

dρ(s)

∫
a

dπ(a|s)
∫
s′

dp(s′|s, a)

(
dV

dθ
− dV (s′)

dθ

)
. (3.10)

It is easy to check that this equation is correct: if you sum for all time steps, every-
thing after the first time step cancels out, and one is left with the term

∫
s
dp0(s)dV (s)

dθ
,

which is just the gradient of the expected value over the initial state distribution, which
is the objective function. Note that a difference with previous equations is that in the
case here, V is not just an approximator, but the true value function, and when it is
differentiated w.r.t. θ, one does not simply look at how the state distribution changes,
but also considers how the value function itself changes due to the change in the policy
at future time steps.

I have explained Equation (3.10) using probabilistic computation graphs in Fig-
ure 3.5. To me it seems that the theorem simply re-expresses the computational paths
in the previous policy gradient theorems as a subtraction between two different sums
of computational paths, and the additional insight appears limited. As far as I have
understood, as of now, the theorem has yet to lead to any new algorithm or method
either.

3.3 New gradient estimators 65

x0 x1

u0 u1

x2

u2

x3

c1 c2 c3

G

θ

(a) Classical policy gradient

x0 x1

u0 u1

x2

u2

x3

c1 c2 c3

G

θ

(b) dV
dθ

x0 x1

u0 u1

x2

u2

x3

c1 c2 c3

G

θ

(c) dV (s′)
dθ

Figure 3.5: The policy gradient theorem and deterministic policy gradient theorems
both correspond to the graph in Figure 3.5a, whereas Equation (3.10) appears to simply
rearrange terms and write the computational paths of Figure 3.5a by subtracting the
paths in Figure 3.5c) from the paths in Figure 3.5b. It thus appears to me that
rather than the theorem generalizing the previous policy gradient theorems, it is just
a mathematical trick that rearranges the terms.

In this section, I wanted to highlight that my probabilistic computation graph
framework provides an intuitive visual framework for reasoning about gradient esti-
mators. I believe that such a framework gives a clarity of thought, which can help
interpret algebraic equations and avoid pitfalls.

3.3 New gradient estimators

In Section 3.1.3, I explained how a particle-based mixture distribution is used for cre-
ating gradient estimators. In the following sections, I instead take advantage of these
particles to estimate a different parameterization Γ, directly for the marginal distribu-
tion. Although the algorithms have general applicability, to make a concrete example,
I explain them in reference to model-based policy gradients using a differentiable model
considered in my previous work (Parmas et al., 2018), and discussed in Chapter 4, for
which the PCG is given in Figure 3.4b. Experimental results will be postponed until
Chapter 4.

3.3.1 Density estimation likelihood ratio gradient (DEL)

Following the explanation in Section 3.3, one could attempt to estimate the distribu-
tion parameters Γ from a set of sampled particles, then apply the LR gradient using
the estimated distribution q(x; Γ). In particular, I will approximate the density as a
Gaussian by estimating the mean µ̂ =

∑P
i xi/P and variance Σ̂ =

∑P
i (xi−µ̂)2/(P−1).

Then, using the standard LR trick, one can estimate the gradient
∑P

i
d log q(xi)
dθ

(Gi− b),
where q(x) = N (µ̂, Σ̂). To use this method, one must compute derivatives of µ̂ and Σ̂
w.r.t. the particles xi, then carry the gradient to the policy parameters using the chain
rule while differentiating through the model, which is straightforward. I refer to the

66 Probabilistic computation graphs for gradient estimation

new method as the DEL estimator. Importantly, note that while q(x) is used for esti-
mating the gradient, it is not in any way used for modifying the trajectory sampling.
Advantages of DEL: One can use LR gradients even if no noise is injected into the
computations.
Disadvantages of DEL: The estimator is biased, and density estimation can be dif-
ficult.
Experimental evaluation: The experimental results are given in Section 4.5.4, and
show that DEL gives a non-trivial success rate, but is still a crude estimator, and may
have to be developed further for practical gains.

3.3.2 Distributional/Gaussian shaping gradients (GS)

x0 xk

u0 u1

x2

u2

xm

u3

x4

c1 c2 cm c4

G

θ

Figure 3.6: Computational paths
in Gaussian shaping gradient

Until now, all RL methods have used the second
half total gradient equation (Eq. 3.3). Might one
create estimators that use the first half equation
(Eq. 3.4)? Figure 3.6 gives an example of how this
might be done. I propose to estimate the density
at xm by fitting a Gaussian to the particles. Then
dE [cm] /dΓm (the pink edges) will be estimated by
sampling from this distribution (or by any other
method of integration). This leaves the question of
how to estimate dΓm/dθ (all paths from θ to xm).
One option would be to use the RP method, which
is straightforward. However, here I consider using
the LR method, which leads to a more interesting
estimator. I first apply the second half total gra-
dient equation on dΓm/dθ to obtain terms

∑
r∈{θ→xk}/IN

∏
(p,t)∈r

∂ζt
∂ζp

(blue edges) and
dΓm
dζxk

(red edges). In the scenarios I consider, the first of these terms is a single path, and

will be estimated using RP. The second term is more interesting, and I will estimate
this using an LR method.

As I am using a Gaussian approximation, the distribution parameters Γm are the
mean and variance of xm, which can be estimated with samples as µm = E [xm] and
Σm = E

[
xmxTm

]
− µmµTm. One can obtain LR gradient estimates of these terms:

d

dζxk
E [xm] = Exk∼p(xk;ζxk)

[
d log p(xk; ζxk)

dζxk
(xm − bµ)

]
,

d

dζxk
E
[
xmxTm

]
= Exk∼p(xk;ζxk)

[
d log p(xk; ζxk)

dζxk
(xmxTm − bΣ)

]
,

and
d

dζxk
(µµT) = 2µ

d

dζxk
E
[
xTm
]
.

In practice, one performs a sampling based estimate ζ̂xk , and there may be concern that

the estimators are conditional on the sample ζ̂xk , but we are interested in unconditional
estimates. I will explain that the conditional estimate is equivalent. For the variance,

3.3 New gradient estimators 67

note that µm is an estimate of the unconditional mean, so the whole estimate directly
corresponds to an estimate of the unconditional variance. For the mean, apply the

rule of iterated expectations: Exk∼p(xk;ζxk)
[xm] = Eζ̂xk∼p(ζ̂xk)

[
Exk∼p(xk;ζ̂xk)

[xm]
]

from

which it is clear that the conditional gradient estimate is an unbiased estimator for the
gradient of the unconditional mean.

Efficient algorithm for accumulating gradients In Figure 3.6, for each xk node,
we want to perform an LR jump to every xm node after k and compute a gradient with
the Gaussian approximation of the distribution at node m. I will accumulate across all
nodes during a backwards pass in a backpropagation like manner. Note that for each k

and each m, one can write the gradient as dE[cm]
dΓm

dΓm
dζxk

(
dζxk
duk−1

duk−1

dθ
). The term dE[cm]

dΓm
dΓm
dζxk

is estimated as dE[cm]
dΓm

zm
d log p(xk;ζxk)

dζxk
, where zm corresponds to a vector summarizing the

xm − bµ, etc. terms above. Note that dE[cm]
dΓm

zm is just a scalar quantity gm. Thus, one
can use an algorithm which accumulates a sum of all g during a backwards pass, and
sums over all m nodes at each k node. Later, in Chapter 4, I explain in detail how this
fits together with my total propagation algorithm (Parmas et al., 2018) (Alg. 6). The
final algorithm essentially just replaces the usual cost/reward cm,i for each sample i

with a modified value gm,i = dE[cm]
dΓm

zm,i, and such an approach would also be applicable
in model-free policy gradient algorithms using a stochastic policy and LR gradients.

Two interpretations of GS:

1. I am making a Gaussian approximation of the marginal distribution at a node.

2. I am performing a type of reward shaping based on the distribution of the parti-
cles. In particular I am essentially promoting the trajectory distributions to stay
unimodal, such that all of the particles concentrate at one “island” of reward
rather than splitting the distribution between multiple regions of reward—this
may simplify optimization.

GS allows for fundamentally new algorithms: Sometimes, in a computational
graph there are nodes that cannot be differentiated, e.g., if there is a discrete com-
putation in a graph. Other times, a computational graph can be extremely long, and
backpropagating through the whole graph can be computationally impractical. Pre-
viously, it was possible to use LR gradients to jump from a node in the computation
directly to the terminal node to obtain a gradient estimator, but this is an all-or-nothing
approach. It may be better to jump over only part of the computation and continue
applying the chain rule from some distal node. Such gradient estimators can be real-
ized using GS, and I am excited about potential future algorithms taking advantage of
such an opportunity.

Experimental evaluation: The GS algorithm is evaluated in Section 4.5.4 and is
shown to be practical and lead to improved performance in some model-based RL
settings.

Chapter 4

Model-based reinforcement learning
with particle predictions

A possible näıve approach to model-based reinforcement learning would be to use typ-
ical model-free algorithms on simulated trajectories with a learned model, e.g., Dyna
(Sutton, 1990); however, such an approach neglects the opportunity to use informa-
tion about the model to learn in a more efficient manner. For example, it may be
possible to differentiate the predictions via backpropagation to efficiently compute the
gradient of the expected cost/reward, which could then be used for optimization, as
is done in PILCO. Unfortunately, as I explained in the Background section in Chap-
ter 1, the moment matching predictions in PILCO are a severe limitation. To overcome
this problem, I suggested that using particle sampling predictions (Fig. 4.1) would be
a better approach, which could solve all of the issues. I call the resulting algorithm
PIPPS: Probabilistic Inference for Particle-based Policy Search. When one uses sam-
pling, it becomes necessary to differentiate through the stochasticities. The “obvious”
idea would be to differentiate through the sampling operations using the reparameter-
ization trick. However, at the end of the Background section in Chapter 1 I hinted at
an issue with the reparameterization (RP) gradients in the model-based reinforcement
learning setting. In this chapter, I will explain that repeating long chains of non-linear
computations often lead to chaotic dynamics, and in this setting, RP is hopelessly
poor. I call this phenomenon the curse of chaos. This is an inherent property of the
environment, and is not caused by numerical bugs. In this chapter, I will show that
surprisingly, despite such chaotic properties, it can be possible to estimate accurate
gradients. It will turn out that the key to robust gradient estimation in my algorithms
is the likelihood ratio gradient (LR) often used in model-free reinforcement learning.

In fact, other researches have also attempted to use backpropagation with model
predictions for reinforcement learning. An overview of such algorithms is given by
Schmidhuber (2015b), but many researchers found that backpropagation does not work
well. For example, the stochastic value gradients paper (Heess et al., 2015) also com-
pared to this approach, and mentioned that it did not work. Works, which found that
backpropagation does work either tested on simple/non-standard tasks (Nguyen and
Widrow, 1990; Depeweg et al., 2016) or used a stochastic approximation to moment
matching (Gal et al., 2016). Recently there has been a surge of very impressive suc-
cessful model-based reinforcement learning (MBRL) algorithms that sample without

69

70 Model-based reinforcement learning with particle predictions

Position

V
el

oc
ity

(a) Analytic approximation

Position
(b) Particle approximation

Figure 4.1: Sampling trajectories rather than performing analytic approximations to
the trajectory distribution is a promising solution to overcome limitations of PILCO.

moment matching approximations (Ha and Schmidhuber, 2018; Kurutach et al., 2018;
Chua et al., 2018; Hafner et al., 2019), but none of these approaches differentiated
through the model predictions. If proper derivatives could be computed through the
model, this may greatly improve efficiency of MBRL algorithms. I will begin by ex-
plaining experiments describing the curse of chaos, then discuss two potential solutions:
1. using resampling methods, 2. new gradient estimation techniques including the to-
tal propagation algorithm. Resampling based methods try to stochastically replicate
what moment matching was doing analytically, and I will explain that this approach
still suffers from the same issues as moment matching. Moreover, simple ideas to try
to extend this approach to multimodal distributions are not straightforward to get
to work. Total propagation is an elegant algorithm for combining likelihood ratio and
reparameterization gradients, obtaining the best of both estimators. Total propagation
based approaches perform standard sampling, thus obtaining an unbiased estimate of
the true possibly multimodal distribution, but still achieve the same or better perfor-
mance than the original PILCO. The work shows that total propagation is a promising
approach, which may allow scaling up these kinds of differentiable model-based RL
algorithms. Moreover, it is a general purpose algorithm that can be applied in any
setting where backpropagation can be used. Hence, it may also be useful in other
domains, such as meta learning or training time-series models.

