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Abstract
We study the dispersion interaction between two ground-state two-level atoms near a cylindrical vacuum-clad optical wave-
guide. We focus on the case where the electric-dipole matrix-element vectors of the atoms are perpendicular to each other 
and to the interatomic axis. When these atoms are in free space, the dispersion interaction between them vanishes. In the 
presence of a waveguide aligned parallel to the interatomic axis, the energy of the dispersion interaction between the atoms 
may become nonzero and comparable to the average energy of the dispersion interaction between two atoms with arbitrar-
ily oriented dipoles in free space. This waveguide-induced dispersion interaction is a consequence of the anisotropy of the 
medium around the atoms.

1  Introduction

Van der Waals or Casimir interaction between neutral but 
polarizable atoms (or molecules) is the dispersion interac-
tion caused by quantum fluctuations of the electromagnetic 
field that spontaneously induce a polarization in matter 
[1–4]. The resulting dipole–dipole interaction leads to a typi-
cally attractive potential that quickly decays for increasing 
distance between the dipoles. A large number of studies have 
been carried out for the dispersion interaction between two 
atoms in a bulk medium [1–4], the dispersion interaction of 
a single atom with a macroscopic body [2, 4], and the effects 
of macroscopic external boundaries on two-body dispersion 
potentials [5–9]. The dispersion interaction of highly excited 
(Rydberg) atoms has also been investigated [9–11].

The dispersion potentials of atoms on the axis of a metal-
lic or dielectric waveguide have been studied [12–15]. It has 
been shown that the dispersion potential of a single atom on 
the axis of a hollow metallic waveguide is strongly enhanced 
at certain resonant radii [12], the dispersion interaction 

between two atoms on the axis of a hollow metallic wave-
guide or a dielectric waveguide decays exponentially with 
distance [13, 15], and the dispersion potential between two 
atoms with axial dipoles on the axis of a dielectric wave-
guide is significantly enhanced [14, 15].

The dispersion interaction between atoms located off axis 
inside or outside a waveguide has also been investigated 
[16]. It has been shown that moving the atoms off axis can 
drastically reduce the dispersion interaction energy in the 
case of axial and azimuthal dipoles and can convert suppres-
sion of the dispersion interaction into enhancement in the 
case of radial dipoles.

The enhancement or reduction of the dispersion interac-
tion energy due to a material object is usually characterized 
by the ratio between the dispersion interaction energy in the 
presence of the object and the corresponding dispersion inter-
action energy in free space. In the previous studies [12–16], 
the dispersion interaction between atoms with the same dipole 
orientations has been considered. For such atoms, the disper-
sion interaction in free space is nonzero and the enhancement 
factor due to the presence of a waveguide is a finite quantity.

The aim of this paper is to study the waveguide-induced dis-
persion interaction between two atoms with dipoles orthogo-
nal to each other and to the interatomic axis. For such atoms, 
the dispersion interaction is zero in free space but may be not 
zero in the presence of a cylindrical waveguide, leading to an 
infinitely large enhancement factor. This waveguide-induced 
dispersion interaction appears as a consequence of the anisot-
ropy of the surrounding medium of the atoms.
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The paper is organized as follows. In Sect. 2, we describe 
the model system and present the basic equations. In Sect. 3, 
we present the results of numerical calculations. Our conclu-
sions are given in Sect. 4.

2 � Model and interatomic dispersion 
interaction

In this section, we describe the model and present the basic 
equations for the waveguide-modified dispersion interaction 
potential between ground-state two-level atoms.

2.1 � Model and basic equations

We consider two two-level atoms placed outside a cylindrical 
vacuum-clad waveguide (see Fig. 1). We label the atoms by the 
indices j = 1, 2 . Each atom has an upper energy level �+⟩j and 
a lower energy level �−⟩j . We assume that the electric-dipole 
transition between these two levels is allowed. The transition fre-
quency and the dipole matrix element of atom j are denoted by 
the symbols �j and �j , respectively. The vacuum-clad waveguide 
is a dielectric or metallic cylinder of radius a and dielectric con-
stant �1 and is surrounded by an infinite background vacuum 
or air medium of dielectric constant �2 = 1 . We use Cartesian 
coordinates {x, y, z} , where z is the coordinate along the wave-
guide axis, and also cylindrical coordinates {r,�, z} , where r 
and � are the polar coordinates in the fiber transverse plane xy. 
The position vectors of the atoms are denoted by the symbols �j.

