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Abstract
Motility often plays a decisive role in the survival of species. Five systems of motility 
have been studied in depth: those propelled by bacterial flagella, eukaryotic actin po-
lymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, 
many organisms exhibit surprisingly diverse motilities, and advances in genomics, mo-
lecular biology and imaging have showed that those motilities have inherently inde-
pendent mechanisms. This makes defining the breadth of motility nontrivial, because 
novel motilities may be driven by unknown mechanisms. Here, we classify the known 
motilities based on the unique classes of movement-producing protein architectures. 
Based on this criterion, the current total of independent motility systems stands at 18 
types. In this perspective, we discuss these modes of motility relative to the latest phy-
logenetic Tree of Life and propose a history of motility. During the ~4 billion years 
since the emergence of life, motility arose in Bacteria with flagella and pili, and in 
Archaea with archaella. Newer modes of motility became possible in Eukarya with 
changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acqui-
sition of robust membrane dynamics, the enlargement of cells and environmental op-
portunities likely provided the context for the (co)evolution of novel types of motility.

K E Y W O R D S

appendage, cytoskeleton, flagella, membrane remodeling, Mollicutes, motor protein, peptidoglycan, three 
domains

1 |  INTRODUCTION

Rapidly accumulating genomic data are changing our approaches 
to biology and our perspectives of the living organisms that in-
habit this planet (Figure 1). According to the latest data analyses, 
life on the Earth can be divided into two or three groups (Brown et 
al., 2015; Castelle & Banfield, 2018; Hug et al., 2016; Williams, 
Foster, Cox, & Embley, 2013): Bacteria, which includes the 
subgroup of Candidate Phyla Radiation (CPR), species whose 
representatives have been confirmed to exist by microscopy or 
metagenomics but have yet to be cultured (Williams et al., 2013); 
Archaea; and Eukarya, a small group branching from Archaea to 
which Homo sapiens belongs. Archaea and Eukarya are grouped 
together in the two Domain hypothesis (Williams et al., 2013). 
The accumulating genomic data are useful to map the appear-
ance of novel biological functions by tracing the presence of the 
encoding genes relative to branch points in the Tree of Life. In 
this perspective, we focus on the emergence of motility systems 
and propose a history of motility.

2 |  EIGHTEEN MOTILITY 
SYSTEMS

From the time of Leeuwenhoek, 350  years ago, people 
have been fascinated by motility, because movement is one 

defining feature of life (Berg, 2004). Motility can be a de-
terminant for survival of species, by which living organisms 
obtain nutrients, escape from toxins and predators, and ex-
change genetic information through mating. It also plays crit-
ical roles in development and other physiological activities 
such as immune response and wound healing in multicellular 
organisms. Therefore, understanding the mechanisms of mo-
tility may provide useful information for controlling infec-
tious microorganisms and benefit agriculture and medicine. 
Moreover, learning how protein motility machineries work 
may provide clues to develop artificial nanoscale actuators.

Today, the acquisition of genomic data coupled with ad-
vances in technologies in various fields such as genetic ma-
nipulation, structural analysis, imaging and single molecule 
measurements has enabled in-depth investigation into motil-
ity. As a result, the mechanisms of many types of motility, 
which were previously regarded as mysteries, are now known 
at the molecular level. Although the types of locomotion of 
organisms are diverse, motility at the molecular level can be 
currently characterized as 18 distinct types of mechanism 
(Figure 1, Table 1). Here, "Motility" is defined as the ability 
of individual organisms or cells to convert chemical energy to 
locomotion of the whole organism or cell by using a dedicated 
motor system. Various kinds of criteria for classifying motion 
mechanisms are possible. We define a unique class of motility 
mechanism to have distinct structure of the force-producing 
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motor from any motor of another class of motility mecha-
nism. According to these criteria, molecular movements such 
as those produced by rotary ATPases, helicases, DNA poly-
merases are not included as motility, because they do not pro-
pel a cell or organism. Similarly, movement of intracellular 

membrane vesicles driven by kinesin or dynein also does not 
qualify as motility. The current number of 18 types of motility 
is unlikely to be the final figure. In particular, CPR has yet to 
be explored from the motility perspective because of the in-
tractability of cultivation, which leaves a systematic gap that 