4.1 Preliminaries: model, prediction and gradients

I begin with a brief reminder of the model-based RL setting when particle-based pre-
dictions are used. Everything is the same to the standard PILCO, just the framework
for performing predictions and evaluating the gradients is changed (see Alg. 3). Two

4.1 Preliminaries: model, prediction and gradients 71

Algorithm 3 Particle based trajectory prediction and policy evaluation

Input: policy π with parameters θ, episode length T , initial arbitrary state dis-
tribution p(x0), cost function c(x), learned dynamics model f̂ , number of particles
P .
Initialize: Sample P initial particles {xi,0}Pi=1 ∼ p(x0)
for t = 0 to T − 1 do

for each particle i do
1. Compute controls: ui,t = π(xi,t; θ)

2. Predict next state distribution: p(xi,t+1) = f̂(xi,t,ui,t)
3. Sample next particle xi,t+1 ∼ p(xi,t+1)

end for
Average the cost: 1

P

∑P
i=1 c(xi,t+1)

end for
Gradient computation: d

dθ

(∑T
t=1 E [c(xt+1)]

)
is stochastically approximated from

the particles. Various estimators exist, such as the reparameterization gradient or
the likelihood ratio gradient estimator.

components are necessary for the predictions: a model f̂ and a policy π.

Model: For the purpose of the explanation, it is sufficient to consider the model
as a non-linear function that predicts the next state as x′ = f̂(x,u) + ε, where
ε ∼ N (0, σf (x)2 + σ2

n), and σf (x)2 is a term representing the epistemic uncertainty
(i.e., uncertainty due to a lack of data in a region), and σ2

n represents the aleatoric
uncertainty (i.e., inherent noise in the system). See the Gaussian process explanation
in Appendix A, and specifics about model learning in Section 1.3.1 for a more detailed
explanation. Unlike particles, moment matching predictions can only be applied with
certain types of models and policies. In particular it must be possible to analytically
compute the expectation and variance of the output, when the input is a Gaussian
distribution. This limits the choice of models to sums of Gaussian basis functions,
polynomials, sinusoids, etc., but for example deep neural networks are not directly
applicable. Particle based predictions on the other hand are completely general, and
can easily be applied with any kind of model.

Policy: I usually use a radial basis function network policy (a sum of Gaussians):
π̃(x; θ) =

∑M
i=1wi exp

(
−(x−mi)

TΛ−1(x−mi)
)
, where wi are the weights for each

basis function, mi are the centers of the basis functions, and Λ−1 are the length scale
parameters, which are shared between the different basis functions. Together, Λ−1,
mi and wi comprise the policy parameters θ. The outputs from the policies were
constrained by a saturation function: sat(ũ) = 9 sin(ũ)/8+sin(3ũ)/8, where ũ = π̃(x).
The final output is then π(x) = Usat(ũ), where U is the maximum control, e.g., the
maximum motor torque. This policy class was used in the original PILCO, and it leads
to a reasonably rich class of non-linear policy functions.

72 Model-based reinforcement learning with particle predictions

Cost function: Typically, the cost function has the form

c(x) = 1− exp
(
−(x− t)TQ(x− t)

)
, (4.1)

where t is the target, and Q is a weighting function. Such a cost function is roughly
quadratic close to the target, but saturates far away from the target. The intuition is
that close to the target, deviations are important, but if the agent is reasonably far
from the target it does not make a difference how far away it is—a failure is a failure.
The cost emphasizes improving the part of the trajectory where things started going
wrong, rather than caring about what happened afterwards. In the original PILCO,
using such a cost was also partially motivated by experimental evidence that humans
use such cost functions (Körding and Wolpert, 2004). More precise details about Q
are given in the specific experimental sections.

Gradient estimators: It is possible to use both reparameterization or likelihood
ratio gradient estimators in this setting. Using the reparameterization gradient is
straightforward. I also previously explained in Section 3.2.3 how to obtain likelihood
ratio gradient estimators while using a stochastic model:

d

dθ
E [G] = E

[
H∑
t=1

d log p(xt|xt−1,ut−1)

dut−1

dut−1

dθ
V̂t(xt)

]
,

where V̂t(xt) is an estimator of the remaining return, e.g., it could be a sample based
estimate Gt =

∑T
h=t rt. Here I want to introduce another technique for likelihood

ratio gradient variance reduction specific to such particle-based prediction situations:
the batch importance weighted likelihood ratio gradient estimator (BIW-LR). Multiple
particles are sampled simultaneously, and thus the state distribution is represented
as a mixture distribution q(xt+1) =

∑P
i=1 p(xt+1|xi,t; θ)/P , where P is the number of

particles. Analogously to the importance sampling method to derive LR gradients
in Section 2.1.1, one can derive a lower variance estimator with importance sampling
within the batch for each time step:

d

dθ
E [Gt] = E

[
T−1∑
t=0

(
dp(xt+1|xt; θ)/dθ

q(xt+1)
(Gt+1(xt+1)− bt+1)

)]
. (4.2)

In terms of a specific batch with P particles, the term for each separate time-step
becomes∑P

i=1

∑P
j=1

(
dp(xj,t+1|xi,t;θ)/dθ∑P
k=1 p(xj,t+1|xk,t)

(Gt+1(xj,t+1)− bi,t+1)
)
/P . I choose to estimate a leave-

one-out mean baseline of the returns (Sec. 2.4.2) by normalized importance sampling
with the equation:

bi,t+1 =

(
P∑
j 6=i

cj,t+1Gt+1(xj,t+1)

)
/

P∑
j 6=i

cj,t+1 , where

cj,t+1 = p(xj,t+1|xi,t)/
P∑
k=1

p(xj,t+1|xk,t) .
(4.3)

4.2 Explaining the Curse of Chaos 73

Without normalizing, a large variance of the baseline estimation leads to poor LR gra-
dients, as is expected from the theory in Section 2.4.3. Note that I compute P baselines
for each time-step, whereas there are P 2 components in the gradient estimator. To ob-
tain a true unbiased gradient, one should compute P 2 leave-one-out baselines—one for
each particle for each mixture component of the distribution. My thesis contains eval-
uations only with the baseline presented here—I found that it already removes most of
the bias. Finally, note that one may be interested whether such an estimator could be
used with the Q-function in model-free reinforcement learning; however, in the model-
free case, Q also depends on the state location of the sample, which is different between
different particles, so it is not as principled to perform importance sampling within the
batch in such a model-free setting. In the next section, I will explain why simply using
reparameterization gradients everywhere is not sufficient.

4.2 Explaining the Curse of Chaos

This section contains perhaps the most striking result in my thesis. I will explain
that chaotic properties in the dynamics can cause the reparameterization gradient to
become ill-behaved. In such situations, I can achieve 106 times and more improvement
in gradient accuracy by using my other gradient estimators. These experiments were
motivated by my initial tests of trying to get particles to work with probabilistic line
searches (Mahsereci and Hennig, 2015), but in the end I found that gradient descent
performed better.

4.2.1 Value estimator landscape view of chaotic dynamics

Gradient plotting experimental setup: I consider the cart-pole task. The policy
is a radial basis function network with 20 basis functions and 104 policy parameters
in total. At some point during the training of the policy, I stopped the optimization,
picked a direction in the policy parameter space, and plotted what the objective func-
tion looks like in this direction. I plot the objective

∑H
t=1

∑P
i=1 c(xi,t) as well as the

reparameterization gradient of this objective, w.r.t. the norm of the perturbation in
the parameter space ∆θ. I average across P = 1000 particles. Note that all of the
parameters are perturbed, not just a single parameter. The perturbation ∆θ itself is
unimportant; the claim from the experiment is that there exist regions in the policy
parameter space that act one way or another. The direction of the perturbation was
chosen based on the gradient from the moment matching estimate of the trajectory
and objective. Moreover, I had fixed the random number seed, turning the problem
deterministic, so that the reparameterization gradient becomes the exact gradient of
the objective function. The results are plotted in Figure 4.2.

Gradient plotting discussion: Figure 4.2b contains a peculiar result where the RP
gradient behaves well for some regions of the parameters θ, but when θ is perturbed, a
phase-transition-like change causes the variance to explode. The variance at ∆θ = 1.5
is ∼4 × 105 times larger than at ∆θ = 0, meaning that ∼4 × 108 particles would

74 Model-based reinforcement learning with particle predictions

0.5 1 1.5
18

20

22

24

26

28

30

Particle value estimate
Moment matching value estimate

Distance in parameter space ()

V
al

ue

(a) E [G] estimated with 1000 particles

0.5 1 1.5
-5

0

5

10

15

20

25

30
Reparameterisation gradient
True gradient from finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(b) RPFS (Exact gradient of value in 4.2a)

Figure 4.2: To illustrate the behavior of the gradient estimators in the cart-pole task,
I fix the random number seed, vary the policy parameters θ in a fixed direction, and plot
a 95% confidence interval for both the objective (4.2a) and the magnitude of the RP
gradient estimator in this direction (4.2b). Figure 4.2b shows that reparameterization
gradients suffer from the curse of chaos, which can cause the gradient variance to
explode.

be necessary for the RP gradient to become accurate in that region. For practical
purposes, optimizing with the RP gradient would lead to a simple random walk.

Moreover, since the seed was fixed, the RP gradient in Figure 4.2b is the exact
gradient of the value in Figure 4.2a. Therefore, there is an infinitesimal deterministic
“noise” at the right of Figure 4.2a. What is the reason for such a bizarre phenomenon?
I perform another experiment to elucidate the cause.

Value estimator plotting: Recall from Section 3.2.3 that the gradient of the ex-

pectation can be written as d
dθ
E [G] = E

[∑H
t=1

dV̂t(xt)
dxt

dxt
dut−1

dut−1

dθ

]
, where V̂t(xt) is an

estimator for the remaining cumulative cost from xt. My aim will be to visualize V̂t at
t = 1, so as to explain the issue with the gradients. I plot V̂t at the distribution p (x1),
by placing a grid at p (x1), and computing the remaining return from each grid point.
I do this for both the settings when ∆θ = 0, corresponding to the well-behaved case,
and when ∆θ = 1.5, corresponding to the ill-behaved case. The boxes (Figs. 4.4a, 4.4b)
are centered at the mean prediction from the center of the initial state distribution (if
unclear, consider Figure 4.1 with p(x0) as a point mass, then p(x1) depicts the location
of the box). This process is visualized in Figure 4.3. The axes on the boxes (Figs. 4.4a,
4.4b) are slightly different, because when θ is changed, the predicted location p(x1; θ)
changes. The side lengths correspond to 4 standard deviations of the Gaussian distribu-
tions p(x1; θ). The velocities were kept fixed at the mean values. The random number
seed was kept fixed. Note that because the random number seed is fixed, the value
estimator V̂ is the same as the remaining return G. This definition differs from the
typical value function, which averages the return over an infinite amount of particles.
The figures were created by predicting the trajectory at each point for 4 particles with

4.2 Explaining the Curse of Chaos 75

Figure 4.3: I plot the “value function” at a box centered at p(x1).

