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Abstract: We study how to efficiently control an interacting few-body system consisting of three
harmonically trapped bosons. Specifically, we investigate the process of modulating the inter-particle
interactions to drive an initially non-interacting state to a strongly interacting one, which is an
eigenstate of a chosen Hamiltonian. We also show that for unbalanced subsystems, where one can
individually control the different inter- and intra-species interactions, complex dynamics originate
when the symmetry of the ground state is broken by phase separation. However, as driving the
dynamics too quickly can result in unwanted excitations of the final state, we optimize the driven
processes using shortcuts to adiabaticity, which are designed to reduce these excitations at the end of
the interaction ramp, ensuring that the target eigenstate is reached.

Keywords: shortcuts to adiabaticity; cold atoms; few-body systems

1. Introduction

The ability to precisely control quantum systems is a prerequisite for developing technologies
in the areas of quantum computation, simulation, and metrology. Even though the control over
single-particle states is highly developed by today [1–3], the requirements stemming from short
decoherence time-scales are often hard to fulfill. Even more so, fast operations can have detrimental
effects on quantum states, as possible imperfections in the control pulses can be difficult to compensate.
To mitigate these problems, and to ensure high fidelity on short timescales, a number of techniques have
been developed, such as optimal control algorithms [4–6] and shortcuts to adiabaticity (STAs) [7–11].
In this work we will focus on STAs, which are techniques designed to determine the driving parameters
such that the system undergoes adiabatic evolution within a finite time, and which have been
successfully employed in recent experiments with cold atoms [12–17]. While for single particles
or within a mean-field approximation, the description of the exact evolution of the quantum state is
tractable, extending such a treatment to interacting many-body systems poses complications due to
their complexity. One solution is to use approximate variational techniques, and even though they are
not exact, use these to design STA processes [18–20]. In fact, it has recently been shown that such an
approach can be used to control correlations in small systems [21] and can serve as a good benchmark
for the control of larger interacting systems.

In this work, we aim to move beyond mean-field and single-particle physics to control the
dynamics of larger systems with short-range contact interactions. To achieve this, we take a first
step by focusing on nontrivial few-body states, in particular, controlling the interactions in a bosonic
two-component system confined to a harmonic trap. Such systems can exhibit complex dynamics
arising from the interplay of intra- and inter-species interactions, leading, for example, to composite
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fermionization or phase separation [22–25]. To discuss the basic effects, we will focus on a paradigmatic
realization of a two-component system, namely, two interacting ultracold atoms of species A,
which interacts with a single ultracold atom of species B in a one-dimensional setting. In such a
system, the interactions can be described by point-like potentials, and in ultracold atom experiments,
the interaction strength can be changed by employing Feshbach [26,27] or confinement-induced
resonances [28]. In fact, individual tuning of the inter- and intra-species interactions allows one
to explore driving the interactions of the A atoms in the presence of an impurity atom, driving
the interaction between an impurity and the interacting A atoms, and also driving all interactions
simultaneously. With this freedom, it is possible to explore driving the system through the phase
separation transition, which can alter the ordering of the particles in the trap and, therefore, greatly
affect the dynamics of the system. We will show that efficient STAs can be designed for the individual
interactions based on a variational ansatz, and that these STAs can outperform a non-optimized
interaction ramp for most timescales of the driven process.

In Section 2, we introduce the few-body model we consider, and in Section 3, we describe the
variational method for designing STAs in this system. We begin in Section 4 with the analysis of
driving interactions between three identical bosons, while in Sections 5 and 6, we investigate driving
one of the interaction terms while the other is held fixed. These latter sections describe the effect phase
separation has on the driven system and its dynamics. Finally, we conclude.

2. Model

We consider a one-dimensional system of three interacting bosons of mass m, confined in a
harmonic trap of frequency ω, whose Hamiltonian is given by

H =
3

∑
j=1

[
− h̄2

2m
∇2

j +
1
2

mω2x2
j

]
+ Vint(x1, x2, x3) . (1)

At low temperatures, we can assume that the scattering between the particles is mostly two-body
and of the s-wave form, allowing us to approximate the interaction part of the Hamiltonian with
point-like pseudo-potentials as

Vint(x1, x2, x3) ≈ gA(t)δ(x1 − x2) + gAB(t) [δ(x1 − x3) + δ(x2 − x3)] . (2)

Here, the interaction strength between two particles of species A is given by gA, and the interaction
strength between an A particle and the B particle is given by gAB. Both couplings are related to the

respective 3D scattering lengths, a3D, via g = 4h̄2a3D
md2
⊥

1
1−C a3D

d⊥

, with the constant C given by C ≈

1.4603 [28]. Here, ω⊥ is the trap frequency in the transverse directions of a quasi-one-dimensional
harmonic trap of width d⊥ =

√
h̄/mω⊥, and one can see that control over the transverse trap frequency

or the scattering length allows one to tune the interaction strengths. In the following, we will use

harmonic oscillator units by rescaling all spatial coordinates with a0 ≡
√

h̄
mω , all interaction strengths

in units of
√

2a0h̄ω, all energies in units of h̄ω, and time in units of ω−1.
The Hamiltonian given in (1) can be separated by introducing Jacobi coordinates

X = (x1 − x2)/
√

2 , (3)

Y = (x1 + x2)/
√

6−
√

2/3x3 , (4)

Z = (x1 + x2 + x3)/
√

3 , (5)
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where X and Y are two relative coordinates describing the positions of the three particles with respect
to each other, while Z describes the system’s center-of-mass. The latter separates, and in these new
coordinates, the Hamiltonian can be written as H = Hcom(Z) + Hrel(X, Y), with

Hcom = −∇2
Z +

1
2

Z2 , (6)

Hrel = −
1
2

(
∇2

X +∇2
Y

)
+

1
2

(
X2 + Y2

)
+ gAδ(X) + gAB

[
δ

(
−1

2
X +

√
3

2
Y

)
+ δ

(
−1

2
X−

√
3

2
Y

)]
.