We assume that the atoms are in their ground states. The 
interatomic dispersion potential has been obtained from the 
mutually induced dipole–dipole interaction within fourth-order 
perturbation theory [4, 6]. The expression for the dispersion 
potential between the ground-state atoms is [4, 6]

where �(�1,�2;�) is the electric Green tensor of the 
waveguide for the field with a frequency � and iu is the 
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imaginary frequency. We note that �(�1,�2;�) depends 
on the dielectric constant �1(�) of the waveguide. Conse-
quently, the Green tensor �(�1,�2;iu) at the imaginary fre-
quency iu depends on �1(iu) . We also note that U12 ≤ 0 and 
U12(�1,�2) = U21(�2,�1).

For the outer space of the waveguide ( R1,R2 > a ), the 
Green tensor � can be presented as

where �(0) and �(sc) are the vacuum and scattering parts, 
respectively. The expression for the vacuum Green tensor 
�(0) is given as [4, 17]

where k = �∕c is the wave number and the notations R = |�| 
and �̂ = �∕R with � = �2 − �1 have been introduced. The 
expression for the scattering Green tensor �(sc) is given in 
Refs. [18–21].
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decomposition of the dispersion potential U12 into three 
terms, U12 = U

(0)

12
+ U

(sc)
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+ U

(cross)

12
 , which have clear physi-

cal meanings [15]. The first term, U(0)

12
 , results from loops of 

two freely propagating photons. It dominates in the near-field 
region of distances R ≡ |�2 − �1| ≪ 𝜆j (with �j ≡ 2�c∕�j 
and j = 1, 2 ) and scales as R−6 in this region. The second 
term, U(sc)

12
 , is due to loops of two scattered photons. At short 

distances, it tends to a constant value [15]. The third term, 
U

(cross)

12
 , consists of loops involving a single-scattered photon 

and a single freely propagating photon. It has a subleading 
R−3 scaling at short distances [15].

2.2 � Dispersion interaction between two two‑level 
atoms in free space

In the case where the atoms are in free space, we have 
� = �(0) . With the help of Eqs. (1) and (3), we obtain, for 
�1 ≠ �2 , the following expression for the vacuum dispersion 
interaction potential [4, 6]:
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Fig. 1   Two two-level atoms near a cylindrical vacuum-clad wave-
guide
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In the nonretarded limit, where R ≪ 2𝜋c∕𝜔1, 2𝜋c∕𝜔2 , 
the integral in Eq. (4) is effectively limited to the region 
uR∕c ≪ 1 . Then, we have e−2uR∕c ≃ 1 . In addition, the domi-
nant terms in the vertical bars in Eq. (4) are associated with 
the factor 1∕(u2R2∕c2) . Hence, we obtain

where

In the retarded limit, where R ≫ 2𝜋c∕𝜔1, 2𝜋c∕𝜔2 , only 
small values u ≪ 𝜔1,𝜔2 contribute to the integral in Eq. (4). 
In this case, we can drop u2 in the factors �2

1
+ u2 and �2

2
+ u2 

in the denominator of the integrand. Then, we obtain

where

It is interesting to note that, in the case where the dipole 
matrix-element vectors �1 and �2 are perpendicular to each 
other and to the interatomic axis, that is,

we have U(0)

12
= 0.

When the dipole is oriented randomly in space, we can 
take the average of the expression in the integrand of Eq. (4) 
over the orientation directions of the vectors �1 and �2 . Then, 
we obtain the dipole-orientation-averaged vacuum dispersion 
potential [6]

The corresponding average values of the coefficients C6 and 
C7 are found to be [6] C̄6 = |d1|2|d2|2∕[24𝜋2�𝜖2

0
(𝜔1 + 𝜔2)] 

and C̄7 = 23c|d1|2|d2|2∕[144𝜋3�𝜖2
0
𝜔1𝜔2].