76 Model-based reinforcement learning with particle predictions

-0.15 -0.1 -0.05
3.3

3.35

3.4

3.45

17.6

17.8

18

18.2

18.4

Cart position

A
ng

le
 (r

ad
)

(a) Value at p(x1) and ∆θ = 0

-0.15 -0.1 -0.05

3.35

3.4

3.45

28.2

28.4

28.6

28.8

Cart position

A
ng

le
 (r

ad
)

(b) Value at p(x1) and ∆θ = 1.5

Figure 4.4: Value estimator landscapes corresponding to ∆θ = 0 and ∆θ = 1.5 in
Figure 4.2.

different fixed seeds, then averaging the costs of the trajectories. I chose to predict
4 particles after trying 1 particle, for which the value appeared to include a step-like
part, but was otherwise less interesting than the current figure. As the average value
of the 4 particles is erratic, at least one of the 4 particles must have a highly erratic
value estimator in the shown region.

The results in Figures 4.4a and 4.4b explain the reason for the explosion of the
variance when using RP gradients (Fig. 4.2b). Figure 4.4a corresponds to the leftmost
parameter setting (∆θ = 0); Figure 4.4b corresponds to the rightmost parameter set-
ting (∆θ = 1.5). As I had fixed the random number seed, RP computes the exact

derivative dV̂t(xt)
dxt

. It samples points inside the box, computes the gradient ∂V̂t
∂θ

= ∂V̂t
∂xt

dxt
dθ

and averages the samples together.1 In Figure 4.4b finding the gradient of the ex-
pectation by differentiating V̂t, and averaging is completely hopeless. Such a fractal
input-output pattern is common in chaotic systems (Alligood et al., 1996), so we can
expect that using RP gradients for such a system will not work. One may thus think
that there is a fundamental issue, which would render solving such a problem impos-
sible; however, the value averaged across 1000 particles is not the true objective—that
would require averaging an infinite number of particles. When averaging an infinite
amount of particles, is there still “noise” at the right-hand side of Figure 4.2b, or does
the function become smooth? If the true objective is smooth, may there be some other
gradient estimator, which does not suffer from the same problem as RP? Yes, there is.

Likelihood ratio gradient estimators are robust to chaos: One can see in Fig-
ure 4.5 that LR is able to estimate the gradient without the ill behavior observed
for RP. RP estimates the gradient by differentiating the landscape. In contrast, LR
(Fig. 4.12b) only uses the value V̂ , not its derivative, and does not suffer from this
problem. To provide more evidence that the true objective is indeed smooth, I esti-

1Note that the same evaluation of the value gradient has to be performed at subsequent time-steps,
and in practice the sum is evaluated simultaneously using backpropagation, but we ignore this for the
purpose of the explanation.

4.2 Explaining the Curse of Chaos 77

0.5 1 1.5
-5

0

5

10

15

20

25

30
Likelihood ratio gradient
True gradient from finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(a) Likelihood ratio gradient.

x

p(x)

(b) The Gaussian acts as low-pass filter.

Figure 4.5: Likelihood ratio gradients do not use the gradient of the objective function
to estimate the gradient of the expectation, and are thus robust to inifinitesimal “noise”
on the objective.

mated the magnitude of the gradient from finite differences of the value in Figure 4.2a
using a sufficiently large perturbation in θ, such that the “noise” is ignored. The fact
that two separate approaches agree—one which varies the policy parameters θ, and an-
other which keeps θ fixed, but estimates the gradient from the trajectories—provides
convincing evidence that the true objective is smooth.

Why was LR able to estimate a gradient, even though the objective function appears
to be extremely ill-behaved? The reason is illustrated in Figure 4.5b. Even though,
the landscape in Figure 4.4b is erratic, averaging over a Gaussian distribution acts as
a low-pass filter that removes the high-frequency components. Thus, the stochasticity
is the reason why a sensible gradient could be estimated at all. If the dynamics were
deterministic, such fractal input-output patterns would still occur, and there would
be nothing that one could do about it. The reason that RP did not work, is that it
tries to estimate the gradient of the smooth expected landscape by differentiating an
ensemble of erratic non-smooth landscapes and averaging these together. LR on the
other hand, does not use the derivative of these non-smooth value estimator landscapes,
and is robust to chaos. It may seem a bit disappointing that RP does not work well
in some situations, because typically it performs better than LR in many other tasks.
In Section 4.4 I will show how the best of both LR and RP can be combined in the
total propagation algorithm. But before that, I will examine the issue with chaos a bit
more, and also discuss an alternative solution of resampling the particles at each time
step.

78 Model-based reinforcement learning with particle predictions

5 10 15 20 25 30
0

1

2

3

4

5

6

Pe
nd

ul
um

 a
ng

le
 (r

ad
)

Time step

(a) ∆θ = 0

5 10 15 20 25 30
0

1

2

3

4

5

6

Pe
nd

ul
um

 a
ng

le
 (r

ad
)

Time step

(b) ∆θ = 1.5

5 10 15 20 25 30
-15

-10

-5

0

5

10

15

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

Time step

(c) ∆θ = 0

5 10 15 20 25 30
-15

-10

-5

0

5

10

15

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

Time step

(d) ∆θ = 1.5

Figure 4.6: Bifurcations and a chaos-like mixing of trajectories leads to poor gradients
computed using backpropagation at ∆θ = 1.5 in Figure 4.2b.

4.3 Resampling-based trajectory prediction 79

4.2.2 A trajectory distribution view of chaotic dynamics

In the previous section, I explained the curse of chaos in terms of the value landscape
in Figure 4.4b. In Figure 4.6, I show what the predicted trajectory distributions of
the angle and angular velocity of the cart-pole look like for ∆θ = 0 (the well-behaved
case) and ∆θ = 1.5 (the chaotic case). Due to the chaotic dynamics, there is a mixing
of the trajectories, and the derivative of any individual trajectory does not provide
information about the derivative of the whole distribution. Notice that if one compares
individual trajectories between the two cases, the trajectories do not look that different,
but the distributions have clearly different behavior. Such a mixing of trajectories is
a hallmark of chaotic systems (Alligood et al., 1996) and provides another way to
understand the phenomenon. Perturbing the parameters a little does not change the
“ball” of trajectories much; however, the individual trajectories change a lot by being
“remixed” within the distribution. Thus differentiating an individual trajectory does
not provide meaningful information about how the whole “ball” will change.

4.3 Resampling-based trajectory prediction

4.3.1 Resampling from a Gaussian

Originally, McHutchon (2014) had unsuccessfully attempted particle-based methods in
PILCO, and suggested trying to replicate PILCO’s Gaussian moment-matching effect
by fitting a Gaussian on the particles and resampling to enforce unimodal trajectories.
This was later tested in a Deep PILCO article (Gal et al., 2016), which found that
resampling indeed improved the learning performance. I found that rather than the
unimodality a more important effect of resampling is that the gradients are stabilized
(compare Figure 4.2b to Figure 4.8a). This effect is most likely due to an averaging
out of the value landscapes, i.e., it smooths out the high-frequency components in
Figure 4.4b.

The resampling method works by fitting a Gaussian on the particles at each time
step, i.e., µ̂ =

∑P
i=1 xi/P and Σ̂ =

∑P
i=1(xi − µ̂)(xi − µ̂)T/(P − 1). The particles

are resampled from the fitted distribution zi ∼ µ̂ + Lεi | εi ∼ N (0, I), where L is the
Cholesky factor of Σ̂. The gradient is computed with standard reparameterization, but
see (Murray, 2016) for how to compute dL

dΣ̂
. An illustration of this resampling method

is in Figure 4.7a.
I further considered a method to smoothly interpolate between fully resampling,

and keeping the particles on their original trajectory. The method works by sampling
from the fitted Gaussian, but moving the original samples only a portion of the distance
toward the resampled particles, i.e., for each each particle z′i = (1− r)zi + rxi, where
r ∈ [0, 1] is a ratio. An illustration of this resampling method is in Figure 4.7b. I have
contrasted both resampling techniques to the Gaussian shaping gradient (Sec. 3.3.2),
which is illustrated in Figure 4.7c. Unlike the resmapling methods, the Gaussian shap-
ing gradient does not modify the trajectory distribution, but only changes the rewards
by computing the reward over an expectation w.r.t. a fitted Gaussian distribution. The
plots in Figure 4.8 show that the gradients in the ratio resampling method gradually
transition from stable to unstable when one deviates from fully resampling.

80 Model-based reinforcement learning with particle predictions

(a) Full resampling

(b) Ratio resampling

(c) Gaussian shaping

Figure 4.7: Illustration of Gaussian resampling with comparison to Gaussian shaping.

4.3 Resampling-based trajectory prediction 81

0.5 1 1.5
-5

0

5

10

15

20

25

30
Gaussian resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(a) Full resampling

0.5 1 1.5
-5

0

5

10

15

20

25

30
Ratio = 0.10, Gaussian resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(b) Ratio = 0.1

0.5 1 1.5
-5

0

5

10

15

20

25

30
Ratio = 0.80, Gaussian resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(c) Ratio = 0.8

Figure 4.8: The gradients gradually transition from unstable to stable when the
particles are moved closer towards being completely resampled from a Gaussian distri-
bution.

0.5 1 1.5
-5

0

5

10

15

20

25

30
EM resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(a) K = 2,M = 2

0.5 1 1.5
-5

0

5

10

15

20

25

30
EM resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(b) K = 2,M = 5

0.5 1 1.5
-5

0

5

10

15

20

25

30
EM resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(c) K = 5,M = 2

Figure 4.9: Increasing the # of mixture components K or EM iterations M leads to
worse gradients.

4.3.2 Resampling from a mixture of Gaussians

Section 4.3.1 explained that resampling can smooth out the gradients. An interesting
question is then whether resampling not from a unimodal Gaussian, but from a mixture
distribution could allow stabilizing the gradients, while still allowing for multimodal
trajectory distributions. I propose to fit mixture distributions using the EM algorithm,
then backpropagate through the algorithm to obtain the gradient. Algorithm 4 explains
the method. The results are in Figure 4.9. One can see that that the gradients were
not stabilized. The result is not entirely conclusive, as the gradient behaves poorly
in the full range of ∆θ, not just in the unstable region in Figure 4.2b; however, the
gradients become worse, as the method deviates further from a unimodal Gaussian,
and it does not appear straightforward to achieve good performance with a multimodal
resampling method.