F I G U R E  1  Various types of motility systems. Cartoons of those systems are listed according to the order in the text and roughly assigned 
to the relative positions in Tree of Life (Hug et al. 2016; Castelle & Banfield 2018). (1a) bacterial flagellar swimming, (1b) spirochetes flagellar 
swimming, (1c) magnetotactic bacterial flagellar swimming, (1d) bacterial flagellar swarming, (1e) Leptospira crawling motility, (2) bacterial 
pili motility, (3) Myxococcus xanthus adventurous (A) motility, (4) Bacteroidetes gliding, (5) Chloroflexus aggregans surface motility, (6) 
Synechococcus nonflagellar swimming, (7) archaella swimming, (8a) amoeba motility based on actin polymerization, (9) heliozoa motility based on 
microtubule depolymerization, (10) myosin sliding, (11) kinesin sliding, (12) dynein sliding, (10a) amoeba motility driven by contraction of cortical 
actin–myosin. (10b) animal muscle contraction, (11a, 12a) flagellar surface motility (FSM), (12b) flagellar swimming, (13) haptonemal contraction, 
(14) spasmoneme contraction, (15) amoeboid motility of nematode sperm, (8b) actin-based comet tail bacterial motility, (16) Mycoplasma mobile 
gliding, (17) Mycoplasma pneumoniae gliding, (18) Spiroplasma swimming, (i) bacterial sliding, (ii) gas vesicle, (iii) dandelion seed. Refer to 
Table 1 for more details. The three eukaryotic conventional motor proteins are shown in the dotted box
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likely conceals new mechanisms (Castelle & Banfield, 2018; 
Hug et al., 2016). In addition, there are examples of micro-
organisms that move immediately after isolation, yet become 
static after culture, which may hinder discovery of additional 
types of motility (Jishage & Ishihama, 1997). However, de-
spite the advancing technology environment, no new type of 
motility has been discovered for more than ten years. Thus, 
the 18 types of motility mechanisms account for a substantial 
proportion of movement of observable organisms on Earth.

The 18 types of motility are numerous when compared to the 
five conventional types of motility: those driven by bacterial fla-
gella; by the eukaryotic motor proteins myosin, dynein or kinesin; 
or by actin polymerization. Nonetheless, taking into account that 
the evolution of life has been ongoing for ~4 billion years, it ap-
pears that novel motility mechanisms only sporadically evolve. It 
is also noteworthy that different modes of motility have evolved, 
considering that other vital processes, such as the mechanisms 
for ATP synthesis (Gogarten & Taiz, 1992) and protein synthesis 
(Yao & O'Donnell, 2016), have retained core machineries. This 
is probably because motility is established by the interaction of 
the organism with its environment. Organisms and environments 
have been constantly changing during the ~4 billion years of life. 
Conditions underwater, on a wet surface, in the bacterial flora, 
in hard soil or in tissues of hosts likely required different mecha-
nisms for effective locomotion. Clear examples of adaptation to 
changing conditions are observed in host–pathogen interactions 
(see the section on class Mollicutes below). The appearance of 
a novel motility of a pathogen in a host would only be possible, 
at the earliest, during the emergence of the host. Furthermore, 
the architecture of a cellular motility machine needs to couple 
the motor output with the physical properties of cell envelope in 
order to produce sufficient force to propel the whole-cell body 
via interactions with its environment. This equation has been 
solved in different ways by organisms in various branches of the 
Tree of Life and appears to be critically dependent on the nature 
of the cell envelope. The order of events of how a mechanism 
of motility evolved, and how it may have ceased to function to 
be replaced by a new mode of motility, has yet to be temporally 
delineated with respect to the evolution of life on Earth. In the 
following sections, we propose a history of movement of life on 
Earth, which differs from the Tree of Life (Castelle & Banfield, 
2018; Hug et al., 2016), in accordance with the order in which 
motility mechanisms arose, based on the latest understanding 
from the multiple types of motility and genomic data.

