Supporting Information

Reactions of Pyruvate-Derived Dihydropyrans with Formaldehyde: Synthesis of Functionalized Furopyrans and Related Products

Pandurang V. Chouthaiwale, Ravindra D. Aher, and Fujie Tanaka*

Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

1.	General	S 1
2.	Synthesis of Furopyrans 2	S2
3.	Synthesis of Dimethylene Derivatives 3 and of Pyran Derivative 4a	S3
4.	NMR Spectra	S6

1. General

For thin layer chromatography (TLC), Merck Silica gel 60 F254 aluminum sheets were used. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). ¹H NMR and ¹³C NMR were recorded on a Bruker Avance 400. Proton chemical shifts are reported in ppm downfield from tetramethylsilane or from the residual solvent as internal standard in CDCl₃ (δ 7.26 ppm). Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl₃ (δ 77.0 ppm). High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap ESI ion trap mass spectrometer.

2. Synthesis of Furopyrans 2

Procedure for the Synthesis of Furopyrans 2 (Table 2)

To a mixture of 4-substituted dihydropyran 1^1 (0.1 mmol, 1equiv) and paraformaldehyde (1.0 mmol, 10 equiv) in CH₃CN (1.0 mL), pyrrolidine (0.05 mmol, 0.5 equiv, 50 mol %) and acetic acid (0.1 mmol, 1.0 equiv, 100 mol %) was added. The reaction mixture was stirred at room temperature (25 °C) until 1 was consumed (monitored by TLC). The mixture was purified by flash column chromatography (hexane/EtOAc) to afford furopyran 2.

Compound 2a

Flash column chromatography (hexane/EtOAc = 7:3), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 4.74 (dd, *J* = 16.2 Hz, 1.6 Hz, 1H), 4.58 (dd, *J* = 16.2 Hz, 0.8, Hz, 1H), 4.48 (dd, *J* = 11.6 Hz, 3.6 Hz, 1H), 4.43 (dd *J* =11.6 Hz, 6.0 Hz, 1H), 4.37-4.27 (m, 3H), 3.87-3.82 (m, 1H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.6, 165.8, 159.6, 147.8, 145.7, 142.1, 129.15, 129.09, 124.6, 67.8, 65.8, 63.5, 49.7, 38.0, 13.9. ESI-HRMS: calcd for C₁₇H₁₆O₈N ([M+H]⁺) 362.0870, found 362.0879.

Compound 2b

Flash column chromatography (hexane/EtOAc = 8:2); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H), 4.70 (dd, *J* = 16.4 Hz, 2.0 Hz, 1H), 4.58 (dd, *J* = 16.4 Hz, 1.2 Hz, 1H), 4.45 (dd, *J* = 11.6 Hz, 3.6 Hz, 1H), 4.40 (dd, *J* = 11.6 Hz, 6.2 Hz, 1H), 4.30 (q, *J* = 7.2 Hz, 2H), 4.17 (brd, *J* = 5.2 Hz, 1H), 3.79 (ddd, *J* = 6.2 Hz, 5.2 Hz, 3.6 Hz, 1H), 1.34 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 191.3, 166.1, 159.8, 141.7, 137.4, 132.6, 130.4, 129.6, 122.4, 68.0, 66.0, 63.3, 49.7, 38.0, 13.9. ESI-HRMS: calcd for C₁₇H₁₆O₄Br ([M+H]⁺) 395.0125, found 395.0134.

Compound 2c

Flash column chromatography (hexane/EtOAc = 7:3); pale yellow gum. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 4.72 (dd, *J* = 16.4 Hz, 1.6 Hz, 1H), 4.57 (dd, *J* = 16.4 Hz, 1.2 Hz, 1H), 4.46 (dd, *J* = 11.6 Hz, 3.6 Hz, 1H), 4.42 (dd, *J* = 11.6 Hz, 5.6 Hz, 1H), 4.37-4.26 (m, 3H), 3.83-3.79 (m, 1H); 1.35 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.7, 165.7, 159.6, 143.7, 142.1, 133.1, 129.1, 128.8, 117.9, 112.5, 67.8, 65.7, 63.4, 49.6, 38.2, 13.8. ESI-HRMS: calcd for C₁₈H₁₆NO₆ ([M+H]⁺) 342.0972, found 342.0971.

