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Abstract

We study the dynamics of a soliton-impurity system modeled in terms of a binary Bose—Einstein
condensate. This is achieved by ‘switching off’ one of the two self-interaction scattering lengths, giving a
two component system where the second component is trapped entirely by the presence of the first
component. Itis shown that this system possesses rich dynamics, including the identification of unusual
‘weak’ dimers that appear close to the zero inter-component scattering length. It is further found that
this system supports quasi-stable trimers in regimes where the equivalent single-component gas does
not, which is attributed to the presence of the impurity atoms which can dynamically tunnel between the
solitons, and maintain the required phase differences that support the trimer state.

1. Introduction

Multi-component matter plays host to a plethora of novel phenomena, at both the classical and quantum
mechanical level. The coexistence of several coupled, interacting degrees of freedom can facilitate different
phases of matter, such as the miscible-immiscible phase-separation of binary fluids, arising from energetic
competition between the differing components of the fluid [1].

Quantum fluids—systems of interacting particles comprised of Fermions or Bosons cooled below their
respective degeneracy temperature, can now be used to give direct insight into many analogous systems due to their
high degree of experimental controllability. In particular, it is now feasible to engineer the dimensionality [2, 3],
particle interactions [4] and potential landscape [5] of these macroscopic systems. Complementary to this, the optical
manipulation of these systems has reached maturity—oppurtunities now exist to emulate complex phases of matter
in the prescence of gauge fields [6, 7], which form a key ingredient for many condensed matter effects of interest.

Solitary waves have been produced experimentally in both single and multi-component condensate systems.
In the former case, quasi-stable soliton states have been generated, comprising single [8] as well as trains of
bright solitons [9, 10]. Further work demonstrated bright solitons sensitivity to surface physics in the form of
both repulsive [11] and attractive potentials [12]. Understanding the observed stability of these fragile systems
has revealed the important role the complex phase of the matter-wave plays in these systems [13, 14]. Matter-
wave solitons have been touted for applications in metrology, where these state’s inherent coherence advocates
them as strong candidates for engineering matter-wave interferometry [15—18]. This in particular hasled to the
realisation of a matter-wave bright soliton Mach—Zehnder interferometer with a 85Rb condensate [19], as well as
proposals to controllably split solitons [20], and very recently schemes to realise bright soliton states with
minimal noise have appeared [21]. The purity of cold atom systems has also been exploited to gain insight into
the role disorder plays for the dynamics of bright solitonic states in cold atomic gases [22, 23].

There have also been experimental realizations of solitary wave structures in multi-component systems.
Early theoretical work studied the properties of dark—bright and bright-bright solitons [24, 25] the first of which
was subsequently realized individually [26] and also in the form of trains [27]. As well as this, studies have
focussed on the role of potential barriers in the dynamics of vector solitons [28]. Theoretical work has predicted
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that the single component focussing nonlinear Schrédinger equation can possess chaotic solutions in the
presence of an axial harmonic potential [29, 30], as well as the observed interaction induced frequency shift of
pairs of trapped bright solitons [31] in the experiment of [ 13]. Complementary to this, theoretical work has
focussed on solitary waves in higher spin systems, revealing the existance of integrable points in the full
parameter space of the spin-1 condensate, in the form of so-called ‘polar’ bright solitons [32, 33]. Although
solitons are usually studied as the solutions to one-dimensional nonlinear models, there have also been
predictions of stable two-dimensional solitary wave solutions in dipolar Bose—Einstein condensates [34, 35],
where the additional nonlocal nonlinearity provides the stabilizing mechanism for these solitons. Very recently
the Jones—Roberts soliton was realized experimentally, a true two-dimensional solitary wave structure [36].

The realization of artificial electromagnetism with cold gases, and in particular spin—orbit coupling for
Bose—Einstein condensates opens a novel route towards studying nonlinear wave structures. Here, the coupling
of the condensates momentum to a quasi-spin leads to stripe-like soliton phases, related to the underlying
immiscible phase of these systems [37, 38]. Spin—orbit coupling forms a key ingredient in simulating more exotic
scenarios, such as Dirac-like equations, where confined solutions have been predicted [39] that resemble their
bright soliton cousins in single component condensates.

Atomic condensates benefit from being exceptionally pure systems—this in turn allows one to investigate
the effects of disorder and defects with an unprecedented level of control. The presence of impurities in
ensembles of ultracold matter hasled to predictions of impurity-molecules and lattices at the mean-field level
[40], as well as the role of many-body correlations for a single impurity out-of-equilibrium [41]. Experimental
work has studied the role that spin impurities have in the strongly correlated Tonks—Girardeau limit [42] and
also magnetic spin models [43], which have also been the focus of subsequent theoretical investigations [44—46].
Complementary to this, recent experimental advances have led to the realization of trapping one matter-wave
inside another, where a degenerate Fermi gas of °Li atoms was confined inside a '*Cs Bose—Einstein
condensate [47].

The ability to both prepare and control ultracold gas experiments gives access to physical regimes that mimic
and go beyond those associated with conventional condensed matter physics. Impurities play a central role in
condensed matter, since most materials will contain some imperfections. One important example drawn from
this field is the polaron, a quasi-particle that consists of an electron and the distortion caused by the passage of the
electron through the ionic lattice. Impurities in the form of polarons can act as a sensitive probe within many-
particle systems, and can be used to explore the correlations of these systems. Additionally it should be noted
that polarons are not necessarily dependent on the prescence of impurities in a material, they can also appear in
ideal crystals. Over the last few years, ultracold gas experiments have succeeded in simulating the physics of
polarons, including the pioneering experimental realisation of polarons of both bosonic [48, 49] and fermionic
[50] gases. The physics of polarons has also formed an ongoing focus of theoretical investigations. Optical
lattices yield access to many models of interest in condensed matter physics, however as they are constructed
from the interference of two counter-propagating laser modes, they do not naturally yield lattice vibrations
(phonons), a key ingredient for polaron physics. This important question was investigated in [51], which
proposed a methodology to overcome this drawback. Further work investigated the effect of dimensionality on
the self-trapping of impurities, revealing regions where stable polarons can exist [52]. Very recently, a theoretical
investigation has revealed the universal behavior of the bosonic polarons energy and its dependence on the
Efimov parameter [53].

In this publication we will outline the collisional dynamics of multicomponent soliton-impurity systems,
and how binary or triplet collisions might be exploited to perform deterministic population transfer operations
on the impurity, providing a toolkit for future applications to metrology and quantum computation. The
soliton-impurity system at the heart of our work is shown schematically in figure 1, where two soliton
isosurfaces are shown with the delocalized impurity component. The paper is organized as follows. In section 2
we examine the stability of this system using a full three dimensional variational approach in order to understand
the regimes where stable dynamics can be realized. Then in section 3, we state the model for the two component
system in terms of coupled mean-field Gross—Pitaevksii equations for the dynamics. After this in section 3.1 we
explore the ground states of the binary system, following which in section 3.2 we undertake a scattering analysis
of a single soliton molecule carrying an impurity with an ‘empty’ soliton. We then proceed to show how soliton
molecule complexes can be built using three solitons in section 4, and study the resulting nonlinear dynamics of
the solitons and impurity as a function of the relative phase and inter-component scattering length, revealing the
coherent nature of the impurities dynamics. We also discuss the conditions under which this state is stable to
thermal fluctuations, before demonstrating that the impurity undergoes a novel localization transition. We
conclude with a summary of our findings in section 5.
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Figure 1. Schematic representation of the multi-soliton system. The two elongated condensate isosurfaces represent the three-
dimensional density of the bright solitons, and the dumbbell shaped impurity is delocalized between both solitons.