3 |  BACTERIA

Many Bacteria move based on manipulating external append-
ages, by swimming using flagella (Figure 1; type 1a) or by the 
shortening of pili (Figure 1; type 2) (Berg, 1974, 2003; Larsen, 
Reader, Kort, Tso, & Adler, 1974; Lautrop, 1961; Mattick, 
2002; Silverman & Simon, 1974). Motilities that depend on 

flagella and pili are widely distributed in many systematically 
separated phyla and their broad distributions suggest that these 
types of motility are robust and adaptable (Berry & Pelicic, 
2015; Pallen, Penn, & Chaudhuri, 2005). Indeed, there are 
many variations in flagella-powered swimming, such as spi-
rochetes swimming (Figure 1; type 1b) (Charon & Goldstein, 
2002; Li, Motaleb, Sal, Goldstein, & Charon, 2000), surface 
movement (Figure 1; type 1d) (Harshey & Partridge, 2015; 
Kearns, 2013; Patrick & Kearns, 2012) called swarming and 
swimming in response to geomagnetism sensed by magneto-
tactic bacteria (Figure 1; type 1c) (Blakemore, 1975; Uebe & 
Schuler, 2016). In addition, differences are observed in the ions 
used for torque generation as adaptations to the environment 
(Ito & Takahashi, 2017).

It is thought that these motility mechanisms are widely dis-
tributed because flagella and pili existed from an early stage 
of Bacteria evolution or were spread due to horizontal gene 
propagation, scenarios that are difficult to distinguish (Pallen 
& Matzke, 2006; Pallen et al., 2005). Probably, both routes 
occurred. However, it is worth noting that flagellar move-
ment is also observed in the deeply branching Bacteria, such 
as Aquificaceae (Takekawa et al., 2015) and Thermotogae 
(Liu & Ochman, 2007). Bacterial flagella are held in the cell 
envelope at multiple places for high-speed motor rotation 
(Chang et al., 2016; Minamino & Imada, 2015; Minamino, 
Imada, & Namba, 2008). In E. coli and Salmonella, flagella 
interact with the cell envelope through three basal body rings 
(MS, L and P rings) and stators. Thus, one of the principles of 
motility mechanisms in single cells is the compatibility with 
the cell envelope architecture. Flagella and pili are compli-
cated systems composed of many proteins and it is difficult 
to trace the nearest ancestors whose structures are similar but 
have different roles (Pallen & Matzke, 2006; Pallen et al., 
2005). Similarities in constituent proteins suggest that the 
basal body that rotates flagella and the basal body that ex-
pands/contracts pili have the same molecular origin as the 
transporter that transfers proteins across a cell membrane 
(Minamino, 2014; Mulkidjanian, Makarova, Galperin, & 
Koonin, 2007; Rapoport, Li, & Park, 2017). Flagella and pili 
are equipped with protein transporting abilities, but there are 
many other protein transporting devices that have not evolved 
into motility machines. Thus, a flagella/pili-related transport 
device likely occurred in the earliest Bacteria, and this system 
was later duplicated and adapted to engender motility.