82 Model-based reinforcement learning with particle predictions

Algorithm 4 Particle-based trajectory predictions while resampling from a mixture
of Gaussians fitted by the Expectation-Maximization Algorithm (EM)

Input: policy π with parameters θ, episode length T , initial Gaussian state distri-
bution p(x0), cost function c(x), learned dynamics model f̂ , number of particles P ,
number of mixture components K, number of EM iterations M .
Initialize: Set initial mixture component weights equally Wk = 1/K, set initial
mixture distributions to the initial distribution gk = p(x0) for each k, sample P/K
initial particles separately from each mixture component {zi,k,0}Pi=1 ∼ gk(z0).
for t = 0 to T − 1 do

1. Predict next timestep:
for each particle i do

Compute controls: ui,t = π(zi,t; θ)

Predict next state distribution: N (xi,t+1; mi,t+1,Si,t+1) = f̂(zi,t,ui,t)
Set particle weight: wi,t+1 = Wk,t . Based on which gk, zi,t was sampled from

end for
2. Compute new initialization:
for each mixture component k do

µk = 1
P/K

∑P/K
i=1 mi,k,t+1 . The k index for mt+1 means the particle zt came gk

Σk = 1
P/K−1

∑P/K
i=1 (mi,k,t+1 − µk)(mi,k,t+1 − µk)T + 1

P/K

∑P/K
i=1 Si,k,t+1

end for
3. Run EM with weighted samples to fit the Gaussian components:
{µk,Σk,Wk}Kk=1 = EM

(
M, (mt+1,St+1,wt+1), {µk,Σk,Wk}Kk=1

)
. The

update equations in EM are weighted versions of the equations in step 2. S is ignored
when computing the responsibilities for the samples, but is used when updating the
covariance of the mixture component.

4. Resample particles and compute cost:
for each mixture component k do

Sample P/K new particles: zi,k,t+1 ∼ gk(zi,k,t+1;µk,Σk)
end for
Average the cost: ct+1 = 1

P

∑P
i=1 c(zi,t+1)

end for
Gradient computation: d

dθ

(∑T
t=1 E [c(zt+1)]

)
is stochastically approximated from

the particles. Each computation can be differentiated, and the full gradient can be
obtained by backpropagation.

4.4 Total propagation algorithm 83

4.3.3 Why resampling based methods are undesirable

Even if resampling from a multimodal distribution were to work, I believe it is not ideal,
because it destroys the temporal dependence in the particles, which is undesirable for
the reasons listed below.

• It is difficult to model sampling dependencies, i.e., if the uncertainty is caused
by a lack of knowledge about the dynamics model, then the sampling should be
correlated, because sampling a prediction restricts the probability space of the
underlying dynamics function. For example, if the dynamics function is a GP,
and one predicts a pair of points [x1, x2], then these two samples have to covary,
because a GP places a distribution on the underlying function. Therefore, the
history of sampled points in a trajectory matters in determining what the next
prediction should be. But resampling methods remove this temporal dependence,
and incorporating a distribution over dynamics models properly becomes difficult.

• If the controller depends on past history, e.g., a recurrent neural network, resam-
pling makes it more difficult to model such a dependency.

• Parallel computation becomes more difficult, as it is necessary to exchange infor-
mation between the particles to make predictions.

• The trajectory distribution is modified, and does not correspond to the true
trajectory, even if the model is perfect. This can lead to learning controllers with
lower performance, or even worse, the task may even become impossible if the
approximation is too conservative, e.g., see Figure 1.4.

4.4 Total propagation algorithm

In Section 4.2 we saw that in chaotic situations, the reparameterization gradient is
completely hopeless. On the other hand, the likelihood ratio gradient was robust
to such issues. However, the likelihood ratio gradient does not scale as well with the
dimensionality of the problem (Nesterov and Spokoiny, 2017). Indeed, backpropagating
gradients similarly as RP does has been central in the deep learning revolution (LeCun
et al., 2015; Schmidhuber, 2015a), and reinforcement learning based approaches to train
neural networks for supervised machine learning does not work as well. One of the main
motivations for model-based reinforcement by differentiating the predictions was that
this may be able to scale to much higher dimensions, as it relies on backpropagation.
It is thus disappointing that a reinforcement learning gradient estimator may be the
best approach available. In this section, I introduce my total propagation algorithm,
which is an algorithm for combining both the likelihood ratio and reparameterization
based approaches into a single estimator obtaining the robustness of the LR method,
and aiming to achieve the efficiency of the RP method.

RP/LR weighted average: The bulk of the computation in the model-based re-
inforcement learning algorithm with particles is spent on the dp(xt+1|xt; θ)/dθ terms.

84 Model-based reinforcement learning with particle predictions

These terms are needed for both LR and RP gradients, so there is no penalty to combin-
ing both estimators. A well known statistics result states that for independent estima-
tors, an optimal weighted average estimate is achieved if the weights are proportional
to the inverse variance, i.e., µ = µLRkLR +µRPkRP , where kLR = σ̂−2

LR/(σ̂
−2
LR + σ̂−2

RP) and
kRP = 1− kLR. This technique is known as inverse-variance weighting (Fleiss, 1993).

A näıve combination scheme would compute the gradient separately for the whole
trajectory for both estimators, then combine them; however, this approach neglects
the opportunity to use reparameterization gradients through shorter sections of the
trajectory to obtain better gradient estimates. My total propagation algorithm (TP)
goes beyond the näıve method. TP uses a single backward pass to compute a union
over all possible RP depths, automatically giving greater weight to estimators with
lower variance.

A description is provided in Algorithm 5. At each backward step, it evaluates the
gradient w.r.t. the policy parameters using both the LR and RP methods. It evaluates
a ratio based on the variances in policy parameter space—this variance is proportional
to the variance of the policy gradient estimator. The gradients are combined, and a
“best” estimate in distribution parameter space is passed to the previous time step. In
the algorithm, the V operator takes the sample variance of gradient estimates from dif-
ferent particles; however, other variance estimation schemes could also be considered:
one could estimate variances from moving averages of the magnitude of the gradient,
use a different statistical estimator for the variance, use only a subset of policy parame-
ters, etc. The algorithm can also be used to combine other kinds of gradient estimators,
for example, I have explained how to combine total propagation and Gaussian shaping
gradients in Algorithm 6. The algorithm is not limited to RL problems, but is appli-
cable to general stochastic computation graphs (Schulman et al., 2015), and could be
used for training probabilistic models, stochastic neural networks, etc.

To further illustrate the algorithm, I have created diagrams for both backpropa-
gation (Fig. 4.10) and total propagation (Fig. 4.11) on a simple neural network with
3 hidden layers, to contrast the two algorithms. As can be seen, they are quite simi-
lar, but total propagation performs multiple estimates of the gradient using different
gradient estimator, and sends the combined estimator backwards.

4.4 Total propagation algorithm 85

Algorithm 5 Total Propagation Algorithm
(used in PIPPS for evaluating the gradient)

This algorithm provides an efficient method to fuse LR and RP gradients by com-
bining ideas from filtering and backpropagation. The algorithm is explained here
with reference to my policy search framework.
Forward pass: Compute a set of particle trajectories.
Backward pass:

Initialize: dGT+1

dζT+1
= 0, dJ

dθ
= 0, GT+1 = 0 where ζ are the distribution parameters,

e.g. µ and σ.
for t = T to 1 do

for each particle i do
Gi,t = Gi,t+1 + ci,t, where ct is the cost at time t.
dζi,t+1

dxi,t
=

∂ζi,t+1

∂xi,t
+

dζi,t+1

dui,t

dui,t
dxi,t

dGRPi,t
dζi,t

= (
dGi,t+1

dζi,t+1

dζi,t+1

dxi,t
+

dci,t
dxi,t

)
dxi,t
dζi,t

dGLRi,t
dζi,t

= (Gi,t − bi,t)d log p(xi,t)

dζi,t
dGRPi,t
dθ

=
dGRPi,t
dζi,t

dζi,t
dui,t−1

dui,t−1

dθ

dGLRi,t
dθ

=
dGLRi,t
dζi,t

dζi,t
dui,t−1

dui,t−1

dθ

end for
σ2
RP = trace(V

[
dGRPi,t
dθ

]
), σ2

LR = trace(V
[

dGLRi,t
dθ

]
)

kLR = 1/
(

1 +
σ2
LR

σ2
RP

)
dJ
dθ

= dJ
dθ

+ kLR
1
P

∑P
i

dGLRi,t
dθ

+ (1− kLR) 1
P

∑P
i

dGRPi,t
dθ

for each particle i do
dGi,t
dζi,t

= kLR
dGLRi,t
dζi,t

+ (1− kLR)
dGRPi,t
dζi,t

end for
end for

86 Model-based reinforcement learning with particle predictions

Figure 4.10: Illustration of the backpropagation algorithm, which is used in all neu-
ral network applications in machine learning, as well as many other applications. The
total propagation algorithm (Fig. 4.11) modifies this procedure by obtaining multiple
estimates of dL

dz2
using different gradient estimation techniques (e.g. reparameteriza-

tion and likelihood ratio methods), combining these estimates into a single gradient
estimator, and passing the combined estimator backwards in the computational graph.

4.4 Total propagation algorithm 87

Figure 4.11: Illustration of the total propagation algorithm when the gradient esti-
mation is performed by combining the likelihood ratio and reparameterization gradient
estimators into a single gradient estimator.

88 Model-based reinforcement learning with particle predictions

Algorithm 6 Gaussian shaping gradient with total propagation

Gaussian shaping gradient for model-based policy search while combining both LR
and RP variants using total propagation.
Forward pass: Sample a set of particle trajectories.
Backward pass:

Initialize: dGT+1

dζT+1
= 0, dJ

dθ
= 0, GT+1 = 0 . ζ are the distribution parameters, e.g.

all of the µ and σ for each particle
for t = T to 1 do

µt = E [xt]; Σt = E
[
xtx

T
t

]
− µtµTt . Estimate the marginal distribution as a

Gaussian
Compute: dE[ct]

dµt
and dE[ct]

dΣt
, e.g. by sampling from this Gaussian, and using the

RP gradient
for each particle i do

mi,t = xi,t − µt; vi,t = vec
(
xi,tx

T
i,t − E

[
xtx

T
t

])
; wi,t = vec

(
mi,tµ

T
t

)
.

vec(·) is a vectorization operator which stacks the elements in a matrix/tensor into
a column vector

gi,t = dE[ct]
dµt

mi,t + dE[ct]
dΣt

(vi,t − 2wi,t) . g is a scalar replacing the usual

cost/reward
Gi,t = Gi,t+1 + gi,t . G is the return (the cost of the remaining trajectory)
dE[ct]
dxi,t

= dE[ct]
dµt

dµt
dxi,t

+ dE[ct]
dΣt

dΣt
dxi,t

. Direct derivative of expected cost for the RP

gradient
dζi,t+1

dxi,t
=

∂ζi,t+1

∂xi,t
+

dζi,t+1

dui,t

dui,t
dxi,t

dGRPi,t
dζi,t

= (
dGi,t+1

dζi,t+1

dζi,t+1

dxi,t
+ dE[ct]

dxi,t
)

dxi,t
dζi,t

dGLRi,t
dζi,t

= Gi,t
d log p(xi,t)

dζi,t
. One could also further subtract a baseline from G

dGRPi,t
dθ

=
dGRPi,t
dζi,t

dζi,t
dui,t−1

dui,t−1

dθ

dGLRi,t
dθ

=
dGLRi,t
dζi,t

dζi,t
dui,t−1

dui,t−1

dθ

end for
σ2
RP = trace(V

[
dGRPi,t
dθ

]
); σ2

LR = trace(V
[

dGLRi,t
dθ

]
) . The sample variance of the

particles

kLR = 1/
(

1 +
σ2
LR

σ2
RP

)
. Weight to combine LR and RP estimators

dJ
dθ

= dJ
dθ

+ kLR
1
P

∑P
i

dGLRi,t
dθ

+ (1− kLR) 1
P

∑P
i

dGRPi,t
dθ

. Combine LR and RP in θ
space

for each particle i do
dGi,t
dζi,t

= kLR
dGLRi,t
dζi,t

+ (1− kLR)
dGRPi,t
dζi,t

. Combine LR and RP in state space

end for
end for

4.4 Total propagation algorithm 89

0.5 1 1.5
-5

0

5

10

15

20

25

30
Reparameterisation gradient
True gradient from finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(a) Reparameterization

0.5 1 1.5
-5

0

5

10

15

20

25

30
Likelihood ratio gradient
True gradient from finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(b) Likelihood ratio

0.5 1 1.5
-5

0

5

10

15

20

25

30

True gradient from finite differences
Total propagation gradient

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(c) Total propagation

Figure 4.12: Comparison of LR, RP and TP gradient estimators. RP is accurate on
the left side, LR is robust on the right side, TP combines the best of both.

