
LETTER Communicated by Martin Giese

Predictive Coding for Dynamic Visual Processing:
Development of Functional Hierarchy in a Multiple
Spatiotemporal Scales RNN Model

Minkyu Choi
minkyu.choi8904@gmail.com
School of Electrical Engineering, Korea Advanced Institute of Science
and Technology, Daejeon, 305-701, Republic of Korea

Jun Tani*

tani1216jp@gmail.com
Okinawa Institute of Science and Technology, Okinawa, Japan 904-0495,
and School of Electrical Engineering, Korea Advanced Institute of Science
and Technology, Daejeon, 305-701, Republic of Korea

This letter proposes a novel predictive coding type neural network
model, the predictive multiple spatiotemporal scales recurrent neural
network (P-MSTRNN). The P-MSTRNN learns to predict visually per-
ceived human whole-body cyclic movement patterns by exploiting multi-
scale spatiotemporal constraints imposed on network dynamics by using
differently sized receptive fields as well as different time constant values
for each layer. After learning, the network can imitate target movement
patterns by inferring or recognizing corresponding intentions by means
of the regression of prediction error. Results show that the network can
develop a functional hierarchy by developing a different type of dynamic
structure at each layer. The letter examines how model performance dur-
ing pattern generation, as well as predictive imitation, varies depending
on the stage of learning. The number of limit cycle attractors correspond-
ing to target movement patterns increases as learning proceeds. Transient
dynamics developing early in the learning process successfully perform
pattern generation and predictive imitation tasks. The letter concludes
that exploitation of transient dynamics facilitates successful task perfor-
mance during early learning periods.

1 Introduction

Predictive coding is a plausible model to account for how brains can pre-
dict future perception. The central notion is that current top-down inten-
tion as represented in higher-level processes can be modified using error

*Corresponding author.

Neural Computation 30, 237–270 (2018) © 2017 Massachusetts Institute of Technology
doi:10.1162/NECO_a_01026

238 M. Choi and J. Tani

between the prior predicted and actually perceived outcome of prior inten-
tional action in the bottom-up pathway (Rao & Ballard, 1999; Tani & Nolfi,
1999; Friston, 2005; Clark, 2015). Within this predictive coding framework, it
has been largely assumed that the necessary functional hierarchy develops
across multiple cortical regions spans higher-level regions representing in-
tention and lower-level regions representing direct perception (Rao & Bal-
lard, 1999; Rao & Sejnowski, 2003; Friston, 2005; Den Ouden, Kok, & De
Lange, 2012). This letter proposes a novel recurrent neural network (RNN)
model in order to examine how a spatiotemporal hierarchy adequate for the
robust generation and recognition of dynamically composed visual patterns
can be developed within the predictive coding framework.

Inspired by upward and downward causation (Campbell, 1974; Bassett
& Gazzaniga, 2011), our study assumes that a spatiotemporal hierarchy
is indispensable for the compositional manipulation of visual streams
and that this hierarchy can develop naturally if adequate spatiotemporal
constraints are imposed on neural activity, as in the proposed model.
Our proposed model is an extension of a prior model, the multiple spa-
tiotemporal scales RNN (MSTRNN) (Lee, Jung, & Tani, 2016), used for
categorizing dynamic visual patterns. The MSTRNN, like this newly pro-
posed predictive-MSTRNN (P-MSTRNN), integrates two different ideas:
one from the multiple timescale RNN (MTRNN) (Yamashita & Tani, 2008)
and the other from convolutional or deconvolutional neural networks
(CNN, deCNN) (LeCun, Bottou, Bengio, & Haffner, 1998; Zeiler, Taylor,
& Fergus, 2011; Dosovitskiy & Brox, 2015; Kulkarni, Whitney, Kohli, &
Tenenbaum, 2015). The former constrains different timescale properties at
different levels of the model network by assigning time constants, and the
latter provides different spatial constraints at different levels by assigning
specific local connectivity and local receptive field sizes. Our study exam-
ines how a spatiotemporal hierarchy adequate for the prediction of complex
dynamic visual patterns can be developed by applying these two constrains
to the activity in the P-MSTRNN model during the course of learning. Our
study also examines how the same functional hierarchy developed through
learning can be used in the recognition of current visual perception. The
idea here is that an optimal intention state (one of the networks latent states
represented by activation patterns of context units in the RNN model) is
inferred as that which ideally matches the perceived stream, as informed by
the bottom-up prediction error signal. Finally, it is worth noting that spatial
processing and temporal processing are performed simultaneously in the
P-MSTRNN, whereas in other predictive coding models for dynamic vision
processing, they are not (Srivastava, Mansimov, & Salakhutdinov, 2015).

The P-MSTRNN performed a set of simulation experiments involving
learning, predicting/generating, and recognizing visual human movement
patterns. First, we videorecorded exemplars of human movement patterns.
Human subjects were asked to generate cyclic body movement patterns
by following particular movement syntax rules. Next, we scrutinized the
developmental process of the neurodynamic structures in different layers

Predictive Coding for Dynamic Visual Processing 239

in the model as it learned to predict movements within these exemplar
patterns. Then we examined the dynamics characteristic of active recog-
nition (active inference) (Friston, Mattout, & Kilner, 2011) during a predic-
tive imitation (imitative synchronization) task (Ahmadi & Tani, 2017) where
test visual movement patterns were proactively imitated with synchrony
by the model network. Informed by the prediction error signal, the model
inferred intention states (latent states) corresponding to given test visual
movement patterns. Finally, we looked at the generation and recognition
of visual movement patterns during different stages of the learning process
in order to uncover possible relationships between the performance char-
acteristics of the model network and its internal dynamic structure at each
stage. Interestingly, transient dynamics, which develop before limit cycle
attractors embedding target patterns develop, can themselves be used as
memory for predicting and recognizing learned patterns.

2 Model

2.1 Overview. The predictive multiple spatiotemporal scales RNN
(P-MSTRNN) develops a spatiotemporal hierarchy by extracting compo-
sitionality latent in exemplar dynamic visual streams. Our conjecture is
that such hierarchy self-organizes when different spatial and temporal con-
straints are imposed simultaneously on neural activity in different layers of
the network.

The P-MSTRNN consists of a series of context layers, each composed of
leaky integrator units (Jaeger, Lukoeviius, Popovici, & Siewert, 2007). The
P-MSTRNN employs convolution as well as deconvolution operations as
in convolutional (CNN) (LeCun et al., 1998) and deconvolutional (deCNN)
(Zeiler et al., 2011; Dosovitskiy & Brox, 2015; Kulkarni et al., 2015) neural
networks. This provides spatial constraints on neural information process-
ing such that the lower levels preserve more local connectivity with smaller
receptive fields while the higher levels preserve more global connectiv-
ity with larger receptive fields. However, unlike the CNN or deCNN, this
model is capable of processing temporal information using recurrently con-
nected leaky integrator neural units regulated by specific time constants.
The leaky integrator integrates the history of its internal state and partially
updates this state by receiving visual input from outside. In the leaky inte-
grator, the time constant determines the portion of the internal state to be
updated. In this way, the time constant constrains the timescale of neural ac-
tivation dynamics. The larger the leaky integrator time constant value, the
slower its internal state decays. Conversely, the smaller the leaky integrator
time constant, the faster the internal state changes.

Different timescales of different context layers preserve different dy-
namics. The lower layer is designated to preserve faster dynamics with a
smaller time constant setting, and the higher layer preserves slower dy-
namics by way of a larger time constant. Following the operational princi-
ple adopted in Yamashita and Tani (2008), it is assumed that more abstract

240 M. Choi and J. Tani

representation develops in higher layers and more detailed in lower layers
as the functional hierarchy forms.

In terms of the predictive coding scheme framing the model, current top-
down intention propagates from higher-context layers to lower-context lay-
ers, and finally projects intended or predicted visual image patterns at the
pixel level. Then an error signal is generated between predicted and actu-
ally perceived pixel patterns. This signal is backpropagated from the lower
layer to the higher ones, and activation values of context units at each layer
are modified in the direction of minimizing this error. This bottom-up pro-
cess of modifying all latent variables in all context layers corresponds to
active recognition by way of error regression (Tani & Nolfi, 1999) or active
inference of intention (Friston, 2005).

Various cognitive processes including recognition, generation and learn-
ing involve this dynamic process of top-down and bottom-up interaction
(Giese, 2013; Tani, 2016). In the P-MSTRNN, learning involves optimizing
connectivity weights in the whole network in the direction of minimizing
the reconstruction error, using exemplar visual sequence patterns as the re-
construction targets. The learning process determines not only the optimal
connectivity weights but also the corresponding latent states generative of
exemplar patterns, represented by the initial states of all context units in all
layers regenerating each learning target sequence. After the learning pro-
cess converges, target visual sequence test patterns can be recognized by
inferring latent states generative of target visual sequences with minimum
error.