Some Bacteria show a specialized motility resulting from 
the movement of small structures on the surface of the cell, 
much smaller than the large appendages of flagella and pili. 
These bacteria travel in high-viscosity environments such 
as soil, microbial mats, host tissues and three-dimensional 
intergrowths. These new motilities likely evolved because 
of the excessive amount of force needed to move large ap-
pendages, such as flagella and pili, in these confined envi-
ronments. This is the case for some Proteobacteria (Agrebi, 
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Wartel, Brochier-Armanet, & Mignot, 2015; Mercier & 
Mignot, 2016; Nan, McBride, Chen, Zusman, & Oster, 
2014) typified by the A motility of Myxococcus xanthus 
(Figure 1; type 3) (Agrebi et al., 2015; Mercier & Mignot, 
2016; Nan et al., 2014), the gliding motility of Bacteroidetes 
(Figure 1; type 4) (McBride & Nakane, 2015; Nakane, 
Sato, Wada, McBride, & Nakayama, 2013; Wada, Nakane, 
& Chen, 2013) represented by Flavobacterium johnso-
niae, and the surface motion of thermophilic filamentous 
bacteria Chloroflexus aggregans classified as phylum 
Chloroflexi (Figure 1; type 5) (Fukushima, Morohoshi, 
Hanada, Matsuura, & Haruta, 2016; Hanada, Shimada, & 
Matsuura, 2002). Spirochete swimming is a variation of the 
flagellar swimming described above, but achieves a smooth 
motion by placing flagella inside the outer membrane, in 
the periplasmic space (Figure 1; type 1b) (Charon et al., 
2012; Charon & Goldstein, 2002; Li et al., 2000; Takabe, 
Kawamoto, Tahara, Kudo, & Nakamura, 2017). The motil-
ity of Myxococcus xanthus (phylum Proteobacteria, Figure 
1; type 3) and the gliding movement of Flavobacterium 
johnsoniae (phylum Bacteroidetes, Figure 1; type 4) are 
well studied. These two phyla are not systematically close 
in evolution, and as there is no significant amino acid se-
quence homology between the proteins producing the mo-
tility, it is probable that their motility systems occurred 
independently. However, it is interesting that both of these 
protein complexes transmit force to the substrate surfaces 
by moving a helix on the periphery of their respective bac-
terial cells, using membrane potential, electrochemical po-
tential to be exact, as the energy source.

It has long been known that filamentous cyanobacteria 
perform surface motions, and that these movements result 
from type IV pili (Duggan, Gottardello, & Adams, 2007; 
Khayatan, Meeks, & Risser, 2015; Wilde & Mullineaux, 
2015). Additionally, Synechococcus, a marine cyano-
bacteria, is known to swim at a speed of 25  μm/ s by a 
mechanism different to that of bacterial flagella (Figure 
1; type 6) (Waterbury, Willey, Franks, Valois, & Watson, 
1985). Formation of waves on the cyanobacteria surface 
is thought to push surrounding water backwards (Ehlers & 
Oster, 2012). These four types of motility (Figure 1; types 
3–6) are limited to each phylum, suggesting that they arose 
relatively later in the evolution of Bacteria. Interestingly, 
all of these phylumInterestingly, all of these phylum-spe-
cific movements are found in Gram-negative bacteria. This 
may be due to the possibility to create new mechanisms 
in the periplasmic space specific to Gram-negative bacte-
ria or that the Gram-positive bacteria peptidoglycan layer 
is more rigid and difficult to adapt for movement. In the 
evolution of bacterial motility, viscosity of surrounding 
media and interaction with environmental surfaces would 
have been critical factors. To this end, some bacterial spe-
cies are equipped with dual flagellar systems, one used for 

swimming (a constitutive polar flagellum) and the other 
used for swarming on the surfaces (inducible lateral fla-
gella; McCarter, 2004). Viscosity appears to be sensed by 
the flagellar motor as the environmental load, and cells ad-
just the power output of the motor by changing the num-
ber of energy converting units (Lele, Hosu, & Berg, 2013; 
Minamino, Terahara, Kojima, & Namba, 2018; Nord et al., 
2017). Environmental conditions are significant factors in 
a low Reynolds number world, in which small cells, such as 
bacteria, are influenced more by friction with surrounding 
subjects rather than the inertia caused by their masses.

In CPR genomes, genes homologous to those for bacterial 
flagella and pili are found, suggesting the wide distribution 
of these common motility systems (Nelson & Stegen, 2015). 
However, genes involved in other bacterial motility systems, 
such as pili-independent gliding, Synechococcus swimming 
and Mollicutes motility, are not found in the current CPR ge-
nomes. Discovery of novel, CPR-specific motilities will likely 
become possible only after those organisms are cultured.