2.3 � Waveguide‑induced dispersion interaction 
between two atoms with orthogonal 
in‑transverse‑plane dipoles

In the presence of the waveguide, under conditions (9), 
although U(0)
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(5)U
(0)

12
(�1,�2) = −

C6

R6
,

(6)C6 =
1

16𝜋2�𝜖2
0
(𝜔1 + 𝜔2)

|�1 ⋅ �∗2 − 3(�1 ⋅ �̂)(�
∗

2
⋅ �̂)|2.

(7)U
(0)

12
(�1,�2) = −

C7

R7
,

(8)

C7 =
c

32𝜋3�𝜖2
0
𝜔1𝜔2

{13|�1 ⋅ �∗2|
2 + 63|�1 ⋅ �̂|2|�∗2 ⋅ �̂|

2

− 56Re[(�∗
1
⋅ �2)(�1 ⋅ �̂)(�

∗

2
⋅ �̂)]}.

(9)
�1 ⟂�2

and either �1 ⟂� or �2 ⟂ �,

(10)

Ū
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illustrate such a situation, we assume that the atoms are aligned 
along a line parallel to the fiber axis z. Then, without loss 
of generality, we can write �1 = (r, 0, 0) and �2 = (r, 0, z) in 
the cylindrical coordinates. We consider the case where the 
atomic dipole vectors are linearly polarized in the transverse 
plane xy and are orthogonal to each other. In this case, we can 
write �1 = d1(cos�1, sin�1, 0) and �2 = d2(cos�2, sin�2, 0) 
in the Cartesian coordinates, where the angles �1 = � and 
�2 = � + �∕2 characterize the directions of the orthogonal 
atomic dipole vectors �1 and �2 in the transverse plane xy. This 
leads to U(0)

12
= 0 and

In deriving Eq.  (11), we have used the fact that 
fo r  (r1,�1) = (r2,�2)  ,  o n e  h a s  t h e  r e l a t i o n s 
G(sc)

r�
(�1,�2;iu) = G(sc)

�r
(�1,�2;iu) = 0.

Due to the presence of the waveguide, the isotropy of 
the medium around the fiber is broken and, hence, we have 
G(sc)

rr
(�1,�2;iu) ≠ G(sc)

��
(�1,�2;iu) . It is then clear from 

Eq. (11) that we have U12 ≠ 0 when � ≠ 0,±�∕2,±� . Thus, 
we may obtain U12 ≠ 0 even when U(0)

12
= 0 . Note that the abso-

lute value |U12| of the waveguide-mediated dispersion potential 
U12 achieves its maximal value when � = ±�∕4,±3�∕4.

The reciprocity property of the Green tensor means that 
�(�1,�2) = �T(�2,�1) , where T is the transpose operation. 
When we use this property and Eq. (11), we find that the dis-
persion potential U12 for the considered two atoms is symmet-
ric with respect to the interatomic distance z ≡ z2 − z1 , that is, 
U12(z) = U12(−z).

Similar results can be obtained in the case where the 
atomic dipole vectors are oppositely circularly polarized in 
the transverse plane xy, that is, �1 = (d1∕

√
2)(1, i, 0) and 

�2 = (d2∕
√
2)(1,−i, 0) in the Cartesian coordinates. In this 

case, we also have U(0)

12
= 0 and U12 ≠ 0 . The expression for 

U12 is given by Eq. (11) with the replacement of the factor 
sin2(2�) by 1.

3 � Numerical results

In this section, we present the results of numerical calcula-
tions for the waveguide-mediated dispersion potential U12 . 
In our numerical calculations, we assume that the atoms 
have the same transition frequencies and the same dipole 
magnitudes, that is, �1 = �2 ≡ �0 and d1 = d2 ≡ d . We use 
the transition wavelength �0 = 2�c∕�0 = 852 nm and the 
natural linewidth �0∕2� = 5.2 MHz, which correspond to 
the transitions in the D2 line of 133 Cs atoms. The atomic 
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dipole matrix element d is calculated from the formula 
�0 = d2�3

0
∕3��0ℏc

3 for the natural linewidth of a two-level 
atom.