Technically, the learned model network can be operated in three differ-
ent modes: open-loop prediction, closed-loop prediction, and closed-loop
prediction with error regression. During open-loop prediction, the model
network predicts the visual input of the next step using the current visual
input. During closed-loop prediction, the look-ahead prediction of multiple
steps can be conducted, but not by using external visual inputs. Instead, pre-
diction outputs from the previous step are fed into the visual inputs of the
current step (see Figure 1) (Tani, 1996; Ziemke, Jirenhed, & Hesslow, 2005).
Generation of such internally generated image sequences can account for
mental imagery (Hesslow, 2002; Pezzulo, van der Meer, Lansink, & Pen-
nartz, 2014).

During closed-loop prediction using the error regression, multiple steps
of a visual sequence are predicted using immediately past time steps. Inside
this time window, the past perceptual sequence is reconstructed by closed-
loop operation. Once the window-length closed-loop reconstruction is
calculated, the error between the reconstructed sequence and the actual per-
ception history is calculated and backpropagated through time inside the
window. This backpropagated error then updates latent states so that the
regenerated sequence inside the window best resembles actual (past) per-
ception. The idea underlying this operation is that the future is predicted by
quickly adapting latent states at multiple levels using the prediction error

Predictive Coding for Dynamic Visual Processing 241

Figure 1: Conceptual schematics of two different output generation modes.
(A) In the open-loop generation mode, the prediction outputs for the next steps
are computed using current external visual input. (B) In the closed-loop gener-
ation mode, the prediction outputs for the next steps are computed by feeding
prediction outputs from previous steps into current visual inputs without using
external visual inputs. Schematics are presented in a succinct manner to address
the essential differences between these two methods, omitting unimportant
details.

minimization scheme in order to anticipate the ongoing perceptual flow as
closely as possible (Tani & Nolfi, 1999; Tani, 2003). For example in Ito and
Tani (2004) and Ahmadi and Tani (2017), model networks learned sets of vi-
sually perceived human movement patterns and proactively imitated ongo-
ing visual movement, in effect performing predictive imitation using only
the error regression. With predictive imitation by error regression, when the
subject abruptly changes from one movement pattern to another, the model
network is able to immediately read the change in a subject’s intention and
modify its generation of visual mental imagery patterns to match by apply-
ing the error regression scheme to a window on the immediate past (see
Figure 2). We next detail this model.

2.2 Architecture. The P-MSTRNN forward dynamical pathway is
shown in Figure 3. Each context layer receives top-down and bottom-up
signals from higher and lower levels of the network in order to calculate
its own internal states. Specifically, the first layer receives bottom-up input
from outside the network as well as the top-down future prediction from
inside the network. The prediction error is calculated from the difference
between these two and is backpropagated. The backward process utilizes
the same pathway as the forward process, but in the reverse direction. In
both training and during recognition, the backpropagated error is used for

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-000.jpg&w=313&h=156

242 M. Choi and J. Tani

Figure 2: Schematic of predictive imitation by error regression. Black arrows
indicate forward pathways and red arrows the error backpropagation through
time pathway. Dotted arrows indicate closed-loop visual input. The red box is
the window opening w steps into the immediate past. O∗t is the target of time
step t, and Ot is the prediction output of step t. The prediction is produced
closed loop, as indicated with dashed arrows. The error calculated between
output and target sequences in the immediate past window is backpropagated
through time steps. The backpropagated error is used to update all neural units
in all context layers from the onset of the window in the direction of minimiz-
ing the error, and the connectivity weights and biases are fixed. By using the
updated latent state at the onset of the window, the latent states in all steps for-
ward in the window are recomputed by means of forward computation, along
the solid black arrows shown in the figure. This latent state update is performed
multiple times during every single video frame step forward. As the window
advances to each next step, the process is performed again.

updating network parameters such as connectivity weights and biases of
all context layers, in effect adapting intention to anticipated input.

The P-MSTRNN adds recurrency to key concepts from convolutional
neural networks (CNN) (LeCun et al., 1998) and deconvolutional neural
networks (Zeiler et al., 2011; Dosovitskiy & Brox, 2015; Kulkarni et al., 2015).
In the model, two basic units are operating over the temporal dimension,
feature units, and context units. Both types are leaky integrator neural units.
The internal state of each leaky integrator unit decays at each time step by a
predefined amount, and it then receives inputs from outside. In addition to

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-001.jpg&w=313&h=202

Predictive Coding for Dynamic Visual Processing 243

Figure 3: Structure of the P-MSTRNN model. The red arrows indicate the con-
volution operation, the blue arrows indicate element-wise multiplication, and
the blue dashed arrows are the bottom-up pathway. The black dashed arrow be-
tween the prediction output and visual input is the closed-loop path. Recurrent
and leaky connections are not shown to keep the network structure clear. Once
output is generated, error calculated between output and target is propagated
backward through the forward process.

leaky integration, context units are recurrently connected, enabling strong
temporal dynamics modulated by trainable recurrent parameters.

In the model, a set of feature units builds a feature map (FM), and a set
of context units forms a context map (CM). Both FMs and CMs are building
blocks of the P-MSTRNN. FMs mostly deal with spatial processing, and
CMs contribute mostly to temporal dynamics. The timescales that deter-
mine each leaky integrator’s decay rate are set to small values in lower lay-
ers and to larger values in higher layers. The smallest time constant in the
lowest layer is two. Each upward layer has a time constant setting twice that
of the prior lower-layer. With these timescale settings, lower-layer neural
activity tends to deal with rapidly changing information and higher-layer
neural activity captures slowly changing information.

The forward dynamics of both FMs and CMs are given in equations 2.1
to 2.4,

f̂ l p
t =

(
1 − 1

τ l

)
f̂ l p

t−1

+ 1
τ l

⎛
⎝Ql+1∑

q=1

f (l+1)q
t−1 ∗ kl pq

f f +
Nl∑

n=1

cln
t−1 ∗ kl pn

c f + I ∗ kl p
i f + bl p,

⎞
⎠ (2.1)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-002.jpg&w=241&h=169

244 M. Choi and J. Tani

f l p
t = 1.7159 tanh

(
2
3

f̂ l p
t

)
(2.2)

where f̂ and ĉ indicate FM and CM internal states. f and c indicate FM
and CM activation values. Subscripts for internal state and activation value
indicate time steps, and superscripts indicate the location of a particular FM
or CM in the model. For example, in equation 2.1, f̂ l p

t indicates the internal
state of the pth FM in the lth layer at time step t. Likewise, cln

t−1 indicates the
activation value of the nth CM in the lth layer at time step t − 1. The network
parameter k indicates kernel weight and b indicates bias. In greater detail,
for example, the subscript in k f f indicates that the kernel connects an FM to
an FM. The superscript f f in kl

f f indicates that the kernel always connects
the previous time steps FM in layer (l + 1) to the current steps FM in lth
layer. The superscript in kernel kl pq

f f indicates that the qth FM in layer l + 1
at the previous time step t − 1 is linked to FM p in layer l at the current time
step t through the kernel. kl pn

c f indicates that the kernel connects the nth CM
in the lth layer at the previous time step to the pth FM in the lth layer at
the current time step t. bl p indicates the bias of the pth FM or CM in the lth
layer.

Equation 2.1 expresses how the internal states of a FM are formed. The
first term indicates the internal state of the FM as it has decayed from the
previous time step. The time constant τ l of the lth layer determines the de-
cay rate for that layer according to the ratio (1 − 1

τ l). The second term is an
input signal to the current FM from the activation values of previous time
step FMs in the (l + 1)th layer. Ql+1 is the number of FMs in the (l + 1)th
layer and the operator * is a convolution operation. Nl is the number of
CMs in the lth layer. The fourth term indicates input from outside the net-
work. This term appears only when the current layer is the first layer. Other
levels take input from inside the network, and this term disappears. We
used the scaled hyperbolic tangent activation function suggested by LeCun,
Bottou, Orr, and Müller (2012) for efficient backpropagation in the model,
equation 2.2.

Equations 2.3 and 2.4 detail the forward dynamics of CMs:

ĉlm
t =

(
1 − 1

τ l

)
ĉlm

t−1 + 1
τ l

⎛
⎝ Nl∑

n=1

cln
t−1 � W lmn

cc +
Ql+1∑
q=1

f (l+1)q
t−1 � W lmq

f c

+
Rl−1∑
r=1

f (l−1)r
t−1 ∗ klmr

f c + blm

⎞
⎠ , (2.3)

clm
t = 1.7159 tanh

(
2
3

ĉlm
t

)
. (2.4)

Predictive Coding for Dynamic Visual Processing 245

In equation 2.3, CM internal states also utilize leaky integrator dynam-
ics with a decay rate of (1 − 1

τ l). The second term indicates input from the
previous step’s CM in the same layer. W lmn

cc is the weight of the recurrent
connection between the previous step’s nth CM to the current step’s mth
CM in the same layer. The operation � is the element-wise multiplication,
with both sides of this operator always the same size. For example, in equa-
tion 2.3, cln

t−1 and W lmn
cc have the same size, and the � operations result is

also the same size. The third term is the input from the previous steps FM
in the (l + 1)th layer. The fourth term indicates FM input from the (l − 1)th
layer. Kernel klmr

f c connects the rth FM in the (l − 1)th layer to the current
mth CM. When calculating the convolution operation, if the size of the in-
put map is smaller than that of the output, zero padding of the input is used
because it is the cheapest way in terms of computation without meaningful
degradation of performance.