¹ P. V. Chouthaiwale, F. Tanaka, *Chem. Commun.* 2014, **50**, 14881. P. V. Chouthaiwale, S. Lapointe, F. Tanaka, *Heterocycles* 2017, **95**, 587.

Compound 2d

Flash column chromatography (hexane/EtOAc = 8:2); colorless gum, dr = 7:3. ¹H NMR (400 MHz, CDCl₃): δ 4.92-4.68 (m, 2H x 7/10), 4.52 (dd, *J* = 12.2 Hz, 3.4 Hz, 1H x 3/10), 4.43-4.16 (m, 5H + 1H x 3/10), 3.81 (td, *J* = 7.6 Hz, 3.6 Hz, 1H x 7/10), 3.71-3.64 (m, 1H x 3/10), 3.60-3.54 (m, 1H x 3/10), 3.39 (s, 3H x 3/10), 3.36 (s, 3H x 7/10), 3.28 (s, 3H x 7/10), 3.26 (s, 3H x

3/10), 1.40 (t, J = 7.2 Hz, 3H x 7/10), 1.38 (t, J = 7.2 Hz, 3H x 3/10). ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 190.1, 166.3, 160.2, 159.6, 142.0, 141.5, 128.9, 128.0, 105.6, 104.2, 69.4, 69.1, 67.3, 65.4, 63.0, 62.6, 56.4, 54.9, 54.1, 53.9, 42.0, 41.9, 40.2, 38.9, 14.0. ESI-HRMS: calcd for C₁₄H₁₉O₈ ([M+H]⁺) 315.1074, found 315.1084.

3. Synthesis of Dimethylene Derivatives 3 and of Pyran Derivative 4a

Procedure for the Synthesis of Dimethylene Derivatives 3 (Table 3)

Method A. To a mixture of 4-substituted dihydropyran 1 (0.1 mmol, 1equiv) and paraformaldehyde (1.0 mmol, 10 equiv) in CH₃CN (1.0 mL), diethylamine (0.025 mmol, 0.25 equiv, 25 mol %) and acetic acid (0.05 mmol, 0.5 equiv, 50 mol %) was added. The reaction mixture was stirred at room temperature (25 °C) until 1 was consumed (monitored by TLC). The mixture was purified by flash column chromatography (hexane/EtOAc) to afford dimethylene derivative **3**.

Method B. To a mixture of 4-substituted dihydropyran 1 (0.2 mmol, 1equiv) and paraformaldehyde (2.0 mmol, 10 equiv) in CH₃CN (2.0 mL), diethylamine (0.14 mmol, 0.7 equiv, 70 mol %) and acetic acid (0.1 mmol, 0.5 equiv, 50 mol %) was added. The reaction mixture was stirred at room temperature (25 °C) until 1 was consumed (monitored by TLC). The mixture was purified by flash column chromatography (hexane/EtOAc) to afford dimethylene derivative **3**.

A 1 g-scale reaction of **1a** to afford **3a** (Table 1, entry 10). To a mixture of 4-substituted dihydropyran **1a** (2.74 mmol, 1equiv) and paraformaldehyde (27.4 mmol, 10 equiv) in CH₃CN (27 mL), diethylamine (200 μ L, 1.9 mmol, 0.7 equiv) and acetic acid (82 μ L, 1.4 mmol, 0.5 equiv) was added. The reaction mixture was stirred at room temperature (25 °C) for 24 h (until **1** was consumed, monitored by TLC). The mixture was concentrated under vacuum and was purified by flash column chromatography (hexane/EtOAc = 8:2 to 7:3) to afford dimethylene derivative **3a** (426 mg, 40%) and **4a** (205 mg, 20%). Compound **4a** was eluted first and then compound **3a** was eluted.