It is clear that the interatomic dispersion potential U12 
depends on the separation distance between the atoms and 
the distance from the atoms to the fiber. We plot in Fig. 2 
the normalized absolute value |U12|∕ℏ�0 of the interatomic 
dispersion potential as a function of the atomic separation 
distance z = z2 − z1 between the atoms near a vacuum-clad 
silica-core nanofiber. The dynamical dielectric constant �1 
for the silica core is calculated from the three-term Sellmeier 
formula [22]. The atoms are positioned on a straight line 
parallel to the fiber axis z at the positions �1 = (r, 0, 0) and 
�2 = (r, 0, z) in the cylindrical coordinates, with r∕a = 1.2 , 
1.4, 1.6, and 1.8. The dipole matrix-element vectors of the 
atoms are �1 = (d∕

√
2)(1, 1, 0) and �2 = (d∕

√
2)(1,−1, 0) 

in the Cartesian coordinates. In this case, conditions (9) are 
satisfied and, hence, the vacuum dispersion potential U(0)

12
 

vanishes. Despite this fact, we observe from Fig. 2 that, in 
general, the dispersion potential U12 is not vanishing. We 
observe that |U12| is very small compared to the natural 
linewidth ℏ�0 . However, the fiber-induced-modification fac-
tor U12∕U

(0)

12
 is infinitely large because U(0)

12
=0. We will show 

later (see Fig. 5) that, when the atoms are close enough to 
the surface and the separation distance between the atoms 
is large enough as compared to the atomic transition wave-
length, the waveguide-mediated dispersion potential U12 can 
become not only comparable to but also slightly larger than 

the dipole-orientation-averaged vacuum dispersion potential 
Ū

(0)

12
.

In addition, we observe from Fig. 2 that the absolute value 
|U12| has a dip and a peak in the dependence on the intera-
tomic axial distance. The formation of the dip and the peak 
is a result of the effects of the scattering of virtual photons 
from the fiber surface. The positions of the dip and the peak 
depend on the distance from the atoms to the fiber surface. 
Note that, in the case of Fig. 2, the dispersion potential U12 
tends to a finite value when the atomic separation distance 
z tends to 0. This feature is a consequence of the fact that, 
since U(0)

12
= 0 , we have U12 = U

(sc)

12
 , where U(sc)

12
 is a function 

that approaches a constant value at short distances [15].
We note that in Fig. 2 we plotted the potential U12 only for 

z ≡ z2 − z1 > 0 . The reason is that, in the case of this figure, 
the potential is symmetric with z. This symmetry means that 
direction-dependent effects [23–28] are not witnessed in the 
behavior of the calculated dispersion potential.

We plot in Fig. 3 the normalized absolute value |U12|∕ℏ�0 
of the interatomic dispersion potential as a function of the 
distance r = r1 = r2 from the atoms to the fiber axis. The 
atoms are positioned on a straight line parallel to the fiber 
axis, and the separation distance between the atoms along 
the fiber axis is k0z = 0.5 , 1, and 2. Figure 3 shows that 
the behavior of the radial dependence of the potential U12 
depends on the interatomic axial distance z.

The interatomic dispersion potential U12 depends on the 
directions of the atomic dipole vectors in the transverse 
plane xy. We plot in Fig. 4 the normalized absolute value 
|U12|∕ℏ�0 of the interatomic dispersion potential as a func-
tion of the angle � , which characterizes the orientations of 
the atomic dipoles relative to the radial direction. The atoms 
are positioned on a straight line parallel to the fiber axis. 
The axial separation distance between the atoms is k0z = 1 , 
the radial position is r∕a = r1∕a = r2∕a = 1.4 , and the 

k0 z

r/a = 1.2
= 1.4
= 1.6
= 1.8

Po
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l |
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| /

h
0

Fig. 2   Normalized absolute value |U
12
|∕ℏ�

0
 of the interatomic dis-

persion potential as a function of the separation distance z = z
2
− z

1
 

between the atoms near a vacuum-clad silica-core nanofiber. The 
fiber radius is a = 250  nm. The atoms are located on a straight 
line parallel to the fiber axis z at the positions �

1
= (r, 0, 0) and 

�
2
= (r, 0, z) with r∕a = 1.2 (solid red line), 1.4 (dashed green line), 

1.6 (dash-dotted blue line), and 1.8 (dotted magenta line) in the cylin-
drical coordinates. The dipole matrix-element vectors of the emitters 
are �

1
= (d∕

√
2)(1, 1, 0) and �

2
= (d∕

√
2)(1,−1, 0) in the Cartesian 

coordinates. The dipole magnitude d = |�
1
| = |�

2
| corresponds to 

the natural linewidth �
0
∕2� = 5.2 MHz of the D

2
 line of a 133 Cs atom 

with the transition wavelength �
0
= 852 nm. Due to the symmetry of 

U
12

 with respect to z, we plot it only for z > 0
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te
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l |
U

12
| /

h
0
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k0 z = 0.5
= 1
= 2

Fig. 3   Normalized absolute value |U
12
|∕ℏ�

0
 of the interatomic disper-

sion potential as a function of the distance r = r
1
= r

2
 from the atoms 

to the fiber axis. The atoms are positioned on a straight line parallel 
to the fiber axis with the axial separation distance k

0
z = 0.5 , 1, and 2. 

Other parameters are as in Fig. 2
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azimuthal position is � = �1 = �2 = 0 . The dipole matrix-
element vectors of the emitters are �1 = d(cos�, sin�, 0) 
and �2 = d(− sin�, cos�, 0) in the Cartesian coordinates. 
Figure 4 shows that U12 ≠ 0 for � ≠ 0,�∕2,� . We observe 
that |U12| achieves its maximal value when � = �∕4, 3�∕4.

As already mentioned, in the case where the vacuum dis-
persion potential U(0)

12
 is zero but the waveguide-mediated 

dispersion potential U12 is not zero, the factor U12∕U
(0)

12
 is 

infinitely large. In order to characterize the relative magni-
tude of U12 in this case, we can use the dipole-orientation-
averaged vacuum dispersion potential Ū(0)

12
 instead of the 

potential U(0)

12
= 0 . We plot in Fig. 5 the ratio U12∕Ū

(0)

12
 as a 

function of the separation distance z = z2 − z1 between the 
atoms for the parameters of Fig. 2. Comparison between 
the curves shows that, when the atoms are close enough to 
the surface and the separation distance between the atoms 
is large enough as compared to the atomic transition wave-
length, the waveguide-mediated dispersion potential U12 can 
become not only comparable to but also slightly larger than 
the dipole-orientation-averaged vacuum dispersion potential 
Ū

(0)

12
.

The interatomic dispersion potential U12 depends on the 
material of the waveguide. We plot in Fig. 6 the normalized 
absolute value |U12|∕ℏ�0 and the ratio U12∕Ū

(0)

12
 as functions 

of the separation distance z = z2 − z1 between the atoms near 
an infinitely long cylinder made of gold, silicon, and silica. 
The dielectric constants �1 for gold and silicon were calcu-
lated from the Drude [15, 29] and Drude–Lorentz [15, 30] 
models, respectively. In the case of gold, the metallic loss 
was taken into account by using the Drude model for the 
complex dielectric constant �1 of a metal [15, 29]. Figure 6 
shows that the modifications caused by the gold nanowire 
are, in general, larger than those caused by the silicon cyl-
inder or the silica nanofiber. Figure 6b indicates that the 
dispersion potential U12 in the cases of gold and silicon can 
become substantially larger than the dipole-orientation-
averaged vacuum dispersion potential Ū(0)