Finally, prediction output is obtained from equations 2.5 and 2.6:

Ôt =
Q1∑

q=1

(f 1q
t ∗ kq

f o + bo), (2.5)

Ot = 1.7159 tanh
(

2
3

Ôt

)
, (2.6)

where Ôt is obtained from the values of the first FM at the same time step.
The convolution operation and activation function are the same as those
described above.

2.3 Learning and Generation Methods. During training, after predic-
tion output is obtained, the difference between the output frame and the
prediction target frame at time step t is calculated, resulting in error for all
time steps. This process is shown in the following equations:

E = 1
T

T∑
t=1

Et, (2.7)

Et = 1
XY

X∑
i

Y∑
j

(O∗
i j − Oi j)2, (2.8)

where Et is the average error per pixel at time step t and E is the average
error per pixel for total time steps T. O∗

i j is the target pixel value in the (i, j)
position of the frame, and Oi j is the output pixel in the (i, j) position of the
frame. The target O∗

i j can be multiple time steps ahead. Output produced
by the current step t can predict one-step-ahead, two-steps-ahead, and

246 M. Choi and J. Tani

further. In this study, we used two-steps-ahead prediction, meaning that
output at time step t is the prediction of step t + 2. We empirically found that
two-steps-ahead prediction facilitates faster training than one-step-ahead
prediction, conjecturing that this is due to there being bigger differences
between current input and a target two time steps ahead than between cur-
rent input and one step ahead. This bigger difference yields larger gradi-
ents, meaning faster training. The error calculated through this process is
then used to optimize network parameters. In a conventional backpropa-
gation through time (BPTT) method, parameters such as weights, kernels,
biases, and initial states of the layers (latent states) are optimized using gra-
dient descent.

The network can be trained using open-loop generation and closed-loop
generation. In this letter, both open-loop generation and closed-loop gener-
ation train the network at the same time. For each training epoch, a closed-
loop generation is performed first, generating prediction output without
adjusting parameters. Closed-loop prediction output is then mixed with
data frames corresponding to each time step, which are used as inputs to
the network being trained. The mixing ratio of data frames to closed-loop
outputs is α : 1 − α. With the closed-loop output at time step t − 1 equal to
Ot−1

close and the data frame at t equal to It
data, the mixed input frame at time

step t is expressed as (1 − α)Ot−1
close + αIt

data. α is 0.9 in this letter. If α is 1, only
open-loop generation is used for training, and if 0, then only closed-loop
generation is used instead. This mixed version of open-loop and closed-
loop generation allows faster training.

During training, error from the output layer is used to optimize network
parameters. As training proceeds, both open-loop error and closed-loop er-
ror decrease. In most cases, closed-loop error is higher than open-loop error
because closed-loop prediction generates accumulated error over time steps
without correction from factors outside the network. On the other hand,
open-loop generation is driven by external data frames that inform inter-
nal states and correct prediction outputs. In our research, network train-
ing is terminated when closed-loop error reaches a predefined lower-bound
threshold, at which point the network is guaranteed to successfully perform
both open-loop and closed-loop generation.

All recurrent-type neural networks form internal states of the current
time step partly by receiving signals from the previous step. At the first
step, however, there is no previous step. Therefore, initial state values must
be formed. In order for the network to learn to generate multiple data se-
quences, it must infer optimal initial states of all context units in all layers
for each sequence. As with the optimization of connectivity weights, in-
ference of optimal initial states is performed via error BPTT. All training
sequences have their own optimal initial states, and those inferred initial
states for each training sequence represent intention within the context of
that specific sequence. Therefore, in the generation process, the initial state
corresponding to a target sequence that we want to generate, as an ideal

Predictive Coding for Dynamic Visual Processing 247

toward which the network then aims, must be fed to the network at the
beginning.

2.4 Inferring Intention by Error Regression during Predictive Imita-
tion. The trained network both generates and recognizes learned sequence
patterns. A sequence pattern can be generated by setting the latent state
consisting of the initial states of all context units to their corresponding val-
ues. In predictive imitation by error regression given a target visual input
sequence, an optimal latent state minimizing reconstruction error must be
generated. For this purpose, the idea of the error regression window (Tani,
2003; Murata et al., 2015; Ahmadi & Tani, 2017) is adopted to the current
model. In the regression window, forward and backward computations are
iterated within the immediate temporal window of the past w steps, up-
dating the latent state in the direction of minimizing error. The latent state
consists of the values of all context units in all layers at the onset of the er-
ror regression window (see Figure 2). The detailed procedure is presented
in algorithm 1. AllTimeSteps specifies that the process will be iterated for
this number of steps. For each step during the process, the model receives
visual input Vt and saves it into the input history buffer R. Then it initializes
the prediction error value inside the temporal window as 0. Then the net-
work produces closed-loop prediction P inside the temporal window. For
TemporalWindowSize W, starting from t − (W + 1)th to tth step (from Pt−W+1

to Pt), prediction error within the temporal window is calculated by com-
paring predictions (P) to the target (V) from input history buffer R. If the
error value is bigger than the threshold, this prediction error is backprop-
agated through time and used to modify the initial states within all steps
of the temporal window in the direction of producing correct prediction,
thus minimizing error. On the contrary, if the error value is smaller than
the threshold, it means the network is producing acceptable synchronized
prediction for the current step t. Finally, the process of error regression pro-
ceeds to the next step, t + 1, and the cycle repeats itself.

3 Experiments

We conducted a set of simulation experiments investigating the dynam-
ics of the P-MSTRNN using a video image data set composed of whole-
body movement patterns performed by multiple human subjects. This set
of movement patterns was organized according to a predefined syntax for
generating the patterns, described in detail in section 3.1.

Experiment 1 examined how memory dynamics develop by self-
organizing hierarchical structures. For this purpose, we observed tempo-
ral neurodynamic structures at different stages of learning and compared
them to each other. Additional study investigated more complex sequence
patterns consisting of concatenations of primitive segments to reveal how

248 M. Choi and J. Tani

the trained network utilizes its functional hierarchy to deal with complex
sequences.

Experiment 2 investigated possible relationships between dynamical
structure development and task performance. We assessed active recogni-
tion capability in terms of predictive imitation by error regression at differ-
ent stages of training. We also compared predictive imitation performance
using two distinct mechanisms: predictive coding by error regression and
ordinary entrainment by input (e.g., as in Kelso, 1997; and Taga, Yamaguchi,
& Shimizu, 1991).

3.1 Data Set. The data set used for the experiments consists of multiple
sequences, each containing only one primitive pattern movement.

The set of primitive movement patterns consists of six types of whole-
body movement patterns as demonstrated by five subjects and collected
by video shooting performances. We first designed subprimitives of legs

Predictive Coding for Dynamic Visual Processing 249

Figure 4: The subprimitives of legs and arms. There are three arm movement
and three leg movement subprimitives. These subprimitives are combined to
constitute the set of whole-body movement primitives.

Table 1: Hierarchical Syntax of Action Primitives.

P1 P2 P3 P4 P5 P6

Left Right Left Right Left Right Left Right Left Right Left Right

Arm A2L A1R A1L A2R A3L A3R A3L A3R A1L A1R A2L A2R

Cophase Antiphase Cophase Antiphase Cophase Antiphase

Leg L1 L2 L1 L2 L3 L3

and arms, then composed the whole-body movement primitives using
subprimitives. Figure 4 shows leg and arm subprimitives. For the arm, there
are three subprimitives. Arm subprimitive 1 (A1) is extending arms hori-
zontally, A2 is vertically extending arms, and A3 is drawing big circles with
laterally extended arms. We labeled subprimitives for each side of the arms.
Subprimitive 1 of the left arm is labeled A1L, and of the right arm A1R. Sim-
ilarly, subprimitive 2 of the left arm is labeled A2L, the subprimitive 2 of the
right arm A2R, the subprimitive 3 of left arm A3L, and the subprimitive 3
of right arm A3R. For the leg subprimitives shown in the second row of Fig-
ure 4, there are also three types. Sub-primitive 1 of legs is raising the legs
(L1), and subprimitive 2 of legs is standing still (L2). Subprimitive 3 of legs
is bending legs (L3). These subprimitives are labeled according to side (as
were the arm subprimitives). The syntax of composing whole-body primi-
tives is presented in Table 1.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-003.jpg&w=311&h=146

250 M. Choi and J. Tani

Figure 5: Examples of training data. Six types of whole-body movement primi-
tives (P1, P2, P3, P4, P5, and P6) as demonstrated by the same person are plotted
from the top row, down: P1, P2, P3, P4, P5, and P6.

In Table 1, the term cophase indicates that two arm actions should be per-
formed at the same time, and antiphase means that arm actions should be
performed alternatively. As shown in the syntax table, each subprimitive is
used twice. Each sequence of whole-body action primitives used in both the
training and recognition data sets consists of six cycles of each whole-body
primitive—around 150 steps. Figure 5 shows the six movement primitives
used for training as exemplified by a single human actor.

3.2 Network. The same P-MSTRNN model structure is used through-
out this letter. Table 2 shows the network structure used for all experiments.
The 0th layer is the input-output layer, and the rest of the layers are context
layers. Local connectivity and kernel sizes are defined by local maps. The
learning rate was set to 0.002 for experiment 1 and 0.1 for experiment 2.

