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ABSTRACT: Organic-inorganic hybrid perovskites (OHPs) have garnered much attention among the photovoltaic and light emit-

ting diode research community due to their excellent optoelectronic properties and low-cost fabrication. Defects in perovskites have 

been proposed to affect device efficiency and stability, and to have a potential role in enabling ion migration. In this study, the 

dynamic behavior and electronic properties of intrinsic defects in CH3NH3PbBr3 (MAPbBr3) were explored at the atomic scale. We 

use scanning tunneling microscopy (STM) to show unambiguously the occurrence of vacancy-assisted transport of individual ions, 

as well as the existence of vacancy defect clusters at the OHP surface. We combine these observations with density functional theory 

(DFT) calculations to identify the mechanisms for this ion motion and show that ion transport energy barriers, as well as transport 

mechanisms, at the surface depend on crystal direction. DFT calculations also reveal that vacancy defect clusters can significantly 

modify the local work function of the perovskite surface, which is then expected to alter interfacial charge transport in a device. Our 

work provides a microscopic insight into the mechanism of ion migration in OHPs, and also delivers the useful information for device 

improvement from the perspective of interface engineering.  

KEYWORDS: organic-inorganic hybrid perovskite, scanning tunneling microscopy, density functional theory, ion mi-

gration, defects, interface properties  

 

Organic-inorganic hybrid perovskites (OHPs) have become a 

main focus for the thin-film solar cell research community due 

to their advantageous optoelectronic properties, low material 

cost, and versatility in processing methods. Certified high 

power conversion efficiencies up to 25.2%1 have been 

achieved. However, a substantial trap density has been observed 

and suggested to influence device performance 2-4 and stability.5 

Defect passivation engineering has been widely employed to re-

duce defect densities in OHPs.6-10 On the basis of strategic co-

ordination chemistry employing Lewis base and Lewis acid 

molecules, different types of defects were proposed to co-exist 

in OHPs, such as (i) cation-vacancies (e.g., Cs+, CH3NH3
+ = 

MA+, etc.),9 (ii) halide-vacancies (e.g., I and Br) leading to 

exposure of under-coordinated Pb2+ ions,7-10 (iii) metallic lead 

(Pb0),6 (iv) halide-excess (e.g., I2)
11,12 and (v) anti-site PbI3

- de-

fects.13 Traps can be caused by defects in the crystal lattice, at 

the perovskite grain boundaries, and/or at the interface between 

the perovskite layer and adjacent layers,14 thus understanding 

the nature of these defects is of great importance for further de-

vice optimization and stability improvement.5, 15 Additionally, 

density functional theory (DFT) results have shown that Frenkel 

defects (e.g., Pb2+, I, Br, MA+) lead to both deep and shallow 

trap states in OHPs,16-19 while Schottky pair defects (e.g., PbI2 

and PbBr2 vacancies and MAI and MABr vacancies) do not 

generate trap states within the band gap.20 Intrinsic vacancy de-

fects have also been suggested to provide pathways for both cat-

ions and anions to move within OHPs.21-24 This ion migration 

phenomenon has been implicated as a possible cause for mate-

rial degradation and current-voltage hysteresis.25,26 Although 

evidence supporting ion migration in perovskite films and de-

vices has been reported,27-30 the exact chemical nature of the de-

fects, the mechanism of ion migration, and how this motion af-

fects the local structure, remain elusive.  

Understanding defects at the perovskite surface is of particu-

lar interest since those defects will have a direct impact on 

charge transfer properties at the interface between the perov-

skite film and adjacent layers, typically a charge selective layer 

or an electrode, in the final device. Interfaces are thought to be 

a major site of charge recombination31 and understanding how 

their structure affects charge transfer is essential for establish-

ing rational interface engineering strategies. Scanning probe 

microscopy is widely used for characterization of perovskite 

materials,32 and scanning tunneling microscopy (STM) has 

been demonstrated to be an ideal tool to study the atomic struc-

ture and stability of the surface of OHPs.33-36 STM is also a suit-

able tool for studying dynamics at the atomic scale.37 STM stud-

ies have resolved defects in the perovskite crystal lattice for 

both MAPbBr3 and MAPbI3,
33,34 and recently theoretical studies 



 