4.4.1 Gradient variance evaluation

I performed a simple comparison of the gradient estimators. First, in Figure 4.12 I
plotted the gradient computed using total propagation (TP) in the perturbation range
∆θ ∈ [0, 1.5] as I had previously done for RP in Figure 4.2. I plotted LR and RP
separately to compare to TP. As can be seen, TP looks qualitatively the best—it is
accurate in the region where RP was accurate, but is also robust to the issue with chaos.
I investigated further how much the gradient accuracy is improved: In Figure 4.13, I
plot how the variance of the gradient estimators at ∆θ = 0 and ∆θ = 1.5 depends
on the number of particles P . The variance was computed by repeatedly sampling
the estimator for a large number of times and calculating the variance from the set of
evaluations. I compare RP, total propagation (TP) as well as LR gradients both with
and without batch importance weighting (BIW) to show that my importance sampling
scheme reduces the variance. I used the importance sampled baseline; in practice the
regular LR gradient would use a simpler baseline, and have even higher variance. The
RP gradient is omitted from Figure 4.13b, because the variance was between 108-1015.
The TP gradient combined the BIW-LR and RP gradients.

The results confirm that BIW significantly reduces the variance. Moreover, my
total propagation algorithm was the best. Importantly, in Figure 4.13b, even though
the variance of the RP gradient for the full trajectory is over 106 larger than the other
estimators, TP utilizes shorter path-length RP gradients to obtain 10-50% reduction
in variance for 250 particles and fewer. It is particularly remarkable that TP achieved
a higher accuracy, than the sums of the accuracies of the individual estimators it
was combining. In general, when combining two independent estimates of the same
random variable, the best that one could hope to achieve is an accuracy that sums
the individual accuracies; however, TP was able to utilize the graph structure of the
computations, and hence outperformed the best possible näıve combination of the
gradient estimators. In the next section, I show that such improved gradient estimators,
also lead to improved learning performance, and allowed matching up to PILCO. Thus,
the field may now be ready to attempt swapping out the models, and trying to scale
such differentiable model-based RL algorithms to larger scale problems.

90 Model-based reinforcement learning with particle predictions

0 100 200 300 400 500
10 0

10 1

10 2

10 3

10 4

Total propagation
Regular likelihood ratio
BIW-Likelihood ratio
Reparameterization

Number of particles

G
ra

di
en

t v
ar

ia
nc

e

(a) ∆θ = 0

0 100 200 300 400 500
10 -1

10 0

10 1

10 2

10 3

Total propagation
Regular likelihood ratio
BIW-Likelihood ratio

Number of particles

G
ra

di
en

t v
ar

ia
nc

e

(b) ∆θ = 1.5

Figure 4.13: Computed variances corresponding to plots in Figure 4.12.

4.5 Learning experiments

I performed learning experiments to show that the new improved gradient estimators
translate to better learning performance compared to the standard reparameterization
gradient estimator, and that my method can match up to PILCO, while lifting the re-
strictions of PILCO, which have prevented attempting to scale up such an algorithm.
I compare PILCO in episodic learning tasks to the following particle-based methods:
reparameterization gradients (RP), RP with a fixed seed (RPFS), Gaussian resampling
(GR), GR with a fixed seed (GRFS), model-based batch importance weighted likeli-
hood ratio (LR), total propagation combining the BIW-LR and RP estimators (TP),
Gaussian shaping gradients using only the likelihood ratio method (GLR), Gaussian
shaping gradients combining the BIW-LR and RP variants using total propagation
(GTP), and finally, the density estimation likelihood ratio gradient estimator (DEL).
Moreover, I evaluate two variations of the particle predictions: 1. TP while ignoring
model uncertainty, and adding only the noise at each time step (TP− σf). 2. TP and
GTP with increased prediction noise (TP + σn): 100 and 25 times more noise for TP
and GTP respectively.

I performed learning tasks from a recent PILCO paper (Deisenroth et al., 2015):
cart-pole swing-up and balancing, and unicycle balancing (Fig. 4.14). Moreover, for
the DEL estimator, I tried a simpler cart-pole balancing only task, without the swing-
up. The DEL estimator is a fairly crude approach, and I am simply showing that even
such a method can achieve non-trivial success rate. The simulation dynamics were set
to be the same as in the original PILCO papers, and other aspects were also similar
to the original PILCO, but modifications were made to the experimental setup to
accommodate ease of implementation and explore different aspects of the algorithms.

4.5.1 Optimizers:

RMSprop-like stochastic gradient descent: The main algorithm I used was in-
spired by RMSprop (Tieleman and Hinton, 2012). RMSprop normalizes its stochastic

4.5 Learning experiments 91

gradient descent (SGD) steps by utilizing a running average of the square of the gradi-
ents. In my case, since the batch sizes were large, I directly estimate the expectation of
the square from the batch by z = E [g2] = E [g]2 + V [g], where g is the gradient. I use
the variance of the mean, i.e., V [g] is the variance divided by the number of particles
P . The gradient step becomes g/

√
z. I use momentum with the parameter γ. The full

update equations become:

m← γm+ g/

√
E [g]2 + V [g]

θ ← θ − αm

Deterministic optimizer: The random number seed can be fixed to turn a stochas-
tic problem deterministic, also known as the PEGASUS trick (Ng and Jordan, 2000).
With a fixed seed, the RP gradient is an exact gradient of the objective, and quasi-
Newton optimizers, such as BFGS (Nocedal and Wright, 2006) can be used.

4.5.2 Task Descriptions

Cart-pole swing-up and balancing: This is a standard control theory benchmark
problem. The task consists of pushing a cart back and forth, to swing an attached
pendulum to an upright position, then keep it balanced. The state space was repre-
sented as x = [s, β, ṡ, β̇], where s is the cart-position and β the pole angle. The base
noise levels were σs = 0.01 m, σβ = 1 deg, σṡ = 0.1 m/s, σβ̇ = 10 deg/s. The noise was
modified in different experiments by a multiplier k: σ2

o = kσ2
base. The original PILCO

paper considered direct access to the true state. I set k = 10−2 to obtain a similar
setting, but also tested k ∈ {1, 4, 9, 16}. The policy π̃ was a radial basis function
network (a sum of Gaussians) with 50 basis functions. I considered two cost functions
(Fig. 4.15). Both costs were of the saturated cost type explained in Section 4.1. One
was the same as in the original PILCO, with x including the sine and cosine, and
depended on the distance between the tip of the pendulum to the position of the tip
when the pendulum is balanced (Tip Cost). The other cost used the raw angle and had
Q = diag([1, 1, 0, 0]) (Angle Cost). This cost differs conceptually from the Tip Cost,
because there is only one correct direction in which to swing up the pendulum. To test
dependence on hyperparameter tuning: in the RP, Angle Cost, k = 1 case, I tested
α ∈ {10−3, 10−4}, which lie above and below the standard learning rate, and both of
these yielded worse performance.

Cart-pole balancing with DEL estimator This task is much simpler—the pole
starts upright and must be balanced. The experiment was devised to show that DEL
is feasible and may be useful if further developed. The Angle Cost and the base noise
level were used.

Unicycle balancing: See the work of Deisenroth et al. (2015) for a description. The
task consists of balancing a unicycle robot, with state dimension D = 12, and control
dimension F = 2. The robot can be controlled by applying torques to the wheel on
the floor to control backward and forward movement, and to the flywheel at the top

92 Model-based reinforcement learning with particle predictions

F

(a) Cart-pole. D = 4, F = 1 (b) Unicycle. D = 12, F = 2

Figure 4.14: Illustrations of the systems used in my simulations experiments.

F

Target

(a) Angle cost

F

Target

(b) Tip cost

Figure 4.15: Illustrations of the costs used in the cart-pole task.

4.5 Learning experiments 93

of the robot to turn the robot and balance it. The noise was set to a low value. The
controller π̃ is linear. I performed this experiment to show that my algorithm can also
match PILCO in higher dimensional problems. The unicycle task is at about the upper
limit in terms of dimensionality among tasks that PILCO can handle.

4.5.3 Experimental setup

The optimizer was run for 600 policy evaluations between each trial. The stochastic
gradient descent learning rate, and momentum parameters were α = 5 × 10−4 and
γ = 0.9. The episode lengths were 3s for the cart-pole, and 2s for the unicycle. Note
that for the unicycle task, 2s was not sufficient for the policy to generalize to long
trials, but it still allowed comparing to PILCO. The control frequencies were 10Hz.
The costs were of the type 1 − exp(−(x − t)TQ(x − t)), where t is the target. The
outputs from the policies π(x) were constrained by a saturation function: sat(u) =
9 sin(u)/8 + sin(3u)/8, where u = π̃(x). One experiment consisted of (1; 5) random
trials followed by (15; 30) learned trials for the cart and unicycle tasks respectively.
Each experiment was repeated 100 times and averaged. Each trial was evaluated
by running the policy 30 times, and averaging, though note that this was performed
only for evaluation purposes—the algorithms only had access to 1 trial. Success was
determined by whether the return of the final trial passed below a threshold. The
threshold was calibrated at a total cost of below 15. Moreover, I checked all of the final
trajectory distributions by plotting them, and the threshold based approach matched
my visual classification. Trials were considered successful if the pendulum was swung
up and kept balanced.

4.5.4 Learning experiment results

The success rates of cart-pole swing-up are in Tables 4.2 and 4.1 while Figure 4.3
compares the standard particle-based methods to the Gaussian shaping variants. The
success rate of unicycle balancing is in Table 4.4. Figures 4.16 and 4.17 show the
learning efficiency of the algorithms. Additionally, I tested TP and PILCO in the
Angle Cost k=1 scenario, when Q was multiplied by 0.01 to test the importance of the
moment matching approximation for “exploration”, and the results were 97% success
rate for TP and 46% success rate for PILCO, implying that moment matching may
not be that crucial for exploration.

