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Abstract

An appropriate equilibrium between transcription and mRNA
decay is vital for the function of the cell. The RNA-binding
complexes regulating mRNA degradation, such as carbon
catabolite repression 4-negative on TATA-less, may also con-
trol several other stages of the mRNA life cycle, from tran-
scription to translation. This pleiotropic control complicates the
analysis of mRNA stability. Computational models have
analysed the mechanisms underlying mRNA turnover and
have been used to extract mRNA decay rates from high-
throughput data sets. Multiomics studies have clarified the
actions of RNA-binding complexes, and such studies allow the
evolution of more accurate and complex computational
models. This review discusses two complementary aspects of
systems biology in the study of mMRNA decay—computational
modelling of mRNA turnover and recent ‘-omics’ studies of the
function of RNA-binding proteins controlling mRNA stability.
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Introduction

Maintaining correct levels of mRNA expression,
achieved by the balance between mRNA synthesis and
decay, is crucial to the correct function of the cell. While
transcription is undoubtedly important for mRNA syn-
thesis, tightly regulated degradation facilitates rapid or
localised changes in mRNA availability in response to
external stimuli. In humans, dysregulation of mRNA
stability may underlie aspects of diseases such as obesity

[1], Alzheimer’s disease [2], and autism spectrum dis-
orders [3].

Exonuclease-mediated mRNA degradation begins with
shortening of the poly(A) tail, and deadenylation
is considered the rate-limiting step in mRNA degrada-
tion. Two main deadenylase complexes mediate dead-
enylation, the poly(A)-nuclease deadenylation complex
(PAN2/3) and the carbon catabolite repression 4-
negative on TATA-less (CCR4-NOT) complex. The
deadenylase complexes are recruited to their targets by a
variety of RNA-binding factors (Figure 1A). Pan2/3 is
recruited by poly(A)-binding protein (PABP) [4], while
CCR4-NOT is recruited via a number of proteins bind-
ing to elements mainly located in the 3’ untranslated
region (3’ UTR) of the mRNA, including Pumilio (PUF/
PUM) [5], the AU-rich element-binding proteins tris-
tetraprolin (TTP/Zfs1) [6] and butyrate response
factor 1 [7], and the 6-methyl-adenosine (m6A)—binding
protein YI'HDF2 [8]. Transducer of ErbB2/B-cell
translocation gene family proteins may recruit CCR4-
NOT to target mRNAs indirectly via interactions with
PABP [9]. Both Pan2/3 and CCR4-NOT are also
recruited via miRNAs and Argonaute proteins and
GW182 [10,11]. PAN2/3 is thought to act on longer
poly(A) tails and catalyses an initial deadenylation step,
before further poly(A) shortening by the CCR4-NOT
complex (Figure 1B) [12,13]. Degradation of the
poly(A) tail triggers the removal of the 5 7-methyl-
guanosine cap from the 5 end of the mRNA by
decapping enzymes such as DCP2. The decapped
mRNA is then degraded from the 5’ end by 5'-3' exori-
bonuclease 1 (XRN1) or from the 3’ end by the exosome.
For a more detailed overview of mRINA degradation, see
the study by Schoenberg and Maquat [14].

Systems biology provides us with powerful tools with
which to reveal the complex mechanisms underlying
mRNA stability. This review discusses two related as-
pects of systems biology—computational modelling of
mRNA decay and recent ‘-omics’ studies of the RNA-
binding proteins (RBPs) regulating this process.
Computational modelling has been used for two major
purposes in the study of mRNA decay. Firstly, mecha-
nistic modelling of mRNA deadenylation and decay
pathways has allowed analysis of the underlying system
dynamics. Secondly, mRNA decay rates have been
extracted from time-series gene expression data through
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The mechanism of mRNA decay. (a) The deadenylase complexes PAN2/3 and CCR4-NOT are recruited to their mMRNAs by a number of RNA-binding
factors. Factors directly binding to mRNA are shown in orange; factors interacting indirectly are in pink. Pan2/3 is recruited by poly(A)-binding protein
(PABP), while CCR4-NOT is recruited via a number of proteins recognising elements mainly located in the 3’ untranslated region (3' UTR), including
Pumilio (PUF/PUM), tristetraprolin (TTP/Zfs1), butyrate response factor 1 (BRF1) and the 6-methyl-adenosine (m6A)—binding protein YTHDF2. Trans-
ducer of ErbB2/B-cell translocation gene (TOB/BTG) family proteins may recruit CCR4-NOT to mRNAs via interactions with PABP. Both Pan2/3 and
CCR4-NOT are also recruited via miRNAs and Argonaute (AGO) proteins and GW182. For clarity, not all interactions of CCR4-NOT and PAN2/3 are
shown. (b) A schematic representation of the process of mMRNA decay. The poly(A) tail is initially degraded by PAN2/3 and subsequently by CCR4-NOT.
Degradation of the poly(A) tail triggers the removal of the 5’ 7-methyl-guanosine cap from the 5’ end of the mRNA by decapping enzymes such as DCP2.
The decapped mRNA is then degraded from the 5’ end by 5'-3' exoribonuclease 1 (XRN1) or from the 3’ end by the exosome. CCR4-NOT, carbon