have been performed to address the origin of the intrinsic de-

fects.38,39 In particular, a theoretical study showed that for MAP-

bBr3 the defects visualized by STM are likely MABr or Br- va-

cancies, and that the electronic states associated with them are 

highly localized around the defect sites.39 However, defect dy-

namics in OHPs has yet to be explored with STM. Experimental 

support for ion migration has been shown at the device level, 

but atomic scale verification of this phenomenon and the mech-

anism at the origin of it is lacking. Here, the nature and dynam-

ics of surface defects in the perovskite crystal lattice, as well as 

their impact on local electronic properties, are explored via a 

combined study utilizing STM experiments and DFT calcula-

tions. Several defect species at the atomic scale are observed, 

and an atomic scale investigation of ionic motion in OHPs is 

presented. 

 

Figure 1. Intrinsic defects at the atomic scale on the surface of MAPbBr3. (a) STM image of the pristine MAPbBr3 surface, with MA 

molecules overlaid to show relative position. The dashed red square denotes the unit cell of the MAPbBr3 (010) surface. (b) STM image of 

an unpaired Br- (gray dot) at the point where two Br- pair orientations (green and blue rectangles) meet. (c) STM image of two adjacent 

unpaired Br- (two gray dots), located near a vacancy. d-f) STM images of single, double and triple vacancy defects, respectively. g-i) Top 

view of the model slab used for DFT defect formation energy calculations for the single, double, and triple vacancy defect cases, respectively. 

Solid green and red circles denote Br- and MA+ vacancy locations, respectively. Dashed black circle in (g) highlights a rotated MA+ molecule. 

Image sizes: a) 1.61.6 nm2 b) 2.02.0 nm2 c) 1.81.8 nm2 d) 1.81.8 nm2 e)1.71.7 nm2 f)1.61.6 nm2. Imaging parameters: sample bias 

a-c,e,f) V = -9.0 V d) V = -3.0V ; tunneling current a-c,e,f) I = 20 pA d) I = 100pA. Sample Type: a-c,e,f) single crystal d) thin film. Color 

code: N (blue), C (gray), H (white), Br (brown). All scale bars are 5.0Å.  

RESULTS AND DISCUSSION 

The work by Ohmann et al. showed the surface reconstruc-

tion of MAPbBr3 originating from the relative position and ori-

entations of the dipole of neighboring MA cations.33 Here, sim-

ilar STM images of the pristine surface (Fig. 1a) are obtained 

on MAPbBr3 samples prepared by both the single crystal cleav-

age method and the co-evaporation method (see methods for 

details). Br- ions are seen as bright protrusions in STM images, 

and the electrostatic interaction of the partially positive nitrogen 

atoms (blue atoms, Fig. 1a) with two neighboring Br anions 



 

causes “pairing” of the Br-. The Br- pairs have two possible ori-

entations at the (010) surface, which are orthogonal to each 

other. 

Defects can occur on the paired Br surface, and our STM in-

vestigation revealed multiple types of intrinsic defects at the 

atomic scale. The first defect type is an unpaired Br anion (gray 

dot in Fig. 1b), which occurs when there is a pair orientation 

mismatch in the same row (blue and green rectangles in Fig. 