4 | ARCHAEA

Many phyla of Archaea swim with “flagella” called archaella 
(Figure 1; type 7) (Jarrell & Albers, 2012). The structure of 
archaella has nothing in common with bacterial flagella be-
sides the gross overall shape; rather, they share similarity in 
some protein components to, and likely evolved from, bacte-
rial pili. Interestingly, other classes of motility identified in 
Bacteria (Figure 1; types 1–6) have not been found in Archaea 
to date. Thus, it appears that bacterial motility systems were 
not successfully transferred to Archaea even though some ar-
chaea inhabit common environments with bacteria. This may 
be related to the fact that Archaea do not have a peptidoglycan 
layer (Albers & Meyer, 2011; Daum et al., 2017), although 
most bacterial motility systems, including flagella (Minamino 
& Imada, 2015; Minamino et al., 2008) and pili (Shahapure, 
Driessen, Haurat, Albers, & Dame, 2014), depend mechanisti-
cally on anchoring to the peptidoglycan layer. This poses the 
question: How does the archaellum rotate without a pepti-
doglycan layer for support? It is anchored at a single position 
via a protein that binds to the pericellular S-layer (Banerjee 
et al., 2015), the outermost layer of Archaea that often con-
sists of paracrystalline arrays of a single or small number of 
proteins or glycoproteins. In bacterial pili, an ATPase hex-
amer rotates at the base of the pilus, which is responsible for 
pili extension and retraction (Chang et al., 2016; McCallum, 
Tammam, Khan, Burrows, & Howell, 2017). This rotational 
property appears to have been adapted in archaella to be 
used for swimming. It is interesting that the Archaea swim-
ming mode resembles the bacterial flagella swimming mode 
(Kinosita, Uchida, Nakane, & Nishizaka, 2016), because 
it likely evolved from pili that display a different mode of 
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motility. Probably, this is the result of the optimal motility 
format being dictated by physical factors such as cell size, 
viscosity of water, required swim speed, and protein stiffness 
(Magariyama et al., 1995; Wada & Netz, 2007). Thus, flagella 
and archaella are examples of convergent evolution, similar to 
the convergent evolution of the motilities of Myxococcus xan-
thus A and Flavobacterium johnsoniae arising from different 
machineries, as well as to the two types of gliding motility 
found in Mollicutes, discussed later (Miyata & Hamaguchi, 
2016a, 2016b). To date, archaella are the sole identified mo-
tility system in archaea; however, we cannot rule out the 
existence of other systems, because the detailed analyses of 
archaea behavior started relatively recently in comparison 
with the studies of bacteria (Kinosita et al., 2016).

5 |  EUKARYA

Archaea have a proteinaceous S-layer which likely lacks 
some of the mechanical strength of the bacterial peptidogly-
can layer. It is speculated, from gene homology, that an 
Asgard-like archaeon acquired membrane dynamics and en-
larged its cell and genome sizes to evolve to Eukarya (Akil & 
Robinson, 2018; Spang et al., 2015; Zaremba-Niedzwiedzka 
et al., 2017). Metagenome analyses have showed that Asgard 
archaea genomes, including Lokiarchaeota, contain poten-
tial genes for eukaryote-like membrane fusion, membrane 
distortion and secretion machineries (Spang et al., 2015; 
Zaremba-Niedzwiedzka et al., 2017). During the evolution of 
eukaryotes, cell enlargement and the availability of enhanced 
energy sources (from mitochondria, chloroplasts or phagocy-
tosis) alleviated some of the constraints on protein machiner-
ies (Lane & Martin, 2010). In addition, because it became 
possible to support larger genomes, the expansion of the total 
DNA allowed for encoding of proteins for new functions. 
However, one ramification of increasing cell size during the 
archaea-to-eukaryote transition would be difficulty in mov-
ing using the existing motility mechanisms. Furthermore, 
concurrently with cell expansion, it became necessary to ac-
tively transport materials within the cytoplasm, something 
that could be left to diffusion in smaller cells (Koch, 1996).