catabolite repression 4-negative on TATA-less.

sophisticated modelling techniques. Examples of these
two applications are first reviewed.

Mechanistic computational modelling of
RNA decay and deadenylation

A set of related computational models have explored the
dynamics of mRNA decay. Cao and Parker [15] pro-
duced a detailed mathematical model of cytoplasmic
mRNA turnover with a focus on deadenylation-
dependent decay through both decapping and termi-
nal deadenylation (Figure 2A). Simple representations
of transcription, nuclear export, and deadenylation-
independent decapping are also included. The 21 pa-
rameters in the model were rigorously set using exper-
imental data for both a stable mRNA (MFA2pG) and an
unstable mRNA (PGK1pG), and simulations were vali-
dated against experimental data for the half-life and the
relative ratios of full-length mRNAs and 3’ and 5 frag-
ments. Sensitivity analysis on the model demonstrated,
firstly, that deadenylation is the rate-limiting step in
mRNA decay. Secondly, perturbations in the rates of

different steps in the decay process had variable effects
for stable and unstable mRNAs in the model.

In a second study, Cao and Parker [16] extended the
model to include pathways mediating decay of nonsense
codon—containing mRNAs (Figure 2B). Nonsense-
mediated decay is the mechanism that eliminates
mRNAs carrying premature termination codons, which
arise from errors in transcription [14]. Experimental
observations indicate that deadenylation and decapping
may be decoupled in nonsense-mediated decay [17,18].
Therefore, deadenylation-independent decapping was
included in the model for nonsense-mediated decay in
addition to accelerated rates of deadenylation and
decapping. In this case, PGKI and HIS4 mRNAs were
used for parameter fitting. The simulations suggested
that the proximity of the nonsense codon to the poly(A)
tail determines the steady-state distribution of poly(A)
tail lengths.

Tian et al. [19—21] investigated different methods of
simplifying the multistep deadenylation reaction in Cao
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Simplified representations of published computational models of mRNA

deadenylation and decay. Cao and Parker [15] produced a model of

mRNA deadenylation followed by either deadenylation-dependent decapping and decay or terminal deadenylation (a; black). The model additionally
incorporates equations representing transcription, nuclear decay and nuclear export not shown in the figure. Cao and Parker [16] subsequently expanded
this model to include deadenylation-independent decapping in nonsense-mediated decay (NMD; b; blue). A two-state model of deadenylation developed
by Wu et al. [19] allowed Cao and Parker’s multistep reaction to be reduced to a one-step reaction with comparable predictive capacity (c; green). The
state variable corresponding to the number of molecules in the reaction is supplemented by a second variable corresponding to the progress of each
molecule through the multistep reaction. More recently, Wu et al. [20] presented an alternative simplification of Cao and Parker's model which also re-
duces the multistep deadenylation reaction to a one-step reaction, this time through the inclusion of a time delay (d; red). A model of selenoprotein
metabolism developed by Zupanic et al. [22] includes an adapted version of Cao and Parker's model of deadenylation (e; purple). In this model, NMD is in
competition with binding of selenocysteine-specific tRNAs to mMRNAs containing a premature stop codon (UGA), followed by translation via

selenocysteine-specific mechanisms.