1b). The orientation mismatch results in a single Br- that has 

bromide neighbors in each adjacent lattice position, but is 

paired with none of them. In most cases, the unpaired Br defects 

are isolated from one another. However, it was also observed 

that two adjacent unpaired Br defects can occur when there is a 

vacancy nearby (Fig. 1c). These vacancies constitute the second 

type of defect observed, and they appear as a dark depression in 

STM images (Fig. 1d). Here, multiple types of vacancies, in-

cluding single, double, and triple defects (Fig. 1d-f, respec-

tively) were observed. A recent DFT study provided theoretical 

evidence showing that these depressions in STM images are 

likely either a charged Br‒ vacancy or a neutral MABr va-

cancy.39  

To further characterize the above observed defects, DFT cal-

culations were performed (see methods for details) considering 

both MABr and Br‒ vacancies using a 22 supercell (Fig. S1).40 

The formation energies for MABr and Br- vacancies are calcu-

lated by  

𝐸𝑓𝑜𝑟𝑚(𝑉𝑀𝐴𝐵𝑟) = 𝐸𝑀𝐴𝐵𝑟 + 𝐸𝑉𝑀𝐴𝐵𝑟 − 𝐸𝑀𝐴𝑃𝑏𝐵𝑟3 

and 

𝐸𝑓𝑜𝑟𝑚(𝑉𝐵𝑟) = 𝐸𝐵𝑟 + 𝐸𝑉𝐵𝑟 − 𝐸𝑀𝐴𝑃𝑏𝐵𝑟3 

respectively, in which 𝐸𝑓𝑜𝑟𝑚  is the formation energy; 𝐸𝑀𝐴𝐵𝑟 

and 𝐸𝐵𝑟 are the electronic energies of MABr and Br- species, 

respectively; 𝐸𝑉𝑀𝐴𝐵𝑟 and 𝐸𝑉𝐵𝑟 are the electronic energies of the 

defective MAPbBr3 surface with MABr and Br- vacancies, re-

spectively; 𝐸𝑀𝐴𝑃𝑏𝐵𝑟3  is the electronic energy of the pristine 

MAPbBr3 surface. A formation energy of 1.94 eV was obtained 

for a single MABr vacancy, compared to 2.48 eV for a Br‒ va-

cancy, suggesting a preference for the formation of MABr va-

cancies. This trend is consistent with previous calculations in 

the literature39. It is worth noting that these values were ob-

tained without correction for van der Waals forces. To evaluate 

the influence of van der Waals forces additional calculations 

were performed and the same trend was found (Table S1). Thus, 

more complex calculations in this study were performed with-

out van der Waals corrections to save computational time. Ad-

ditionally, because a neutral MABr vacancy was found to be 

more energetically favorable (1.94eV), we only consider MABr 

vacancies in subsequent calculations unless otherwise stated. 

We do not, however, use this as a basis to rule out the possibility 

of charged vacancies in perovskite films. Rather, we focus on 

the neutral defect due to computational concerns related to the 

influence of image charge in the case of a charged vacancy. For 

a single MABr vacancy, calculations show that there is a 90º 

rotation of the MA cation adjacent to the defect (Fig. 1g, dotted 

black circle), with the positive nitrogen end of the dipole near 

the unpaired Br-. The formation energies for double and triple 

MABr vacancies were also calculated and found to be 3.49 eV 

and 5.36 eV, respectively. Having characterized the surface de-

fects observed on the MAPbBr3 surface, we now focus on the 

dynamics seen at the surface. 

The first manifestation of dynamics at the perovskite surface 

consists of Br- pair reorientation, which was observed in con-

secutive STM images of the same area. In the (010) surface re-

construction, Br- pairs are oriented along either the [101] or [10-

1] axes, which are orthogonal to each other (green and blue rec-

tangles in Fig. 2a and b). Strikingly, Br- pairs could dissociate 

and re-associate with neighboring Br- ions, thus forming pairs 

rotated 90 (blue rectangles in Fig. 2b) compared to their origi-

nal orientation (green rectangles in Fig. 2b). In the case shown 

in Fig. 2, the reorientation occurs within a single “orientation 

domain” (i.e., all rows start with the same orientation). Br- pair 

reorientation can also occur at the edge of two orientation do-

mains (Supplemental Movie 1).  

 

Figure 2. Br- pair orientation shift. a,b) Consecutive STM images 

of single crystal MAPbBr3 showing a Br- pair orientation shift. The 

three rows start in the same orientation (a, green rectangles), but 

the middle row undergoes an orientation shift to form pairs rotated 

90 (b, blue rectangles) from the original orientation. Image size: 

a-b) 2.3  2.3 nm2. Imaging parameters: a-b) sample bias voltage = 

–9.0 V; tunneling current = 20 pA. c-e) DFT simulations of Br- di-

mer reorientation showing the initial (c), transition (d) and final 

states (e). The transition state energy is 0.31eV higher than the ini-

tial and final states, which were found to have the same energy. 

Color code: N (blue), C (gray), H (white), Br (brown). 