(7)

It is immediately clear that the center-of-mass part just describes a particle moving in a harmonic
trap, for which the solutions are given by:

ψHO
n (Z) = π−1/4(2nn!)Hn(Z) exp (−Z2/2) , (8)

where Hn(Z) are the Hermite polynomials, and with energies En = (n + 1/2). The relative
Hamiltonian can be interpreted as describing the effectively two-dimensional motion of a harmonically
trapped particle in the presence of three narrow barriers arranged with a π/3 angle between them,
as depicted in Figure 1a. Since the two A atoms are identical, the wave-function has to remain
unchanged under a reflection across the X coordinate; however, there is no constraint when swapping
particle B with one of the A particles. Exact solutions exist for limiting cases of the interactions [29,30],
while in general, this system can be solved effectively using exact diagonalization techniques [24,31,32].
Indeed, for gA 6= gAB, phase separation can be observed, whereby either the particles of species A are
pushed to the edges of the trap, while particle B is confined in the trap center, or vice versa [23,32–35].
Therefore, the arrangement of the atoms in the trap is non-trivial and will be strongly affected by any
change in their inter- or intra-species interactions. It makes this an ideal system in which to study all
regimes of composite few-body dynamics and to develop useful quantum control techniques.

In the following, we will concentrate on increasing the interaction strength in initially
non-interacting and uncorrelated systems on time scales t f , which are approximately comparable
to the trap period. As the center-of-mass contribution does not depend on the interaction, it will be
unchanged during the interaction ramping process, and therefore, only the dynamics of the relative
wave-function ih̄ ∂

∂t ψ(X, Y; t) = Hrel(t)ψ(X, Y; t) need to be considered.
For very slow ramps of the interaction (t f ≫ 1), the dynamics can be considered to be adiabatic,

and the energy of the state after the process is equal to the energy of the eigenstate at the final value
of the interaction strength, g f , i.e., EAD ≡ E(t f ) = E(g f ). For faster ramps (t f ∼ O(1)), the process
can be non-quasi-static, resulting in excess energy in the system due to the out-of-equilibrium
dynamics, with non-adiabatic energy ENA(t f ) ≥ EAD. We can then define irreversible work from this
non-adiabatic energy as

〈Wirr〉 = ENA(t f )− EAD , (9)

which for adiabatic processes will vanish, while being finite for non-quasi-static processes [21,36]. It is
therefore a useful quantity to characterize the efficiency of the interaction ramp.

In the following, we will describe two kinds of interaction ramps. The first will be a generic,
non-optimized reference ramp, which we will use as a benchmark and which we parameterize as

gref(t) =
g f

32

[
30 sin

(
π

2
t
t f

)
− 5 sin

(
3π

2
t
t f

)
− 3 sin

(
5π

2
t
t f

)]
. (10)

This function satisfies the boundary conditions gref(0) = 0, gref(t f ) = g f , and ġref(0) = ġref(t f ) =

g̈ref(0) = g̈ref(t f ) = 0, ensuring that the interaction ramp begins and ends smoothly in an effort to
reduce untypical excitations. However, this assumption alone will not ensure that no irreversible
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dynamics are created during the ramping processes, and the pulse can therefore serve as a reference to
an optimized interaction ramp derived from the STA approach. This comparison will be our main tool
to quantify the success of the designed STA, which we will develop in the next section.

3. Shortcut to Adiabaticity

To find an STA, we use the method of inverse engineering, which can design interaction ramps
gSTA(t) that fulfill the desired adiabatic evolution of the system φ(X, Y; t) for any ramp time t f .
The success of the STA then depends entirely on how well the solutions to the time-dependent
Hamiltonian, φ(X, Y; t), are known and whether they possess scale invariance [37]. As our interaction
ramp is not scale invariant and since exact forms of the solution are not known, one has to use
approximate techniques [19,38,39], and we therefore employ a variational approach with an ansatz
that describes the evolution of the relative wave-function by an interpolation between the initial and
the final state

φ(X, Y; t) = ϕ(X, Y; t)ei(b(t)X2+c(t)Y2) (11)

= N(t)
[
(1− η(t))φi(X, Y) + η(t)φ f (X, Y)

]
ei(b(t)X2+c(t)Y2) . (12)

Here, N(t) is a time-dependent normalization constant, while b(t) and c(t) are chirps that allow
the wave-function to change its width. To ensure that the wave-function changes smoothly from the
initial state φi(X, Y) ≡ φ(X, Y; gi) to the target state φ f (X, Y) ≡ φ(X, Y; g f ), we choose η(t) as a 6th

order polynomial satisfying the boundary conditions η(0) = 0, η(t f ) = 1 and η̇(0) = η̈(0) = η̇(t f ) =

η̈(t f ) = 0.

Figure 1. (a) Interaction potentials stemming from gA (dashed line) and gAB (solid lines) in the Jacobi
coordinate plane. (b) Examples of different interaction ramps when keeping gA(t) = gAB(t), with the
reference ramp (blue dotted line) and the shortcut to adiabaticity (STA) ramp at t f = 1.5 (black solid
line) and t f = 10 (red solid line).