3.3 Experiment 1: Settings. Experiment 1 examined spatial-temporal
hierarchy development in the P-MSTRNN as it learned to predict human
movements as demonstrated in the exemplar video images of human move-
ment patterns described previously (see section 3.1). In experiment 1a,

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-004.jpg&w=311&h=241

Predictive Coding for Dynamic Visual Processing 251

Table 2: Parameter Size of the Network Used for Experiments.

Feature Map Context Map

Time Kernel Time Weight
Layer Constant Size Number Size Constant Size Number Size

0 1 36,36 1 5,5 - - 0 -
1 2 32,32 10 7,7 2 26,26 10 26,26
2 4 26,26 10 7,7 4 20,20 10 20,20
3 8 20,20 20 9,9 8 12,12 10 12,12
4 16 12,12 40 11,11 16 2,2 25 2,2
5 32 2,2 10 2,2 32 1,1 10 1,1
6 64 1,1 10 1,1 64 1,1 5 -

Figure 6: Examples of closed-loop generation of learned primitive movement
patterns. P1, P2, and P5 from the top to the bottom. Closed-loop generation was
performed by the network after 8000 training epochs.

the network first learned (for 8000 epochs) six visually perceived prim-
itive movement patterns, each performed by five subjects (for a total of
30 sequences). All training sequences and all corresponding network pa-
rameters, including connectivity weights, biases, and initial states, were
saved at six stages of training for comparison with structures developed
during more complicated learning tasks, in experiment 1b.

3.3.1 Experiment 1a: Developmental Processes of Dynamic Memory Struc-
tures. After 8000 epochs, the model network was tested for closed-loop
visual sequence generation. All six different primitive patterns were regen-
erated.1 Examples of closed-loop generation after 8000 epochs of training
are shown in Figure 6. The regeneration of three of the movement patterns,

1
Supplementary video1 is available online at http://www.mitpressjournals.org/doi

/suppl/10.1162/neco_a_01026.

http://www.mitpressjournals.org/doi/suppl/10.1162/neco_a_01026
http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-005.jpg&w=311&h=114

252 M. Choi and J. Tani

Figure 7: Neural trajectories generated in the higher (first row) and the lower
(second row) layers. (A) The neural trajectories generated at 2000 epochs of
training, (B) 4000 epochs, and (C) 8000 epochs. The neural trajectories shown
in the same color belong to the same categories of primitive movement patterns
as demonstrated by five different subjects, each with his or her own character-
istic differences.

P1, P2, and P5, appears in the first, second, and third rows, respectively. It
was found that subject-wise differences in demonstrating the same primi-
tives were also reconstructed to some degree. Detailed analysis on this point
is given after analysis of the development process.

We then analyzed neural trajectories at six different learning stages: at
the 100th epoch, 500th epoch, 1000th epoch, 2000th epoch, 4000th epoch,
and 8000th epoch. We recorded the activities of all neural units during
closed-loop regeneration at these stages. The neural trajectories were ob-
tained at each stage of training by means of performing closed-loop gen-
eration for 1000 steps. The closed loops started corresponding to the initial
states adapted for target patterns. Then we examined the neural trajecto-
ries for whether attractors of limit cycles or fixed points were formed. We
used principal component analysis (PCA) to reduce the number of dimen-
sions describing the neural activity. The neural trajectories resulting from
PCA applied to neural activities at different stages are shown in Figure 7.
If the trajectory of neural activity presented in lower dimensions forms a
limit-cycle attractor in later steps (700th∼1000th steps) and if the pixel-level
generation maintains its corresponding visual pattern, this neural activity
is counted as a limit-cycle attractor. However, if the visual pattern is broken
or the trajectory does not an form attractor, it is not.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-006.jpg&w=311&h=172

Predictive Coding for Dynamic Visual Processing 253

Table 3: Average Number of Limit-Cycle Attractors Embedding Target Move-
ment Patterns at Each Stage of Training.

Training Epoch 100 500 1000 2000 4000 8000

Learning MSE 0.03779 0.03117 0.02254 0.01777 0.01397 0.01164
Limit-cycle attractors 0 0 4.5 13.75 13.5 15

embedding target

In Figure 7, neural trajectories from a higher layer (4th layer FM) appear
in the first row and neural trajectories from a lower layer (1st layer CM)
appear in the second row. Trajectories plotted in the same color belong to
the same primitive movement pattern (P1-red, P2-green, P3-blue, P4-black,
P5-magenta, and P6-cyan) as demonstrated by five different subjects. Data
from the 2000th training epoch, 4000th epoch, and 8000th epoch are shown
in panels A to C, respectively.

The neural trajectories in the higher level were plotted from the first step
to the 1000th step. All neural trajectories reached fixed-points by the end
of closed-loop generation. Neural trajectories began from the center region
and ended in peripheral regions where fixed-point attractors were located.
Interestingly, higher-layer neural trajectories for the same actions with the
same colors demonstrated by different subjects reached neighboring fixed
points, thus forming clusters. One interpretation of this higher-layer clus-
tering is that they represent intentions to activate primitive movement pat-
terns. Neural trajectories in the lower layer were plotted from the 900th step
to the 1000th step in order to examine limit cycle attractors in the absence of
transient neural trajectories, and the different shapes of cyclic neural trajec-
tory shown in different colors were observed after 1000 epochs of training.

Our interpretation of these results is that more abstract representations
develop in higher layers due to the slower timescale constraints. More de-
tailed information about the visual input sequences was captured in the
lower layers due to the faster timescale constraints. By this thesis, the net-
work developed its temporal hierarchy through learning due to the interac-
tion between the multiple scales of temporal constraint imposed on neural
activation dynamics in different layers of the model network. As a result,
the different fixed points in the higher layer provide different bifurcation
parameter values to the lower layer, allowing for the proactive selection
among different limit cycle attractors corresponding to different learned
movement patterns.

Table 3 shows the number of limit-cycle attractors at certain training
epochs and that they appear even in the early stage of learning (1000th
training epoch). Also, the trajectories of limit-cycle attractors formed dur-
ing late steps are different from those of early steps. During early steps of
generation, trajectories are not stable, and there is a good amount of fluc-
tuation because the training patterns themselves are of human movement

254 M. Choi and J. Tani

with some variations. However, as the generation goes on, the trajectories
become more stable in terms of magnitude and cycle length.

The fact that a network trained with fluctuating patterns eventually gen-
erates neural activity forming a regular limit-cycle attractor implies that
the network has the ability to generalize its training pattern. If the net-
work were only memorizing a pattern, fluctuations in cycle length and
pattern magnitude during early steps would be replicated in later steps.
Moreover, if the model were simply memorizing the training sequences, it
would not generate closed-loop prediction for steps longer than the training
sequences.

The fact that stable limit-cycle attractors form during relatively early
learning, at around the 1000th epoch, implies that the network is not merely
memorizing the pattern by overiteration of training. Also, limit-cycle attrac-
tors (a generalized form of training patterns) would not appear.

Considering the probabilistic nature of the development processes, we
counted the number of limit-cycle attractors embedding targets three times,
each time using the same structure of networks seeded with different ran-
dom initial parameters from which learning then proceeded. Averages were
calculated for the number of the attractors at each stage. The formation
of limit-cycle attractors during later steps of generation (from 700 to 1000
steps) is plotted in the second row of Figure 6. The neural activity of ear-
lier steps (from 1 to 700 steps) is excluded as there are some fluctuations
in terms of length of cycle and magnitude of pattern because the transient
region reflects irregularities in training patterns.

Table 3 and Figure 7 clarify the developmental process. According to
the table, during early learning (such as at the 100th and 500th epochs),
the network has yet to form limit-cycle attractors. After these early stages,
the number of limit-cycle attractors increases. Also, as training proceeds,
the sizes of the lower level’s limit-cycle attractors increase and the distances
between different attractors belonging to different primitive movement pat-
terns increase as well (see the second row in Figure 7). A similar observation
can be made for fixed-point attractor positions in the higher layer. As learn-
ing proceeds, the positions of fixed-point attractors expand outward. This
tendency for the number of the attractors to increase and expand over the
course of development implies that more detailed information about tar-
get patterns is preserved in the dynamic structures of the whole network as
training proceeds.

As noted above, the regeneration of the subject-wise idiosyncrasies in
demonstrated movement patterns within the same categories can now be
explained. For example, as the plots of the lower level at the 8000th epoch
in Figure 7C show, two distinct attractors belonging to movement primitive
pattern 1 (red) develop. We name the right-hand side attractor attractor 1
and the left-hand side attractor attractor 2.