A DFT simulation of the Br- pair reorientation process was 

calculated using a 31 supercell (Fig. S1) and shows that a ro-

tation of the MA+ molecules is accompanied by a separation of 

Br- pairs (Fig. 2d). Further rotation in the same direction then 

results in those separated Br- creating a pair with their other 

neighbor. The initial and final states were found to have the 

same energy, indicating that there is no preferred orientation for 

the Br- pairs at the perovskite surface. This result is consistent 

with our experimental observation where the same row may re-

orient but then later return to its original orientation. In addition 

to a rotation within an orientation domain as shown in Fig. 2, 

reorientation events were observed occurring along an orienta-



 

tion domain boundary (i.e., one of the rows adjacent to the re-

orienting row is of the opposite orientation). It was found a re-

orientation event has a lower transition state energy barrier of 

0.13 eV when it occurs at an orientation domain boundary, com-

pared to 0.31 eV when it occurs within a single orientation do-

main (Fig. S2). The lower energy barrier means that reorienta-

tion is more likely to occur at the boundary of two orientation 

domains. Additionally, from experimental observation, reorien-

tation cascades tend to start and terminate more often near de-

fects. DFT calculations comparing separation of a Br- pair on a 

pristine surface versus a surface with a vacancy defect suggest 

that the proximity of a vacancy facilitates the Br- unpairing. A 

lower energy of separation for paired Br- was found when the 

pair is near an MABr vacancy (Fig. S3). This calculation result 

can explain the two adjacent unpaired Br- ions close to an MABr 

vacancy in Fig. 1c. The calculation shows that the unpairing of 

the Br- ions is also accompanied by a rotation of the MA cation 

on the defective surface. The MA+ rotation and Br- pair separa-

tion are also necessary for allowing the Br- pair reorientation 

event. This suggests that a reorientation event is more energeti-

cally favorable when occurring near a vacancy defect. It is 

worth noting that these reorientations were observed occurring 

in cascades covering distances on the order of tens of nanome-

ters (Fig S4). Thus, it could be possible that defect movement 

in one area of the perovskite surface could cause an orientation 

shift that then affects a remote area of the film.  

In addition to Br pair reorientation, MABr vacancy-assisted 

ion transport along the surface was also imaged. Consecutive 

STM images (Fig. 3a and b) show mobility of the vacancies 

along the perovskite surface. Multiple ion transport paths were 

identified and DFT simulations were performed. Importantly, a 

substantial difference in energy barrier was found depending on 

the mechanism. To simulate the ion transport process, a sequen-

tial mechanism in which Br- moves first, followed later by MA+, 

was envisaged by DFT. In the first step, when Br- moves alone, 

there is a higher transition energy of 0.91eV and an increase in 

system energy of 0.14 eV (Fig. 3c-f). This energy increase is 

likely due to an increase in electrostatic potential energy from 

the creation of isolated charges. In contrast, when a simultane-

ous transport mechanism is considered, where MA+ and Br- mi-

grate together, the transition energy barrier is lowered to 0.46 

eV and there is no increase in the system energy (Fig. 3g-j). This 

finding is significant as it suggests that once an MABr vacancy 

exists at the surface, the MA+ and Br- tend to diffuse together 

when moving along the (010) surface layer. This result unam-

biguously shows that defects migrate not just at the grain 

boundaries, but also along the perovskite interface with other 

layers in a device. This implies that there is temporal change of 

local interfaces properties.

 

 

Figure 3. MABr vacancy-assisted ion transport along the surface of MAPbBr3. a-b) Consecutive STM images showing vacancy defect 

movement along the surface of an ultra-thin film of MAPbBr3 at 180 K. Models and energy diagrams calculated via DFT of a sequential 

migration (c-f) and simultaneous migration (g-j) of MABr. The sequential migration is simulated by a Br migration as the first step. Image 

sizes: a-b) 1.7  1.7 nm2. Imaging parameters: a-b) sample bias voltage = 1.4 V; tunneling current = 50 pA. Color code: N (blue), C (gray), 

H (white), Br (brown). Scale bars in a and b are 5.0Å.



