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Molecular recognition by RNA aptamers has been exploited to

control gene expression in response to small molecules in

mammalian cells. These mammalian synthetic riboswitches

offer attractive features such as small genetic size and lower

risk of immunological complications compared to protein-

based transcriptional gene switches. The diversity of gene

regulatory mechanisms that involve RNA has also inspired the

development of mammalian riboswitches that harness various

regulatory mechanisms. In this report, recent advances in

synthetic riboswitches that function in mammalian cells are

reviewed focusing on the regulatory mechanisms they exploit

such as mRNA degradation, microRNA processing, and

programmed ribosomal frameshifting.

Address

Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of

Science and Technology Graduate University, Onna, Okinawa 904 0495,

Japan

Corresponding author: Yokobayashi, Yohei (yohei.yokobayashi@oist.jp)

Current Opinion in Chemical Biology 2019, 52:72–78

This review comes from a themed issue on Synthetic biology

Edited by Hirohide Saito and Yohei Yokobayashi

For a complete overview see the Issue and the Editorial

Available online 22nd June 2019

https://doi.org/10.1016/j.cbpa.2019.05.018

1367-5931/ã 2019 The Author. Published by Elsevier Ltd. This is an

open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction
Envisioned practical applications of mammalian synthetic

biology frequently require gene switches that recognize

endogenous or exogenous chemical signals and turn on or

turn off expression of proteins, which in turn regulate

synthetic genetic circuits inside the cell. These chemical

gene switches need to be flexible enough to be tailored to

diverse chemical species, engineered to function as

ON-switch or OFF-switch, fine-tuned to adjust the

sensitivity, and have a minimal genetic and metabolic

footprint. Protein-based engineered transcription factors

(TFs), such as Tet-ON and Tet-OFF systems derived

from a bacterial TF, are among the most widely used tools

to control mammalian gene expression in response to

small molecule triggers [1]. However, there are a number

of drawbacks of TF-based gene switches as generally

applicable switches for mammalian and biomedical
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applications [2–4]: (i) adapting an engineered TF to

respond to a new compound is challenging, (ii) expression

of engineered TFs can trigger immunogenicity, (iii)

genetic size and expression of an engineered TF can

burden the host cell or the vector, and (iv) switch perfor-

mance can be influenced by the expression level of the

TF; therefore, optimization may be required. RNA

aptamers for desired ligands can be obtained relatively

easily by in vitro selection (SELEX) [5,6]; therefore,

riboswitches can potentially be engineered to respond

to a variety of compounds more readily than engineered

TFs. Moreover, aptamers are typically small (�20 to

100 nt). Even with the additional nucleotides necessary

to regulate gene expression, genetic footprints of

riboswitches (few hundred nt) are small enough to satisfy

vectors that have limited capacity (e.g. adeno associated

virus). Furthermore, the lack of any translated proteins is

expected to result in lower immunogenicity and

metabolic burden on the host cell.

In 1998, Werstuck and Green [7] demonstrated that

insertion of an RNA aptamer selected to bind the

Hoechst dye H33342 in the 50 untranslated region of

mRNA allows repression of gene expression in response

to the ligand in CHO cells, presumably by blocking

ribosome binding or scanning. It should be noted that

this work predated the discovery of natural bacterial

riboswitches [8,9], demonstrating that small molecules

can directly and specifically affect gene expression in the

absence of mediator proteins. Importantly, RNA

aptamer-based regulation of gene expression allows

bioengineers to harness the rich diversity of gene

regulatory mechanisms that involve RNA, for example,

translation initiation, RNA interference and microRNAs,

and RNA splicing. For each RNA mediated gene

regulatory mechanism, there are multiple ways to couple

its outcome with aptamer–ligand interaction, further

enriching the potential diversity of synthetic riboregu-

lators. An excellent review on RNA-based gene switches

in mammalian cells was recently published by Ausländer

and Fussenegger [10]. Therefore, this article reviews

more recent developments in synthetic mammalian

riboswitches with a focus on the diversity of the regula-

tory mechanisms harnessed by the riboswitches.