The next step in the process is to minimize the action of the effective Lagrangian [18]

L =
∫ ∞

−∞
dX

∫ ∞

−∞
dY

[
i
2

(
∂φ

∂t
φ∗ − ∂φ∗

∂t
φ

)
− 1

2

∣∣∣∣ ∂φ

∂X

∣∣∣∣2 − 1
2

∣∣∣∣ ∂φ

∂Y

∣∣∣∣2 −V(X, Y; t) |φ|2
]

, (13)

where V = 1
2
(
X2 + Y2) + gA(t)δ(X) + gAB(t)

[
δ
(
− 1

2 X +
√

3
2 Y
)
+ δ

(
− 1

2 X−
√

3
2 Y
)]

contains the
trapping and the interaction potentials. This effective Lagrangian is minimized with respect to the
variational parameters η(t), b(t), and c(t), and the resulting Euler–Lagrange equations give the
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evolution equations that will determine b(t) and c(t) and establish the time dependence of the two
interaction strengths, gA(t) and gAB(t), given by

gA(t)IA + gAB(t)IAB = −
[

∂ξ2

∂η

(
ḃ + 2b2 +

1
2

)
+

∂ν2

∂η

(
ċ + 2c2 +

1
2

)
+

1
2

∂

∂η
(β + γ)

]
. (14)

Here, ξ2 =
∫ ∞

∞ dX
∫ ∞

∞ dY X2|ϕ|2 and ν2 =
∫ ∞

∞ dX
∫ ∞

∞ dY Y2|ϕ|2 are the widths of the state in the
X and Y directions, respectively, and their dynamics is determined by

ξ̇ = 2bξ, (15)

ν̇ = 2cν. (16)

Similarly, the kinetic energies in these directions are β =
∫ ∞

∞ dX
∫ ∞

∞ dY
∣∣∣ ∂ϕ

∂X

∣∣∣2 and γ =∫ ∞
∞ dX

∫ ∞
∞ dY

∣∣∣ ∂ϕ
∂Y

∣∣∣2, and the interaction energies are IA =
∫ ∞

∞ dX
∫ ∞

∞ dYϕδ(X) and IAB =∫ ∞
∞ dX

∫ ∞
∞ dYϕ

[
δ
(
−X

2 +
√

3
2 Y
)
+ δ

(
−X

2 −
√

3
2 Y
)]

. Using known solutions to φi and φ f allows us
to calculate these terms exactly (for example, in the limit of infinite repulsive interactions, accurate
approximations are known [29,30]); otherwise, these integrals can be calculated numerically. Typical
examples of these STA interaction ramps for a system of three identical particles are shown in Figure 1b
for two timescales t f = {1.5, 10}. When t f is large, the STA is designed to quickly ramp the interaction
at the end of the process, in contrast to the reference, which begins to slowly increase the interaction
already at the beginning of the ramp. This difference is due to the optimization of the STA through
the Lagrangian, which is designed taking into account the energy dependence on the interaction and
is similar to that seen in smaller systems [21]. For small t f , the STA possesses large modulations as
driving the system faster requires large changes in the energy to follow the adiabatic path.

4. Three Identical Particles

Assuming that the initial state is the ground state of the noninteracting system, gi = gA
i = gAB

i = 0
(see Figure 2a), we investigate in the following the ramping of strong interactions between three
identical particles, i.e., g(t) = gA(t) = gAB(t). In this case, the relative part of the wave-function will
always possess C6ν symmetry [31,40,41] (see Figure 2b–d), with the interactions leading to cusps in
the density at 60◦ angles to each other, and with the cusp asymptotically reaching zero density in the
Tonks–Girardeau limit of strong repulsive interactions (g f & 40) [42–44].

To quantify the success of the interaction ramps, we compare the irreversible work 〈Wirr〉 after
the respective interaction ramps (see Figure 2e). For longer ramp times, t f > 25, the system is driven
slowly enough that it can be considered as evolving adiabatically, which results in a vanishing 〈Wirr〉
and therefore, a high-fidelity process for any reasonable non-optimized reference ramp. However,
for short ramp times, t f . 10, ramping to stronger interactions creates more irreversible dynamics as
the system is driven further from its equilibrium, resulting in large 〈Wirr〉 and therefore, low-fidelity
final states. It is on these timescales that we see the advantages of using the STA as it outperforms the
non-optimized reference ramp, possessing lower amounts of 〈Wirr〉 for the different final interactions.
The modulations visible in 〈Wirr〉 for the STA are due to excitations of the system to high energy states
that possess the same symmetry as the ground state. While the contribution of these excitations is
small for long ramp times, when driving the system quickly the STA is unsuccessful in damping them
due to its approximate form through the ansatz in Equation (11). Indeed, divergence of 〈Wirr〉 occurs
for timescales t f . 1, when the STA ramp becomes negative at certain time intervals and destabilizes
the system. This sets a limitation on the operation of our STA to times t f > 1.
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Figure 2. (a) Initial state in the relative {X, Y} coordinate plane. Target states at (b) g f = 1, (c) g f = 5,
and (d) g f = 40. (e) 〈Wirr〉 for three indistinguishable particles as a function of the ramp time t f for the
STA (solid lines) and reference ramp (dotted lines). The final interactions are g f = 1 (blue lines), g f = 5
(red lines), and g f = 40 (black lines). Inset shows 〈Wirr〉 versus final interaction strength g f at t f = 10.

While for ramps to weak interactions the STA and the reference give comparable results,
the difference between them increases when driving to larger interactions (see inset of Figure 2e).
When using the STA, the final state is essentially reached with t f = 10 for any final interaction;
however, applying the reference ramp drives the system further from the target eigenstate with
growing interactions. This is not surprising as driving quickly to an infinitely repulsive state results
in a diverging energy expectation value [45,46]; however, in this case the STA allows us to drive the
system significantly faster than the reference as the excitations are successfully suppressed.

Finally, we compare the structure of the three-body state through comparisons of the one-body
density matrix (OBDM), whereby we examine the reduced state after tracing out two particles from
the system

ρA(x1, x
′
1) =

∫ +∞

−∞
Ψ(x1, x2, x3)Ψ∗(x

′
1, x2, x3)dx2dx3, (17)

ρB(x3, x
′
3) =

∫ +∞

−∞
Ψ(x1, x2, x3)Ψ∗(x1, x2, x

′
3)dx1dx2 . (18)

Here, ρA(x1, x
′
1) is the OBDM of a particle of species A after tracing out the other A particle and

the particle B, while ρB(x3, x
′
3) is the OBDM of particle B after tracing out the two A particles. In the

case when gA = gAB, both of these reduced states are equivalent; however, this is not necessarily true
when gA 6= gAB, as the components will be distinguishable and the rotational symmetry of the ground
will be broken.