 

Aside from ion transport along the perovskite surface, it was 

also observed that vacancies and ions can move in the z-direc-

tion, through the perovskite film. This is significant since such 

ion migration has been suggested as a potential cause of hyste-

resis and material degradation in the device,25,26 although the 

mechanism has been unclear. Here, in consecutively recorded 

STM images (Fig. 4a,b), a single vacancy defect appears at the 

surface (i.e., the vacancy assists ion transport from the surface 

to the bulk). This observation strongly supports the hypothesis 

that these vacancies provide a pathway for ion migration in per-

ovskite materials. The opposite event was observed as well, 

wherein a single vacancy assists ion transport from the bulk to 

the surface (Fig. S5), which is consistent with        

Figure 4. MABr vacancy-assisted ion transport in Z-direction. 

Consecutive STM images acquired at 77K on thin film MAPbBr3 

showing an MABr vacancy-assisted ion transport from the surface 

layer (a) to the bulk (b). Image sizes: a-b) 1.8  1.8 nm2. Imaging 

Parameters: a-b) sample bias voltage = –3.0 V, tunneling current = 

100 pA. Color code: N (blue), C (gray), H (white), Br (brown). 

Scale bars are 5.0Å. 

device level measurement indicating ion migration to be re-

versible.27,41 Importantly, the fact that the surface layer structure 

changes means that the interface in a device can change as de-

fects appear and disappear. Although it is challenging to per-

form a rigorous determination of ion transport event frequency 

via STM, a rough range of one event per 101-103 seconds can 

be estimated based on the STM image acquisition time and line 

scan speed. More importantly, these events can occur at a much 

higher frequency at the fabrication and operation temperatures 

of a device, which are significantly higher than the STM imag-

ing temperatures in this work. 

Of the dynamic events observed, the surface to bulk move-

ment is of special interest since it more closely corresponds to 

the widely studied but not well understood phenomenon of ion 

migration in perovskite solar cells. One mystery that remains is 

the mechanism by which ion migration occurs. DFT calcula-

tions were performed to identify the possible mechanism of the 

ion transport observed via STM. The calculation considers a 

cell in which a single MABr vacancy defect exists in the bulk 

layer. Thereafter, a simulation of the transport of the MABr va-

cancy was performed. It was found that it is energetically more 

favorable by 0.75eV for the MABr vacancy to be in the surface 

layer than in a bulk layer. Simulations of multiple migration 

mechanisms were tested and it was found that a sequential 

mechanism is energetically favored (Fig. 5a,b). In this sequen-

tial process, a Br- ion moves from the sub-surface layer to the 

bulk layer. This is followed by an MA molecule crossing from 

the surface layer to the bulk layer via the Br- vacancy left in the 

sub-surface layer. Finally, in the last step of the process, a Br- 

ion travels from the surface layer to the sub-surface layer. The 

energy barrier for a multi-step process is determined by the 

highest barrier for an individual step. An energy diagram show-

ing the barrier for each step (Fig. 5c) reveals that the highest 

barrier is 0.55 eV and occurs during the second step, as the MA+ 

crosses through the sub-surface layer. Actual computed ion 

transport energy curves and intermediate crystal structures are 

shown in Fig. S6 and Fig. S7, respectively. For the reversed se-

quential mechanism that describes the MABr vacancy migrat-

ing from surface to bulk, 1.09 eV is the overall energy barrier. 

The energetic favorability of the forward sequential mechanism 

compared to a simultaneous transport mechanism in which 

MA+ and Br- migrate together (Fig. S8), can be explained by a 

decrease in steric hindrance. During the first step of the sequen-

tial mechanism, the Br- vacancy formed in the sub-surface layer 

provides a larger gap through which the MA+ can cross the 

atomic layer. Additionally, this mechanism is sterically favora-

ble because only the MA+ is crossing the sub-surface layer, ra-

ther than the larger MABr passing through the layer as one unit. 