In Bacteria, the process of diffusion is sufficient for mass 
transport for most substances. This situation is true for the bac-
terial genus Thiomargarita, whose diameter reaches 750 μm, 
because these giant bacteria are polynuclear and their cyto-
plasm is thin, which minimizes the distances and volumes for 
transport (Schulz, 2006). The movement of larger structures, 
such as the arrangement of peptidoglycan synthase (Busiek 
& Margolin, 2015), DNA distribution in plasmid partitioning 
(Popp & Robinson, 2011; Salje, Gayathri, & Löwe, 2010), 
and cell division, are performed in Bacteria by the polym-
erization and depolymerization of MreB, ParM and FtsZ, 
which share ancestors with eukaryotic actin and tubulin. 

Asgard archaea, or early Eukarya, can be speculated to have 
used polymerization to organize cell membranes, membrane 
vesicles, cytoplasm and chromosomes (Makarova, Yutin, 
Bell, & Koonin, 2010; Spang et al., 2015; Wickstead & Gull, 
2011; Zaremba-Niedzwiedzka et al., 2017). In particular, the 
movement of the membranes by actin polymerization, which 
is structurally related to MreB and ParM, led to the acquisi-
tion of a new motility, amoeboid movement (Figure 1; type 
8a). Amoeboid motility is closely related to phagocytosis. 
The ability to internalize other cells increased the efficiency 
of food uptake when compared with energy-dependent up-
take of molecular nutrients across the cell membrane from 
the dilute surrounding medium. A similar amoeboid motility 
is observed also for tubulin polymerization in order Heliozoa 
and class Heterotrichea.

More efficient transport systems using the cytoskeleton 
have evolved through developing “conventional” motor pro-
teins, such as myosin, kinesin and dynein, which move along 
actin filaments and microtubules (Figure 1; types 10–12). 
Myosin and kinesin are related to each other, and more-
over, all are classified to the P-loop NTPases. Although the 
prototypic motor protein cannot be traced from their extant 
structures, it should be emphasized that a number of non-
motor proteins in their class, including translation elongation 
factors, helicases, proteasomes, are known to generate force. 
These proteins may be related to the conventional motor pro-
tein at the root of cellular evolution (Iyer, Leipe, Koonin, & 
Aravind, 2004; Kull, Vale, & Fletterick, 1998; Leipe, Wolf, 
Koonin, & Aravind, 2002; Vale & Milligan, 2000). The class 
II myosin that forms bipolar filaments emerged after the un-
conventional myosin had evolved as a transporter. Interaction 
of bipolar myosin II filaments and actin filaments enabled a 
new mode of motility; contraction. Contraction drives muscle 
force generation (Figure 1; type 10b) as well as contributing 
to amoeboid movement that is also dependent on the con-
traction of actin and myosin II underneath the cell membrane 
(Figure 1; type 10a) (Paluch & Raz, 2013; Wessels et al., 
1988). Contraction also enabled efficient cytokinesis in cells 
by forming contractile rings (Uyeda & Nagasaki, 2004), aid-
ing the development of multicellular organisms. In the sim-
ilar way, the interactions of dynein with microtubules drive 
movements of eukaryotic flagella for swimming (Figure 1; 
type 12b) (Gibbons, 1963).

As many Eukarya are soft cells, movements within a cell 
can be transmitted to the outside. When this was advanta-
geous for survival, new modes of motility had the opportunity 
to arise. The scenario that the movement of a transport sys-
tem gave rise to a new motility can be observed in the form 
of protozoan flagella and cilia, called flagellar surface mo-
tility (FSM; Figure 1; types 11a,12a; Shih et al., 2013). This 
is the ability of the flagella and cilia to glide on a solid sur-
face which is caused by the transport of membrane vesicles 
in flagella and cilia, that is, intraflagellar transport (IFT). In 
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this system, kinesin and dynein are directly involved in cell 
migration.