In Figure 3, we compare the OBDM after the STA and reference interaction ramps (at t f = 10)
with that of the target OBDM. While ramps to weakly interacting states ((a,d) g f = 1 and (b,e)
g f = 5) yield exactly the same OBDM after either of the ramps, the results are different when driving
to strong interactions ((c,f) g f = 40). Indeed, the OBDM after the STA is equivalent to the target
OBDM; however, the OBDM after the reference is markedly different. Here it is instructive to compare
the diagonal density (ρ(x = x′)) of the reference OBDM to the target OBDM, which indicates that
it has a broader width. In fact, each particle localizes spatially when the interactions are strongly
repulsive, resulting in three density modulations about the center of the trap; however, the reference
interaction ramp has imparted large kinetic energy to the system, pushing the particles further from
their equilibrium positions. In comparison, the STA has precisely modulated the interaction to ensure
that any non-adiabatic energy is removed from the system by the end of the ramp, resulting in a final
state that is an eigenstate of the Hamiltonian.
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Figure 3. Target one-body density matrices (OBDMs, (white contour lines) on top of final OBDMs for
three identical particles at t f = 10. Panels (a–c) correspond to the STA, while panels (d–f) correspond to
the reference pulse. Panels (a) and (d) are for g f = 1, (b) and (e) for g f = 5, and (c) and (f) for g f = 40.

5. Driving in the Presence of Weak Fixed Interactions

Let us now consider that the inter- and intra-species interactions are different, such that we drive
one interaction term while the other interaction term is held fixed at a low value. Then, due to the
ability to tune both the inter- and intra-species interactions separately, one can consider two different
setups. The first allows the tuning of the interactions between the A particles whilst in the presence
of the impurity B atom, which we will refer to as system driving. At the same time, the inter-species
interaction between the impurity and the two A atoms is fixed at gAB = 1, such that the initial state at
gA

i = 0 possesses small cusps along the directions Y = ±X/
√

3 (see Figure 4a). Driving the interaction
gA(t) > 0 between the A atoms will introduce a delta-function interaction potential that bisects the
X-axis and forces squeezing of the density from the X to the Y direction (see target states in panels (b)
to (d) in Figure 4).

Figure 4. (a) Initial state with gAB = 1 and gA
i = 0 and (b–d) target states for gA

f = {1, 5, 40}. This case

is referred to as system driving. (e) Initial state with gA = 1 and gAB
i = 0 and (f–h) target states for

gAB
f = {1, 5, 40}. This case is referred to as impurity driving.

The second setup allows switching on the interaction with an impurity atom in a weakly
interacting two-body system, which we will refer to as impurity driving. For this, we consider
the intra-species interaction to always be fixed at gA = 1, while the interaction with the B atom is
initially gAB

i = 0. The initial state therefore describes two weakly interacting A bosons, with the
interaction bisecting the X-axis of the relative part of the wave-function (see Figure 4e). Driving
the interactions gAB(t) > 0 between the impurity and the A atoms will introduce delta-function
interaction potentials along Y = ±X/

√
3 and force the density to be squeezed in the X direction when
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the fixed interaction between the A particles is weaker than the impurity interactions (see target states
in panels (g) and (h) in Figure 4).

We assess the effect of the system driving dynamics through the irreversible work as shown in
Figure 5a. One can clearly see that for ramp times t f ≥ 10, the STA dynamics lead to the ground state
irregardless of the strength of the final interaction gA

f , while the reference ramp leads to increasing
〈Wirr〉 for stronger interactions on the same time scale (see inset in panel (a)). However, for times
t f < 10, the STA becomes less effective, similar to the case of the simultaneous driving of gA and gAB

discussed in Section 4 and for the results found in [21].

Figure 5. (a) 〈Wirr〉 after driving the system interactions in the presence of a weak fixed impurity
interaction gAB = 1. System interactions are driven to gA

f = 1 (blue lines), gA
f = 5 (red lines),

and gA
f = 40 (black lines), with the solid lines showing the result of the STA and the dotted lines

showing the result of the reference ramp. (b) Impurity driving in the presence of weak fixed system
interactions gA = 1, with final impurity interactions gAB

f = 1 (blue lines), gAB
f = 5 (red lines),

and gAB
f = 40 (black lines). Insets show 〈Wirr〉 as a function of gA

f and gAB
f , respectively, at t f = 10.

For the case of driving the impurity, we show 〈Wirr〉 in Figure 5b. The results here are subtly
different to the previous case as the STA seemingly gives less of an advantage over the reference ramp
when the interactions are weak, gAB

f ≤ 5. In fact, adiabaticity (when 〈Wirr〉 → 0) is reached for similar

timescales for both the reference and the STA, and only when driving to large interactions, gAB
f = 40,

the STA performs significantly better (see inset in panel (b)).
The fact that driving the system and driving the impurity produce qualitatively different