2. Soliton-impurity stability

The majority of experiments with atomic condensates are realized with repulsive inter-particle interactions
confined by harmonic potentials. Under these conditions, the condensate is unconditionally stable. The
introduction of attractive interactions can lead to a collapsed state, originating in the dispersive kinetic energy of
the gas being overwhelmed by the attractive interactions between particles. We consider a two component
model, where the second component of the system can be modeled as an ‘impurity’, since the mass (number of
atoms) of either component can be independently varied [54, 55]. We consider a two component (binary)
system forming a Bose—FEinstein condensate coupled via completely attractive mean-field interactions. The
stability of such a system depends on a number of parameters, in-particular the various scattering lengths, the
number of atoms in each component and also the trapping geometry. To gain insight into the collapse dynamics
of the binary system, consider the energy functional

Sk

5 T2 2l |, 1

EW, Wl = [ 30 Ho + 3
j ok

where the wave function of component jis ¥ = Wi(r), and the s-wave scattering length a;; is contained in the
parameter g; = 4m/iag, / m where m is the atomic mass. Note that in this system there are only two scattering
parameters depending on the various scattering lengths, g;; and g, while g, = 0,and so the second component
islinear and moves in the effective potential defined by the first component. The single-particle Hamiltonian Hy;
appearing in equation (1) is defined as

72 1

where w, defines the transverse trapping frequency of the cloud, and 12 = y? 4 z? defines the radial
coordinate. Then, this problem contains three length scales, two associated with the two scattering lengths, as
well as one from the harmonic trapping term appearing in equation (2). The collapse instability for the
cylindrically symmetric single-component gas has been studied previously, including the effect of additional
axial confinement [56]. To understand the nature of the collapse, we employ the cylindrically symmetric
Gaussian variational ansatz

N 1 2 1'2

2 3 ) 2 2
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Equation (3) introduces two pairs of dimensionless variational parameters, o,;and o ; which define the axial
and transverse widths of the cloud respectively. The length scale 4,, = /72 /mw) is defined using the transverse
harmonic trapping frequency. Lastly, the normalization of each component is defined as f d&r|Y> = N where
Njis the atom number in each component. Note that the ansatz of equation (3) is appropriate since both
scattering lengths are attractive, so the system is miscible with both components spatially overlapping. It is also
possible to consider the immiscible case, where one scattering length is repulsive and the other attractive, which
has also been shown to support stable solitary wave structures [57] in a quasi two-dimensional scenario. We can
then insert the ansatz equations (3) into (1), yielding

3
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Figure 2. Stability of the soliton-impurity system in the a;,—a,,—N; parameter space, (a). The red lines indicate boundaries to collapse
in different planes. The lower panels (b) and (c) show cross-sections of the data presented in (a). The volume enclosed by the surface
contains the parameter space of the model that is stable to mean-field collapse.
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where equation (4) introduces N,/Nj as the mass imbalance. Then the collapse point of the system can be found
for a particular set of parameters by simultaneously solving the pair of equations [58]

(C))

i

VE =0 and det(JVE) = 0, (5)

where V =Y j(éxj O + €10y, ;) defines the four component gradient operator in the variational problem, and
J isthe associated Jacobian. Under general conditions, equation (5) must be solved numerically to obtain the
collapse point of the condensate for a given set of parameters. Figure 2 shows the numerically obtained solutions
to equation (5). These solutions are obtained using an iterative procedure to procure the collapse point starting
from a point in the parameter space with known analytical solution, in this case the point g;, = 0, from which
the critical collapse point for a cylindrically symmetric trap is Na, /a, = —1/4/3, where N'is the atom number
and a, the s-wave scattering length. The mean-field collapse phase diagram is shown in figure 2(a), the volume
enclosed by the a1, a;, and N, /N axis define the space of stable three dimensional solitons. Here the red lines
show the boundary between stable and unstable regimes in each parameter plane. It can be seen that when
N,/Nj is small, corresponding to a small impurity population the collapse point is moved to larger values of a;,.
As the number of atoms in the impurity N, increases, the collapse point in the a;,—a;; plane moves to smaller
values of a,. This result is intuitive, since one can interpret the additional attractive inter-species mean-field
potential as providing an extra destabilizing contribution to the mean-field energy. Figures 2(b) and (c) show
cross-sections of the parameter space presented in figure 2(a). Panel (a) shows a cut through the planea;; = 0,
where the stable (white) and unstable (yellow) region are separated by the dashed red line. The second panel, (b)
shows a different cut through (a) for constant N, /N;. The green shaded region bounded by the blue dashed line
indicates the stable region for N,/N, = 0.1 in the a;,—a,, plane. The blue shaded region is stable for N,/N; =
0.01, but not N,/N; = 0.1. Again, the white region is unstable to collapse. This rudimentary analysis shows that
any experiment to realize a fully attractive two-component system would be favorable to a moderate mass
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imbalance, especially if one was interested in exploring the dynamics as a function of one of the scattering lengths
of this system, as we will proceed to do in the following sections of this work. Since we consider a mean-field
mass-imbalanced system it is worth considering when such a model is valid. It is known for example that on the
repulsive side (aj > 0), this model undergoes composite fermionization [59]. We expect this attractive mean-
field model to be suitable up to the collapse point, although it is conceivable that fluctuations could play an
important role in this mass imbalanced system. However, this analysis lies beyond the scope of the current work.

3. Equations of motion

One of the characteristic attributes of solitary waves are their particle-like properties [60]. Consequentially, their
inherent robustness leads to collision dynamics where they emerge unscathed, with the exception of a phase
shift. For the single-component focussing nonlinear Schrodinger equation, the scattering of two bright solitons
is always elastic, a consequence of the underlying integrability of the nonlinear Schrédinger equation. For the
two component system the equations of motion for W(r, t) are found from the Lagrangian density

g,
L(r, t) = 7y Im[9,¥(r, 1) Y(r, 1)] — {Z Hoj+ ) fl\lfjlzl\lfklz}, (6)
j j jik

J

and the associated Euler—Lagrange equations. We are interested in studying the soliton solutions which exist in
the quasi one-dimensional limit. As such, we assume that there is tight radial confinement, such that any radial
dynamics are effectively frozen out. Then the radial dynamics for both components can be factorized in the form
Ui(r, t) = wji (r);(x, t) where w]-l (r) = (l/zﬁ JT) exp(—rf_/Zz,”f) defines the ground state of the radial
trap. Proceeding, the dynamics in the quasi one-dimensional limit are captured by
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with normalization
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The equations of motion defined by equation (7) will form the work-horse for studying the binary attractive
system. This mean-field model was originally studied by [61] who analyzed the localized solutions and their
quantum fluctuations. We note that this model has also been studied recently in the context of repulsive mean-
field interactions, where it was shown how the dark soliton solutions long lifetimes can be used to host qubits for
quantum information applications [62]. Complementary to this the physics of polarons remains a topic of
ongoing interest, with very recent theoretical work focussing on studying so-called Frolich polarons [63]; as well
as the binding properties of trapped bosonic polarons [64].