It bears mentioning that there was no external stimulus (e.g., 

external bias, light, temperature, or chemical gradient) consid-

ered in our calculations. Many factors are at play contributing 

to ion transport in an operating device, and multiple pathways 

for transport have been suggested.42 The sequential mechanism 

examined here provides one answer to the question of how ion 

transport occurs in perovskite films. Ion migration induced by 

the built-in electric field of devices has been shown to be re-

versible and the transport seen here can provide clues about how 

the ions re-establish their original equilibrium distribution after 

a device is turned off.24, 43 Specifically, we contrast the z-direc-

tion ion transport case, where MA+ and Br- move sequentially, 

with the case of along the surface transport, where the MA+ and 

Br- ions were found to move simultaneously. Transport along 

the surface does not require the MA+ ion to pass through the 

sterically constrained PbBr2 sub-surface layer, which allows 

simultaneous movement of MA+ and Br- to be energetically fa-

vorable (Fig. 3c-j). Although our calculation describes cases of 

ion transport that involve surface layers, some information re-

garding transport in the bulk can be extracted. The energy pro-

file in Fig. 5c shows that the highest energy transition state oc-

curs when the MA+ crosses through the sterically hindered 

PbBr2 subsurface layer. Such PbBr2 layers placed deeper into 

the bulk can also be expected to cause a high transition state 

barrier for the z-direction, i.e., [010] direction, migration in the 



 

bulk. Although the magnitude of the difference in energy barri-

ers between ion transport along the [10±1] and [010] directions 

may be different for the bulk case, it is reasonable to expect mi-

gration along the [010] direction will have a higher energy bar-

rier, as the hurdle of crossing the PbBr2 layer still exists in the 

bulk. That energy barrier is expected to increase in the case 

where an MA+ alone is migrating and there is no Br vacancy 

nearby to facilitate the crossing of the PbBr2 layer, making 

[010] migration even less favorable.  

 

Figure 5. Sequential migration mechanism. a) Schematic drawing showing MA+ and Br- movement for each step of the mechanism. Empty 

circles represent vacancies. b) Crystal structures from DFT simulation of the sequential mechanism. Empty circles represent vacancies. c) 

Illustration of the energy profile for the sequential mechanism showing the energy barrier for each step. The highest energy barrier, and thus 

the barrier for the entire mechanism, is highlighted in red. 

 

Figure 6. Effect of crystal orientation on ion migration. Schematic drawing showing the impact of crystal orientation alignment with the 

built-in electric field in devices. The change in ion migration energy barrier could lead to variation in the time needed to achieve steady state 

operation and to re-establish dark condition equilibrium.



 

It should be noted that both the thin film and single crystal 

samples are terminated with the (010) plane at the surface.33, 35 

In contrast, polycrystalline films used in devices may have crys-

talline grains with orientations that vary from grain to grain,44,45 

which could result in different migration energies. The depend-

ence of the migration energy on the direction of migration has 

important consequences for perovskite devices, which are made 

from polycrystalline films with grains of varying orientation. 

Specifically, the orientation of the individual grains with re-

spect to the vertical axis of the device, along which the built-in 

electric field occurs, will affect paths along which ions migrate 

under illumination and subsequently diffuse back to equilib-

rium during dark conditions (i.e., at night). The paths along dif-

ferent crystal directions will have different migration energies, 

and thus different time constants for achieving steady state op-

eration and for returning back to dark condition equilibrium 

(Fig. 6). It has been reported that perovskite solar cells have re-

versible losses under illumination due to cation migration, and 

that a certain recovery time in the dark is needed to return to 

original efficiency.24 This recovery time depends on the energy 

barrier for ions to diffuse back to equilibrium, which would be 

affected by the distribution of grain orientations. Identifying a 

specific orientation that enables quick device recovery could 

provide a valuable research avenue for creating perovskite solar 

cells that have an overall higher performance, better stability 

and are well suited to locations with rapidly changing sun irra-

diance. 

Figure 7. Surface defect-induced work function modification. 

Electric potential plotted as a function of position relative to the 

surface. Position of -10 Å corresponds to the bottom of the slab. 

(Inset) Zoom on the vacuum region to highlight differences in the 

work function. After linear fitting, the work function was taken to 

be the potential value (relative to the Fermi energy) at a distance of 

7.5 Å (grey dotted line). 