results with regards to the creation of irreversible work can be explained by the need for a spatial
re-organization of the particles during the interaction ramp, which can be observed in the structure
of the OBDMs for the system and the impurity (see Figure 6). Firstly, driving the system interactions
increases the repulsion between the two A particles, resulting in the appearance of two maxima in the
diagonal density for the A particles (see panels (b-1,c-1)), while the OBDM of the impurity B atom is
relatively unchanged due to the weak inter-species interaction gAB = 1 (see panels (b-2,c-2)). Similar
to Section 4, the STA successfully reaches the target eigenstate, while the reference forces the two A
atoms further apart due to its inefficient driving (see (e-1,f-1)). In comparison, driving the impurity
interaction forces the B atom to split and occupy the trap edges, being in a superposition of the left and
right sides of the trap (see panels (h-2,i-2)). The strong inter-species interaction squeezes the density of
the A atoms as they sit in the middle of the trap surrounded by the B particle (panels (h-1,i-1)). In this
case, the splitting of the impurity atom is a manifestation of phase separation in microscopic systems
as the lighter species moves to the trap edges [23,32,34,35]. Driving to a phase separated state is known
to lead to large irreversible dynamics as the particles oscillate between the miscible and immiscible
regimes [47–49]. Therefore, the STA is less effective at driving the system quickly; however, it can still
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outperform the non-optimized reference ramp (see panels (k) and (l)), bringing the final state closer to
the target eigenstate.

Figure 6. Panels (a–f): Target states (white contour lines) on top of final states (at t f = 10) for driving
system interactions between A atoms in the presence of a fixed impurity interaction gAB = 1. Panels
with index (−1) correspond to ρA(x1, x′1) = ρA(x2, x′2) while panels with index (−2) show ρB(x3, x′3).
Panels (a–c) show the STA final states while panels (d–f) show the final states for the reference pulse,
where panels (a) and (d) are for gA

f = 1, (b) and (e) are for gA
f = 5, and (c) and (f) are for gA

f = 40.
Panels (g–l): Target states (white contour lines) on top of final states (at t f = 10) for driving impurity
interactions in the presence of a fixed interactions between the A atoms gA = 1. Panels (g) and (j) are
for gAB

f = 1, (h) and (k) are for gAB
f = 5, and (i) and (l) are for gAB

f = 40.

6. Driving in the Presence of Strong Fixed Interactions

Let us next consider the driving of one interaction term while the other interaction term is held
fixed at a large value, which we can again separate into two different setups. Driving the system
interactions gA(t) when the impurity interaction is fixed at gAB = 20, and driving the impurity
interactions gAB(t) when the system interactions are fixed at gA = 20. Similar to the previous section,
the presence of strong interactions in this system can result in the formation of different structural
phases as the individual interaction terms are ramped. For instance, in the case of system driving,
a strong interaction with the impurity at t = 0 forces the relative wave-function density to align along
the X = 0 axis while being suppressed along the Y = 0 axis (see Figure 7a). Increasing the interactions
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among the A atoms then drives them apart along the X direction (see panels (b) and (c)) and forces
the density to redistribute to the previously unoccupied sectors between dips caused by the gAB

interactions. At gA
f = 40, the orientation of the maximum density is rotated by 90◦ from the initial state

and lies along the Y = 0 axis (see panel (d)). The inverse of this process is observed when driving the
impurity interaction in the presence of strong gA (see panels (e–h)). This reorganization of the particle
density highlights the emergence of different phase-separated regimes in the three-particle system.
Specifically, for fixed impurity interactions gAB = 20 and for a final system interaction of gA

f = 5, the A

particles are surrounded by the B particle (in the configuration BAB), while for gA
f = 40 the orientation

is flipped, with the B particle surrounded by the A particles (in the configuration ABA). Similarly,
for fixed system interaction gA = 20 and gAB

f = 5, the B particle is surrounded by the A particles

(ABA), and when gAB
f = 40, the A particles are surrounded by the B particle (BAB). Transitioning

between the different phase-separated regimes will become important when driving the dynamics.

Figure 7. Left panel: driving the interactions of the system when the impurity interaction is fixed at
gAB = 20. (a) Initial state with gA = 0, (b) target state at gA

f = 1, (c) gA
f = 5, and (d) gA

f = 40. Right

panel: driving the interaction with the impurity when the system interactions are fixed at gA = 20.
(e) Initial state with gAB = 0, (f) target state at gAB

f = 1, (g) gAB
f = 5, and (h) gAB

f = 40.

In Figure 8, we show the irreversible work after driving the system interactions (panel (a)) and
the impurity interactions (panel (b)). In both cases and for driving to weak final interactions, g f = 1 or
5, the STA outperforms the reference and the target state is reached on timescales t f ≈ 10. This is also
confirmed by examining the OBDM at t f = 10 (see Figure 9a,b and g,h), where the states after the STA
closely match the target OBDM, while the states after the reference ramp (panels (d,e) and (j,k)) exhibit
a slight mismatch at g f = 5. Indeed, since the strong fixed interactions dominate the structure of the
three-particle state, the positions of the particles relative to each other are not significantly altered,
which allows for efficient ramping of weak time-dependent interactions.
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Figure 8. (a) 〈Wirr〉 after driving the system interactions in the presence of a strong fixed impurity
interaction gAB = 20. System interactions are driven to gA

f = 1 (blue lines), gA
f = 5 (red lines),

and gA
f = 40 (black lines), with the solid lines showing the result of the STA and the dotted lines

showing the result of the reference ramp. (b) Impurity driving in the presence of strong fixed system
interactions gA = 20, with final impurity interactions gAB

f = 1 (blue lines), gAB
f = 5 (red lines),

and gAB
f = 40 (black lines). Insets show 〈Wirr〉 as a function of gA

f and gAB
f , respectively, at t f = 10.