94 Model-based reinforcement learning with particle predictions

Table 4.1: Angle cost. Success rate of learning cart-pole swing-up

Noise Mult. PILCO RP RPFS GR GRFS LR TP TP−σf TP+σn

k = 10−2 0.88 0.69 0.24 0.63 0.74 0.57 0.82 0.96
k = 1 0.79 0.74 0.23 0.89 0.71 0.96 0.99 0.93
k = 4 0.70 0.58 0.08 0.62 0.41 0.94 0.95 0.87
k = 9 0.37 0.44 0.04 0.34 0.25 0.86 0.83 0.78
k = 16 0.01 0.11 0.00 0.08 0.02 0.45 0.40 0.42

Table 4.2: Tip cost. Success rate of learning cart-pole swing-up

Noise Mult. PILCO RP RPFS GR GRFS LR TP

k = 10−2 0.92 0.44 0.20 0.47 0.78 0.36 0.54
k = 1 0.73 0.15 0.08 0.68 0.50 0.28 0.48

Table 4.3: Success rate of learning cart-pole swing-up: comparing to Gaussian shaping

Cost func. σ2
o multiplier PILCO RP GR LR TP GTP GLR GTP+σn

Angle Cost k = 10−2 0.88 0.69 0.63 0.57 0.82 0.65 0.42 0.88
Angle Cost k = 1 0.79 0.74 0.89 0.96 0.99 0.9 0.93
Tip Cost k = 10−2 0.92 0.44 0.47 0.36 0.54 0.6 0.45 0.8
Tip Cost k = 1 0.73 0.15 0.68 0.28 0.48 0.69 0.35

5 10 15
0

5

10

15

20

25

30

35
PIPPS
PILCO

Trial

A
ve

ra
ge

 c
um

ul
at

iv
e

co
st

(a) Cart-pole

10 20 30
0

5

10

15

20

25
PIPPS
PILCO

Trial

A
ve

ra
ge

 c
um

ul
at

iv
e

co
st

(b) Unicycle

Figure 4.16: PIPPS using TP matches PILCO in data-efficiency.

4.6 Discussion 95

5 10 15
0

5

10

15

20

25

30

35
DEL top 20 performers
DEL all experimental runs

Episode #

A
ve

ra
ge

 c
um

ul
at

iv
e

co
st

(a) Cart-pole balancing only

5 10 15
0

5

10

15

20

25

30

35
GTP
PILCO
TP

Episode #

A
ve

ra
ge

 c
um

ul
at

iv
e

co
st

(b) Swing-up and balancing
All experimental runs

5 10 15
0

5

10

15

20

25

30

35
GTP
PILCO
TP

Episode #

A
ve

ra
ge

 c
um

ul
at

iv
e

co
st

(c) Swing-up and balancing
Top 40 experimental runs

Figure 4.17: Data-efficiency and performance of learning algorithms on cart-pole
tasks. Figures 4.17b and 4.17c correspond to the k = 1, Tip Cost case.

Table 4.4: Success rate of learning unicycle balancing

PILCO RP RPFS GR GRFS LR TP

0.91 0.80 0.39 0.96 0.63 0.47 0.94

4.6 Discussion

In the experiments where I plotted the objective landscape, I identified an issue with
chaotic gradients, and showed that my total propagation algorithm was able to solve
that problem. In the learning experiments, I wanted to test whether solving that issue
translates to better performance in the final task. The main conclusion is that indeed
with the new gradient estimators, I am able to match up in all tasks that the original
PILCO was considered. Now it appears that the foundation has been laid to scale
up such differentiable model-based algorithms to more difficult tasks by swapping out
the models. Note however, that I have not yet attempted extremely high dimensional
tasks, and this may prove problematic, as the LR component in my algorithm may
need some further developments to scale up. However, all policy gradient algorithms
rely on such gradient estimators, and as my algorithm incorporates RP gradients, it
is expected to at the very least perform better than other currently available policy
optimization algorithms.

4.6.1 Learning Experiments

PILCO performs well in scenarios with no noise, but with noise added the results
deteriorate. This deterioration is most likely caused by the issue of moment matching
becoming conservative, which I presented in the background section in Figure 1.4. Such
an accumulation of errors in the MM approximations was previously also observed by
Vinogradska et al. (2016), who used quadrature for predictions. Particles do not suffer
from this issue, and using TP gradients consistently outperforms PILCO with high
noise.

96 Model-based reinforcement learning with particle predictions

On the other hand, at low noise levels, the performance of TP as well as LR reduces.
If all of the particles are sampled from a small region, it becomes difficult to estimate
the gradient from changes in the return—in the limit of a delta distribution an LR
gradient could not even be evaluated. The TP gradient is less susceptible to this
problem, because it incorporates information from RP. Finally, if the uncertainty in
predictions is very low (as in k = 10−2), one can consider model noise as a parameter
that affects learning, and increase it to acquire more accurate gradients: see TP + σn,
where the model noise variance was multiplied by 100, or GTP + σn, where the noise
was multiplied by 25.

Notably, approaches which use MM, such as PILCO and GR, outperform the oth-
ers when using the Tip Cost. Looking only at the costs in Figures 4.17b and 4.17c
does not adequately display the difference. In contrast, the success rates show that TP
did not perform as well. The losses of the peak performers at the final episode were
TP: 11.14± 1.73, GTP: 9.78± 0.40, PILCO: 9.10± 0.22, which also show that TP
was significantly worse. While the peak performers were still improving, the remaining
experiments had converged. PILCO still appears slightly more data-efficient; however,
the difference has little practical significance as the required amount of data is low.
Also note that in Figure 4.17b TP has smaller variance. The larger variance of GTP
and PILCO is caused by outliers with a large loss. These outliers converged to a local
minimum, which takes advantage of the tail of the Gaussian approximation of the state
distribution—this contrasts with prior suggestions that PILCO performs exploration
using the tail of the Gaussian (Deisenroth and Rasmussen, 2011). The reason why
approaches that smoothed with a Gaussian outperformed the pure particle-based ap-
proaches may be the multi-modality of the objective—with the Tip Cost, the pendulum
may be swung up from either direction to solve the task; with the Angle Cost there is
only one correct direction. Performing MM forces the algorithm along a unimodal path,
whereas the particle approach could attempt a bimodal swing-up where some particles
go from one side, and the rest from the other side. Thus, MM may be performing a
kind of “distributional reward shaping”, simplifying the optimization problem. Such
an explanation was previously provided by Gal et al. (2016). My Gaussian shaping
gradient experiments further strengthen this claim. The Gaussian shaping gradient
(GTP) allows adding this kind of bias into the gradient estimator, without modifying
the trajectory distribution. GTP matches up to PILCO also in the Tip Cost scenarios.
Thus, I have managed to match PILCO in all scenarios so far, and the algorithms are
ripe for attempting to scale up to more difficult tasks, though note that this will also
require swapping out the models used in PILCO.

Finally, I point to the surprising TP−σf experiment. Even though the predictions
ignore model uncertainty, the method achieved competitive success rate in Table 4.1,
with the performance only slightly dropping. This is a striking difference to the result
reported by Deisenroth et al. (2015), who claimed that when PILCO ignores the model
uncertainty σf , the success rate is 0%. It is difficult to explain why learning still
worked, but I hypothesize that the success may be related to the 0 prior mean of
the GP. In regions where there is no data, the mean of the GP dynamics model goes
to 0, meaning that the input control signal has no effect on the particle. Therefore,
for the policy optimization to be successful, the particles would have to be controlled
to stay in regions where there exists data. Note that a similar result was found by

4.6 Discussion 97

Chatzilygeroudis et al. (2017) who used an evolutionary algorithm and achieved 85-
90% success rate at the cart-pole task even when ignoring model uncertainty. Finally,
I note that many other works have also showed that incorporating model uncertainty
is important (Kurutach et al., 2018; Chua et al., 2018), although none reported a 0%
success rate when ignoring model uncertainty.

4.6.2 The Curse of Chaos in Deep Learning and elsewhere

Most machine learning problems involve optimizing the expectation of an objective
function J(x; θ) over some data generating distribution pData(x), where this distribu-
tion can only be accessed through sample data points {xi}. The predictive framework
is analogous to a deep model: p(x0) is the data generating distribution, p(xt; θ) are ob-
tained by pushing pData(x) through the model layers. The most common method of op-
timization is SGD with pathwise derivatives computed by backpropagation. My results
suggest that in some situations—particularly with very deep or recurrent models—this
approach could degenerate into a random walk due to an exploding gradient variance.

Exploding gradients have been observed in deep learning research for a long time
(Doya, 1993; Bengio et al., 1994). Typically this phenomenon is regarded as a nu-
merical issue, which leads to large steps and unstable learning. Common countermea-
sures include gradient clipping, ReLU activation functions (Nair and Hinton, 2010) and
smart initializations. My explanation to the problem is different: it is not just that
the gradient becomes large, the gradient variance explodes, meaning that any sample
from xi ∼ pData provides essentially no information about how to change the model
parameters θ to increase the expectation of the objective over the whole distribution
EpData [J(x)]. While choosing a good initialization is an approach to tackle the problem,
it appears difficult to guarantee that the system does not become chaotic during learn-
ing. For example, in econometrics there are even cases where the optimal policy may
lead to chaotic dynamics (Deneckere and Pelikan, 1986). Gradient clipping can stop
large parameter steps, but it will not fundamentally solve the problem if the gradients
become random. Considering that chaos does not occur in linear systems (Alligood
et al., 1996), my analysis suggests a reason for why piece-wise linear activations, which
may be less susceptible to chaos, such as ReLUs perform well in deep learning.

While I have yet to computationally confirm my hypothesis regarding deep learning,
several works have investigated chaos in neural networks (Kolen and Pollack, 1991;
Sompolinsky et al., 1988), to name a few. Notably, Poole et al. (2016) suggested that
such properties lead to “exponential expressivity”, but I believe that this phenomenon
may instead be a curse.

As further evidence that what I have found is correct: note that Ingraham et al.
(2019) concurrently investigated issues with chaos in differentiable protein folding soft-
ware, and found that the same issue with gradients occurs in their problem. They
proposed to reduce the issue with chaos by adding a regularizer into their optimization
task; however, such an approach can restrict the solution space, and may damage the
performance. As another work, soon after I had published my results, Metz et al.
(2019) built on my findings, and investigated issues with chaos in meta-learning in
training optimizers that could optimize faster than hand-designed optimization algo-
rithms, and they also observed issues with chaos, and used my suggestion of inverse

98 Model-based reinforcement learning with particle predictions

variance weighting to achieve much better performance.
I started with a specific problem of trying to make model-based reinforcement learn-

ing work while differentiating through the model-predictions. However, the problems
that I encountered with chaos are actually more general and prevalent in many areas
of machine learning where there are repeated non-linear computations. The solution
that I found, total propagation, is general and I hope it could also be applied in many
other scenarios.

Conclusions & Suggestions

My thesis went all the way from explaining novel views of elementary gradient estima-
tors to how such estimators can be combined on a graph of computations, and finally
applied the new techniques in model-based reinforcement learning algorithms.

I explained that the sampling distribution used to estimate likelihood ratio gradi-
ents should be kept separate from the distribution used to define the objective, and
showed that drastic reductions in gradient variance can be achieved by using an opti-
mal importance sampling distribution. Moreover, I discussed baseline techniques for
such gradient estimators, and argued that the variance of the baseline estimation itself
should also be taken into account in designing gradient variance reduction techniques.

I provided a novel framework for decomposing the total derivative in a graph of
computations into partial derivatives along computational paths. My framework gener-
alized standard “policy gradient theorems” into non-Markovian reinforcement learning
environments, and provided an intuitive visual method to derive new gradient estima-
tors. I used this framework to derive new estimators: the density estimation likelihood
ratio gradient estimator as well as the Gaussian shaping gradient estimators. In par-
ticular the Gaussian shaping gradient estimator is exciting, because it allows for the
gradient computation, to “jump” over multiple nodes in the computational graph to
some distal node, then continue applying the chain rule from that node onward. Such
a technique may prove useful in large graphs of complex interactions.