Some unicellular eukaryotes show other unique examples 
that transmit motion from inside of a eukaryotic cell to the ex-
terior to produce atypical motilities. The haptonema (Figure 
1; type 13) (Greyson, Green, & Leadbetter, 1993; Kawachi & 
Inouye, 1994; Nomura et al., 2019; Parke, Manton, & Clarke, 
1955), a filiform structure in haptophytes, is rapidly coiled 
by mechanical stimuli through Ca2+-dependent changes of 
microtubule configurations. A morphologically similar struc-
ture, the spasmoneme (Figure 1; type 14) (Amos, Routledge, 
& Yew, 1975; Hoffman-Berling, 1958), in peritrichous cil-
iates contracts by the structural changes of Ca2+-binding 
protein spasmin in a microtubule-independent manner. 
Axopodia and stalk (Febvre-Chevalier & Febvre, 1992; 
Suzaki, Shigenaka, Watanabe, & Toyohara, 1980; Tilney & 
Porter, 1965) in heliozoans show rapid contractions caused by 
catastrophic microtubule breakdown. Heterotrichous ciliates 
use a combination of microtubules and actin-like filaments to 
create large deformations of their cell bodies for movement 
(Huang & Pitelka, 1973; Randall & Jackson, 1958; Tilney 
& Porter, 1965). In nematode sperm (Figure 1; type 15), 
the treadmilling polymerization of the unique protein MSP 
drives forward its amoeboid cell body, in a manner similar to 
actin-driven amoeboid movement (Roberts & Stewart, 1997).

6 |  ACTIN-BASED MOTILITY BY 
PARASITIC BACTERIA

The emergence of large Eukarya cells with flexible mem-
branes and intracellular transport systems provided the op-
portunity for Bacteria to invade these environments (Carayol 
& Tran Van Nhieu, 2013; Dey & Bishai, 2014; LaRock, 
Chaudhary, & Miller, 2015; McFadden, 2014; Pizarro-
Cerda, Kuhbacher, & Cossart, 2012). Such Bacteria often 
hijack membrane fusion, phagocytosis and cytoskeleton ma-
chineries of the host Eukarya. Shigella and Listeria enter the 
eukaryotic cells and induce actin polymerization of the host 
cell by presenting mimetics of the eukaryotic actin regulating 
proteins at one end of the Bacteria, forming an actin comet 
tail to move inside the host cell and spread to the neighboring 
host cells (Figure 1; type 8b) (Stevens, Galyov, & Stevens, 
2006; Tilney & Portnoy, 1989; Yoshida et al., 2006).

7 |  BACTERIAL MOLLICUTES

A small group of organisms, class Mollicutes, which has 
evolved from the phylum Firmicutes including Bacillus and 
Clostridium, have acquired three distinct motility mecha-
nisms (Miyata & Hamaguchi, 2016a). These are the gliding 
motility (Bredt & Radestock, 1977; Miyata, 2010; Miyata & 

Hamaguchi, 2016b) displayed by Mycoplasma mobile, which 
is a pathogen of freshwater fish, a second type of gliding mo-
tility (Figure 1; type 16) (Bredt, 1968; Miyata & Hamaguchi, 
2016a) used by Mycoplasma pneumoniae in humans (Figure 
1; type 17), and the swimming motility of Spiroplasma 
(Figure 1; type 18) (Cole, Tully, Popkin, & Bove, 1973; Liu 
et al., 2017; Shaevitz, Lee, & Fletcher, 2005; Wada & Netz, 
2009), a common pathogen of plants and arthropods.

One reason why as many as three motility mechanisms are 
acquired in a small class may be related to class Mollicutes 
abandoning the peptidoglycan layer as in the case of Eukarya. 
The loss of peptidoglycan is likely related to the parasitic or 
commensal lifestyle of Mollicutes. Generally, in order for 
Bacteria to live inside animals and plants, it is necessary to deal 
with the stress of peptidoglycan layer decomposition by lyso-
zyme (Kawai, Mickiewicz, & Errington, 2018; Tulum, Tahara, 
& Miyata, 2019). Also, peptidoglycans are a target of innate 
immunity (Royet & Dziarski, 2007; Royet, Gupta, & Dziarski, 
2011). By dispensing with the peptidoglycan synthesis system, 
the organism is relieved from these stresses and furthermore 
can reduce its requirements for cellular materials, energy and 
genomic size. The cells become smaller and softer, which may 
also help in concealment in the host. Class Mollicutes appears 
to have relinquished this peptidoglycan layer synthesis as a sur-
vival strategy. At the same time, like Archaea, the bacterial fla-
gellum could not function in class Mollicutes, in the absence of 
a peptidoglycan layer. However, for class Mollicutes to live in 
host–animal tissue, motility is probably an important strategy 
for survival, in the processes of infection and evading cellular 
immune systems. As cells of class Mollicutes are small, unlike 
Eukarya, intracellular transport devices are not required, but 
since they have a soft peripheral structure, it would be rela-
tively simple to convey the movement of housekeeping activi-
ties present in cells to the outside.