However, driving to stronger interactions, g f = 40, in both setups creates large amounts of
irreversibility, irregardless of using the STA or the reference (see Figure 8), with the STA producing less
〈Wirr〉 for ramp durations t f < 20. The insets of Figure 8 show 〈Wirr〉 at t f = 10 as a function of the
final interaction strengths gA

f and gAB
f , and while the rate of increase for the STA is less than that of the

reference, it is still significant. The reason for the failure of the different interaction ramps to reach the
target state is the need for particles to spatially reorganize when the intra- and inter-species interactions
become comparable (i.e., when gA(t) ≈ gAB during system driving and gAB(t) ≈ gA during impurity
driving). For example, when driving the system interactions, the relative wave-function of the initial
state is highly localized along the X direction due to the presence of the strong impurity interactions at
Y = ±X/

√
3 (see Figure 7a), resulting in a phase-separated state in the configuration BAB. Ramping

to weak intra-species interactions (gA
f = {1, 5}) preserves the phase separation as the impurity

interaction still dominates the system (see Figure 9a,b,d,e). Increasing the intra-species interaction
further to gA = gAB requires the ground state to regain the C6ν symmetry discussed in Section 4;
however, this is difficult to achieve dynamically due to the presence of the large fixed inter-species
interactions, gAB = 20, which will suppress tunneling of the density across the delta-function barriers
at Y = ±X/

√
3. In the three particle coordinates, this corresponds to the need for the particles to tunnel

through each other [50,51]; however, they cannot reorganize on this short timescale due to the low
tunneling rates. Therefore, for the final state of gA

f = 40, the particles will remain in the phase-separated
configuration of the initial state, BAB, instead of reaching the configuration of the target state, ABA
(see Figure 9, panels (c) and (f)). The same result is observed when driving the impurity interactions
(see Figure 9, panels (i) and (l)) but with the opposite configuration of the particles.
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Figure 9. Panels (a–f): Target states (white contour lines) on top of final states (at t f = 10) for driving
system interactions between A atoms in the presence of a fixed impurity interaction gAB = 20. Panels
with index (−1) correspond to ρA(x1, x′1) = ρA(x2, x′2), while panels with index (−2) show ρB(x3, x′3).
Panels (a–c) show the STA final states, while panels (d–f) show the final states for the reference pulse,
where panels (a) and (d) are for gA

f = 1, (b) and (e) are for gA
f = 5, and (c) and (f) are for gA

f = 40.
Panels (g–l): Target states (white contour lines) on top of final states (at t f = 10) for driving impurity
interactions in the presence of a fixed interactions between the A atoms gA = 20. Panels (g) and (j) are
for gAB

f = 1, (h) and (k) are for gAB
f = 5, and (i) and (l) are for gAB

f = 40.

Since these final states are not eigenstates, their energy exceeds that of the target ground state,
resulting in finite 〈Wirr〉 (see Figure 8) even for long ramp times (t f ≈ 40), when we would assume the
driving is slow enough to be close to adiabatic. Moreover, one can see that for t f > 20, the 〈Wirr〉 of the
reference ramp is lower than that of the STA and that it decreases at a faster rate, suggesting that the
higher energy states the reference ramp drives the system through prevent it from being fully trapped
in the local energy minimum given by the wrong particle ordering. To understand this in more detail,
we show in Figure 10 the average kinetic energy 〈K〉, trap potential energy 〈Vtrap〉, and interaction
energy 〈Vint〉 at the end of the different interaction ramps. One can immediately see that for the STA
(black lines), where the ramp is specifically designed to minimize excitations, only small oscillations
of the energy components for any t f exist, while in comparison, the reference ramp is not optimized
to reduce excitations and therefore large oscillations are present. Furthermore, the kinetic and trap
energies, on average, exceed that of the respective target states, whereas the interaction energy is less
than that of the target state. This is consistent with the fact that both ramps are unable to achieve
the correct ordering of the particles, therefore leaving them in an excited state that is more extended
and therefore possesses slightly reduced interaction energies. It is also interesting to note that for
long times (t f > 20), the reference ramp gives slightly more correct energies, which again is due to it
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exciting higher lying states that help parts of the wave-function to not be trapped in the wrong state
and encourages inter-particle tunneling.

Figure 10. (a,d) Kinetic energy, (b,e) potential trap energy, and (c,f) interaction energy as a function of
t f after using the STA (black solid line) and reference (orange solid line), with the adiabatic energies
shown as the thin dotted line. (a–c) show the result of driving the system to gA

f = 40, while (d–f) show

the result of driving the impurity to gAB
f = 40. Note the different scales on the subplots.

7. Conclusions & Outlook

We have presented a study that extends the use of shortcuts to adiabaticity to interacting
few-particle systems. Using a variational technique, we have shown that certain limits exist in which
effective shortcuts for these systems, which can possess non-trivial ground states, can be designed. Our
approach works well for a number of cases, such as for three identical particles and in the presence of
fixed weak interactions, and consistently outperforms a non-optimized reference ramp. The timescales
for which high-fidelity states can be reached are comparable to those achievable using optimal control
techniques in related few-body systems [6]. We have also shown that the approach fails when the
system is required to go through a phase-separation transition that requires the particles to tunnel
through each other to achieve a new spatial ordering. As the STA is designed to reduce spurious
excitations, the particles become trapped in a quasi-stationary state with a lifetime much longer than
the driving process. One way to enhance the tunneling rates of the particles during the interaction ramp
would be to simultaneously modulate the trap potential [52], apply periodic shaking of the trap [53],
or heat the system to allow for thermal hopping [54]. These avenues will be explored in future work.
In addition, while our superposition ansatz is effective for weak interactions (see Appendix A), it can be
improved to more accurately describe the phase-separated regime by introducing intermediate states.
Moreover, while our approach has been shown to work successfully when driving interactions in the
mean-field regime [19,20], it would be interesting to extend these techniques to the full many-body
state, where the orthogonality catastrophe will have a significant effect on the dynamics [10,55–57].
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Appendix A. Accuracy of the Ansatz

To quantify the effectiveness of the interpolatory ansatz we use to design the STA ramps, we
compare it with the exact eigenstates of the interacting Hamiltonian. In Figure A1, we show the fidelity
as a function of the interaction strength, |〈ϕ(g)|ψexact(g)〉|2, where ϕ(g) is the ansatz from (11) and
ψexact(g) is the instantaneous eigenstate obtained through exact diagonalization.