3.1. Single polaron ground states

To understand the basic physics of the attractive binary condensate defined by equation (7), we begin by
computing the ground state of this system as a function of the inter-component scattering parameter g;,. This is
shown in figure 3(a), which shows the density |1),|? of the impurity for N; = 10°, N, = 10. Here

Nimg, ¢/%* = —6.For large negative values of the inter-component scattering length, the impurity is well
localized within the soliton. As g, — 0, the width of the impurity wave function starts to grow. This effect is
investigated further in panel (b), where we compute the effective width (standard deviation) of the impurity,
6= m as a function of gy, for different mass ratios N, /N;. Each individual data set is scaled to the width of
the impurity for the largest negative scattering length () for ease of comparison. One can see thatas g, — 0,
this quantity increases by an order of magnitude from its smallest value. The black dashed line shows a
comparison of /£, for N, /N; = 1073 with the power-law £ = 0.8/ / (N{m| 2,|¢), where the numerical
value 0.8 is a fitting parameter. For other mass ratios this agreement breaks down, due to the increased influence
of the impurity component on the overall shape of the soliton. The final panel of figure 3(c) shows an example
ground state. Here Nimg,,#//i*> = —1/8, the soliton is shown in blue ([¢,?), while the orange data is the
impurity (1),]). Also included in green are the extra solitons that are presented later in the first component for
the trimer simulations in section 4.
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Figure 3. Single polaron ground sates. (a) Shows the ground states of equation (7) calculated as a function of the inter-component
scattering parameter g,, while (b) shows the impurity length scale £; = \/@ (size) computed again as a function of g;,. The black
dashed line shows a comparison with £ = 0.8/2/(N{m| 2,17). Panel (c) shows an example ground state for N mg,¢ JR=—1/8,
with N, = 10 impurity atoms. The green data shows an example of the initial multi-soliton states used for the binary and trimer
simulations studied in section 4.

3.2. Binary soliton-impurity dynamics

To gain insight into the dynamics of the soliton impurity system, we simulate collisions between an ‘empty’
bright soliton, that is a soliton solution obtained for g;, = 0 from equation (7) with the soliton containing an
impurity. As such, our initial condition takes the form

(G2

where 1) represents the numerical solution to equation (7) for a given finite choice of g, and g;. The first
component 1, contains the first bright soliton which hosts the impurity (¢,) localized at the origin x = 0. The
length scale (size) of each component depends critically on the scattering parameters g;; and g;,. The function
s (x) is the single soliton solution given by

= N [ e i -
Ps(x, v) = i sech(zﬁ)exp (1 p [x 4+ xo] + 16), (10)

and the length scale appearing in equation (10) is & = 72/(m|g,,|N;), with N; giving the number of atoms in
each soliton of the first component 1/;, while the scaled quasi-one-dimensional scattering parameteris g, =
2 /iy, w, which describes the solitonic nonlinearity strength. The initial phase difference is given by 6. The
parameter space associated with equation (7) contains two scattering lengths, two atom numbers, the initial
velocity v, and position x, of the soliton and impurities as well as the initial phase difference, and as such is
generally complicated to understand completely. To draw out the main features of the model, we simulate
collisions for fixed g;, and atom number, but vary the inter-component scattering length g .

A useful measure for soliton collisions with non-integrable dynamics is the coefficient of restitution. This is a
dimensionless quantity defined as the total kinetic energy of two particles after a collision to the total kinetic
energy before the collision [65, 66]

Wosol(x, v) = (%) + (é)wx — Xg, V), 9

2 2
+
_ (myvy nmpv, )f (1)

- 2 2y "
(v + myvy);

Now, ifn = 1 the collision is elastic with conserved momenta before and after collisions, while 17 = 1indicates
an inelastic collision between the solitons. The masses m; and velocities v; appearing in equation (11) are
computed from

mj = mfdxlwl(x) 2, (12a)
17 oY1 (x)

= [ oy LX) 126

K m; f e Ox (126)

Both quantities appearing in equation (12) are computed locally around the center of mass of each individual
soliton.

In our simulations presented in figure 4 we have taken Nymg,,£//#* = —6 /Ny, mvo¢ / /i = 0.15is the
dimensionless initial velocity, while xo = —15¢ is the initial displacement of the empty soliton. The

6
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Figure 4. Soliton-impurity dynamics. (a) Shows the coefficient of restitution, equation (11) computed as a function of the inter-
component scattering parameter, g, for four equally spaced initial phase differences. (b) and (c) Show example in-phase (6 = 0)
dynamics for Nymg,,¢ /72 ~ —1.01/N; (left column) and Nymg,, £ //#? =~ —0.24/N; (right column). The top row in each case shows
the space-time propagation of the impurity, with the trajectories of the soliton component plotted as a gray dotted line. The bottom
row show the respective population of the impurity in each soliton as a function of time. (d)—(g) Shows 7) calculated as a function of
Nymg, ¢ /7%* and mvy ¢/ /7 , the (dimensionless) initial velocity of the (empty) soliton, again for four equally spaced phase differences,
6= —7/2,0,7/2, .

normalization of both components is f dx|y;l* = 1, while each simulated collision is run for t = 5007 units of
real time. The numerical simulations are handled using a spectral (split-operator) method, and we work in the
so-called soliton units [30], where # = h/mv, T = £/vand E = mv* define the units of length, time and energy
respectively. To understand how these units correspond to physical quantities, we can use the experimental
parameters of [ 11], who produced a bright solitary wave with a 85Rb condensate. Then one has m = 85u, where
uis the atomic mass unit, N; = 2000 atoms in each soliton, and a transverse trapping frequency of w, = 27 Hz.
Using these parameters one finds a natural length scale # =~ 11 um, and small value of Ni'mg, £ /7> ~ —1074,
so in reality it would be necessary to use the powerful tool of Feshbach resonances in an experiment in order to
bring the system into the regime described in this work.

In figure 4 we explore the binary dynamics of the soliton-impurity system. Here, a single empty soliton
collides with the soliton-impurity system which is positioned initially at the origin. The coefficient of restitution,
equation (11) is then computed as a function of the inter-component scattering length, g, for several initial
phase differences, 6. It should be noted that although the phase difference is set initially in our simulations, this
quantity evolves dynamically [67], so the initial value is not necessarily the phase difference at the point of
collision. This phase evolution can be inferred from 7 as displayed in figure 4(a), where we plot 7, as a function of
g12, resulting from initial phase-differences 6 = —n/2,0, /2, m. The dynamics of ) can be roughly partitioned
into two regimes, a ‘weak’ dimer phase (light-blue shading) that manifests for 0 > Nimg, /4> 2 —0.5,anda
second more conventional non-integrable regime with N mg,£ /%% < —0.5.In the non-integrable regime the
dependence of 17 on the solitons’ relative phases is demonstrated by the phase-winding of the ) oscillations
associated with the different 6s. Furthermore, 1) is seen to oscillate with an increasing amplitude and frequency as
&, s magnitude is increased. The frequency increases because increasing g;, increases the chemical potential of
the carrier soliton, and so its phase winds more quickly, effecting an additional phase-shift. Due to the non-
integrability of this system, energy is not conserved if 7 = 1. The energy of the solitons is redistributed post-
collision. The primary mechanism for this is the change of the solitons masses post-collision. As well as this,
some of the kinetic energy initially carried by the moving soliton is redistributed into potential energy post-
collision, affecting an additional perturbation to the systems two scattering lengths. In the ‘weak’ dimer phase we
note thatall four curves meetat g;, = 0 whenn = 1, where integrability is restored and the system is reduced to
the single component focussing cubic Schrodinger equation.