Figure 8 shows the reconstructed images corresponding to two distinct
attractors from Figure 7C. Figure 8A shows the PCA plots of attractors 1 and
2 in the upper and lower rows, respectively. These two plots look similar

Predictive Coding for Dynamic Visual Processing 255

Figure 8: Closed-loop generation of two distinct patterns belonging to the same
category as demonstrated by two different subjects. (A) PCA plots for attractor 1
and attractor 2. (B) Pixel-level closed-loop generation of both attractors. Num-
bers indicate frame steps for the same action performed by different subjects.
Marked positions show slight differences.

since they are from the same primitive movement pattern. On closer inspec-
tion, however, some differences can be seen. Marked regions indicate dis-
tinguishable features between attractors 1 and 2. Figure 8B presents regen-
erated images at the pixel level for both attractors. The first and the second
rows show snapshot images of attractors 1 and 2, respectively. The pixel-
level images are different in their shape and size. The body shape in the im-
age generated from attractor 1 seems slimmer than the one from attractor 2.
Also, poses were different, especially in the regions of legs and arms. These
observations imply that detailed information concerning subject-wise id-
iosyncrasies in the same category of primitive movement pattern is well
preserved in adjacent attractors with similar shapes, especially in later train-
ing stages. Indeed, these two distinct attractors are not identifiable in the
plot of the previous training stage—for example, as shown in Figure 7B,
where we can see only one red attractor.

As described previously, there are no limit-cycle attractors embedding
target patterns after 500 epochs of training. However, although the target
patterns could not be generated as stable limit-cycle attractors, each tar-
get pattern could be generated adequately from the corresponding initial
state for at the least a few cycles. In order to examine this phenomenon
more closely, 1000 steps of closed-loop generation were performed with the
network at this stage. Figure 9 compares the closed-loop generation of the
model network during early and late stages of training.

The first and the second rows in Figure 9 show the time development
of the target pattern from the 0th to the 50th steps and the corresponding

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-007.jpg&w=313&h=155

256 M. Choi and J. Tani

Figure 9: Closed-loop generation during the 500th epoch. The data for this fig-
ure are collected from the same network parameter trained for 500th epoch.
The first row shows the target pattern in the early steps. The second row shows
closed-loop output generation during the same period. The third row shows
closed-loop output during later steps. For each row, the left column plots the
time development of visual patterns as represented in low dimensions using
PCA, and the right displays corresponding snapshot sequences at their original
pixel level.

closed-loop output generation in the same period, respectively. The third
row shows the generation from the 260th step to the 310th step. For each
row, the left-hand side plots the time developments of these values in re-
duced dimensions after applying PCA to the original pixel-level represen-
tation, and the right-hand side plots sequential snapshots at the original
pixel level. These plots indicate that in the early steps (from the 0th step
to the 50th step), the network could produce patterns similar to the target.
However, as the steps went by, the output pattern became distorted, and
its apparent resemblance to the target was lost. The implication here is that
during early learning stages, even though the network is yet to form sta-
ble limit-cycle attractors deeply embedding target patterns in network dy-
namics, regenerating target patterns for limited cycles is possible through
transient dynamics. This observation is revisited in experiment 2b.

3.3.2 Experiment 1b: Learning Complex Patterns. Experiment 1b inves-
tigates the capability of the P-MSTRNN model to learn more complex

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-008.jpg&w=311&h=203

Predictive Coding for Dynamic Visual Processing 257

Figure 10: Neural trajectories generated in higher (first row) and lower (sec-
ond row) levels in the network trained with the concatenated sequence data
set. Dimensional reduction is applied to neural activities recorded. The neu-
ral trajectories generating the concatenated sequence (A) P1-P2-P3-P4-P5 and
(B) P5-P4-P3-P2-P1.

patterns. A new data set was prepared, consisting of two types of sequence,
each generated by the same five people. The sequences concatenated the
primitive movement patterns described in section 3.1—in this case, P1-P2-
P3-P4-P5 and P5-P4-P3-P2-P1. Each primitive movement was repeated four
times; then the next was repeated four times and the next until the sequence
ended. All sequences were around 350 steps. A network identical to that
used in the previous experiment was trained with this new data set. Train-
ing was terminated when closed loop generation of all training sequences
was successful. As with the previous experiments, neural activities were
collected while the network was generating closed loop and PCA was ap-
plied to reduce the dimensionality of the data.

Figure 10 plots neural trajectories generated in the closed-loop mode
by different layers of the trained network. All the data in this figure were
recorded when the network performed the closed-loop regeneration of the
two target training sequences as performed by subject 1. The first row
presents the higher layers (4th layer FM) neural activity and the second row
is for the lower layers (1st layer CM) activity. Figure 10A represents activity

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-009.jpg&w=311&h=230

258 M. Choi and J. Tani

during closed-loop regeneration of the sequence P1-P2-P3-P4-P5 and Fig-
ure 10B the sequence P5-P4-P3-P2-P1. It is worth noting that these neural
trajectories were generated as transient ones, beginning from two distinct
initial states without cycling or fixation within the periods shown.

In the higher layer, each primitive movement pattern segment (each
shown in a different color) appears straighter than those in the lower layer,
evidence of a cyclic representation of more complex patterns. This result,
analogous to those obtained previously (see Figure 7), implies that higher-
layer activity represents more abstract information (such as the orders of
learned primitive movement pattern sequences) while the lower-layer ac-
tivity provides more detailed information.

Interestingly, as shown in Figures 10Aand 10B, neural trajectories in both
lower and higher layers resemble each other, even though their movement
pattern sequences are oppositely ordered. This observation points to three
important features of model dynamics. First, the network is capable of seg-
menting movement patterns built from concatenated training patterns. Sec-
ond, the network is capable of using hierarchical functions to combine these
segmented movement patterns into different concatenations. Third, the net-
work can learn to generate such concatenated sequence patterns using tran-
sient neural trajectories.

3.4 Experiment 2: Predictive Imitation. This experiment examines the
ability of the P-MSTRNN to predictively imitate various target patterns un-
der various conditions. Predictive imitation can be performed using two
different schemes. On the first scheme, predictive imitation is accomplished
using error regression. The activity internal to each layer is modulated in the
direction of minimizing error between prediction outputs and target visual
input, closed loop (see Figure 2). On the second scheme, the idea of entrain-
ment by inputs can be applied, and the model can be entrained by input.
On this scheme, prediction of next-step visual inputs is generated from cur-
rent visual inputs as they are fed into the network, open loop (see Figure
1A). It is expected that the model network and the external target system
can achieve synchrony by means of phase locking, provided that these two
coupled systems share oscillation components.

Using the data saved from the previous experiment investigating the de-
velopment of dynamics involved in learning multiple primitive movement
patterns generated (differently) by multiple subjects, this experiment clar-
ifies how predictive imitation performance varies depending on different
dynamic structures developed at different stages of learning and whether
using the error regression or not. Performance differences between cases
trained on the multiple-subject data set and those trained on the single-
subject data set are investigated for the purpose of examining how vari-
ance in exemplar patterns can contribute to generalization in learning,
In this case, we tested predictive imitation performance with target pat-
terns demonstrated by previously unknown subjects. Finally, predictive

Predictive Coding for Dynamic Visual Processing 259

imitation performance using the error regression is compared with that us-
ing entrainment by inputs.

3.4.1 Experiment 2a: Predictive Imitation with Error Regression during the De-
velopmental Process. Predictive imitation by error regression performance
during six different stages of training was assessed and compared using
the same network described in experiment 1a. In that experiment, param-
eters, including weights and biases, were saved every 100 epochs during
8000 epochs of training. Parameters obtained after training for 100th, 500th,
1000th, 2000th, 4000th, and 8000th epochs were used in the experiment.
With these six different network states representing stages of learning, we
conducted tests on predictive imitation using a test primitive movement
pattern sequence generated by three subjects who did not participate in the
previous experiments. The test sequence P1-P2-P5-P3-P4-P6-P4-P3-P5-P2-
P1 involves multiple switches between the primitive movement patterns
described in section 3.1, and was around 2000 video frame/time steps long.
Note that this sequence differs from the sequences employed in experiment
1b. We assessed predictive imitation of the target sequence containing un-
expected switching between primitive movement patterns by observing the
prediction error. This is the error between the network prediction at t + 2
and the actual value of input at that time step. The error regression adap-
tation rate regulating internal state changes was set to 0.1, the window size
was set to 20 steps, and initial state optimization performed 100 times for
every video frame step.

Figure 11 shows a typical example of predictive imitation by error re-
gression.2 Figure 11A shows plots of neural activities after 2000 training
epochs when the test pattern included no movement pattern switching
and Figure 10B when the test pattern involved switching from primitive
2 to primitive 5 at around the 300th video frame step. From the top row
down, the figure shows the target visual pattern, one-step prediction out-
puts, mean square prediction error (MSE), and internal activity of both the
higher and lower layers. Both the visual inputs and prediction outputs are
shown in five-dimensional values obtained by PCA. The plots for the lower
and higher layers show the activities of the 1st layer (fast) and 4th layer
(slow) FMs after PCA. In Figure 11B, MSE rose sharply at around the 300th
step, leading to rapid changes in activities in both the lower and the higher
layers and a change in the prediction output patterns from P2 to P5. Im-
mediately after these prediction output patterns switch, MSE decreases to
almost zero. In Figure 11A, there is no movement pattern switching in the
target sequence, and the error remains low for most of the period.