Figure A1. Fidelity between instantaneous ground state obtained with exact diagonalization of the
Hamiltonian and the interpolatory ansatz as a function of g/g f . Panel (a) is the fidelity for three
identical particles, while panel (b) shows the fidelity for system and impurity driving. The final
interactions chosen are g f = 1 (blue lines), g f = 5 (red lines), and g f = 40 (black lines).

In all cases when the final interaction strength is weak (g f = {1, 5}), the ansatz matches the exact
eigenstate with almost unit fidelity. However, for strong fixed couplings and final interactions g f = 40,
the fidelity drops significantly during the beginning of the interaction ramp as the ansatz fails to
accurately account for the competition between the different interaction strengths. Similar deficiencies
have been noted using other variational ansatzes for interacting few-body systems [39], and this can
have a detrimental effect on the success of the STA in the presence of phase separation.
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6. Li, X.; Pęcak, D.; Sowiński, T.; Sherson, J.; Nielsen, A.E.B. Global optimization for quantum dynamics of
few-fermion systems. Phys. Rev. A 2018, 97, 033602, doi:10.1103/PhysRevA.97.033602. [CrossRef]

7. Torrontegui, E.; Ibáñez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.;
Ruschhaupt, A.; Chen, X.; Muga, J.G. Chapter 2—Shortcuts to Adiabaticity. In Advances in Atomic, Molecular,
and Optical Physics; Arimondo, E., Berman, P.R., Lin, C.C., Eds.; Academic Press: Cambridge, MA, USA, 2013;
Volume 62, pp. 117–169.

8. Del Campo, A. Shortcuts to Adiabaticity by Counterdiabatic Driving. Phys. Rev. Lett. 2013, 111, 100502,
doi:10.1103/PhysRevLett.111.100502. [CrossRef]

9. Cui, Y.Y.; Chen, X.; Muga, J.G. Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic
Traps. J. Phys. Chem. A 2016, 120, 2962–2969. [CrossRef]

10. Sels, D.; Polkovnikov, A. Minimizing irreversible losses in quantum systems by local counterdiabatic driving.
Proc. Natl. Acad. Sci. USA 2017, 114, E3909–E3916. [CrossRef]

11. Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to
adiabaticity: Concepts, methods, and applications. arXiv 2019, arXiv:1904.08448.

12. Schaff, J.F.; Song, X.L.; Vignolo, P.; Labeyrie, G. Fast optimal transition between two equilibrium states. Phys.
Rev. A 2010, 82, 033430. [CrossRef]

13. Schaff, J.F.; Song, X.L.; Capuzzi, P.; Vignolo, P.; Labeyrie, G. Shortcut to adiabaticity for an interacting
Bose-Einstein condensate. Europhys. Lett. 2011, 93, 23001. [CrossRef]

14. Schaff, J.F.; Capuzzi, P.; Labeyrie, G.; Vignolo, P. Shortcuts to adiabaticity for trapped ultracold gases. New J.
Phys. 2011, 13, 113017. [CrossRef]

15. Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I.E.; Schmiedmayer, J.; Trupke, M. Non-equilibrium scale
invariance and shortcuts to adiabaticity in a one-dimensional Bose gas. Sci. Rep. 2015, 5, 9820. [CrossRef]

16. Deng, S.; Diao, P.; Yu, Q.; del Campo, A.; Wu, H. Shortcuts to adiabaticity in the strongly coupled regime:
Nonadiabatic control of a unitary Fermi gas. Phys. Rev. A 2018, 97, 013628, doi:10.1103/PhysRevA.97.013628.
[CrossRef]

17. Diao, P.; Deng, S.; Li, F.; Yu, S.; Chenu, A.; del Campo, A.; Wu, H. Shortcuts to adiabaticity in Fermi gases.
New J. Phys. 2018, 20, 105004, doi:10.1088/1367-2630/aae45e. [CrossRef]

18. Pérez-García, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Low Energy Excitations of a
Bose-Einstein Condensate: A Time-Dependent Variational Analysis. Phys. Rev. Lett. 1996, 77, 5320–5323,
doi:10.1103/PhysRevLett.77.5320. [CrossRef]

19. Li, J.; Sun, K.; Chen, X. Shortcut to adiabatic control of soliton matter waves by tunable interaction. Sci. Rep.
2016, 6, 38258. [CrossRef]

20. Li, J.; Fogarty, T.; Campbell, S.; Chen, X.; Busch, T. An efficient nonlinear Feshbach engine. New J. Phys. 2018,
20, 015005, doi:10.1088/1367-2630/aa9cd8. [CrossRef]

21. Fogarty, T.; Ruks, L.; Li, J.; Busch, T. Fast control of interactions in an ultracold two atom system: Managing
correlations and irreversibility. SciPost Phys. 2019, 6, 21, doi:10.21468/SciPostPhys.6.2.021. [CrossRef]

22. Hall, D.S.; Matthews, M.R.; Ensher, J.R.; Wieman, C.E.; Cornell, E.A. Dynamics of Component Separation
in a Binary Mixture of Bose-Einstein Condensates. Phys. Rev. Lett. 1998, 81, 1539–1542, doi:10.1103/
PhysRevLett.81.1539. [CrossRef]

23. Mishra, T.; Pai, R.V.; Das, B.P. Phase separation in a two-species Bose mixture. Phys. Rev. A 2007, 76, 013604,
doi:10.1103/PhysRevA.76.013604. [CrossRef]

24. García-March, M.A.; Juliá-Díaz, B.; Astrakharchik, G.E.; Busch, T.; Boronat, J.; Polls, A. Quantum correlations
and spatial localization in one-dimensional ultracold bosonic mixtures. New J. Phys. 2014, 16, 103004,
doi:10.1088/1367-2630/16/10/103004. [CrossRef]

