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Given the phenomenal advances in artificial intelligence in

specific domains like visual object recognition and game playing

by deep learning, expectations are rising for building artificial

general intelligence (AGI) that can flexibly find solutions in

unknown task domains. One approach to AGI is to set up a variety

of tasks and design AI agents that perform well in many of them,

including those the agent faces for the first time. One caveat for

such an approach is that the best performing agent may be just a

collection of domain-specific AI agents switched for a given

domain. Here we propose an alternative approach of focusing on

the process of acquisition of intelligence through active

interactions in an environment. We call this approach

evolutionary and developmental intelligence (EDI). We first review

the current status of artificial intelligence, brain-inspired

computing and developmental robotics and define the

conceptual framework of EDI. We then explore how we can

integrate advances in neuroscience, machine learning, and

robotics to construct EDI systems and how building such

systems can help us understand animal and human intelligence.
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Introduction
Spurred by successful scaling of deep learning (DL) [1,2] to

huge complex data sets, artificial intelligence (AI) today has

achieved supra-human performance in specific domains

like visual object recognition [3] and game playing [4,5,6��].
The next focus in AI research is to flexibly find solutions to

novel tasks, under the concept of artificial general intelli-

gence (AGI) [7]. There has been much discussions on how

to define, design and evaluate AGI agents (e.g. http://cadia.

ru.is/workshops/aegap2018/). One approach is to set up a

variety of tasks, including those the agent faces for the first

time, and test how AI agents perform (e.g. https://www.
www.sciencedirect.com 
general-ai-challenge.org). One caveat for such an approach

is that the best performing agent may be just a collection of

domain-specific AI agents switched for a given domain.

A critical problem in such approaches to AGI is their focus

on the achieved performance after learning. We advocate

an alternative approach to focus on the process of acquisi-

tion of intelligence. We call this approach evolutionary and
developmental intelligence (EDI). Animals, especially

humans, can learn relevant features in the sensorimotor

signals in an unsupervised way, build internal models of the

world including the agent itself, find a variety of action

policies, and further set up new goals of actions. Such

capabilities for incremental learning were not given by

an external designer but established on their own through

evolutionary search for the fitness in the environment. In

other words, we should pay more attention to the process of

acquisition of intelligence through development of indi-

vidual AI agents and evolution of AI architectures and

algorithms. Here we consider what are missing in the

current implementation of AI agents and how we can

evolve AI agents that develop like animals and humans,

by exploiting and extending our knowledge from neurosci-

ence, machine learning and robotics.

Why evolutionary and developmental
approach?
Despite the impressive success stories by DL, there are

still major gaps between what machine learning today can

offer and what humans, even children can do [8,9��]. Most

notable are data efficiency and energy efficiency. Date

efficiency in learning is based on our capability of

inference by analogy and compositional use of knowledge

and skills. An even more fundamental difference is

whether an agent is designed or instructed to perform

a certain task, or can find its own goals or problems. These

gaps between today’s AI and human cognition urge us to

search for clues and principles in the brain [10��].

Autonomy and evolvability

Current approach to AI is for a human developer to define

the problem to be solved, collect relevant data, design a

neural network architecture or a probabilistic graphical

model, and then apply a learning algorithm for solution.

Here, we advocate a totally different approach for creating

autonomous intelligentagents. Before asking anagent todo

something particular, let agents acquire the capability of

survival and reproduction, which are the fundamental

features for living and evolvable agents [11,12] (Box 1).

In physical robots, that requires basic sensory–motor mech-

anisms for capturing energy sources, avoiding dangers, and

performing reproduction, guided by innate behaviors and
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Box 1 Evolution of rewards and polymorphisms in artificial

agents

The aim of experiments with Cyber Rodent robots [11] (Figure 1a)

was to test whether a colony of robots with the capability of battery

recharging and software exchange by infrared (IR) communication

could acquire their own reward functions for the sake of survival and

reproduction. Each robot had vision and proximity sensors and two

wheels for navigation, and reinforcement learning controllers for

foraging and mating, which were switched by a top-level neural

network with sensory inputs including internal battery level. They

exchanged their genes (weights of the top-level network and reward

function networks, and reinforcement learning parameters) through

IR communication. The probability of selection in the next generation

was proportional to the parent’s battery level and mutation by small

random noise was applied. Over 40 generations of evolution in

simulation, distinct reward functions for the sight of a battery pack

and another robot were obtained (Figure 1b) [12]. In some of the

colonies, individuals with distinct mating strategies co-existed; for-
agers who mate only after fully charged and trackers who opt for

frequent mating even when the battery level is low (Figure 1c).

Further analyses showed that these subtypes had distinct genotypes

(Figure 1d) and were evolutionarily stable [16].
learning by primary rewards. In software agents, survival

means continuing to be utilized and reproduction means

proliferation of the copies. On top of such autonomy, each

agent explores the environment to incrementally acquire

wider varieties of sensory–motor features and build

dynamic models of the world including its peers and itself.