2
Supplementary Video2 and Video3 are available online at http://www.mitpress

journals.org/doi/suppl/10.1162/neco_a_01026.

http://www.mitpressjournals.org/doi/suppl/10.1162/neco_a_01026

260 M. Choi and J. Tani

Figure 11: Results of predictive imitation (A) When the test target sequence con-
sists of only one pattern (P6) and (B) when the primitive movement pattern in
the target sequence switches from P2 to P5. The following are shown from the
top row down: target visual input, results of the one-step prediction output,
MSE, slow activation, fast activation. Fast activation is collected from CMs in
the first layer and slow activation from FMs in fourth layer. All plots (except
MSE) present values obtained by PCA.

Table 4: MSE of Predictive Imitation by Error Regression.

Training Epoch 100 500 1000 2000 4000 8000

Error regression MSE 0.0468 0.0346 0.0331 0.0320 0.0333 0.035
Limit-cycle attractors 0 0 4.5 13.75 13.5 15

embedding target

Note: Values presented are averages of three networks trained with different
initial random seeds.

The mean square error (MSE) during one-step prediction of the target
sequences for each stage of learning is given in Table 4. The number of limit
cycle attractors embedding target patterns for each stage of learning is taken
from Table 3. The network trained for 100 epochs could not predict target
sequences well, as evidenced by the relatively large MSE. Generated pat-
terns were largely distorted. However, the network trained for 500 epochs
could perform one-step prediction quite well, with the additional training

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-010.jpg&w=311&h=200

Predictive Coding for Dynamic Visual Processing 261

Figure 12: Representative snapshot during error regression. The top row is the
target visual input, the second row is the prediction output generated by the
network trained for 500 epochs, and the third row is the prediction output gen-
erated by the network trained for 8000 epochs. All plots were drawn by PCA
applied to the original pixel level representation.

decreasing the MSE to 0.0346. All other networks trained for more than 500
epochs could also predict well, with similarly small MSE values.

In order to account for why the network trained for only 500 epochs
(without forming limit-cycle attractors deeply embedding the training pat-
terns in network dynamics) and can perform predictive imitation with such
a relatively small MSE, we monitored look-ahead prediction by error re-
gression in the error regression window during different stages of learning.
Figure 12 shows a snapshot of the middle of the online error-regression pro-
cess with a focus on the current step, represented as “Now” in the figure,
as demonstrated in two networks during two different stages of learning:
after 500 epochs and after 8000 epochs.

These two networks were compared to examine how look-ahead predic-
tion changes depending on network learning stage. The top row in Figure
12 is the target visual input after PCA applied to the pixel-level representa-
tion. The visual input from the 0th step to the 135th step is of the same cate-
gory of primitive movement pattern, and there is no switching. The second
row is the visual prediction output (after PCA) generated by the network

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-011.jpg&w=239&h=233

262 M. Choi and J. Tani

trained for 500 epochs, and the third row is the visual prediction output (af-
ter PCA) by the network trained for 8000 epochs. The black boxes shown in
all plots indicate the error regression (ER) window in the immediate past.
In this figure, the current step, indicated by “Now,” is the 135th step, and
the ER window 20 steps into the past opens from the 116th step. Here, we
look at how the prediction of future steps, as well as the reconstruction of
past steps in the ER window, can be computed by the ER scheme.

The network first performs closed-loop generation starting from the on-
set of the ER window in the immediate past, from the 116th step to the 135th
step. Once the closed-loop sequence inside the window is generated, re-
constructing the image, this reconstructed image is compared to the target
value (the recorded visual input sequence), and this yields error. The error is
backpropagated through time steps within the window, eventually adjust-
ing the latent states of the initial step of the window at the 116th step. Be-
ginning from this step, new closed-loop output is generated and new error
is computed and backpropagated. This forward generation of closed-loop
values and the backpropagation of error within the temporal window, up-
dating the latent states at the onset of the window, is repeated a predefined
number of times in order to minimize error between the recorded visual
input sequence and closed-loop generation inside the window. Ideally, the
network regenerates the target pattern in the ER window with the predic-
tion output sequence when the error is minimized. After the latent state is
adjusted by means of this error regression process, look-ahead prediction
of visual input is generated for future steps (steps after the 135th step) by
means of closed-loop generation.

Figure 12 shows that dynamics generating look-ahead prediction se-
quences differ during different training stages. In the network trained for
500 epochs, the prediction output pattern changed gradually from the tar-
get pattern as time steps went by, whereas the prediction output pattern in
the 8000 epoch training case stayed similar to the target. The prediction out-
put pattern at 500 epochs remains similar to that of the target for at least 10
steps after the “Now” step. As stable attractors had not yet developed, this
implies that forward closed-loop computation can successfully regenerate
the trained cyclic pattern from the onset step of the ER window to the 10th
step by way of transient neural trajectories. This interpretation is supported
by the results of experiment 1a, which showed that the network trained for
500 epochs can regenerate trained cyclic patterns by using the transient re-
gion for around 50 steps. Furthermore, it is likely that even the network
trained for 8000 epochs can successfully regenerate the target pattern using
transient neural trajectories because convergence to the limit cycle attractor
can require several hundred more steps, as shown in experiment 1a.

In summary, the preceding research found that multiple cyclic move-
ment patterns were retained in transient neural trajectories during early
learning phases without forming limit cycle attractors. During later learn-
ing stages, target patterns were retained in transient neural trajectories, and

Predictive Coding for Dynamic Visual Processing 263

Table 5: MSE of Predictive Imitation by Error Regression under Different Train-
ing Conditions.

Training Epoch 100 500 1000 2000 4000 8000

Multisubject training MSE 0.0468 0.0346 0.0331 0.0320 0.0333 0.035
Single-subject training MSE 0.0476 0.0428 0.0425 0.0411 0.0405 0.0364

limit cycle attractors embedding those patterns formed. It was also found
that the transient regions were used in predictive imitation of target pat-
terns, with networks from both earlier and later learning stages. This result
is related to Ahmadi and Tani (2007), which shows that patterns deviating
from exemplar patterns can be learned in transient neural trajectories that
converge to attractors embedding the main patterns.

3.4.2 Experiment 2b: Comparison of Multiple-Subject Training and Single-
Subject Training Cases. Predictive imitation by error regression performance
was compared between networks trained in two different conditions: that
using the data set generated by multiple subjects (as in the experiments
1a and 2a) and that trained on data from a single subject. We compared
performance during all six different training stages using the same test
target data used in experiment 2a. Table 5 sets out predictive imitation
MSE for networks trained under these two conditions during each stage of
learning.

The MSE of the multiple-subjects case is smaller than that of the single-
subject case during every stage of training. This might be because larger
variation in training patterns enhances generalization.

3.4.3 Experiment 2c: Predictive Imitation via Entrainment by Input. This
final experiment compares two possible schemes for predictive imitation—
one by error regression and the other by input entrainment. The same net-
work used in experiment 1a, informed by the same network parameters
(such as connectivity weights and biases) recorded during different stages
of training in experiment 1a, was compared with the same network in-
formed by the test data used in experiment 2a at each corresponding stage
of development.

Predictive imitation by input entrainment uses the open-loop operations
already described (see Figure 1A). In the case of a sudden switch in move-
ment pattern, internal dynamics resituate to the current context by means of
entrainment to current visual input (Kelso, 1997; Taga et al., 1991). Figures
13Aand 13B show typical predictive imitation results using the entrainment
by inputs mechanism at 2000 epochs.

Figures 13A and 13B show the cases with and without switching of
movement patterns, respectively. As with previous figures, both the targets

264 M. Choi and J. Tani

Figure 13: Examples of predictive imitation by entrainment by input (A) when
the test sequence contains no switching (only P6) and (B) when the test sequence
contains switching from P2 to P5. Target visual input (first row), corresponding
prediction output (second row), and MSE (third row) are plotted. The prediction
outputs and the target visual inputs are plotted by PCA of original pixel level
representation.

Table 6: MSE of ER and Entrainment by Input at Different Training Stages.

Training Epoch 100 500 1000 2000 4000 8000

ER MSE 0.0468 0.0346 0.0331 0.0320 0.0333 0.035
Entrainment MSE 0.0625 0.0457 0.0452 0.0515 0.0620 0.0680

and the prediction outputs are plotted by PCA applied to the pixel-
level representation. Compared to the performance of the scheme using
error regression as shown in Figure 11A, prediction outputs shown in Figure
13A are distorted and generate larger error. Clearly, using error regression
to update anticipated situations, in effect priming the network for proba-
ble appropriate action, outperforms entrainment by input in cases without
movement pattern switching. With switching, entrainment by input per-
forms even worse, as shown in Figure 13B. Output prediction generated
significant error during and after the visual target input switched from P2
to P5 at around the 300th step. The degree of distortion in output predic-
tions was significantly larger than that of the error regression scheme (see
Figure 11B).

A quantitative analysis supporting this conclusion is set out in Table 6.
Table 6 compares the MSE generated by the error regression scheme and
the entrainment by inputs scheme. MSE generated by the entrainment by
inputs scheme was significantly larger than that of the error regression
scheme. Predictive imitation using error regression outperforms the en-
trainment by inputs.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01026&iName=master.img-012.jpg&w=311&h=131

Predictive Coding for Dynamic Visual Processing 265

4 Discussion and Conclusion

In this study, we proposed a novel predictive coding model, the predic-
tive spatiotemporal scales recurrent neural network (P-MSTRNN). We ob-
served the development of its internal dynamics during training on a
dynamic visual stream data set depicting whole-body cyclic primitive
movement patterns as demonstrated by multiple subjects. We assessed
predictive imitation performance under various conditions, using multiple-
and single-subject data sets, and using entrainment by input and predictive
imitation by error correction.