Among housekeeping activities other than intracellular 
transport, there are many that involve movements of nanome-
ter scale. These include nucleic acid polymerization [RNA 
polymerase (Gelles & Landick, 1998); helicase (Tuteja & 
Tuteja, 2004)], protein synthesis (Rodnina, Savelsbergh, & 
Wintermeyer, 1999), ATP synthesis (Noji, Yasuda, Yoshida, 
& Kinosita, 1997; Oster & Wang, 1999), protein secretion 
(Goldman et al., 2015; Ismail, Hedman, Schiller, & Heijne, 
2012; Ito & Chiba, 2013), DNA partitioning [eukaryotic 
chromosome (Vernos & Karsenti, 1996), plasmid segrega-
tion (Salje et al., 2010)] and cell division (Mabuchi & Okuno, 
1977; Rappaport, 1971). In fact, the gliding motility mech-
anism of M. mobile is thought to originate from an altered 
ATP synthase, which has been coupled to an adhesin, and the 
swimming ability of Spiroplasma is thought to originate from 
the structural changes in the cytoskeleton used for synthesis 
of peptidoglycan layer and segregation of DNA. The fact that 
most of class Mollicutes isolated so far rely on higher ani-
mals and plants for their survival suggests that these types 
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of motility arose after the Cambrian explosion (Miyata & 
Hamaguchi, 2016a).

8 |  “MOTILITY” NOT DIRECTLY 
LINKED TO ENERGY

In this article, motions that are driven by mechanisms other 
than dedicated motor systems are not included in our clas-
sification of motility, but there are many examples of move-
ment that fall outside this classification. Examples are found 
in Bacteria such as the colony spreading of Staphylococcus 
aureus (Figure 1; type i) and the sliding motility of Bacillus 
subtilis (Holscher & Kovacs, 2017). These bacteria can 
spread on a solid medium by the spreading force in cell 
division under the control of surface tension through se-
creting substances that act as surfactants around the cells 
(Henrichsen, 1972; Kearns, 2010). Another example is the 
gas vesicles formed in cells by microorganisms present in 
the hydrosphere such as the phylum Cyanobacteria and 
Haloarchaea, which move up and down in the environ-
ment using the gas vesicles akin to a fish bladder (Figure 
1; type ii) (Tashiro, Monson, Ramsay, & Salmond, 2016; 
Tavlaridou, Winter, & Pfeifer, 2014). "Motility" which does 
not link directly with energy consumption is known in many 
higher plants, which have hard cell walls and are difficult to 
move. For example, turgor pressure in seed pods of violets 
or the drying of pea pods that can mechanically dissipate the 
seeds, and the wind dispersal of maple and dandelion seeds 
(Figure 1; type iii), which could be included in a less strict 
definition of motility.

9 |  CONCLUSIONS

In this perspective, we performed an initial tracing of the 
evolution of motility systems to produce a Tree of Motility, 
in which the peptidoglycan layer and the emergence of large 
cells play critical roles. In order to make this “Tree” more 
complete and exact, the following information will be useful: 
(a) quantitative mapping on the phylogenic tree, based on the 
structural features of the proteins responsible for each motil-
ity, (b) more genome information to fill the gaps between dif-
ferent systems, (c) elucidation of each motility mechanism, 
(d) discovery of new modes of motility particularly those 
in CPR, and (e) model experiments reproducing evolution. 
Thus, this perspective represents the first step in cataloging 
and establishing the history of emergence of the modes of 
motility on this planet.
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