This process is guided by learning with intrinsic rewards

[13–15]. If such an agent is to perform a certain task which a

human desires, it is guided by an additional social rewards,

as we would for training animals or educating children. This

is certainly a long way around for solving a well-defined task

and may appear like a daydream. We argue, however, that

this is feasible and the most certain way for building

autonomous agents with human-level flexibility. Setting

particular goals on top of the basic principle of survival and

reproduction may also help avoiding the headache of

programming common senses, such as do not destroy

oneself or do not do things hated by others. It may take

millions or billions of years if we follow the way humans

evolved, but there are many shortcuts and accelerations we

can make by utilizing the knowledge of neuroscience and

the advances in information technology.

Developmental psychology

One of the remarkable findings from the human genome

project is that the number of genes in humans is about

30 000, which is much fewer than the number of neurons

or synapses in the brain. This means that most of the

information stored in the brain is acquired from the

environment, while genes provide efficient mechanisms

for acquiring information. Sensory–motor interaction with

the environment is a critical requirement of human

cognitive development. While there appear to be innate

mechanisms for basic cognition, such as recognizing facial

expressions [17], most of the knowledge and skills are

acquired by sensory–motor interaction with the physical
Current Opinion in Behavioral Sciences 2019, 29:91–96 
and social environment. Infants as young as two months

old can detect unusual physical contingencies [18] and six

months old can discriminate the intentions of animated

agents [19]. Such capabilities, termed intuitive physics

and intuitive psychology, are the basis for our everyday

thinking and behaviors, and therefore indispensable for

artificial agents working in the human society [9].

Evolutionary and developmental robotics

Originating from Piaget’s concept of constructionism [20],

the major focus of evolutionary and developmental robotics

has been how an embodied agent can acquire sensory

perception, motor control, and higher cognitive capabilities

through bottom–up unsupervised interactions with the

physical world, including other robots and humans [21,22].

By incorporating advances in probabilistic models and deep

learning, there have been much progress in developmental

robotics. For example, Taniguchi et al. developed SpCo-

SLAM in which a mobile robotic incrementally acquires

multi-modal probabilistic models of visual objects, spoken

words, and their locations for navigation [23��]. Tani dem-

onstrated that cognitive functions like sequences of motion

primitives and compositionality of words can emerge

through embodied interactions using deep neural networks

implementing the principle of predictive coding [24,25]. A

major feature of these approaches is that symbol-like

representations emerge through sensory–motor interac-

tions with the world [26,27�], which is opposite to the

situation of ‘symbol grounding’ that hampered classic

symbolic AI [28].

Recent advances and the way forward
Now we outline how such evolutionary and developmen-

tal AI systems can be practically constructed by building

on and further advancing neuroscience, machine learning

and robotics.

Neuroscience

The capability of learning is a product of evolution. While

single-cell organisms or tiny worms have varieties of

mechanisms for learning and memory, the mammalian

brains have acquired distinct mechanisms for learning;

error-driven supervised learning in the cerebellum,

reward-guided reinforcement learning in the amygdala

and basal ganglia, episodic memory in the hippocampus,

and Bayesian inference and representation learning in the

cerebral cortex [29–31].

A critical component of human intelligence is to learn

internal models of the world and to run simulations of the

world for estimating the causes of sensory perception,

planning actions to achieve desired goals, and running

thought experiments of arbitrary situations. The neural

mechanisms of such mental simulation, or model-based

inference and control, is now being revealed

using advanced imaging and computational analyses
www.sciencedirect.com
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Figure 1
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(a) Cyber rodent robot colony. (b) The evolved reward functions for the vision of a battery pack (top) and another robot’s face (bottom). (c) Sub-

populations of robots taking forager and tracker strategies (d) distinct genotypes of the foragers and trackers.

Box 2 Neural substrates of mental simulation

Mental simulation, which we define as the brain’s process using action-

dependent state transition models, is a critical component of intelli-

gence. Given recent advances in neural imaging, experimental inter-

rogation of the neural circuits that realize mental simulation is now

becoming feasible. In the functional MRI experiment using the ‘grid

sailing task,’ subjects planned ahead zig-zag paths to the goal location

using pre-trained key maps, that is, key-press-dependent cursor tran-

sition models [35] (Figure 2a). The brain activity during the pre-move-

ment delay period suggested the involvement of a global network

linking the parietal, premotor and prefrontal cortices, which can provide

spatial and motor working memory, with the cerebellum and basal

ganglia, which can provide forward models and value functions, in

mental simulation (Figure 1b). For finer analysis of the neural circuit of

model-based inference, Funamizu et al. performed two-photon imaging

of the parietal cortex while mice performed navigation under uncertain

sensory feedback [36�] (Figure 2c). Blockade of parietal cortex impaired

estimation of the goal position under missing auditory feedback.

Decoding of the population codes of parietal neurons showed that the

representation of goal position was updated even without auditory

feedback by action-dependent predictive models (Figure 2d).
[32–35,36�,37] (Box 2). While computers are very good at

running simulations and searches, how to build and select

models of appropriate levels of abstraction and concrete-

ness, and how to direct searches to the right width and

depth are still open problems. Understanding of the

neural substrates of mental simulation at the whole brain

and local circuit levels would provide vital insights for the

design of human-like flexible intelligent agents.