Controlling mRNA cleavage by aptazymes
In 2004, Yen et al. demonstrated chemical regulation of

gene expression in mammalian cells by embedding a

hammerhead ribozyme in the untranslated regions

(UTRs) of an mRNA [11]. As the 50 and 30 UTRs are
www.sciencedirect.com
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indispensable for translation of eukaryotic mRNAs,

self-cleavage within the mRNA was expected to suppress

gene expression. Addition of toyocamycin to the cell

culture medium resulted in nonspecific incorporation of

the antiviral nucleotide analog into the mRNA and

statistical inactivation of the ribozyme activity [12]. While

the ribozyme was not specifically regulated by a small

molecule via an aptamer, this work paved the way for the

subsequent riboswitches that employ allosterically regu-

lated ribozymes (aptazymes) embedded in the 50 and/or 30

UTR to chemically regulate gene expression in mamma-

lian cells (Figure 1a) [13–16]. This strategy continues to

be popular, and the recent advances highlight new

approaches to design and optimize aptazymes.

Earlier aptazyme-based riboswitches in mammalian cells

were designed via trial-and-error, or based on medium-

throughput or high-throughput screening in bacteria or

yeast systems. However, it has been reported that ribozyme

activity in living cells are not highly correlated among

different cell types (bacteria, yeast, or mammalian cells)

which is understandable considering the differences in

translational mechanism, intracellular environment

(RNA binding proteins, ribonucleases, etc.), and mode of

gene regulation by ribozymes in different cell types [17�].
Because high-throughput screening of riboswitches

directly in mammalian cells is technically challenging,
Figure 1
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alternative design strategies focusing on aptazymes that

function in mammalian cells are desirable.

The Farzan group demonstrated an intriguing strategy

that combines empirical experimental data with quanti-

tative modeling [18]. They first synthesized a panel of

32 aptazymes and measured their riboswitch performance

in cultured mammalian cells, and attempted to correlate

the experimental results with various design parameters

such as calculated annealing energy and the number of

hydrogen bonds in the communication module. The

researchers concluded that the proximity of base pairing

(or lack thereof) within the communication module to

the ribozyme affects the ribozyme activity, and

devised ‘Weighted Hydrogen Bond Score (WHBS)’ as a

calculable parameter that correlates with the ribozyme

performance. They used WHBS as a guide to design

aptazyme-based riboswitches using three aptamers with

good switching characteristics [18]. It remains to be seen

if the strategy can be extrapolated to different aptamers,

ribozymes, and aptazyme architectures.

Dohno et al. addressed the aptazyme design problem with

a unique approach [19��]. Instead of starting from an

existing aptamer, they started with a rationally designed

molecule targeted to mismatched DNA/RNA sequences.

The naphthyridine carbamate tetramer with Z-stilbene
AAAAAAA 3’  
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’
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linker (Z-NCTS) designed by the group is known to bind

XGG/XGG mismatches in DNA and RNA through

Watson-Crick type hydrogen bonding between the

naphthyridine moieties with the unpaired guanines

[20]. They used this ligand as a ‘molecular glue’ to induce

a tertiary contact between loops I and II of a hammerhead

ribozyme that is critical for ribozyme activity (Figure 1b).

The tertiary contact between the two loops was disrupted

by introducing an AGG/UGG mismatch that is recog-

nized by Z-NCTS. The engineered ribozyme was

inserted into the 30 UTR of an mRNA encoding firefly

luciferase whose expression was reduced by �4-fold upon

addition of Z-NCTS (0.6 mM) in HeLa cells. While it is

notable that the switching was observed with a low ligand

concentration, Z-NCTS exhibited cellular toxicity

(LC50 = 0.8 mM) probably due to nonspecific interactions

with cellular RNAs.