Analysis of the development of network dynamics showed that the
number of attractors embedding target patterns increased as learning pro-
ceeded. The higher layer developed fixed-point attractors, and the lower
developed limit-cycle attractors. Analysis of network dynamics at the end
of the learning period showed that a functional hierarchy had been devel-
oped in the network, with the upper and lower layers working in tandem
to predictively imitate target patterns. Each of the fixed points generated
in the higher layer represented the intention for a specific primitive move-
ment pattern and played the role of bifurcation parameter by inducing a
transition in the lower-layer network to a corresponding limit-cycle attrac-
tor. Interestingly, a similar functional hierarchy was observed even in earlier
stages of learning, in these cases exploiting the transient regions of the de-
veloped dynamic structure instead of the invariant set of limit-cycle attrac-
tors. Also interesting was the observation that subject-wise idiosyncrasies
in primitive movement patterns were generated for a few cycles by way
of transient trajectories during early learning. Finally, when the network
was trained with different sequences of primitive movement patterns, neu-
ral trajectories for the same movement pattern exhibited similar trajectories
regardless of sequence order. This suggests that the network was able to
compose and decompose sequences with and into their primitive segments
using the functional hierarchy developed through learning.

The second part of this study assessed predictive imitation performance
during different learning stages. Using the error regression scheme, per-
formance in terms of prediction error in the earlier stage (500 epochs, with-
out forming limit-cycle attractors embedding target patterns) was similar to
performance at the later stage (8000 epochs, with fully formed limit-cycle at-
tractors embedding target patterns). Furthermore, the network trained with
the multiple-subject data set outperformed that trained with the single-
subject data set during predictive imitation. This suggests that generaliza-
tion in learning is achieved by training with diverse patterns and that this
generalized learning facilitates predictive imitation by strengthening in-
ferences of target patterns. Finally, two predictive imitation schemes were
compared by error regression and by input entrainment, with performance
of the former far superior to that of the latter.

266 M. Choi and J. Tani

4.1 Related Studies. Our study builds on various ideas inherited from
previous studies. The idea of using the error backpropagation through time
(BPTT) algorithm (Rumelhart, Hinton, & Williams, 1985) to drive active
inference using online error regression came from Tani and Nolfi (1999)
and Tani (2003). Tani and Nolfi (1999) proposed a hierarchically organized
predictive-coding-type model with localized representations by using a
mixture of gated RNNs at each level of the network. Simulated mobile
robots using this model infer the gate opening at each level by means of
the error regression and can recognize the ongoing perceptual flow as seg-
mented in multiple levels by this mechanism. Tani and colleagues (Tani,
2003; Ahmadi & Tani, 2017) have demonstrated similar active recognition
function using a distributed representation of contextual activities in a hi-
erarchically organized RNN model that infers these contextual activities in
multiple levels by way of online error regression using BPTT.

One point of interest is that these models use the same connectivity
pathways but in opposite directions for top-down forward activation and
bottom-up backward error propagation. Other predictive coding models
such as those proposed by Rao and Ballard (1999) and by Friston (2005) use
different pathways for forward activation and backward error propagation.
Future study should explore differences between these two schemes both
qualitatively and quantitatively.

Recently, predictive dynamic vision models have been proposed (Lot-
ter, Kreiman, & Cox, 2016; Srivastava et al., 2015; Ranzato et al., 2014; Finn,
Goodfellow, & Levine, 2016). Although these models predict future pixel
frames in visual sequences by learning predictive models from given data
sets, they cannot perform active inference using the prediction error signal
as the P-MSTRNN does. One exception could be PredNet proposed by Lot-
ter and colleagues (2016). This model uses different pathways to propagate
top-down prediction and bottom-up error signal after prediction. The Pred-
Net used a natural color video data set for prediction experiments, and the
predictions were conducted for short frame ranges of fewer than 20 frame
steps, and does not show how prediction error can be used for active infer-
ence of given target visual streams.

4.2 Can Transient Dynamics Be Used for Memory Dynamics? Gen-
eral human movements are repetitive, consisting of frequently used move-
ment primitives such as reaching, grasping, walking, and waving. Some
researchers (e.g., Ijspeert, Nakanishi, Hoffmann, Pastor, & Schaal, 2013)
suggest that movement primitives are either discrete movements such as
reaching or cyclic movements such as walking or shaking, considered to be
developed in terms of fixed-point dynamics and limit-cycle dynamics,
respectively. In this letter, we focused on movement patterns based on
limit-cycle dynamics. One interesting finding in the study is that during
learning, transient dynamics can embed target cyclic movement patterns.
Analysis of the dynamical structures developed at different stages in the

Predictive Coding for Dynamic Visual Processing 267

learning processes showed that all of the subject-wise movement patterns
could be regenerated during early video frame steps by each initial state
taken from each stage of the training process, although many of these pat-
terns decayed as steps went by because they were not embedded in stable
limit cycle attractors.

Analogous observations have been made in previous studies (Ahmadi
& Tani, 2017; Nishimoto & Tani, 2004). Ahmadi and Tani (2017) reported
that a MTRNN model trained with a set of prototypical cyclic patterns of
varying amplitude and periodicity can generate as well as recognize similar
prototypical patterns, and incorporate diverse joint variance in amplitude
and periodicity by using the transient regions of developed dynamics. At
the same time, they reported that the network trained with only those pro-
totypical patterns, without any variations, could not deal with fluctuations
in such patterns. Nishimoto and Tani (2004) present similar results in a sim-
ulation experiment in which a deterministic RNN model was trained with
probabilistic symbol sequences generated by a particular finite state ma-
chine (FSM). It was shown that such probabilistic sequence patterns could
be regenerated by the trained network using transient chaos. However, the
trajectories generated by means of transient chaos tended to converge into
limit-cycle attractors, at which point the network can no longer generate
target patterns produced by the FSM.

Along with these prior studies, our study also suggests that transient dy-
namics can be used for memorizing and recalling dynamic patterns. This
is interesting because exploiting transient dynamics runs contrary to con-
ventional dynamical systems thought, which emphasizes attractor forma-
tion for memorizing dynamic patterns (Kelso, 1997; Beer, 1995). But using
transient dynamics for memorizing dynamic patterns should prove a useful
approach in some artificial systems applications because necessary training
periods can be drastically reduced. Indeed, our study shows that it is not
necessary to wait 8000 training epochs until target patterns are embedded
as limit-cycle attractors in order to successfully perform predictive imita-
tion as well as the closed-loop generation of primitive movement patterns.
Instead, training for just 500 epochs is enough to perform those tasks.

5 Future Work

Our study used training data sets of limited complexity, with body move-
ment patterns composed according to artificial rules. Future research
should overcome these limitations. Also, video images were limited to only
36 × 36 binary. This limitation is partly due to computational requirements.
Predictive coding at the pixel level incurs significant computational costs
for learning even in the current low resolution, as compared to learning
categorization without reconstruction of the image. The current training of
six patterns with five subjects costs almost two weeks of computing time.
We assume that the novelty of this letter is that it may be the first paper

268 M. Choi and J. Tani

to deal with learning multiple human movement visual patterns from
multiple-subject data. Therefore, we put more effort in analysis of the model
dynamics by using relatively simple learning targets. Binary image video
facilitated reliable analysis. More complex cases can be pursued now, af-
ter understanding the underlying mechanism. Future study should inves-
tigate the capabilities of the model after training with more natural human
action patterns—for example, gray-scale performance videos such as those
publicly available on YouTube. It is also important to investigate how our
model based on deterministic dynamics can deal with probabilistic proper-
ties latent in natural image data sets. From the viewpoint of Bayesian mod-
eling, statistical structures underlying sequential data can be extracted as
a probability distribution function of random variables through learning.
From the deterministic dynamics view, one may consider that such statis-
tical structures can be learned and embedded in deterministic chaos (Tani,
1994; Namikawa, Nishimoto, & Tani, 2011).

Acknowledgments

This work was supported by a National Research Foundation of Korea
grant funded by the Korea government (2014R1A2A2A01005491).

References

Ahmadi, A., & Tani, J. (2017). How can a recurrent neurodynamic predictive cod-
ing model cope with fluctuation in temporal patterns? Robotic experiments on
imitative interaction. Neural Networks, 92, 3–16.

Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human
brain. Trends in Cognitive Sciences, 15, 200–209.

Beer, R. D. (1995). On the dynamics of small continuous-time recurrent neural net-
works. Adaptive Behavior, 3, 469–509.

Campbell, D. T. (1974). Downward causation in hierarchically organized biological
systems. In F. J. Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology
(pp. 179–186). London: Macmillan Education UK.

Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. New
York: Oxford University Press.

Den Ouden, H. E., Kok, P., & De Lange, F. P. (2012). How prediction errors shape
perception, attention and motivation. Frontiers in Psychology, 3, 548.