Machine learning

While early successes of deep learning (DL) were

accomplished by supervised learning using labelled

training data [38], recent developments in DL focus

on unsupervised or self-supervised learning of deep

generative models, such as variational autoencoders

(VAE) [39] and generative adversarial networks

(GAN) [40]. By incorporating recurrent connections,

such as the long short-term memory (LSTM) [41], such

deep generative models can also predict and generate
www.sciencedirect.com Current Opinion in Behavioral Sciences 2019, 29:91–96
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Figure 2
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(a) The grid sailing task [35] in which a subject tires to move the cursor, that can move only in three directions, from the start to the goal on a

grid. Subjects’ performance improved with pre-learned action-dependent state transition model and pre-start delay time, which is the behavioral

evidence of mental simulation. (b) Enhanced activities in the cortical, cerebellar, and basal ganglia areas were observed during the pre-start delay

time. (c) Two-photon imaging of parietal cortical neurons of mice in an auditory virtual environment [36�]. (d) Decoding by probabilistic population

codes revealed that the representation of the goal distance were updated even without sensory feedback in consistence with the mice’s own

locomotion.
spatio-temporal dynamics, such as speech, language

and movements. One domain of active research is

meta-learning for automatically selecting network

architectures and parameters [42–45]. In reinforcement

learning, there are demonstrations that by training a

single network with multiple tasks, the latent structures

relevant for achieving the tasks can be captured in the

hidden units through bottom–up interactions with the

environment [46,47].

Probabilistic programming languages [48], which allow

flexible designs of probabilistic models and derivation of

their inference algorithms, are now incorporating deep

neural networks as generative models [49], which is a

favorable function for acquisition of world models

through real sensory–motor interactions. For constructing

multi-modal generative models in a modular and flexible

way, Nakamura et al. proposed SERKET, a framework for

connecting probabilistic generative models by efficient

inter-module communication [50��].
Current Opinion in Behavioral Sciences 2019, 29:91–96 
Robotics and human–robot interaction

For robotic agents to develop internal models of the

physical world and human behaviors, sensorimotor inter-

action with its environment and social interactions with

humans are essential. Fluid use of language, for example,

requires not only lexical grammatical knowledge but also

understanding of the physical context, such as what the

speaker is doing now, and inference of the speaker’s

intention. When a robot tries to understand a command

like “go to the kitchen, and take me a bottle of water,” the

robot has to deal with object and place concepts, action,

syntax, planning, and so on. This means that an actual

language learning involves multimodal concept learning,

action learning, syntax learning, and so on.

Acritical issue indoingall thesethroughsimplesensorimotor

interactions  is the time needed for learning, especially with

the notorious data-hungriness  of deep learning. However,

robots and computers have their specific advantages of

replaceability and network communication. While human
www.sciencedirect.com
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bodies differ a lot across individuals, robots can be manu-

factured physically similar so that it is practical to collect

sensorimotor data from multiple copies of robots to accumu-

late large amount of data for learning. In other words,

telecommunication across brains like telepathy and copying

the learned neural network like brain transplant, which are

technicallyandethicallydifficult inhumans,arequiteeasy in

robots. Smartphones can be the media for collecting data of

visual, auditory, and linguistic interactions  in everyday

human life, either by giving them minimal actuators [51]

or by using their owners as mobile caretakers.

Conclusion
Anamazing fact about thebrain andhuman cognition is that

specialized neural circuits as well as the mechanisms for

integrating those networks could be realized through evo-

lutionary search, by exploiting any usable features of bio-

physics of neurons and statistical dynamics of networks.

There is no known engineering solution to building such

complex heterogeneous systems other than evolutionary

optimization. For example, in protein engineering, directed
evolution has seen successes in finding complex molecules

having desired functions [52]. Designing AI systems to be

evolvable, rather than hard-coded by human intuition and

theorization, can be a rational practical choice.

In order not to repeat the whole history of life, it is

possible and practical to set the starting points of evolu-

tionary search to what are already known to work. Unlike

real lifeforms on earth, artificial agents can perform

Lamarckian way of copying learned behaviors through

the internet with thousands of peers anywhere. In the

field of visual object recognition, most researchers had

believed that the use of human-engineered features are

the best way, until end-to-end data-driven learning by

deep neural networks outperformed them [3]. In building

AGI, although it might sound daydream or waste of time,

mimicking the evolutionary and developmental paths of

human cognition may be a practical solution, given those

possible shortcuts and accelerations.

Along the way of such an endeavor, we should encounter

many unexpected abnormal or suboptimal performances of

evolving/developing agents. Such examples, however, could

be helpful models to understand the mechanisms of genetic

or developmental cognitive disorders. The forms of intelli-

gence that are found by evolution may be different from

those of humans, like those of birds or octopi, or nothing like

those on earth, depending on the given constraints. Com-

paring the performances of artificial agents with humans,

especially in human–robot interactions, can be helpful tools

to clarify what are missing in our understanding of human

behavior and cognition.
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