In addition to the dynamics of intrinsic defect species and the 

mechanisms of defect-assisted ion migration, it is also of inter-

est to understand how the surface defects observed in STM af-

fect the surface properties of the perovskite, which would in 

turn affect the interface of the perovskite with an adjacent layer 

in a device. Such interfaces are seen as a key to optimizing de-

vice performance, as they play an important role in charge 

transport and recombination. To better understand the effect of 

these vacancies on the interface, the electronic potential was 

calculated as a function of position along the axis normal to the 

perovskite surface (Fig. 7). Significant separation of the poten-

tial curves occurs around 0 Å, which corresponds to the perov-

skite surface. This may be due to defect energy levels intro-

duced by dangling bonds. The inset of Fig. 7 shows in detail the 

area used for identifying the vacuum level. A linear fit was used, 

and the value of this fit at 7.5 Å (middle of the vacuum slab) 

was taken to be the vacuum level. This also determines the work 

function, which is the difference in energy between the Fermi 

level and the vacuum level.  Importantly, a trend was identified 

in which an increasing number of vacancies raised the work 

function from 5.29 eV (pristine surface) to 5.45 eV (triple 

MABr vacancy). 

It is important to note that the size of the super cell used for 

the calculation is limited. For the pristine surface there are 8 Br‒ 

ions and 8 MA+ cations in the surface layer of the supercell used 

for DFT. Thus, the single, double, and triple MABr vacancy de-

fect surfaces have 1/8, 2/8 and 3/8 of the atoms missing and 

correspond to an overall MABr surface vacancy defect concen-

tration of 12.5%, 25%, and 37.5%, respectively. It has been sug-

gested that ion migration leaves one end of the perovskite film 

deficient in the migrating halide species (i.e., rich in halide va-

cancies).28 Thus, such high defect concentrations may occur at 

the interface during device operation. Additionally, the varia-

tion of the local work function could potentially alter charge 

transfer to adjacent layers (i.e., electron or hole transport layers, 

top electrode) in a solar cell or light emitting device. It is im-

portant to take this effect into account when evaluating effi-

ciency loss mechanisms. Understanding interfaces in perovskite 

devices, and engineering energy level alignment between lay-

ers, has been identified as one of the keys to unlocking higher 

efficiencies and better stability.46 As further work on energy 

level alignment between layers is conducted, it should be kept 

in mind that this work function variation at the interface exists 

due to surface defects. This variation may limit the accuracy of 

energy level alignment attainable if the issue of reducing or con-

trolling the number of defects in the perovskite film is not ad-

dressed. As seen in the migration mechanisms investigated, 

there could be spatial variation in work function not only due to 

the presence of defects but also spatial and temporal variation 

as vacancies migrate to and from the surface, as well as along 

the surface. Such variation of the electronic properties of per-

ovskite in space and in time could in turn affect the charge trans-

fer at the interface. 

CONCLUSION 

We present an atomic-scale investigation of defect dynamics in 

organic-inorganic hybrid perovskite by combining experi-

mental techniques (STM) and theoretical calculations (DFT). 

Scanning tunneling microscopy allowed us to visualize the mo-

tion of a single ion in real space and real time. Additionally, 

density functional theory calculations were performed to iden-

tify the chemical origin of defects and the path used by ions to 

migrate. Multiple defect types were observed by STM at the 

surface of MAPbBr3 perovskite, including vacancy clusters and 

unpaired Br- defects. Vacancy defects were identified as MABr 

vacancies according to DFT calculations. Several dynamic phe-

nomena were observed, including reorientation of Br- pairs, and 

vacancy movement both in the z-direction as well as along the 

surface. Movement of defects to and from the surface (i.e., z-

direction) corresponds to the motion expected from the ion mi-

gration phenomenon in OHPs. Our results strongly support the 

hypothesis of a vacancy-assisted ion migration pathway in per-



 

ovskite materials. In addition, we demonstrate that in the z-di-

rection it is energetically favorable for MABr migration to oc-

cur via a sequential mechanism. The transition energy barrier 

we found is small enough for ion migration to occur via this 

mechanism in an operating perovskite solar cell. Furthermore, 

we revealed the impact of vacancy defects on the local work 

function at the surface of the perovskite. The modification of 

local work function induced by clusters of vacancies observed 

here is expected to strongly affect charge transport and recom-

bination at the interface of a device. Here we revealed the nature 

and dynamics of defects in MAPbBr3 at the atomic scale. Our 

study not only provides fundamental understanding of the effect 

of vacancy defects at the perovskite surface, but also provides a 

microscopic insight into the ion migration mechanism. Equally 

important, our work reveals useful information for device im-

provement from the perspective of defects and interface engi-

neering. 