and Parker’s model. Firstly, rather than simulating in-
termediate stages of deadenylation, an additional state
variable was introduced corresponding to the progress of
molecules through the multistep reactions [19] (two-
state model; Figure 2C). A stochastic two-state equation
is then used, which is dependent on the total number of
molecules in the system, the progress of molecules
through the multistep process and the number of steps.
Secondly, Wu and Tian reduced the multistep dead-
enylation reaction to an alternative single reaction
through use of a state-dependent time delay [20] (time-
delay model; Figure 2D). A previous study by Tian [21]
had demonstrated that a range of state-independent
time-delay equations was ineffective at simulating
mRNA decay. To improve on these, a stochastic formula
for calculation of the state-dependent time delay was
derived on the basis of the number of intermediate steps
in the system, the degradation rate, and the initial state
of the system. The accuracy of the models was assessed

through comparison with experimental data for the
decay of two constructs of RPL30 after addition of
transcription  inhibitor 1,10-phenanthroline. Both
models were more accurate than a first-order degrada-
tion model over the first 45 min after transcription in-
hibition, as assessed by the absolute error, and gave
simulated decay rates comparable to those generated by
a stochastic multistep model based on Cao and Parker’s
deterministic model. However, only the time-delay
model was able to accurately reproduce the experi-
mental data at longer times, where the two-state model
simulations began to deviate.

Zupanic et al. [22] integrated various mRNA decay
submodels into a detailed model of selenoprotein syn-
thesis. Simulations were compared with experimental
data for selenoprotein RNNAs measured in Caco-2 cells
grown in a range of sodium selenite concentrations. A
Bayesian information criterion was used to assess model
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fit to account for the number of parameters. Compared
with a range of simplified models, a detailed represen-
tation of deadenylation-dependent mRNA decay based
on Cao and Parker’s model gave the best fit to the
experimental data, highlighting the importance of
deadenylation in regulation of selenocysteine meta-
bolism (Figure 2E).

The models of RNA decay developed by Cao and Parker
remain the most detailed published to date and are an
important resource for studying the underlying mecha-
nisms of deadenylation and decay. As discussed in the
following sections, recent and ongoing studies are
elucidating the molecular mechanisms underlying
mRNA decay, allowing for further expansion and refining
of these models in the future. The study by Zupanic
ct al. highlights the importance of a detailed represen-
tation of mRNA decay and deadenylation for studying
selenocysteine metabolism. In contrast, reduced models
such as those developed by Wu et al. are vital for re-
searchers looking to simulate specific outputs with a
similar level of accuracy to the complete models but
without requiring information regarding intermediate
steps. This allows the simulations to be run with less
computational power and requires fitting of fewer
parameters.

Deriving mRNA decay rates from
transcriptomic data

Computational modelling has been used to infer mRINA
decay rates from gene expression data. As discussed by
Palumbo et al. [23], a zeroth-order dependence of
transcription and a first-order dependence of decay on
mRNA level give a good approximation of RNNA turnover.
For an RNA with concentration x(z), time-dependent
transcription rate 7'and decay rate constant £,

*@) _

7 T(2) — kyx(z)

Historically, decay rates have been calculated either
through inhibition of transcription or through mRNA
labelling (reviewed in Ref. [24]). In the case of tran-
scription inhibition (7" = 0), the equation simplifies
such that mRNA half-lives and decay constants can be
extracted from the experimentally measured exponen-
tial decay curves:

O~ oty

_ —kat
7 x() = x(0)e

However, when Cacace et al. [25] performed correlation
analysis between experimental studies of mRNA
degradation rates performed by different groups after
inhibition of transcription, they found no correlation
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between data sets using different methods of tran-
scription inhibition and only moderate correlation be-
tween studies using the same method of inhibition. This
is at least partly due to sensitivity of decay rates to
changes in cell physiology [26] and coupling between
transcription and decay [27,28].