Compound 3a

Method A. Flash column chromatography (hexane/EtOAc = 8:2 to 7:3), colorless gum. ¹H NMR (400 MHz, CDCl₃): δ 8.19 (d, *J* = 8.8, Hz, 2H), 7.35 (d, *J* = 8.8, Hz, 2H), 6.48 (s, 2H), 5.96 (s, 2H), 5.49 (s, 1H), 4.36 (q, *J* = 7.2 Hz, 4H), 1.36

(t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 186.1, 163.1, 147.4, 145.3, 144.1, 134.4, 129.8, 124.1, 62.6, 43.9, 14.0. ESI-HRMS: calcd for C₁₉H₂₀O₈N ([M+H]⁺) 390.1183, found 390.1175.

Compound 4a

obtained. Flash column chromatography (hexane/EtOAc = 8:2 to 7:3), colorless gum. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, J = 8.8 Hz, 2H), 7.46 (dd, J = 8.8, 2.0, Hz, 2H), 6.55 (s, 1H), 5.16 (s, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.65 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.6, 162.6, 160.9, 150.2, 148.5, 146.3, 142.2, 129.5, 123.7, 119.5, 112.0, 66.3, 62.4, 62.3, 14.1, 13.5. ESI-HRMS: calcd for C₁₈H₁₈O₈N ([M+H]⁺) 376.1027, found 376.1030.

In the reaction to afford **3a** (Method A), compound **4a** was also

Compound 3b

Compound 3d

Method A. Flash column chromatography (hexane/EtOAc = 8:2), colorless gum. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 8.4, Hz, 2H), 7.04 (d, J = 8.4, Hz, 2H), 6.40 (s, 2H), 5.93 (s, 2H), 5.35 (s, 1H), 4.35 (q, J = 7.2 Hz, 4H), 1.36 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 163.3, 144.7, 136.6, 133.8, 132.0, 130.6, 121.5, 62.4, 43.6, 14.0. ESI-HRMS: calcd for C₁₉H₂₀O₆Br ([M+H]⁺) 423.0438, found 423.0429.

Method B. Flash column chromatography (hexane/EtOAc = 7:3), colorless gum. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2, Hz, 2H), 6.44 (s, 2H), 5.92 (s, 2H), 5.42 (s, 1H), 4.33 (q, J = 7.1 Hz, 4H), 1.34 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 186.2, 163.1, 144.0, 143.3, 134.3, 132.6, 129.6, 118.4, 111.5, 62.5, 44.0, 14.0. ESI-HRMS: calcd for C₂₀H₂₀O₆N ([M+H]⁺) 370.1285, found 370.1259.

Method B. Flash column chromatography (hexane/EtOAc = 8:2), colorless gum. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.14 (m, 5H), 6.38 (s, 2H), 5.93 (s, 2H), 5.40 (s, 1H), 4.34 (q, J = 7.1 Hz, 4H), 1.35 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 163.5, 145.1, 137.4, 133.7, 128.9, 128.8, 127.4, 62.3, 44.0, 14.0 ESI-HRMS: calcd for C₁₉H₂₁O₆ ([M+H]⁺) 345.1333, found 345.1327.

Compound 3e

Method B. Flash column chromatography (hexane/EtOAc = 8:2), colorless gum. ¹H NMR (400 MHz, CDCl₃): δ 7.06 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.8, Hz, 2H), 6.35 (s, 2H), 5.92 (s, 2H), 5.34 (s, 1H), 4.34 (q, J = 7.1 Hz, 4H), 3.78 (s, 3H), 1.35 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 186.6, 163.5, 158.9, 145.4, 133.4, 129.9, 129.2, 114.2, 62.3, 55.2, 43.2, 14.0. ESI-HRMS: calcd for C₂₀H₂₃O₇ ([M+H]⁺) 375.1438, found 375.1437.