Example dynamics for each regime are displayed in figures 4(b) and (c). The top left panel of (b) shows the
space-time density [, (x, t)|* of the impurity for Nymg, £ //i* = ~—1.01/Nj. The trajectories of the solitons
are overlaid (gray dotted line). The lower left panel of figure 4(b) shows the population of each soliton as a
function of time
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P, 4(0) = [dsluntx, O, (13)

which are calculated by integrating the density of the impurity locally around each solitons center of mass. Then,
for a system with ng solitons the total impurity population is given by

Mol
> Psolsi(t) = Na. (14)
=1

The panels on the right column figure 4(c) show the equivalent dynamics but for Nymg,, £ //#* ~ —0.24/N;.
Clearly the dynamics of this system are highly non-integrable, showing a number of unusual dynamical effects.
In particular, the second impurity component does not behave like a soliton, instead behaving like a quantum
particle trapped by the potential generated by the first, solitonic component. Then, by exploring the scattering
dynamics as a function of the inter-component scattering parameter g;,, per figure 4(a) one can interpret the
dynamics of the system. For larger negative values of g;,, the impurity is localized deep within the soliton, and as
such itslength scale is typicallyless than that of the length scale (size) of the soliton in which it is initially localized.
On the other hand, for smaller negative values of g;, the potential felt by the impurity component is quite
shallow, and the impurity in this regime is comparatively more weakly bound, having a length scale which can be
significantly larger than that of its solitonic host.

Since the impurity component feels the solitonic component as an effective dynamical potential, its
dynamics can show some unusual features. In particular, the impurity can transfer itself into the other, empty
soliton. This is shown in the lower panel of figure 4(b), where the impurity population of each soliton is
computed as a function of time. During dynamical evolution, ~85% of the initial impurity population is
smoothly transferred from the second to the first soliton. In the second example shown in figure 4(c) the initial
population of the second soliton is almost completely transferred to the first, and then back again. We attribute
the population transfer effect to quantum mechanical tunneling. It is also worth mentioning that there is an
additional subtlety in the interpretation of these dynamics. In the integrable limit, each soliton can be identified
by its amplitude and velocity [68], which means that the transfer of population between the two solitons in
figure 4(b) could also be interpreted with the labels of the two solitons switched, post collision. We will instead
keep the labeling of the solitons more in the style of two potentials that the second impurity potential feels. This
choice makes a quantitative but not qualitative difference to the interpretation of our results. These dynamics
could be useful for atomtronics applications [69], indeed these examples shown in figures 4(b) and (c) behave
somewhat like an analog of a conventional transistor, where the first soliton that initially hosts the impurity can
be interpreted as the ‘source’ while the second empty soliton can be labeled the ‘drain’, while the effective gate
voltage is controlled by the inter-component scattering parameter, ¢;.,.

Figures 4(d)—(g) explores the dynamics in the regime —0.5 < Nimg,£ /4% < 0,asa function of the initial
velocity of the empty soliton, vom# /7 . For large initial velocities, the scattering is comparatively less sensitive to
the scattering length ¢,,. However, as the initial velocity is lowered, a prominent dip develops, whose depth and
position on the g1, axis depends on the initial phase difference 6. This effect is demonstrated in figure 5, which
shows the data displayed from figure 4 reshaped. Each curve is taken for the fixed velocity vom#//z = 0.4. Here,
one can see that the position and depth of the ‘dip’ is quite sensitive to the initial phase difference, and seems to
deepen for smaller scattering lengths as the phase difference is modulated. The lower row of panels in this figure
show a clear example of the dimer state, for the choice of parameters mv,¢ /7% = 0.1, = 0and
Nymg,, ¢ /* ~ —0.283 /N;. Here, one can see the space-time evolution of the impurity in figure 5(b), with the
dotted lines indicating the trajectories of the soliton in the first component. The impurities dynamics bare some
resemblance to a braid, with the initially localized impurity oscillating around the center of mass of the weak
dimer.

The second panel, figure 5(c) shows the impurity population Ps, 4;(t) of each soliton as a function of time.
The solitons propagate together for quite sometime, with an oscillating impurity population. Contrasting the
restitution data shown in figure 5(a) with that of figure 4(a) is suggestive that the n) data actually merges for
smaller values of the initial velocity, and only separates for larger values of v,.

The relative amount of kinetic to (attractive) potential energy in this system is crucial to the observed
dynamics. Indeed, for collisions approaching zero inter-component scattering length, one has a highly
delocalized impurity, which is weakly bound in its solitonic host. Coupled to this is the fact that the collision of
the solitons in this system expels radiation in the form of small amounts of atomic density of the cloud. This can
in turn interact with the solitons in this regime to further destabilize the observed dynamics. For scattering
lengths slightly smaller in magnitude than figures 5(b) and (c), the post collision dynamics are found to be
exceptionally sensitive to this radiation. This can partially be overcome by simulating collisions with increasingly
larger numerical boxes, (in our work we typically use Lyox = 200£) however as |aj| — 0 the size of the impurity
will always be larger than one can realistically simulate, an unavoidable limitation inherent to this system.
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Figure 5. Restitution data for fixed initial velocity vom# /72 = 0.4 for different initial phase differences, (a). The two lower panels show
example space-time dynamics for a ‘weak’ dimer in (b) as well as the associated impurity populations of each soliton, Psg) 4;(t) in (c).

4. Soliton molecules

4.1. Soliton trimers
Models of nonlinear systems can also play host to higher-order soliton states, in the form of soliton molecules (

i.e. several individual solitons forming bound objects) and also breathers, which are single solitonic entities that
can be thought of as excited states of the focussing nonlinear Schrodinger equation, which have recently been
engineered experimentally with matter waves for the first time [70] using an attractive gas of *’Rb. Soliton
molecules have been studied in various guises within the context of ultracold matter, for example the realization
of degeneracy with atomic species possessing significant dipole—dipole interactions has led to the prediction of
novel molecular states in these systems [71—73]. Related to this are the realisation of ‘droplets’ of both dipolar
matter [74-76] and intriguingly, also light with a non-trivial angular momentum structure [77], as well as the
prediction of soliton molecules in systems with nonlocal interactions [78].
Here, we consider a stationary spatially symmetric initial state to study the possibility of molecule-like states

in the system described by equation (7). In the previous section it was found that the low velocity scattering of a
pair of solitons leads to increasingly inelastic dynamics as the initial kinetic energy in the system approaches zero.
In fact, if we try to form a simple soliton molecule with a pair of initially stationary solitons, one with an
impurity, and one without the resulting molecular state rapidly destabilizes. This is due to the impurity that
causes the phase of the soliton in the first component to wind, eventually breaking the molecule. Instead we
focus on understanding molecules formed from three individual solitons. In order to create an initially
symmetric state, we must place the impurity either in the center soliton with the outer two solitons initially
empty, or visa-versa. In our simulations we have chosen the former, so that the initial state is