A number of studies have combined sophisticated
computational and experimental techniques to deter-
mine transcription and decay rates without the
requirement for major manipulation of cellular physi-
ology (recently reviewed in Ref. [24]). Among these,
three major computational pipelines exist [29—31],
each based on time-series RNA-seq measurement of
RNA levels and 4sU-seq measurement of newly tran-
scribed RNAs (see Box 1 for definitions of -omics
terms). Firstly, ‘dynamic transcriptome analysis’ (DTA)
calculates decay constants for each mRNA by assuming
constant rates of transcription and decay over short
measurement times after labelling (3, 6, 12 and 24 min)
[29]. ‘Dynamic RNA life cycle’ (DRiLLL) [30] and
‘Inference of Synthesis, Processing and Degradation
Rates in Time-Course Analysis’ (INSPEcCT) [31],
meanwhile, assume negligible degradation of 4sU-
labelled RNA over short measurement times, such that
the transcription rate is directly taken from the 4sU-seq
data. DRILL and INSPECT both use similar modelling
strategies. DRiLLL. firstly uses a binomial model to es-
timate the abundances of precursor and mature mRNAs
from the RNA-seq data [30]. Next, a kinetic model
infers transcription, pre-mRNA processing and mature
RNA degradation rates from the time-series measure-
ments. Parameters are determined by gradient descent
optimisation. INSPEcT follows a similar framework,
additionally testing different models (by default sig-
moid and impulse) and parameter sets to identify the
best fit to the RNA-seq data, determined by mini-
misation of residual sum of squares [31].

Rather than using 4sU labelling, Wang et al. [32]
demonstrated that mRNA stability can be predicted
from measurements of histone modifications together
with gene expression data using a computational
regression model. mRNA levels were fitted as a linear
combination of three different histone modifications.
The residuals between the model predictions and
experimental RNA-seq data strongly correlated with
experimentally determined mRINA half-lives, allowing
estimation of decay rates without 4sU labelling.

Computational studies have also included coupling be-
tween transcription and decay in analysis of gene
expression data. Transcription-decay coupling occurs
both as a buffering system, where gene induction pro-
motes RNA degradation [33], and as a cooperative
system, where gene induction promotes RNA stability
causing rapid change [34].

www.sciencedirect.com
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Box 1. Glossary of abbreviations of computational/-omics terms

4sU-seq: Labelling of newly transcribed RNA with a uridine analogue, 4-thiouracil (4sU/4-SU). Labelled RNA may then be biotinylated and
isolated for high-throughput sequencing (HTS).

BiolD: Proximity-dependent biotin identification. A bait protein is fused to a biotin ligase to label any protein within a 10-nm radius. Biotinylated
proteins are then be purified for identification by mass spectrometry.

DRIiLL: Dynamic RNA life cycle. A computational method for deriving mRNA transcription and decay rates from time-series RNA-seq and 4sU-
seq data. See also cDTA and INSPECT.

DTA: Dynamic transcriptome analysis. A computational method for deriving mRNA transcription and decay rates from RNA-seq and 4sU-seq
data. A modified version, comparative DTA (cDTA), allows absolute quantification of mMRNA synthesis and decay rates, and therefore more
accurate comparison between samples. See also DRILL and INSPECcT.

GRO-chip: Global run-on. Nuclei are isolated and then nascent transcripts are extended in vitro using labelled nucleotides. Analysis of labelled
transcripts allows global quantification of transcription. May also be analysed by HTS (GRO-seq).

HITS-CLIP: High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (aka CLIP-seq). A more stringent version of RIP-
seq; see also PAR-CLIP.

INSPECT: Inference of Synthesis, Processing and Degradation Rates in Time-Course Analysis. A computational method for derivation of mMRNA
transcription and decay rates from transcriptomics data. See also cDTA and DRILL.

OOPS: Orthogonal organic phase separation. A method for isolating RNA-binding proteins and their targets. Crosslinked RNA-protein adducts
are isolated from the aqueous—organic interface of acidic guanidinium-thiocyanate-phenol-chloroform (AGPC). May be particularly useful for
nonadenylated RNAs.

PAR-CLIP: Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation. A method using photosensitive nucleosides (e.g.
4sU) to improve RBP-RNA crosslinking efficiency before immunoprecipitation. Similar to HITS-CLIP.

Ribo-seq: (Also ribosome footprinting, ribosome profiling). The mRNA is digested, leaving just the fragments protected by bound ribosomes.
Sequencing these fragments by HTS and mapping the ribosome locations to the transcriptome allows analysis of various aspects of translation.

RIP-chip: RNA immunoprecipitation (RIP). Immunoprecipitation of an RNA-binding protein of interest in association with its target RNAs, followed
by identification of the bound RNAs by microarray.

RIP-seq: RNA immunoprecipitation (RIP) followed by RNA-seq. Similar to HITS-CLIP/PAR-CLIP, the absence of a crosslinking step simplifies the
protocol, but the probability of false positives/negatives may be increased.

RNA-seq: Transcriptomic analysis of total RNA using HTS.