  

METHODS 

Surface characterization. Both single crystal and thin film 

perovskite samples were used for this study. Within the resolu-

tion of the STM, no difference was distinguishable in terms of 

defect nature, defect prevalence or ion transport behavior be-

tween the single crystal and thin film samples. STM images in 

Figs. 1 and 2 were taken on a single crystal sample. STM im-

ages in Figs. 3 and 4 were taken on a thin-film sample. MAP-

bBr3 single crystal samples were grown via the solvent ex-

change method 47 and then cleaved in situ in ultrahigh vacuum 

(UHV) environment (10-9 torr) with a scalpel to obtain a pristine 

surface. MAPbBr3 thin film perovskite was grown on the sur-

face of an Au (111) single crystal by dual-source vacuum co-

evaporation. First, the gold sample was cleaned in UHV envi-

ronment (10-9 torr), by several cycles of Ne+ sputtering followed 

by subsequent annealing at 773 K for 5 min. Thereafter, MAP-

bBr3 was obtained by co-evaporation of MABr and PbBr2 spe-

cies at evaporation temperatures of 361 K and 498 K respec-

tively for 10 min. During evaporation, the gold surface was kept 

at 130 K to ensure the sticking of the methyl-ammonium com-

pound. Low-temperature scanning tunneling microscope (LT-

STM) was used to characterize the atomic-scale structures of 

the different perovskite samples. The STM measurements were 

performed at a range of temperatures (4.6K-180K), which were 

achieved by cooling with either liquid nitrogen or liquid helium 

followed by counter heating via a Lakeshore 335 Temperature 

Controller connected to the STM sample stage. Cut Pt/Ir tips 

were used to acquire the STM images. The bias voltage was 

applied to the sample. It has been reported that high-energy 

electrons from the tip can induce surface degradation under 

UHV conditions in single crystal MAPbBr3 during conductive 

AFM imaging.48 To verify that our STM imaging did not induce 

generation and diffusion of atomic defects and surface degrada-

tion during the imaging process, we scanned the same area con-

secutively for 117 times, and no surface degradation or defect 

generation was observed. Additionally, the effect of the tip on 

diffusion events has been previously shown to be negligible 

when using the “movie” technique of taking consecutive images 

of the same area.49 

Density functional theory. Density functional theory50,51 

(DFT) calculations were performed using the Vienna ab initio 

simulation package52,53 (VASP) code. The projector augmented 

wave (PAW) pseudopotential54,55 was used to describe the core 

electrons and a plane wave basis set with a kinetic energy cutoff 

of 400 eV was used to expand the wave functions. Electronic 

exchange and correlation was described within the framework 

of generalized gradient approximation (GGA) of Perdew, Burke 

and Ernzernhof (PBE) functionals.56 The MAPbBr3 (010) sur-

face was represented using a periodic slab based on the space 

group Pnma containing four atomic layers and a vacuum thick-

ness of 14 Å. Specifically, two supercells were used, one is a 2 

× 2 supercell used for the vacancy calculations, while the other 

is a 3 × 1 supercell for the dimer orientation shift calculations. 

Respectively, Brillouin zone (BZ) sampling was done using 3 

× 1 × 3 and 6 × 1 × 2 Monkhorst−Pack57 grids. The bottom 

layer of atoms was kept fixed, while the other atoms were al-

lowed to relax. All structures were fully relaxed until the force 

on each atom was less than 0.01 eV/Å. Transition states for 

MABr migration along the surface were located by climbing 

image nudged elastic band (CI-NEB) method58 using three im-

ages with a convergence of 0.05 eV/Å for the force components 

both along and perpendicular to the tangent of the reaction path. 
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