1/} 2
Wsso(x) = ( wl) +(5) D =5 = 0, (15)

and x;are the centers of mass of the two outer solitons, 1s(x) is defined per equation (10), and the x; are chosen
symmetrically such thatx; + x, = 0. This initial configuration, built from the ground state and known exact
solutions in the limit g;; = 01isalso shown in figure 3(c). Figure 6 shows example dynamics of the three soliton
system. From left to right, panels (a)—(c) show long-time dynamics in the form of space-time density plots of the
impurity |1),]? (top row) while the bottom row shows the impurity population of each soliton as a function of
time. Note that there are three curves in these figures, however the populations of the outer solitons are
symmetric, so Pyl 41 and Ps,) 43 are the same. The parameters used for the simulations here are

Nimg,¢//i* ~ —(2.2, 1.6, 1) /Nj corresponding to (a), (b) and (c) respectively. The initial phase of the central
solitonis & = m/2. As the inter-component scattering length g, is increased, the dynamics of the system change
quite drastically. This is reflected in that fact that in (a) the solitons move apart, with only one ‘switch’ of
population occurring during the dynamics, as shown in the lower panel of (a). As g;, is increased, the impurity is
delocalized, promoting tunneling to the outer solitons, as shown in (b). Finally in (c) a molecular-like state is
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Figure 6. Soliton trimer formation. From left to right, the inter-component scattering length is Nymg,, £ /%% ~ —(2.2, 1.6, 1) /N; for
(), (b)and (c) respectively, and N mg;, £ /7% = —8/Ny. The initial phase of the soliton positioned atx = 0is takenas § = 7/2, while
each soliton in the first component has N; = 1000 atoms. The top row shows the space-time propagation of the impurity, [1),|*, while
the lower panels show the impurity population of each soliton.

formed, with the outer solitons showing a clear attraction towards the central soliton. The lower panel of (¢)
reflects this, where almost periodic oscillations of the impurity density are shown.

4.2. Thermal fluctuations

Given the fragile nature of bright soliton states, it is important to understand when the predicted soliton trimer
presented in figure 6 is stable to thermal fluctuations that are present in real systems. One way to understand the
conditions under which the trimer is stable to thermal fluctuations is to compare the energy difference between
the absolute ground state of the system and the trimer state with the thermal energy present in the system. We
denote each of these quantities by Egp,g and Ey,; respectively. Then the energy difference 6E = Ey; — Egng We are
interested in is given by

3 3
ZEE;L] + Ej, + ZE\%)\II\]I + ES | — (B2 + EL, + ES3 + ESL). (16)
. p

Here Elfi‘;l'j and EVSQ’\IAJ, are the kinetic and van der Waals energies of soliton j, while E;, and EVS é’é\J, are those of the
impurity. The van der Waals energy of the inter-species term is EJy, . In writing equation (16), we assume that
those terms arising from the interaction of the tail of the impurity with that of the outer solitons (labeled Sol.1
and Sol.3) are negligible. Then, the energy difference 6E simplifies to

8E = B! + Exiy + Edn” + B (17)

which demonstrates that 6E depends only on the outer solitons, and not the central soliton that carries the
impurity. We can use the known analytical expression for the stationary bright soliton (equation (10)) profile to
obtain an exact expression for 0E. The total energy of each outer soliton is

3 2
Ny'mg

Esol = - 2452

> (18)

where N; and g, are the atom number and the quasi one-dimensional scattering parameter associated with the
first component. To understand when thermal fluctuations play a role, we can form a dimensionless figure of
merit as the ratio of the energy difference and the thermal energy present in the system at temperature T as

N)ym
o 11 g]] (19)
 12/%sT

If this figure of merit satisfies E >> kgT, then thermal effects should not play a dominant role in the dynamics of
the soliton system. Likewise if OF < kgT then the trimer state will be destroyed by the thermal fluctuations. To
gain insight into plausible experimental conditions for the observation of these states, we can again use the
parameters of the experiment of Marchant et al [ 11], where one has an s-wave scattering length a; = —11a,,an
atom number N; = 2000, transverse oscillator strength w, = 27 Hz, with the atomic mass m of 85Rb. Assuming
an experimental temperature of T >~ 11K, one obtains

10
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B | o 6.7, (20)
kT

which satisfies the condition 6E/kz T > 1. This rudimentary argument suggests that producing stable dynamics
requires both a reasonable atom number as well as a low temperature. Since equation (19) depends on the cube
of the atom number, it should in principle not be too difficult to satisfy this condition. Alternatively, one could
also calculate the thermal stability of the trimer state from the quantity E; /kg T alone. This could also give a
deeper insight into the parameter regimes where this state is stable to thermal fluctuations and importantly how
the inter-component scattering length g, affects this stability.

4.3. Coherent impurity dynamics

The dynamics of the impurity, presented in figure 6(c) are suggestive that the soliton molecule could host
coherent population dynamics. To investigate this effect we perform a comparison of the dynamics of the
impurity component with a simple three level system, modeled in terms of a ‘vee’ type atom. This model is
chosen since the ground state energy (chemical potential) of the central soliton is slightly lower in energy; due to
the presence of the impurity. Then, the equations of motion for the complex amplitudes c;(¢) that determine the

population of each soliton are
df© 0 V2Q 0 )/q

dt
. 0 20 o J\°

We can connect the solutions cj(t) of equation (21) to the populations presented in figure 6 since

Poop () = |cj(t) ?. The dynamical system described by equation (21) introduce the ‘Rabi’ frequency 2, which
defines the frequency of population transfer between solitons, and the effective ‘detuning’ A. The total
population is a conserved quantity given by 3 |c; (¢) > =N,

Figure 7 shows comparisons of the Rabi model, equation (21) with Gross-Pitaevskii simulations. The
analogous ‘vee’ atom level diagram is shown in figure 7(a), where the states |1), |2) and |3) represent the
potential generated by the left, middle and right soliton felt by the impurity atoms. Then one can associate a state
vector with equation (21) for the impurity of the form

3

[Wimp) = Y ¢ (D1])- (22)

j=1

Due to the simplicity of the effective model equation (21), we can obtain exact expressions for the time-
dependent amplitudes c;() using the eigenbasis of the Hamiltonian matrix appearing on the right-hand-side of
equation (21). The three orthogonal eigenvectors of this system are v, = (—1,0, 1)and v = (1, iA;/~2Q, 1)

with the associated eigenfrequencies Ay = Oand Ay = %(A F Qg) where Qg = /160? + A2, Using the initial
conditions ¢ 3(t = 0) = 0and ¢ (t = 0) = /N, the solutions to equation (21) can be written

as() = YN, V29 ei%Zisin(%), (23a)
O 2
o) = N, ei%'[cos(%) + iQAd sin(%)], (23b)

The solutions given by equation (23) can be used to gain insight into the nature of the underlying tunneling effect
responsible for the impurities transport inside the solitons. To do this, we calculate the tunneling current

Ji(t) = —ilas()e(t) — o (t)cf',}(t)] using the solutions for ¢;(t) from equation (23) giving
g = YD o), 24)
d

which shows that the tunneling current J(¢) attains a maximum or minimum value when Q¢ = %(Zn + D
and n is zero or a positive integer, which as can be seen from figures (7) (c) and (d) is exactly when the impurity in
the inner soliton (soliton two) has a maximum in its impurities population. Likewise, the tunneling current
Ji(t) goes to zero when €24t = nm for even integer n; which corresponds to when the outer solitons (soliton one
and two) have their maximum impurity population.