Dosovitskiy, A., & Brox, T. (2015). Inverting convolutional networks with convolu-
tional networks. CoRR, abs.1506.02753.

Finn, C., Goodfellow, I., & Levine, S. (2016). Unsupervised learning for physical in-
teraction through video prediction. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I.
Guyon, & R. Garnett (Eds.), Advances in neural information processing systems (pp.
64–72). Red Hook, NY: Curran.

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal
Society of London B: Biological Sciences, 360(1456), 815–836.

https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.neunet.2017.02.015&citationId=p_1
https://www.mitpressjournals.org/action/showLinks?crossref=10.1098%2Frstb.2005.1622&citationId=p_9
https://www.mitpressjournals.org/action/showLinks?crossref=10.1098%2Frstb.2005.1622&citationId=p_9
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.tics.2011.03.006&citationId=p_2
https://www.mitpressjournals.org/action/showLinks?crossref=10.3389%2Ffpsyg.2012.00548&citationId=p_6
https://www.mitpressjournals.org/action/showLinks?crossref=10.1177%2F105971239500300405&citationId=p_3

Predictive Coding for Dynamic Visual Processing 269

Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference.
Biological Cybernetics, 104, 137–160.

Giese, M. A. (2013). Biological and body motion perception. In J. Wagemans & M.
A. Giese (Eds.), The Oxford handbook of perceptual organization (pp. 575–596). New
York: Oxford University Press.

Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception.
Trends in Cognitive Sciences, 6, 242–247.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynami-
cal movement primitives: Learning attractor models for motor behaviors. Neural
Computation, 25, 328–373.

Ito, M., & Tani, J. (2004). On-line imitative interaction with a humanoid robot using
a dynamic neural network model of a mirror system. Adaptive Behavior, 12(2), 93–
115.

Jaeger, H., Lukoeviius, M., Popovici, D., & Siewert, U. (2007). Optimization and ap-
plications of echo state networks with leaky-integrator neurons. Neural Networks,
20, 335–352.

Kelso, J. S. (1997). Dynamic patterns: The self-organization of brain and behavior. Cam-
bridge, MA: MIT Press.

Kulkarni, T. D., Whitney, W. F., Kohli, P., & Tenenbaum, J. (2015). Deep convolutional
inverse graphics network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
& R. Garnett (Eds.), Advances in neural information processing systems (pp. 2539–
2547). Red Hook, NY: Curran.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE, 86, 2278–2324.

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K. R. (2012). Efficient backprop. In G.
Montavon, G. B. Orr, & K.-R. Müller (Eds.), Lecture Notes in Computer Science: Vol.
1254. Neural Networks: Tricks of the Trade (pp. 9–48). Neural networks: Tricks of the
trade. Berlin: Springer.

Lee, H., Jung, M., & Tani, J. (2016). Characteristics of visual categorization of long-
concatenated and object-directed human actions by a multiple spatio-temporal scales re-
current neural network model. arXiv:1602.01921.

Lotter, W., Kreiman, G., & Cox, D. (2016). Deep predictive coding networks for video
prediction and unsupervised learning. arXiv:1605.08104.

Murata, S., Yamashita, Y., Arie, H., Ogata, T., Sugano, S., & Tani, J. (2015). Learning
to perceive the world as probabilistic or deterministic via interaction with others:
A neuro-robotics experiment. IEEE Transactions on Neural Networks and Learning
Systems, 28, 830–848.

Namikawa, J., Nishimoto, R., & Tani, J. (2011). A neurodynamic account of sponta-
neous behaviour. PLoS Comput Biol., 7(10), e1002221.

Nishimoto, R., & Tani, J. (2004). Learning to generate combinatorial action sequences
utilizing the initial sensitivity of deterministic dynamical systems. Neural Net-
works, 17, 925–933.

Pezzulo, G., van der Meer, M. A., Lansink, C. S., & Pennartz, C. M. (2014). Internally
generated sequences in learning and executing goal-directed behavior. Trends in
Cognitive Sciences, 18, 647–657.

Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., & Chopra, S.
(2014). Video (language) modeling: A baseline for generative models of natural videos.
arXiv:1412.6604.

https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.neunet.2007.04.016&citationId=p_15
https://www.mitpressjournals.org/action/showLinks?crossref=10.1371%2Fjournal.pcbi.1002221&citationId=p_23
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS1364-6613%2802%2901913-7&citationId=p_12
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.neunet.2004.02.003&citationId=p_24
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.neunet.2004.02.003&citationId=p_24
https://www.mitpressjournals.org/action/showLinks?system=10.1162%2FNECO_a_00393&citationId=p_13
https://www.mitpressjournals.org/action/showLinks?system=10.1162%2FNECO_a_00393&citationId=p_13
https://www.mitpressjournals.org/action/showLinks?crossref=10.1007%2Fs00422-011-0424-z&citationId=p_10
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.tics.2014.06.011&citationId=p_25
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.tics.2014.06.011&citationId=p_25
https://www.mitpressjournals.org/action/showLinks?crossref=10.1177%2F105971230401200202&citationId=p_14
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F5.726791&citationId=p_18
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTNNLS.2015.2492140&citationId=p_22
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTNNLS.2015.2492140&citationId=p_22

270 M. Choi and J. Tani

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience,
2, 79–87.

Rao, R. P., & Sejnowski, T. J. (2003). Self-organizing neural systems based on predic-
tive learning. Philosophical Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, 361(1807), 1149–1175.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal represen-
tations by error propagation (ICS-8506). La Jolla, CA: University of California,
San Diego, La Jolla Institute for Cognitive Science.

Srivastava, N., Mansimov, E., & Salakhutdinov, R. (2015). Unsupervised learning of
video representations using LSTMs. In Proceedings of the 32nd International Con-
ference on Machine Learning (pp. 843–852).

Taga, G., Yamaguchi, Y., & Shimizu, H. (1991). Self-organized control of bipedal loco-
motion by neural oscillators in unpredictable environment. Biological Cybernetics,
65, 147–159.

Tani, J. (1994). Proposal of chaotic steepest descent method for neural networks and
analysis of their dynamics. Electronics and Communications in Japan (Part III: Fun-
damental Electronic Science), 75, 62–70.

Tani, J. (1996). Model-based learning for mobile robot navigation from the dynamical
systems perspective. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 26, 421–436.

Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and
the top-down interaction processes. Neural Networks, 16, 11–23.

Tani, J. (2016). Exploring robotic minds: Actions, symbols, and consciousness as self-
organizing dynamic phenomena. New York: Oxford University Press.

Tani, J., & Nolfi, S. (1999). Learning to perceive the world as articulated: An ap-
proach for hierarchical learning in sensory-motor systems. Neural Networks, 12,
1131–1141.

Yamashita, Y., & Tani, J. (2008). Emergence of functional hierarchy in a multiple
timescale neural network model: a humanoid robot experiment. PLoS Comput
Biol., 4(11), e1000220.

Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011). Adaptive deconvolutional networks
for mid and high level feature learning. In Proceedings of the 2011 International
Conference on Computer Vision (pp. 2018–2025). Washington, DC: IEEE Computer
Society.

Ziemke, T., Jirenhed, D. A., & Hesslow, G. (2005). Internal simulation of perception:
a minimal neuro-robotic model. Neurocomputing, 68, 85–104.

Received April 3, 2017; accepted July 19, 2017.

https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0893-6080%2802%2900214-9&citationId=p_34
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2F4580&citationId=p_27
https://www.mitpressjournals.org/action/showLinks?crossref=10.1007%2FBF00198086&citationId=p_31
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.neucom.2004.12.005&citationId=p_39
https://www.mitpressjournals.org/action/showLinks?crossref=10.1098%2Frsta.2003.1190&citationId=p_28
https://www.mitpressjournals.org/action/showLinks?crossref=10.1098%2Frsta.2003.1190&citationId=p_28
https://www.mitpressjournals.org/action/showLinks?crossref=10.1002%2Fecjc.4430750406&citationId=p_32
https://www.mitpressjournals.org/action/showLinks?crossref=10.1002%2Fecjc.4430750406&citationId=p_32
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0893-6080%2899%2900060-X&citationId=p_36
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F3477.499793&citationId=p_33
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F3477.499793&citationId=p_33
https://www.mitpressjournals.org/action/showLinks?crossref=10.1371%2Fjournal.pcbi.1000220&citationId=p_37
https://www.mitpressjournals.org/action/showLinks?crossref=10.1371%2Fjournal.pcbi.1000220&citationId=p_37

This article has been cited by:

1. Chuanchang Zhang, Huan Tang, Zhigang Duan. 2019. Time Series Analysis
of Volleyball Spiking Posture Based on Quality-Guided Cyclic Neural Network.
Journal of Visual Communication and Image Representation 102681. [Crossref]

2. Shengxian Cao, Yu Wang, Zhenhao Tang. 2019. Adaptive Elman Model of Gene
Regulation Network Based on Time Series Data. Current Bioinformatics 14:6,
551-561. [Crossref]

https://doi.org/10.1016/j.jvcir.2019.102681
https://doi.org/10.2174/1574893614666190126145431