RNA-tagging: A protein of interest is fused to the C. elegans poly(U) polymerase, pup2. RNAs bound by the fusion protein are tagged at the 3’
end with a string of uridines, allowing isolation and analysis by HTS.

TAIL-seq: Transcriptome-wide sequencing of mMRNA 3’ ends, allowing global measurement of poly(A) tail length. A biotinylated adapter is ligated
to the 3’ end of the mRNA, the mRNA is fragmented and a second adapter is ligated to the 5’ end. Fragments corresponding to the 3’ end of
mRNAs are then isolated using the biotin-tagged 3’ sequence for analysis by HTS.

Farina et al. [35] applied methods developed to study
lead—lag relationships in systems and control engi-
neering to gene expression data to identify common
regulatory signals between genes taking account of both
transcriptional and post-transcriptional regulation.
Cacace et al. [25] subsequently developed a stochastic
model of coordinated transcription and RNA decay
during the reproductive and metabolic cycle of budding

yeast. The modelling is based on comparison of all gene
pairs to determine common promoter activity and gene-
specific activity. Starting from the zeroth-order tran-
scription/first-order decay equation described previ-
ously, the authors modelled the transcription rate of all
pairs of genes as the sum of a common term between
those genes and a stochastic independent term. The
linear equations were then converted to discretised
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stochastic equations for comparison with experimental
measurements at discrete time points.

Sun et al. [36] modified the DTA modelling framework
to account for changes in decay and translation rates.
Gene-specific transcription and decay rates were
multiplied by functions representing global modulation
of transcription and decay. Global stabilisation of RNA
levels upon changes in transcription or degradation was
demonstrated through measurement of global mRNA
synthesis and expression under steady-state conditions
in wild-type, Pol II mutant (low transcription) and
ACcr4 and ACaf1 (low degradation) yeast and analysis in
their modelling framework. Subsequently, by perform-
ing a large-scale D'TA screen on a wider range of genes
involved in transcription and decay, Sun et al. [37]
identified Xrnl as a key regulator of RNA buffering,
additionally confirmed by Haimovich et al. [38]. How-
ever, owing to inconsistencies in the effects of Xrnl
knockdown in the two studies, a comprehensive model
of the molecular mechanisms involved has yet to be
developed [39].

A complete picture of the mechanisms of mRNA
homoecostasis requires understanding the function of

the highly conserved RBP complexes regulating mRINA

Figure 3
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stability and decay. In the second part of this review, we
discuss recent studies that have used ‘-omics’ ap-
proaches to probe the functions of RBPs in regulating
mRNA stability and translation.

Multiomics analyses of the deadenylase
subunits of the CCR4-NOT complex

The CCR4-NOT complex is a major regulator of mRNA
stability in eukaryotes via deadenylation, but the com-
plex is also involved in other cellular processes,
including transcription, mRNA nuclear export, trans-
lation and protein quality control (Figure 3; [40,41]).
CCR4-NO'T’s pleiotropic control of mRNA from tran-
scription to decay makes it an ideal candidate for inte-
grated multiomics studies.

A recent study used formaldehyde cross-linking to pre-
serve RBP—RNA interactions followed by RIP-seq to
identify RNAs bound to three interacting RBPs in
Saccharomyces cerevisiae: the CCR4-NOT deadenylase
subunit Ccr4 (Cnot6/6L in vertebrates), Dhh1 and Puf5
[42]. Unsurprisingly, the targets of the three proteins
overlapped considerably (68% of Ccr4-bound mRINAs
also interacted with Dhhl or Puf5; 28% of mRNAs
interact with all three proteins), indicating that they
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The CCR4-NOT complex regulates the mRNA life cycle at multiple levels. The CCR4-NOT complex is a major deadenylase in eukaryote cells,
stimulating mRNA decay via removal of the poly(A) tail. In addition to deadenylation, evidence suggests that CCR4-NOT exerts control of mRNA at
several other levels, including transcription, nuclear export, translation and protein quality control. Other RNA-binding proteins also regulate mRNA
function at multiple levels. For example, Pumilio/Puf family proteins (PUF/PUM) regulate mRNA stability via CCR4-NOT—dependent and CCR4-
NOT-independent pathways and may also affect translation without altering mRNA stability. Red arrows show potential direct effects of CCR4-NOT and
PUF/PUM, while blue arrows indicate indirect effects. Not all subunits of CCR4-NOT are shown. CCR4-NOT, carbon catabolite repression 4-negative on