To numerically obtain the Rabi frequency {14, we take the Fourier transform JF{Pso 4> (¢)} which is shown
in figure 7(b), for NP mg, £ //i* = —0.85, —0.7, —0.55. Here the system parameters are N;mg,, ¢ //i> =
—8/Ny, with N; = 1000. Then for the examples (c) and (d) one has N, = 1 and N, = 10 impurity atoms
respectively. The outer solitons are placed at x, = £ 67, the initial phase of the central soliton was 6 = 7, and
the detuningis A = 5 x 107371, Each inter-component scattering length gives a single peaked spectrum,
shown in figure 7(b). The lower panels (c) and (d) of figure 7 show comparisons between the solutions c;(t)

11
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Figure 7. Rabi model comparison. (a) Shows the analogous level scheme for the three level atom. (b) Shows examples of the Fourier
transform of the impurity populations obtained numerically from the GPE for various values of g;,. Panels (c) and (d) show
comparisons of the solutions to the Rabi model (see equations (21) and (23)) with GPE simulations.

obtained from equation (21) and the impurity populations calculated from the GPE via equation (13). In both
presented examples (c) and (d), the dashed lines represent the impurity populations computed from GPE
simulations, while the circles are the Rabi model data. The dashed black line shows the total population

> jlcj(t) [> = N,.Inboth presented cases, figures 7(c) and (d) we find excellent agreement to the Rabi model. It is
important to note that at much longer times, the outer solitons are attracted towards the central soliton, which
causes the effective Rabi frequency {24 to increase, but by sensibly choosing the system parameters such that the
outer solitons are not initially too close to the central soliton, good agreement to equation (21) is obtained. The
coherent oscillations presented in figure 7 could form the basis for future applications. In particular, the
identification of these types of dynamics could find practical application in atomtronics [69, 79] and quantum

information processing [80], where the coherent dynamics of atomic systems are a required ingredient for many
effects of interest in these fields.

4.4. Impurity localization transition

The dynamics of the impurity presented in figures 6 and 7 are suggestive of rich transport behavior. To
understand the transport properties of the multi-soliton system further, we probe the dynamics of the three
soliton system across the full parameter space. Obtaining a well-behaved, intuitive measure for the multiple
soliton system is challenging. To understand the effect of the various system parameters on the dynamics of the
impurity, we employ the inverse participation ratio (IPR) as a measure to quantify the dynamics of the system.
The IPR provides a well-behaved measure of how localized a particular state is [81]. Related to this, recent work

has also examined the effect of ‘dynamical localization’ in dynamical optical lattice potentials [82]. In particular
we wish to calculate
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Figure 8. The inverse participation ratio (IPR) calculated from equations (25) and (26). (a) Shows the IPR for different initial phases, 6.
(b) Shows the IPR (solid blue squares) and it is fluctuations (light shaded blue) in terms of the standard deviation for § = 0. The
bottom row of panels shows individual simulations for N? mg, ¢ / /* = —3.85, —2.9, —0.98 for (c), (d) and (e) respectively. The
dashed black line in (a) and (b) separates localized states at (P) = 1.

1 fdxdate

= = (25)
PWO) - ([dxiatx, D)

For non-interacting spatially localized states, the IPR takes a value of one such that P(¢)~! = 1, while
delocalized states are found instead when P(#)~! < 1. This definition is however strictly speaking only
applicable to non-interacting systems, the introduction of mean-field interactions can yield value of the IPR that
are greater than one. Nonetheless this quantity still provides a useful measure of the impurities spatial dynamics.
Since we are dealing with a two component system where both components evolve dynamically, it is necessary to
consider the time averaged version of equation (25) in order to make a meaningful analysis. The time average of

equation (25) is defined as
1 1 pT dr
N1 a4 26
<7> > T fo P(t) (26)

where T defines the length of the particular numerical simulation. To investigate the behavior of the IPR,
equation (25), and in particular its time average given by equation (26), we perform numerical simulations using
the initial state defined by equation (15), with the parameters N; = 1000 and N, = 1 giving the atom numbers
for the soliton and impurity respectively, while Nymg,,£ /7> = —8/N; defines the strength of the van der Waals
parameters for the first component. The outer solitons were placed atx, = %+ 5¢ from the origin. Finally, each
individual simulation was run for T/7 = 10" units of time. Long time simulations of the trimer state are
presented in figure 8. The time-averaged IPR is shown as a function of the dimensionless inter-component
scattering parameter N/ mg,, ¢ /7% in figure 8(a). Here, data is presented for several different initial phase
differences: § = 0, +-7/2, +-7. The dynamics can be divided into three regions, a localized region (red gradient),
adelocalized region, (blue gradient) and an intermediate region (white). The trend in (a) shows that for large
negative g, the impurity is localized, since P > 1, here all data fall onto a common curve. The observed
behavior of the IPR attaining values greater than one notably differs from its original definition where localized
states are defined for (P(t)) = 1only. We attribute this departure to the fact that we are considering an
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interacting, rather than non-interacting system. Then as the scattering length is increased, the impurity starts to
delocalize across the three solitons and individual datum no longer follow a common trend, instead the
particular value of (P~1) one obtains is found to be sensitive to the initial phase é. As the scattering parameter g;,
approaches zero, the data again fall onto a common curve, and the impurity is completely delocalized between
the three solitons. In this region stable molecules are found that support this effect.

To understand the impurity dynamics in the intermediate region, (white region in figure 8) the fluctuations
during dynamics of the IPR (equation (25)) are studied by calculating the standard deviation in figure 8(b). The
standard deviation of the IPR is plotted with the average of the IPR (light blue shading and solid blue
respectively). One can see that the fluctuations associated with equation (26) start to grow as (P~!) falls below
one. Indeed, it would seem within the mean-field model considered in this work one can attribute the point
(P(#)) = lasthepointin the parameter space where fluctuations of the IPR grow from zero and the impurity
begins to delocalize between the outer solitons. The final row of figures shown in figure 8 shows example
dynamics for each dynamical region. In particular figure 8(c) shows an example of a localized impurity. Then
figure 8(d) shows an example of the intermediate regime, and finally figure 8(e) shows the delocalized region.

5. Conclusions

In this work we investigated the scattering properties of a two-component Bose condensate with wholly attractive
mean field interactions. By interpreting the second component as an impurity, this system was found to support
unusual transport phenomena, including the appearance of a dimer like phase close to zero inter-component
scattering length, where a pair of bright solitons in the first component can coherently transfer the impurity between
each other many times. Such an effect could be useful for example in the emergent field of atomtronics, where atomic
systems are used to build circuits analogous to their electronic counterparts. The ability to use solitary waves to
coherently shuttle atomic density over macroscopic distances could form a novel tool in this endeavor.

It was also found that stable soliton molecules formed from three solitons can also be produced in parameter
regimes where the equivalent single component system is unstable to the formation of molecular bound states.
This stability was attributed to the nontrivial phase winding that occurs during dynamical evolution of the two-
component system. Since the impurity that constitutes the second component can effectively delocalize itself
across the whole system, the atom number of both components of the gas can change. Accompanying this
change is a winding of the phase, which for a critical scattering length can be favorable to the formation of three
soliton molecules. The population dynamics of the impurity was scrutinized using a simple three level atomic
‘Rabi’ model. For sensible choices of parameters excellent agreement was obtained with GPE simulations.
Finally, the trimer-impurity system was analyzed using the tools of localization theory. It was found that the
impurity undergoes a delocalization as a function of the inter-component scattering length.