Finally, I investigated gradient estimation techniques in model-based reinforcement
learning. Surprisingly, the go to solution of applying reparameterization gradients
together with backpropagation proved to be hopelessly poor in situations where the
dynamics become chaotic. I argued that such situations occur in many fields of ma-
chine learning and cast doubt on whether standard backpropagation-based approaches
will be sufficient in the long term of machine learning research. Not only did I elu-
cidate such phenomena, but I also provided a direction to overcome such challenges.
Among my key contributions was the creation of the total propagation algorithm,
which is an elegant algorithm for combining gradient estimators during the backwards
gradient computation. Such an algorithm may be able to utilize the good scaling of
backpropagation-based approaches, while achieving the robustness of likelihood ratio
gradient estimators, and may allow overcoming challenges due to chaos. It appears that
I may have been able to lay a foundation for scaling up differentiable model-based re-
inforcement learning, and the next step should be to swap out the rudimentary models
used in PILCO to more advanced models, and try out more challenging tasks.

Unfortunately, current software frameworks, such as TensorFlow (Abadi et al.,
2015), PyTorch (Paszke et al., 2017) and Chainer (Tokui et al., 2015) are not com-

99

100 Conclusion

patible with my new gradient estimation techniques. I envision that ever more flexible
and customizable gradient estimation frameworks will be necessary. Gradient descent
has enabled many exciting technologies in machine learning, and I believe that new
gradient estimation techniques will enable applications previously unimaginable.

Appendix A

Gaussian process models

One way to represent a function is as an infinite vector containing one entry f(x) for
the function value at each argument location x. Without additional assumptions, this
representation is not useful. In a Gaussian process, the additional assumption is that
any finite subset of points in this vector are jointly Gaussian distributed:f(x1)

...
f(xn)

 ∼ N

µ1

...
µn

 ,
Σ11 . . . Σ1n

...
. . .

...
Σn1 . . . Σnn

 (A.1)

In a machine learning context, we do not know this infinite dimensional distribution, we
will only know it at a finite number number of points. However, Gaussian distributions
satisfy the marginalization property: if one integrates over one block of dimensions in
a Gaussian distribution, the remaining distribution will simply be the other block. In
other words, we only need to know the covariances between the argument values that
we are interested in.

Furthermore, if one knows the function value at some points, one can compute a
conditional distribution at any other argument with the following equations:[

F1

F2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(A.2)

In this distribution both F -s can be any length vectors. Given that Equation (A.2)
holds, if we know F1, it is possible to condition the values of F2 on these values using
the following equations:

µ = µ2 + Σ21Σ−1
11 (F1 − µ1)

Σ = Σ22 − Σ21Σ−1
11 Σ12

F2 ∼ N (µ,Σ)

(A.3)

To perform predictions with the the values of F1, the only remaining issue is how to
calculate the covariances and the means in Equation (A.2).

The mean gets calculated using the mean function m(x). This is often set to either
0, or for example in PILCO, it is set to m(x) = x. Note that strictly speaking, each
Gaussian process will have one output, so in practice the mean function for one output
dimension will only copy the value of that particular dimension.

101

102 Gaussian process models

Figure A.1: Gaussian process prior
on functions, together with a few sam-
ple functions drawn from this prior.

Figure A.2: Posterior function dis-
tribution after some data has been ob-
served. Only the functions, which can
explain the data remain.

The more important component of a Gaussian process is the covariance function
k(xi,xj). The covariance function is used to compute each entry in the covariance
matrix. There are various kinds of convariance matrices that can capture different
structures in the data, such as periodicity, symmetricity about a point, etc. PILCO
uses possibly the most common covariance function, the squared exponential covariance
function:

k(xi,xj) = σ2
f exp(−(xi − xj)

TΛ−1(xi − xj)) (A.4)

This covariance function says that if two data points are close to each other, their
function value will be similar (the covariance will be higher). σ2

f is a hyperparameter
which gives an indication of the size of the range over which the function values vary. Λ
is a diagonal matrix of length-scale hyperparameters, which say over what distance two
points covary. These hyperparameters will get optimized by maximizing the marginal
likelihood of the data, and this will be explained below.

There is another hyperparameter, which determines the intrinsic variability of the
observations, the noise hyperparameter. The noise is assumed to be Gaussian. The
likelihood of a vector of observations Y for a given set of function values F becomes
N (Y; F, Iσ2

n)N (F;M(X), K(X,X)), where X are all of the argument values of each
data point, M(X) are the outputs of the mean function for each data point, and
K(X,X) is the covariance matrix evaluated with the covariance function. A product
of two Gaussians is a Gaussian, and this can be easily integrated. To find the the
marginal likelihood, the hidden variables F get integrated out. The final result is given
by the equation below.

L = N (Y;M(X), Iσ2
n +K(X,X)) (A.5)

Usually, one takes the log of this equation, computes the derivatives with respect to the
hyperparameters, and optimizes the hyperparameters. This kind of maximization of
the marginal likelihood implements an automatic Occam’s razor: if the noise is small,
there will be few functions that fit the data well, if the noise is very large, so that many

103

functions could explain the data, the likelihood of this particular data set given any
function will be fairly low (Rasmussen and Ghahramani, 2001). The algorithm finds
a middle ground where many functions are able to explain the data. It thus penalises
functions that are too complicated, while still trying to get a good fit.

To perform predictions when the noise is included, one should use the covariance
matrix including the noise and combine this with Equation (A.3).

A Gaussian process models a whole distribution of functions. The covariance func-
tion is a prior on the type of functions. When data is observed, only the functions that
can explain the data will remain. This is illustrated in Figures A.1 and A.2.

Appendix B

Basic vector calculus and fluid
mechanics

Here I illustrate the background information in 3 dimensions, but it generalizes straight-
forwardly to higher dimensions.

Notation:
F = [Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)] is a vector field.
φ(x, y, z) is a scalar field (a scalar function)
Div operator: ∇ · F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
.

Grad operator: ∇φ = [∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

].
The vector field F could be for example thought of as a local flow velocity for some

fluid. If F is the density flow rate, then the div operator essentially measures how
much the density is decreasing at a point. If the outflow is larger than the inflow,
the density would decrease and vice versa. The divergence theorem, illustrated in
Figure B.1 illustrates how this change in density can be measured in two separate
ways: one could integrate the divergence across the volume, or one could integrate the
in and and outflow across the surface. The divergence theorem states:∫

V

∇ · FdV =

∫
S

F · dS (B.1)

To prove the claim, consider the infinitesimal box in Figure B.1. The divergence
can be calculated as δxδy(∂Fx

∂x
+ ∂Fy

∂y
). On the other hand, to take the integral across

the surface, note that the surface normals point outwards, and the integral becomes
δy(−Fx + Fx − ∂Fx

∂x
δx) + δx(−Fy + Fy + ∂Fy

∂y
δy) = δxδy(∂Fx

∂x
+ ∂Fy

∂y
), which is the same

as the divergence. To generalize this to arbitrarily large volumes, notice that if one
stacks the boxes next to each other, then the surface integral across the area where the
boxes meet cancels out, and only the integral across the outer surface remains. For an
incompressible flow, the density does not change, and the divergence must be zero.

105

106 Basic vector calculus and fluid mechanics

Figure B.1: Illustration of the divergence theorem.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Software avail-
able from tensorflow.org. 4.6.2

Alligood, K. T., Sauer, T. D., and Yorke, J. A. (1996). Chaos. Springer. 4.2.1, 4.2.2,
4.6.2

Amos, B., Jimenez, I., Sacks, J., Boots, B., and Kolter, J. Z. (2018). Differentiable MPC
for end-to-end planning and control. In Advances in Neural Information Processing
Systems, pages 8299–8310. 1.3.4

Bauer, M., van der Wilk, M., and Rasmussen, C. E. (2016). Understanding proba-
bilistic sparse Gaussian process approximations. In Advances in neural information
processing systems, pages 1533–1541. 1.3.4

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.
4.6.2

Bischoff, B., Nguyen-Tuong, D., Koller, T., Markert, H., and Knoll, A. (2013). Learning
throttle valve control using policy search. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 49–64. Springer. 1.3.3, 1.3.5

Bischoff, B., Nguyen-Tuong, D., van Hoof, H., McHutchon, A., Rasmussen, C. E.,
Knoll, A., Peters, J., and Deisenroth, M. P. (2014). Policy search for learning robot
control using sparse data. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 3882–3887. IEEE. 1.3.3

Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., and Mouret,
J.-B. (2017). Black-box data-efficient policy search for robotics. In Intelligent Robots
and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages 51–58.
IEEE. 4.6.1

107

108 Bibliography

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in
Neural Information Processing Systems, pages 4754–4765. 4, 4.6.1

Ciosek, K. and Whiteson, S. (2017). Expected policy gradients. arXiv preprint
arXiv:1706.05374. 3.2.4

Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., and Knuth, D. E. (1996). On
the Lambert W function. Advances in Computational mathematics, 5(1):329–359.
2.2.2

Deisenroth, M., Fox, D., and Rasmussen, C. (2014). Gaussian processes for data-
efficient learning in robotics and control. Transactions on Pattern Analysis and
Machine Intelligence, 36(5):1–1. 1.3.3

Deisenroth, M. P. (2010). Efficient reinforcement learning using Gaussian processes,
volume 9. KIT Scientific Publishing. 1.3.3

Deisenroth, M. P., Calandra, R., Seyfarth, A., and Peters, J. (2012). Toward fast policy
search for learning legged locomotion. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 1787–1792. IEEE. 1.3.3

Deisenroth, M. P. and Fox, D. (2011). Multiple-target reinforcement learning with
a single policy. In ICML 2011 Workshop on Planning and Acting with Uncertain
Models. Citeseer. 1.3.3

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2015). Gaussian processes for data-
efficient learning in robotics and control. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 37(2):408–423. 4.5, 4.5.2, 4.6.1

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A model-based and data-
efficient approach to policy search. In International Conference on Machine Learning,
pages 465–472. (document), 1.3, 1.3, 1.3.3, 4.6.1

Deisenroth, M. P., Rasmussen, C. E., and Fox, D. (2011). Learning to control a low-cost
manipulator using data-efficient reinforcement learning. 1.3.3

Deneckere, R. and Pelikan, S. (1986). Competitive chaos. Journal of economic theory,
40(1):13–25. 4.6.2

Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F., and Udluft, S. (2016). Learning
and policy search in stochastic dynamical systems with Bayesian neural networks.
arXiv preprint arXiv:1605.07127. 4

Doya, K. (1993). Bifurcations of recurrent neural networks in gradient descent learning.
IEEE Transactions on neural networks, 1:75–80. 4.6.2

Englert, P., Paraschos, A., Deisenroth, M. P., and Peters, J. (2013). Probabilistic
model-based imitation learning. Adaptive Behavior, 21(5):388–403. 1.3.3

109

Fairbank, M. and Alonso, E. (2012). Value-gradient learning. In The 2012 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE. 3.2.3

Fleiss, J. (1993). Review papers: The statistical basis of meta-analysis. Statistical
methods in medical research, 2(2):121–145. 4.4

Fu, M. C. and Hu, J.-Q. (1995). Sensitivity analysis for Monte Carlo simulation of
option pricing. Probability in the Engineering and Informational Sciences, 9(3):417–
446. 1.1

Gal, Y., McAllister, R., and Rasmussen, C. (2016). Improving PILCO with bayesian
neural network dynamics models. In Workshop on Data-efficient Machine Learning,
ICML. 1.3.3, 4, 4.3.1, 4.6.1

Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems.
Communications of the ACM, 33(10):75–84. 1.1.1

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques
for gradient estimates in reinforcement learning. Journal of Machine Learning Re-
search, 5(Nov):1471–1530. 1.1.1, 2, 2.3.2

Ha, D. (2017). Evolving stable strategies. blog.otoro.net. 2.3.2

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution.
In Advances in Neural Information Processing Systems, pages 2450–2462. 4

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson,
J. (2019). Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, pages 2555–2565. 4

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and Tassa, Y. (2015). Learning
continuous control policies by stochastic value gradients. In Advances in Neural
Information Processing Systems, pages 2944–2952. 3.2.3, 4

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347. 1.1

Ingraham, J., Riesselman, A., Sander, C., and Marks, D. (2019). Learning protein
structure with a differentiable simulator. In International Conference on Learning
Representations. 4.6.2

Jankowiak, M. and Obermeyer, F. (2018). Pathwise derivatives beyond the reparame-
terization trick. In International Conference on Machine Learning, pages 2240–2249.
2.1.2, 2.1.2

Jie, T. and Abbeel, P. (2010). On a connection between importance sampling and
the likelihood ratio policy gradient. In Advances in Neural Information Processing
Systems, pages 1000–1008. 2.1.1, 2.4.1

Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific tools
for Python. [Online; accessed May 2019]. 2.2.2, 6

110 Bibliography

Jordan, M. I. and Rumelhart, D. E. (1992). Forward models: Supervised learning with
a distal teacher. Cognitive science, 16(3):307–354. (document)

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980. 2.3.2

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114. 2

Kolen, J. F. and Pollack, J. B. (1991). Back propagation is sensitive to initial conditions.
In Advances in neural information processing systems, pages 860–867. 4.6.2

Körding, K. P. and Wolpert, D. M. (2004). The loss function of sensorimotor learning.
Proceedings of the National Academy of Sciences, 101(26):9839–9842. 4.1

Kupcsik, A., Deisenroth, M. P., Peters, J., Loh, A. P., Vadakkepat, P., and Neumann,
G. (2014). Model-based contextual policy search for data-efficient generalization of
robot skills. Artificial Intelligence. 1.3.4

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592. 4, 4.6.1

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436.
(document), 4.4

Mahsereci, M. and Hennig, P. (2015). Probabilistic line searches for stochastic opti-
mization. In Advances in Neural Information Processing Systems, pages 181–189.
4.2

Mania, H., Guy, A., and Recht, B. (2018). Simple random search of static linear
policies is competitive for reinforcement learning. In Advances in Neural Information
Processing Systems, pages 1800–1809. 2.1.1, 2.3.2

McAllister, R. (2017). Bayesian Learning for Data-Efficient Control. PhD thesis,
Department of Engineering, University of Cambridge. 1.3.4

McAllister, R. and Rasmussen, C. E. (2016). Data-efficient reinforcement learning in
continuous-state POMDPs. arXiv preprint arXiv:1602.02523. 1.3.1, 1.3.3

McAllister, R., van der Wilk, M., and Rasmussen, C. (2016). Data-efficient policy
search using PILCO and directed-exploration. In Workshop on Data-efficient Ma-
chine Learning, ICML. 1.3.3, 1.3.4

McHutchon, A. (2014). Modelling nonlinear dynamical systems with Gaussian Pro-
cesses. PhD thesis, University of Cambridge. 1.3.4, 1.3.6, 4.3.1

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., and Sohl-Dickstein, J. (2019).
Understanding and correcting pathologies in the training of learned optimizers. In
International Conference on Machine Learning, pages 4556–4565. 4.6.2

111

Mnih, A. and Rezende, D. (2016). Variational inference for Monte Carlo objectives. In
International Conference on Machine Learning, pages 2188–2196. 1.1.1, 2.4.2

Murray, I. (2016). Differentiation of the Cholesky decomposition. arXiv preprint
arXiv:1602.07527. 4.3.1

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814. 4.6.2

Naumann, U. (2008). Optimal Jacobian accumulation is NP-complete. Mathematical
Programming, 112(2):427–441. 3.1.2

Nesterov, Y. and Spokoiny, V. (2017). Random gradient-free minimization of convex
functions. Foundations of Computational Mathematics, 17(2):527–566. 4.4

Ng, A. Y. and Jordan, M. (2000). Pegasus: A policy search method for large MDPs
and POMDPs. In Proceedings of the Sixteenth conference on Uncertainty in artificial
intelligence, pages 406–415. Morgan Kaufmann Publishers Inc. 4.5.1

Nguyen, D. H. and Widrow, B. (1990). Neural networks for self-learning control sys-
tems. IEEE Control systems magazine, 10(3):18–23. 4

Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science & Business
Media. 1.3, 4.5.1

Owen, A. B. (2013). Monte Carlo theory, methods and examples. 2.2.2

Parmas, P., Rasmussen, C. E., Peters, J., and Doya, K. (2018). PIPPS: Flexible
model-based policy search robust to the curse of chaos. In International Conference
on Machine Learning. 3, 3.3, 3.3.2

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmai-
son, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in PyTorch. In
NIPS Autodiff Workshop. 4.6.2

Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier. 3

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. (2016). Exponen-
tial expressivity in deep neural networks through transient chaos. In Advances in
neural information processing systems, pages 3360–3368. 4.6.2

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse ap-
proximate Gaussian process regression. Journal of Machine Learning Research. 1.3.4

Rasmussen, C. E. and Ghahramani, Z. (2001). Occam’s razor. Advances in neural
information processing systems, pages 294–300. A

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine
Learning. MIT Press. 1

112 Bibliography

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082.
1.1.2

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning representations
by back-propagating errors. Cognitive modeling, 5(3):1. (document)

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.
2, 2.1.1, 2.3.2, 3.2.2

Schmidhuber, J. (2015a). Deep learning in neural networks: An overview. Neural
networks, 61:85–117. (document), 4.4

Schmidhuber, J. (2015b). On learning to think: Algorithmic information theory for
novel combinations of reinforcement learning controllers and recurrent neural world
models. arXiv preprint arXiv:1511.09249. 4

Schulman, J., Heess, N., Weber, T., and Abbeel, P. (2015). Gradient estimation us-
ing stochastic computation graphs. In Advances in Neural Information Processing
Systems, pages 3528–3536. 3, 3.1.3, 4.4

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., and Schmidhuber, J.
(2010). Parameter-exploring policy gradients. Neural Networks, 23(4):551–559. 3.2.2

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
Deterministic policy gradient algorithms. In International Conference on Machine
Learning. 1.1.1, 3, 3.2.1, 3.2.1

Sompolinsky, H., Crisanti, A., and Sommers, H.-J. (1988). Chaos in random neural
networks. Physical review letters, 61(3):259. 4.6.2

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Machine Learning Proceedings
1990, pages 216–224. Elsevier. 4

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction,
volume 1. MIT press Cambridge. (document), 3.2.1

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation. In Advances in
neural information processing systems, pages 1057–1063. (document), 3.2.1, 3.2.1

Tangkaratt, V., Mori, S., Zhao, T., Morimoto, J., and Sugiyama, M. (2014). Model-
based policy gradients with parameter-based exploration by least-squares conditional
density estimation. Neural networks, 57:128–140. 2.4.2

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31. 4.5.1

113

Tokui, S., Oono, K., Hido, S., and Clayton, J. (2015). Chainer: a next-generation
open source framework for deep learning. In Proceedings of Workshop on Machine
Learning Systems (LearningSys) in The Twenty-ninth Annual Conference on Neural
Information Processing Systems (NIPS). 4.6.2

Vinogradska, J., Bischoff, B., Schmidt, H., and Romer, A. (2016). Stability of con-
trollers for Gaussian process forward models. In Proceedings of The 33rd Interna-
tional Conference on Machine Learning, pages 545–554. 1.3.3, 1.3.4, 4.6.1

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s College,
Cambridge. 1.1

Weaver, L. and Tao, N. (2001). The optimal reward baseline for gradient-based rein-
forcement learning. In Proceedings of the Seventeenth Conference on Uncertainty in
artificial intelligence, pages 538–545. Morgan Kaufmann Publishers Inc. 2, 2.4, 2.4.1

Weber, T., Heess, N., Buesing, L., and Silver, D. (2019). Credit assignment techniques
in stochastic computation graphs. arXiv preprint arXiv:1901.01761. 3

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the
behavioral sciences. Ph. D. dissertation, Harvard University. (document)

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning, 8(3-4):229–256. 1.1.1

	Declaration of Original and Sole Authorship
	Abstract
	Acknowledgment
	Abbreviations
	Glossary
	Nomenclature
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Background
	1.1 Episodic policy search
	1.1.1 Model-free policy gradient algorithms
	1.1.2 Model-based policy gradients

	1.2 Model-based policy search
	1.3 PILCO
	1.3.1 Model learning
	1.3.2 Moment matching prediction
	1.3.3 Literature on PILCO
	1.3.4 Shortcomings of PILCO
	1.3.5 PILCO as a trajectory tracker
	1.3.6 How to overcome the challenges in PILCO?

	2 Gradient estimators through a single sampling operation
	2.1 Interpretations of LR and RP gradients
	2.1.1 A probability ``boxes" view of LR and RP gradients
	2.1.2 A unified probability flow view of LR and RP gradients

	2.2 Importance sampling for gradient estimators
	2.2.1 Slice integral importance sampling
	2.2.2 Slice ratio importance sampling

	2.3 Experiments with slice ratio gradients
	2.3.1 Experiments to verify theoretical results
	2.3.2 Experiments in evolution strategies

	2.4 Baseline techniques for variance reduction
	2.4.1 Preliminaries: Optimal baseline
	2.4.2 Bias in gradient estimator with an estimated baseline
	2.4.3 Effect of the variance of the baseline estimator

	2.5 Toy experiments to test theory

	3 Probabilistic computation graphs for gradient estimation
	3.1 Total stochastic gradient theorem
	3.1.1 Explanation of framework
	3.1.2 Derivation of theorem
	3.1.3 Gradient estimation on a graph

	3.2 Relationship to various gradient estimators
	3.2.1 Relationship to policy gradient theorems
	3.2.2 Parameter-space sampling based methods
	3.2.3 Model-based gradient estimators
	3.2.4 Relationship to ``Generalized policy gradient theorem''

	3.3 New gradient estimators
	3.3.1 Density estimation likelihood ratio gradient (DEL)
	3.3.2 Distributional/Gaussian shaping gradients (GS)

	4 Model-based reinforcement learning with particle predictions
	4.1 Preliminaries: model, prediction and gradients
	4.2 Explaining the Curse of Chaos
	4.2.1 Value estimator landscape view of chaotic dynamics
	4.2.2 A trajectory distribution view of chaotic dynamics

	4.3 Resampling-based trajectory prediction
	4.3.1 Resampling from a Gaussian
	4.3.2 Resampling from a mixture of Gaussians
	4.3.3 Why resampling based methods are undesirable

	4.4 Total propagation algorithm
	4.4.1 Gradient variance evaluation

	4.5 Learning experiments
	4.5.1 Optimizers:
	4.5.2 Task Descriptions
	4.5.3 Experimental setup
	4.5.4 Learning experiment results

	4.6 Discussion
	4.6.1 Learning Experiments
	4.6.2 The Curse of Chaos in Deep Learning and elsewhere

	Conclusion
	A Gaussian process models
	B Basic vector calculus and fluid mechanics
	Bibliography