12
 . It is interesting 

to note that the two curves for gold and silicon are quite 
similar to each other although gold is a metal and silicon 
is a dielectric. This similarity is a result of the fact that the 
effect of the waveguide material on the potential U12 occurs 
through the dielectric constant �1(iu) , which, at the imagi-
nary frequency iu ≃ i�0 , takes similar real and large values 
for both gold and silicon in the framework of the Drude 

0 /4 /2 3 /4

Po
te

nt
ia

l |
U

12
| /

h
0

Fig. 4   Normalized absolute value |U
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0
 of the interatomic dis-

persion potential as a function of the dipole orientation angle � . The 
atoms are positioned on a straight line parallel to the fiber axis. The 
axial separation distance between the atoms is k

0
z = 1 , the radial 

distance is r∕a = r
1
∕a = r

2
∕a = 1.4 , and the azimuthal position is 
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1
= �
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= 0 . The dipole matrix-element vectors of the emitters 

are �
1
= d(cos�, sin�, 0) and �
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= d(− sin�, cos�, 0) in the Carte-

sian coordinates. Other parameters are as in Fig. 2
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 with respect to z, we plot only for z > 0

k0 z

(a)

(b)
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silica
silicon
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| /
h

0
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Fig. 6   Normalized absolute value |U
12
|∕ℏ�

0
 (a) and ratio U

12
∕Ū

(0)

12
 (b) 

as functions of the separation distance z = z
2
− z

1
 between the atoms 

near an infinitely long cylinder made of gold (solid red lines), sili-
con (dashed green lines), and silica (dotted blue lines). The cylinder 
radius is a = 250 nm. The atoms are positioned on a straight line par-
allel to the fiber axis z at the radial position r∕a = 1.2 . Other param-
eters are as in Fig. 2. The horizontal dotted line in part (b) indicates 
the value 1 and is a guide to the eye. Due to the symmetry of U

12
 with 

respect to z, we plot only for z > 0
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[15, 29] and Drude–Lorentz [15, 30] models, respectively. 
It follows from the Drude model [15, 29] that metallic losses 
lead to a reduction of the dielectric constant at imaginary 
frequency and hence to a reduction of the interatomic disper-
sion potential. At least for the distances we have looked at 
so far ( k0z ≤ 10 ), the loss in gold does not seem to manifest 
compared to silica or silicon at larger atomic separations 
when off-resonant interatomic ground-state interactions are 
considered—we simply see the benefit of larger potential 
magnitude coming from the large absolute value of the real 
part of gold’s permittivity.

We note that, for the parameters of Fig. 6, the disper-
sion potentials induced by gold, silicon, and silica wave-
guides are symmetric with respect to the interatomic dis-
tance z = z2 − z1 , and therefore, we plotted in Fig. 6 only 
for z > 0 . We could not observe any signature of unidirec-
tional information transfer [23–28] in the obtained intera-
tomic dispersion potential. A possible reason is that we 
studied atoms with dipoles aligned in the fiber transverse 
plane. A manifestation of chiral interaction in the disper-
sion potential may be observed when a dipole has both 
axial and radial components [31–34]. Such chiral effects 
can be significant in the case of metals despite the pres-
ence of losses.

4 � Summary

In this paper, we have studied the dispersion interaction 
between two ground-state two-level atoms near a cylindri-
cal vacuum-clad optical waveguide. We have examined 
the case where the electric-dipole matrix-element vec-
tors of the atoms are perpendicular to each other and to 
the interatomic axis. When these atoms are in free space, 
the dispersion interaction between them vanishes. How-
ever, in the presence of a waveguide aligned parallel to the 
interatomic axis, the energy of the dispersion interaction 
between the atoms may become nonzero and comparable 
to the average energy of the dispersion interaction between 
two atoms with arbitrarily oriented dipoles in free space. 
This waveguide-induced dispersion interaction is a conse-
quence of the anisotropy of the medium around the atoms. 
We have shown that the interatomic dispersion potential 
tends to a finite value when the atomic separation distance 
tends to 0. Our results are useful when trying to control 
and manipulate the dispersion interaction between atoms, 
molecules, and particles using nanofibers. Our calculations 
can be extended to excited atoms and to various material 
boundary configurations.
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