TATA-less.
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coregulate many of the same mRNAs, predominantly
low-abundance transcripts. Mapping the regions of each
mRNA bound by the RBPs revealed that Ccr4 bound to
45% of target mRNAs via the coding region or 5" UTR,
rather than the 3’ UTR. This could merely reflect in-
teractions between proteins bound to the 5" and 3’ ends
of the mRNA, but Dhh1 and particularly Puf5 showed a
greater affinity for the 3 UTR. CCR4-NOT is recruited
to mRNAs by RBPs such as tristetraprolin and butyrate
response factor 1 [40] (Figure 1), and Ccr4-associated
mRNAs were enriched for Puf binding sites, suggest-
ing that Puf5 may recruit CCR4-NO'T. In agreement
with other studies [43], Ccr4/Dhh1 bound to mRINAs
involved in responses to nutrient deficiency and
metabolism.

There is some evidence that CCR4-NOT regulates
transcription [44]. However, integration of RIP-seq data
with mRNA synthesis and decay rates from cDTA and
GRO-chip found a correlation between Ccr4 binding
and degradation, but not transcription [42]. Further-
more, in genes with introns, very few intronic sequences
were associated with Ccr4. Together, these data suggest
that Ccr4 mainly influences mRNA levels in the cyto-
plasm at the level of mRNA decay. Ribosome foot-
printing (Ribo-seq) found that mRNA decay factor
recruitment to mRNA was inversely correlated with
ribosome occupancy, indicating that RBP binding sup-
presses translation [42].

Using a different approach, Webster et al. [45] used a
temperature-sensitive Pol II allele in yeast to halt
transcription globally, followed by time-series RNA-seq
measurements to calculate transcriptome-wide mRNA
stability. Knockout of the CCR4-NOT deadenylase
subunit Cafl (Pop2; Cnot7/8) stabilised mRNAs
containing less optimal codons, which are translated
more slowly. /n vitro assays showed that nonoptimal
mRNAs were deadenylated more rapidly by Cafl than
optimal mRNAs. Earlier studies had also indicated that
codon optimality and translation rate are important
factors in mRINA stability [46, 47], although this view
has been challenged more recently [48]. In contrast,
Ccr4 regulated mRNA stability more generally. This
agrees with previous work suggesting that Ccr4 is the
dominant deadenylase CCR4-NOT subunit in yeast
[49], with Cafl fulfilling a more specialised role. How-
ever, this may not be the case in higher eukaryotes, for
example, Cafl is thought to be the dominant dead-
enylase in Drosophila [50]. The respective roles of the
CCR4-NOT deadenylase subunits have also been
investigated in human Hel.a cells [51]. Transcriptome-
wide poly(A) tail length measurements using TAIL-seq
showed that CNOT7/8 knockdown increased poly(A)
length and stabilised mRNA globally, whereas knock-
down of the other major deadenylase, PANZ/3, had little
effect, suggesting that CCR4-NOT is the dominant
regulator of mRNA deadenylation and stability. In yeast

too, Ccr4-bound mRNAs were not generally affected by
Pan2/3, suggesting that the two complexes may target
separate subsets of mRNAs [42]. In Hel.a cells,
PABPC1 stimulated deadenylation by CNOT6/6L., but
inhibited CNOT7/8. Conversely, the absence of
PABPC1 suppressed CNOT6/6L. deadenylase activity,
while CNOT'7/8 activity increased. Despite this differ-
ence, CNOT6/6L. and CNOT7/8 were able to
compensate for deadenylase-deficient mutants of the
other subunit.

Probing the interactome of mRNA-
processing protein assemblies

Many factors involved in mRNA processing, translation
and degradation colocalize in stress granules (SGs) and
processing bodies (PBs). Youn et al. [52] used
proximity-dependent biotin identification (BiolD [53])
to investigate protein associations within SGs and PBs in
human HEK293 cells. The interactions of 119 SG-/PB-
associated bait proteins were analysed, identifying 144
core components of RNA granules and over 7400 unique
interactions. In PBs, CCR4-NO'T bait proteins identi-
fied 72 high-confidence interactions with many known
RBPs, but also proteins with unknown roles in RNA
metabolism, including the E3 ubiquitin ligase RNF219,
the centrosomal protein CEP85 and the uncharacterised
KIAA0355. These proteins also showed strong associa-
tions with the RBPs Argonaute 2 and GW182. In addi-
tion, BiolD data showed strong evidence for interactions
between the RNA-binding E3 ubiquitin ligase CNOT4
and CCR4-NOT in human cells, challenging the current
view that CNO'T4 does not associate with the complex
in vertebrates, although its homologue in yeast, Not4, is
considered a CCR4-NOT subunit [54]. This study
indicated a modular structure within mRNA granules,
with proteins predominantly associating with others of
similar function.