It would be interesting to investigate the effect of trapping fermions in this physical setup, in a similar spirit to the
experiment of [47]. The ability to build larger systems of solitons with this particular system opens a novel avenue in
studying lattices formed from solitary waves, with the twist that one can have different numbers of impurities
present, which could be used to study effects analogous to condensed matter, for example a soliton-Hubbard model
could be potentially explored, as well as understanding the generalized Toda lattice that this system would constitute.

Acknowledgments

We thank Robert Dingwall and Tom Billam for useful discussions. MJE acknowledges support as an Overseas
researcher under Postdoctoral Fellowship of Japan Society for the Promotion of Science. This work was
supported by the Okinawa Institute of Science and Technology Graduate University.

ORCIDiDs

Th Busch © https://orcid.org/0000-0003-0535-2833

References

[1] Chaikin P M and Lubensky T 1994 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press)
[2] Gorlitz A et al2001 Phys. Rev. Lett. 87 130402

[3] Gerbier F 2004 Europhys. Lett. 66 771

[4] ChinC, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 821225

[5] Henderson K, Ryu C, MacCormick C and Boshier M G 2009 New J. Phys. 11 043030

[6] Dalibard ], Gerbier F, Juzeliinas G and Ohberg P 2011 Rev. Mod. Phys. 83 1523

[7] Goldman N, Juzeliinas G, Ohberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401

14


https://orcid.org/0000-0003-0535-2833
https://orcid.org/0000-0003-0535-2833
https://orcid.org/0000-0003-0535-2833
https://orcid.org/0000-0003-0535-2833
https://doi.org/10.1103/PhysRevLett.87.130402
https://doi.org/10.1209/epl/i2004-10035-7
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1088/1367-2630/11/4/043030
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1088/0034-4885/77/12/126401

I0OP Publishing NewJ. Phys. 21 (2019) 053019 M ] Edmonds et al

[8] Khaykovich L, Schreck F, Ferrai G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Sciernce 296 1290
[9] Cornish SL, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401

[10] Strecker KE, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150

[11] Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S A and Cornish SL2013 Nat. Commun. 4 1865

[12] Marchant AL, Billam T P, Yu M M H, Rakonjac A, Helm J L, Polo J, Weiss C, Gardiner S A and Cornish SL 2016 Phys. Rev. A 93
021604(R)

[13] Nguyen] HV, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10918

[14] NguyenJHV, Luo D and Hulet R G 2017 Science 356 422

[15] Martin A D and Ruostekoski ] 2012 New J. Phys. 14 043040

[16] HelmJL, Cornish SLand Gardiner S A 2015 Phys. Rev. Lett. 114 134101

[17] HelmJ L, Billam T P, Rokonjac A, Cornish S L and Gardiner S A 2018 Phys. Rev. Lett. 120 063201

[18] Haine S A 2018 New J. Phys. 20 033009

[19] McDonald G D, Kuhn C CN, Hardman K S, Bennetts S, Everitt P J, Altin P A, Debs ] E, Close ] D and Robins N P 2017 Phys. Rev. Lett.
113013002

[20] Billam T P, Cornish S L and Gardiner S A 2011 Phys. Rev. A 83 041602(R)

[21] Edmonds M J, Billam T P, Gardiner S A and Busch T 2018 Phys. Rev. A 98 063626

[22] Lepoutre S, Fouché L, Boissé A, Berthet G, Salomon G, Aspect A and Bourdel T 2016 Phys. Rev. A 94 053626

[23] Boissé A, Berthet G, Fouché L, Salomon G, Aspect A, Lepoutre S and Bourdel T 2017 Europhys. Lett. 117 10007

[24] Busch T and Anglin J R 2001 Phys. Rev. Lett. 87 010401

[25] Yang]Jand TanY 2000 Phys. Rev. Lett. 85 3624

[26] Becker G, Stellmer S, S-Panahi P, Dérscher S, Baumert M, Richter E-M, Kronjiger ], Bongs K and Sengstock K 2008 Nat. Phys. 4 496

[27] Hammer C, ChangJJ, Engels P and Hoefer M A 2011 Phys. Rev. Lett. 106 065302

[28] LiS-Cand Dou F-Q 2015 Europhys. Lett. 111 30005

[29] Martin A D, Adams C S and Gardiner S A 2007 Phys. Rev. Lett. 98 020402

[30] Martin A D, Adams C S and Gardiner S A 2008 Phys. Rev. A77 013620

[31] Martin A D 2016 Phys. Rev. A93 023631

[32] Ieda], Miyakawa T and Wadati M 2004 Phys. Rev. Lett. 93 194102

[33] Szankowski P, Trippenbach M, Infeld E and Rowlands G 2010 Phys. Rev. Lett. 105 125302

[34] PedriP and Santos L 2005 Phys. Rev. Lett. 95 200404

[35] TikhonenkovI, Malomed B A and Vardi A 2010 Phys. Rev. Lett. 100 090406

[36] Meyer N, Proud H, P-Ortiz M, O’Neale C, Baumert M, Holynski M, Kronjéger J, Barontini G and Bongs K 2017 Phys. Rev. Lett. 119
150403

[37] XuY, ZhangY and Wu B 2013 Phys. Rev. A87 013614

[38] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101

[39] Merkl M, Jacob A, Zimmer FE, Ohberg P and Santos L 2010 Phys. Rev. Lett. 104 073603

[40] LiJ, AnJand Ting CS2013 Sci. Rep. 3 3147

[41] Kronke S, Knorzer J and Schmelcher P 2015 New J. Phys. 17 053001

[42] PalzerS, Zipkes C, Sias C and K6hl M 2009 Phys. Rev. Lett. 103 150601

[43] FukuharaT etal2013 Nat. Phys. 9 235

[44] Rutherford L, Goold ], Busch T and McCann ] F 2011 Phys. Rev. A 83 055601

[45] Goold], Krych M, Idziaszek Z, Fogarty T and Busch T 2010 New J. Phys. 12 093041

[46] Johnson T H, Clark S R, Bruderer M and Jaksch D 2015 Phys. Rev. A 84 023617

[47] DeSalvo BJ, Patel K, Johansen J and Chin C 2017 Phys. Rev. Lett. 119 233401

[48] Jorgensen N B, Wacker L, Skalmstang K T, Parish M M, Levinsen J, Christensen R S, Bruun G M and Arlt ] ] 2016 Phys. Rev. Lett. 117
055302

[49] HuM-G, Van de Graaff M ], Kedar D, Corson ] P, Cornell E A and Jin D S$ 2016 Phys. Rev. Lett. 117 055301

[50] Schirotzek A, Wu C-H, Sommer A and Zwierlein M W 2009 Phys. Rev. Lett. 102 230402

[51] Bruderer M, Klein A, Clark S R and Jaksch D 2007 Phys. Rev. A76 011605(R)

[52] Bruderer M, Bao W and Jaksch D 2008 EPL 82 30004

[53] Yoshida SM, Endo S, Levinsen J and Parish M M 2017 Phys. Rev. X 8 011024

[54] Kalas RM and Blume D 2006 Phys. Rev. A 73 043608

[55] Kasamatsu K and Tsubota M 2006 Phys. Rev. A74 013617

[56] Gammal A, Frederico T and Tomio L2001 Phys. Rev. A 64 055602

[57] Yakimenko A I, Shchebetovska K O, Vilchinskii SIand Weyrauch M 2012 Phys. Rev. A 85 053640