25. Lee, K.L.; Jørgensen, N.B.; Liu, I.K.; Wacker, L.; Arlt, J.J.; Proukakis, N.P. Phase separation and dynamics of
two-component Bose-Einstein condensates. Phys. Rev. A 2016, 94, 013602, doi:10.1103/PhysRevA.94.013602.
[CrossRef]

26. Köhler, T.; Góral, K.; Julienne, P.S. Production of cold molecules via magnetically tunable Feshbach
resonances. Rev. Mod. Phys. 2006, 78, 1311–1361, doi:10.1103/RevModPhys.78.1311. [CrossRef]

http://dx.doi.org/10.1038/srep34187
https://doi.org/10.1103/PhysRevA.97.033602
http://dx.doi.org/10.1103/PhysRevA.97.033602
https://doi.org/10.1103/PhysRevLett.111.100502
http://dx.doi.org/10.1103/PhysRevLett.111.100502
http://dx.doi.org/10.1021/acs.jpca.5b06090
http://dx.doi.org/10.1073/pnas.1619826114
http://dx.doi.org/10.1103/PhysRevA.82.033430
http://dx.doi.org/10.1209/0295-5075/93/23001
http://dx.doi.org/10.1088/1367-2630/13/11/113017
http://dx.doi.org/10.1038/srep09820
https://doi.org/10.1103/PhysRevA.97.013628
http://dx.doi.org/10.1103/PhysRevA.97.013628
https://doi.org/10.1088/1367-2630/aae45e
http://dx.doi.org/10.1088/1367-2630/aae45e
https://doi.org/10.1103/PhysRevLett.77.5320
http://dx.doi.org/10.1103/PhysRevLett.77.5320
http://dx.doi.org/10.1038/srep38258
https://doi.org/10.1088/1367-2630/aa9cd8
http://dx.doi.org/10.1088/1367-2630/aa9cd8
https://doi.org/10.21468/SciPostPhys.6.2.021
http://dx.doi.org/10.21468/SciPostPhys.6.2.021
https://doi.org/10.1103/PhysRevLett.81.1539
https://doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.81.1539
https://doi.org/10.1103/PhysRevA.76.013604
http://dx.doi.org/10.1103/PhysRevA.76.013604
https://doi.org/10.1088/1367-2630/16/10/103004
http://dx.doi.org/10.1088/1367-2630/16/10/103004
https://doi.org/10.1103/PhysRevA.94.013602
http://dx.doi.org/10.1103/PhysRevA.94.013602
https://doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/RevModPhys.78.1311


Universe 2019, 5, 207 16 of 17

27. Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 2010,
82, 1225–1286, doi:10.1103/RevModPhys.82.1225. [CrossRef]

28. Olshanii, M. Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable
Bosons. Phys. Rev. Lett. 1998, 81, 938–941, doi:10.1103/PhysRevLett.81.938. [CrossRef]

29. Zinner, N.T.; Volosniev, A.G.; Fedorov, D.V.; Jensen, A.S.; Valiente, M. Fractional energy states
of strongly interacting bosons in one dimension. EPL (Europhys. Lett.) 2014, 107, 60003,
doi:10.1209/0295-5075/107/60003. [CrossRef]

30. Zinner, N.T. Strongly interacting mesoscopic systems of anyons in one dimension. Phys. Rev. A 2015,
92, 063634, doi:10.1103/PhysRevA.92.063634. [CrossRef]

31. García-March, M.A.; Juliá-Díaz, B.; Astrakharchik, G.E.; Boronat, J.; Polls, A. Distinguishability, degeneracy,
and correlations in three harmonically trapped bosons in one dimension. Phys. Rev. A 2014, 90, 063605,
doi:10.1103/PhysRevA.90.063605. [CrossRef]

32. Garcia-March, M.A.; Juliá-Díaz, B.; Astrakharchik, G.E.; Busch, T.; Boronat, J.; Polls, A. Sharp crossover from
composite fermionization to phase separation in microscopic mixtures of ultracold bosons. Phys. Rev. A
2013, 88, 063604, doi:10.1103/PhysRevA.88.063604. [CrossRef]

33. Cazalilla, M.A.; Ho, A.F. Instabilities in Binary Mixtures of One-Dimensional Quantum Degenerate Gases.
Phys. Rev. Lett. 2003, 91, 150403, doi:10.1103/PhysRevLett.91.150403. [CrossRef] [PubMed]

34. Alon, O.E.; Streltsov, A.I.; Cederbaum, L.S. Demixing of Bosonic Mixtures in Optical Lattices from
Macroscopic to Microscopic Scales. Phys. Rev. Lett. 2006, 97, 230403, doi:10.1103/PhysRevLett.97.230403.
[CrossRef] [PubMed]

35. Zöllner, S.; Meyer, H.D.; Schmelcher, P. Composite fermionization of one-dimensional Bose-Bose mixtures.
Phys. Rev. A 2008, 78, 013629, doi:10.1103/PhysRevA.78.013629. [CrossRef]

36. García-March, M.Á.; Fogarty, T.; Campbell, S.; Busch, T.; Paternostro, M. Non-equilibrium thermodynamics
of harmonically trapped bosons. New J. Phys. 2016, 18, 103035, doi:10.1088/1367-2630/18/10/103035.
[CrossRef]

37. Deffner, S.; Jarzynski, C.; del Campo, A. Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant
Driving. Phys. Rev. X 2014, 4, 021013, doi:10.1103/PhysRevX.4.021013. [CrossRef]

38. Andersen, M.E.S.; Dehkharghani, A.S.; Volosniev, A.G.; Lindgren, E.J.; Zinner, N.T. An interpolatory ansatz
captures the physics of one-dimensional confined Fermi systems. Sci. Rep. 2016, 6, 28362. [CrossRef]
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