Multiomics clarifies the role of Puf3 in
mitochondrial function

Similar to CCR4-NOT, the PUF (Pumilio) family of
RBPs regulates both mRNA stability and translation
[55]. RIP-seq identified over 1000 Puf3-bound mRNAs
in S. cerevisiae [56], and comparison of these data with
previous RIP-chip [57] and PAR-CLIP [58] data sets
identified a common ‘core’ set of Puf3 targets. Com-
parison of steady-state mRNA levels by RNA-seq found
few differences in Puf3-bound mRNAs between WTand
APuf3 cells, although mRNA decay and synthesis were
not assessed. Almost all the mRNAs upregulated in
APuf3 cells encoded mitochondrial proteins. Mass
spectrometry detected 662 proteins encoded by Puf3-
bound mRNAs, but surprisingly, only 26 proteins were
differentially expressed in APuf3 cells. Around half of
the affected proteins had not shown altered mRNA
levels, supporting previous observations that Puf3 may
regulate translation independently of mRNA stability
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[55]. RNA-seq analysis of ribosome-associated mRINA
suggested that Puf3 deletion alters mRNA association
with ribosomes, further indicating effects on translation.

More recently, a second study has investigated the role
of Puf3 in yeast. RNA-seq data from two different
methods, HITS-CLIP [59] and RNA-tagging [60], were
integrated to produce a shortlist of 269 high-confidence
Puf3 targets [61]. Motif quality appears important for
determining stability of Puf3 target mRNAs [62] and
sequence analysis of this shortlist showed an enrich-
ment of high-affinity PUF family binding sites,
increasing confidence that it represents direct Puf3
targets. As in the earlier study [56], Lapointe et al. [61]
found only 24 proteins differentially expressed in APuf3
cells. However, Puf3 deletion affected many more pro-
teins (160) in cells under fermentation conditions. Of
these, 91 were encoded by Puf3-bound mRNAs and
were enriched for mitochondrial functions and trans-
lation. Proteins whose abundance was Puf3 dependent,
but whose mRINA was not associated with Puf3, were
also predominantly mitochondrial, with roles in oxida-
tive phosphorylation and the electron transport chain.
One specific target was Coq5, overexpression of which
in APuf3 cells suppressed coenzyme Q (CoQ) synthesis.
Lipidomic analysis by mass spectrometry confirmed that
Puf3 deletion and Cog5 overexpression similarly altered
levels of CoQ intermediates. Data from a prior MS-
based multiomics screen of mutant yeast strains estab-
lished that Puf3-deficient cells are CoQ deficient in
fermentation conditions [63] and the derepression of
Cog5 by loss of Puf3 provided the mechanism. The
multiomics approach in this study identified with high
confidence a fundamental control over mitochondrial
function by the direct repressive action on target
mRNAs by Puf3.

Concluding remarks

The multilevel regulation of the mRNA life cycle [64]
complicates the analysis of RBPs. In addition, novel
techniques such as orthogonal organic phase separation
have identified many previously unknown RNA—pro-
tein interactions [65]. The studies described previ-
ously show that a multiomics approach can clarify at
which level RBPs are exerting their control. Compu-
tational modelling has been used both to extract
mRNA decay rates from high-throughput data sets and
to analyse the underlying mechanisms involved in
deadenylation and decay. Owing to a previous paucity
of data, existing computational studies of mRNA
turnover have modelled at the level of overall processes
rather than the specific molecular mechanisms.
Furthermore, there have been no attempts to introduce
coupling between transcription and decay into these
models. Data from the ongoing multiomics studies and
sophisticated analysis of high-throughput data will
allow more detailed computational models of mRNA
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turnover and, in turn, a better understanding of regu-
lation of gene expression.
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