In contrast to these rational or semi-rational design

efforts, high-throughput screening of aptazymes has

mostly been executed in Escherichia coli or Saccharomyces
Figure 2
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cerevisiae. However, screening is generally labor and cost

intensive while yielding sequence information for a

handful of ‘hits’. Screening also yields limited sequence-

–function information that can be exploited for further

optimization or library design. To address the lack of

comprehensive sequence–function relationship data for

ribozymes, we developed an in vitro high-throughput

ribozyme assay method using deep sequencing (Figure 2)

[21��,22,23]. A library of ribozyme or aptazyme mutants

are transcribed in vitro in a single tube as a mixture, and

the resulting ribozymes (cleaved or uncleaved) are

converted to DNA templates for deep sequencing. The

number of cleaved and uncleaved reads for each ribozyme

variant are then counted to calculate cleavage efficiency

under the reaction condition. This strategy yields a

complete sequence–function relationship for all members

of the ribozyme library up to 104 variants or more [24],

depending on library preparation and sequencing output.

This method can unambiguously identify functional

aptazymes if they exist, and provide a broader view of

the sequence–function relationship that can be used to
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quencing. An aptazyme library is prepared as a DNA mixture which is

then converted to DNA sequencing templates by reverse transcription
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build a mechanistic model and/or to further optimize the

aptazyme design. We used deep sequencing to identify

guanine-activated ribozymes based on an HDV-like

ribozyme which were subsequently used to control gene

expression in HEK 293 cells [21��]. Use of a low Mg2+

concentration during in vitro transcription may have con-

tributed to the positive correlation of the ribozyme

activity in vitro and in mammalian cells. Similar methods

were also used to fine tune mammalian gene expression

levels [25] and to screen for active ribozymes (but not

aptazymes) directly in mammalian cells [26].

Controlling ribosomal frameshifting by
aptamers
Programmed -1 ribosomal frameshifting (-1PRF) [27] can

result in translation of an alternative polypeptide from an

mRNA by shifting the translation reading frame by -1

nucleotide. A canonical -1PRF element consists of a 7-nt

slippery sequence X XXY YYZ (trinucleotides XXY and

YYZ representing the original frame and XXX YYY

representing the -1 frameshift) followed by a stable

secondary structure such as a pseudoknot or a stem-loop.

The Chang group first controlled -1PRF in mammalian

cells (Figure 3a) by incorporating theophylline and

S-adenosyl-L-homocysteine (SAH) aptamers [28]. An

ON/OFF ratio of �6 was reported but the frameshifting

efficiency (FE) remained low. The same group used

another -1PRF stimulating pseudoknot from SARS

coronavirus to engineer theophylline inducible -1PRF

switches with up to fivefold activation of gene expression

[29]. More recently, Matsumoto et al. used the analogs of

naphthyridine carbamate tetramers described above to

control the formation of a pseudoknot, thereby

chemically inducing -1PRF (Figure 3a, top) [30].

Although up to �9-fold activation was observed in HeLa

cells, the maximum FE was low (3.2%) in the presence of

the pseudoknot inducing ligand. It is possible that the

toxicity of the ligand prevented observation of higher FEs

in HeLa cells, as an FE as high as 24% was observed in

rabbit reticulocyte lysate.

Controlling microRNA maturation pathway by
aptamers
Besides controlling translation via an aptamer embedded

in the targeted mRNA, another strategy aims to control

the microRNA (miRNA) processing pathway by an RNA

aptamer. The miRNA product subsequently targets one

or more mRNAs in trans. An et al. first demonstrated that

an aptamer incorporated in a miRNA precursor allows

chemical regulation of RNA interference (RNAi), in this

case, by modulating the Dicer mediated cleavage of a

short-hairpin RNA (shRNA) [31]. The Smolke group has

developed an alternative strategy that controls the Drosha

mediated processing of primary miRNA substrates by

embedding an RNA aptamer in the vicinity of the Drosha

cleavage site [32]. Binding of the ligand to the aptamer

inhibits Drosha cleavage and upregulates the expression
www.sciencedirect.com 
of the gene targeted by the miRNA. Recently, the group

adapted an aptamer that they selected for (6R)-folinic

acid (FA) to control a synthetic miRNA precursor

targeting IL-2 receptors (Figure 3b) [33]. Although the

modulation of the targeted gene expression by the ligand

was rather modest (up to 35% activation), it was sufficient

to observe a robust regulation of cell proliferation.