[58] Carr LD and Castin Y 2002 Phys. Rev. A 66 063602

[59] Zollner S, Meyer H-D and Schmelcher P 2008 Phys. Rev. A78 013629

[60] Drazin P Gand Johnson RS 1989 Solitons: An Introduction (Cambridge: Cambridge University Press)

[61] Sacha K and Timmermans E 2006 Phys. Rev. A 73 063604

[62] Shaukat M1, Castro EV and Tergas H2017 Phys. Rev. A95 053618

[63] GrusdtF, Astrakharchik G E and Demler E 2017 New J. Phys. 19 103035

[64] Dehkharghani A'S, Volosniev A G and Zinner N T 2018 Phys. Rev. Lett. 121 080405

[65] Edmonds M J, Bland T, Doran R and Parker N G 2017 New J. Phys. 19 023019

[66] Dingwall RJ, Edmonds M J, Helm J L, Malomed B A and Ohberg P 2018 New J. Phys. 20 043004

[67] Khawaja U A and Stoof HT C2011 New J. Phys. 13 085003

[68] Gordon]P 1983 Opt. Lett. 8 596

[69] Seaman BT, Krimer M, Anderson D Z and Holland M ] 2007 Phys. Rev. A75 023615

[70] EverittPJetal 2015 arXiv:1509.06844

[71] Baizakov B B, Al-Marzoug S M and Bahlouli H 2015 Phys. Rev. A 92 033605

[72] Bland T, Edmonds M J, Proukakis N P, Martin A M, O’Dell D HJ and Parker N G 2015 Phys. Rev. A 92 063601

[73] Pawlowski K and Rzazewski K 2015 New J. Phys. 17 105006

[74] F-Barbutl, Kadau H, Schmitt M, Wenzel M and Pfau T 2016 Phys. Rev. Lett. 116 215301

[75] Schmitt M, Wenzel M, Bottcher F, F-Barbut I and Pfau T 2016 Nature 539 259

[76] Baillie D, Wilson R M, Bisset R N and Blakie P B 2016 Phys. Rev. A 94 021602(R)

15


https://doi.org/10.1126/science.1071021
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1038/nature747
https://doi.org/10.1038/ncomms2893
https://doi.org/10.1103/PhysRevA.93.021604
https://doi.org/10.1103/PhysRevA.93.021604
https://doi.org/10.1038/nphys3135
https://doi.org/10.1126/science.aal3220
https://doi.org/10.1088/1367-2630/14/4/043040
https://doi.org/10.1103/PhysRevLett.114.134101
https://doi.org/10.1103/PhysRevLett.120.063201
https://doi.org/10.1088/1367-2630/aab47f
https://doi.org/10.1103/PhysRevLett.113.013002
https://doi.org/10.1103/PhysRevA.83.041602
https://doi.org/10.1103/PhysRevA.98.063626
https://doi.org/10.1103/PhysRevA.94.053626
https://doi.org/10.1209/0295-5075/117/10007
https://doi.org/10.1103/PhysRevLett.87.010401
https://doi.org/10.1103/PhysRevLett.85.3624
https://doi.org/10.1038/nphys962
https://doi.org/10.1103/PhysRevLett.106.065302
https://doi.org/10.1209/0295-5075/111/30005
https://doi.org/10.1103/PhysRevLett.98.020402
https://doi.org/10.1103/PhysRevA.77.013620
https://doi.org/10.1103/PhysRevA.93.023631
https://doi.org/10.1103/PhysRevLett.93.194102
https://doi.org/10.1103/PhysRevLett.105.125302
https://doi.org/10.1103/PhysRevLett.95.200404
https://doi.org/10.1103/PhysRevLett.100.090406
https://doi.org/10.1103/PhysRevLett.119.150403
https://doi.org/10.1103/PhysRevLett.119.150403
https://doi.org/10.1103/PhysRevA.87.013614
https://doi.org/10.1103/PhysRevLett.110.264101
https://doi.org/10.1103/PhysRevLett.104.073603
https://doi.org/10.1038/srep03147
https://doi.org/10.1088/1367-2630/17/5/053001
https://doi.org/10.1103/PhysRevLett.103.150601
https://doi.org/10.1038/nphys2561
https://doi.org/10.1103/PhysRevA.83.055601
https://doi.org/10.1088/1367-2630/12/9/093041
https://doi.org/10.1103/PhysRevA.84.023617
https://doi.org/10.1103/PhysRevLett.119.233401
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1209/0295-5075/82/30004
https://doi.org/10.1103/PhysRevX.8.011024
https://doi.org/10.1103/PhysRevA.73.043608
https://doi.org/10.1103/PhysRevA.74.013617
https://doi.org/10.1103/PhysRevA.64.055602
https://doi.org/10.1103/PhysRevA.85.053640
https://doi.org/10.1103/PhysRevA.66.063602
https://doi.org/10.1103/PhysRevA.78.013629
https://doi.org/10.1103/PhysRevA.73.063604
https://doi.org/10.1103/PhysRevA.95.053618
https://doi.org/10.1088/1367-2630/aa8a2e
https://doi.org/10.1103/PhysRevLett.121.080405
https://doi.org/10.1088/1367-2630/aa5a6b
https://doi.org/10.1088/1367-2630/aab29e
https://doi.org/10.1088/1367-2630/13/8/085003
https://doi.org/10.1364/OL.8.000596
https://doi.org/10.1103/PhysRevA.75.023615
http://arxiv.org/abs/1509.06844
https://doi.org/10.1103/PhysRevA.92.033605
https://doi.org/10.1103/PhysRevA.92.063601
https://doi.org/10.1088/1367-2630/17/10/105006
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1038/nature20126
https://doi.org/10.1103/PhysRevA.94.021602

I0OP Publishing NewJ. Phys. 21 (2019) 053019 M ] Edmonds et al

[77] Wilson K E, Westerberg N, Valiente M, Duncan CW, Wright EM, Ohberg P and Faccio D 2018 Phys. Rev. Lett. 121 133903
[78] Salerno M and Baizakov B B 2018 Phys. Rev. E 98 062220

[79] Amico L, Birkl G, Boshier M and Kwek L-C 2017 New J. Phys. 19 020201

[80] Kok P and Lovett BW 2010 Introduction to Optical Quantum Information Processing (Oxford: Oxford University Press)
[81] Wegner F] 1980 Z. Phys. B 36 209

[82] Major J, Morigi G and Zakrzewski ] 2018 Phys. Rev. A98 053633

16


https://doi.org/10.1103/PhysRevLett.121.133903
https://doi.org/10.1103/PhysRevE.98.062220
https://doi.org/10.1088/1367-2630/aa5a6d
https://doi.org/10.1007/BF01325284
https://doi.org/10.1103/PhysRevA.98.053633

	1. Introduction
	2. Soliton-impurity stability
	3. Equations of motion
	3.1. Single polaron ground states
	3.2. Binary soliton-impurity dynamics

	4. Soliton molecules
	4.1. Soliton trimers
	4.2. Thermal fluctuations
	4.3. Coherent impurity dynamics
	4.4. Impurity localization transition

	5. Conclusions
	Acknowledgments
	References