The Suess group reported a new strategy to control the

Dicer processing by inserting an aptamer that binds to

TetR protein [34] near the cleavage site blocking the

reaction in the presence of TetR [35�]. They showed that

addition of the TetR ligand doxycycline dissociates TetR

from the miRNA precursor and increases the formation of

the mature miRNA (Figure 3c). Doxycycline was able to

tightly control the mature miRNA level (1%–40% relative

to unmodified miRNA precursor), although the ON/OFF

ratio of the targeted reporter gene was more moderate

(�3). Although this system requires an exogenous protein

factor, it allows the use of doxycycline which has been

used extensively in mammalian cells and animals.

The Pei group adapted another Drosha modulation

strategy originally reported by our group [36,37] to

control endogenous gene expression in cancer cell lines

to induce apoptosis. A theophylline activated aptazyme

was inserted between an inhibitory strand that blocks

the 30 single-stranded region of the pri-miRNA,

thereby preventing the RNA from being processed

by Drosha (Figure 3d). The researchers targeted

MAP4K4 in HepG2 cells [38] and Bcl-2 in MCF-7 cells

[39], and observed fourfold to fivefold increase in

apoptosis.

Controlling other gene regulatory processes
by aptamers
Vogel et al. showed that exon skipping can be

controlled by a tetracycline RNA aptamer inserted

near the 30 splice site along with a suicide exon

(Figure 3e) [40]. Tetracycline induces exon skipping

resulting in �5-fold activation of gene expression. In

combination with an aptazyme device, the dynamic

range increased to �7-fold in HEK 293 cells.

An mRNA can be targeted by an endogenous miRNA by

inserting one or more miRNA target sequences in the

30 UTR, a strategy sometimes used to achieve cell

type-dependent gene expression. Mou et al. controlled

the accessibility of the miRNA target sequence by an

aptamer embedded near the target site in the mRNA

[41��]. Addition of tetracycline occluded the miRNA target

site resulting in upregulation of gene expression

(Figure 3f). The performance of the switch, as expected,

was dependent on the miRNAs and cell types used, but

theyobservedtight regulationofgene expressionwith upto

19-fold activation in HeLa cells with a miR-21 target site.
Current Opinion in Chemical Biology 2019, 52:72–78
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Figure 3
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Regulatory mechanisms of synthetic riboswitches. (a) Regulation of -1PRF by a small molecule via stabilizing the downstream pseudoknot element

or interfering with formation of the upstream stem loop that negatively affect -1PRF. (b) Interfering with the cleavage of pri-miRNA by Drosha by

an aptamer–ligand complex near the cleavage site. (c) TetR protein bound to the aptamer embedded in pre-miRNA prevents Dicer cleavage.

Addition of doxycycline removes TetR and upregulates miRNA maturation. (d) The 30 single-stranded region of a pri-miRNA that is necessary for

Drosha processing is unmasked by an aptazyme. (e) An aptamer incorporated near the 30 splice site of an intron followed by a suicide exon

containing a stop codon can induce exon skipping in the presence of the aptamer ligand. (f) A miRNA target site inserted in the 30 UTR of an

mRNA is occluded by aptamer–ligand interaction, resulting in increased protein expression.
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Conclusions
The diversity of gene regulatory mechanisms that involve

RNA has and will continue to inspire synthetic RNA-

based gene switches in mammalian cells. It can be antici-

pated that riboswitches based on different regulatory

mechanisms have advantages for different applications.

For example, miRNA-based riboswitches are more con-

venient for controlling endogenous gene expression

because they operate in trans as opposed to the UTR

embedded aptazymes that function in cis. However, the

existing mammalian riboswitches still exhibit poor and

variable dynamic range and ligand sensitivity compared

to the conventional TF-based gene switches. With fur-

ther optimization and increasing availability of new apta-

mers and ligands for cellular applications, synthetic ribos-

witches should emerge as useful tools in synthetic biology

of mammalian cells.
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