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Hyperbolic fracton model, subsystem symmetry, and holography. II. The dual eight-vertex model
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The discovery of fracton states of matter opens up an exciting, largely unexplored field of many-body physics.
Certain fracton states’ similarity to gravity is an intriguing property. In an earlier work [Phys. Rev. B 99,
155126 (2019)], we have demonstrated that a simple fracton model in anti-de Sitter space satisfies several major
holographic properties. In this follow-up paper, we study the eight-vertex model dual to the original model.
The dual model has the advantage of illuminating the mutual information and subsystem charges pictorially,
which helps to reveal its connections to various other topics in the study of holography and fracton phases.
At zero temperature, the dual eight-vertex model is a discrete realization of the bit-thread model, a powerful
tool developed to visualize holography. The bit-thread picture combined with subsystem charges can give a
quantitative account of the isometry between the bulk and the boundary at finite energy, which is also a key issue
for holography. The black hole microscopic degrees of freedom can be identified in this picture, which turn out
to be encoded nonlocally on the horizon. The eight-vertex model proves to be a very helpful venue to improve
our understanding of the hyperbolic fracton model as a toy model of holography.
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I. INTRODUCTION

The recent discovery of fracton states of matter [1–9]
is an exciting development in many-body physics. These
models feature exotic excitations with constrained mobility
dubbed “fractons,” and gauged or ungauged subsystem sym-
metries. The fracton topological orders are also beyond our
conventional knowledge of topological orders. The fracton
states present many new challenges, including model build-
ing [10–15], experimental realizations [16–22], proper clas-
sification scheme [23–26], quantum-information application
[26–33], and its connection to other areas of physics [34–39].

An intriguing aspect of fracton states of matter is their
similarity to gravity [11,35,39]. The fracton excitations can
be described as charges of the generalized rank-2 U(1) gauge
theories [7,8,10,40–48], where the electric and gauge fields
take the form of symmetric matrices and have modified Gauss
conservation laws. These theories have been shown to ex-
hibit behaviors similar to general relativity, and are indeed
the linearized limit of certain gravitational/elasticity theories
[35,36,39].

Along this line, a very simple classical fracton toy model
in anti-de Sitter space was shown to satisfy a few ma-
jor holographic properties [34]. The holographic principle
[49,50] and anti-de Sitter/conformal field theory (AdS/CFT)
correspondence [51,52], as a ground-breaking framework to
demystify quantum gravity, have been front line for the high
energy theory community for a few decades [53–58]. It is also
a powerful tool-set to understand strongly coupled systems
[59–65]. In this context, the hyperbolic fracton model satisfies
the celebrated Ryu-Takayanagi formula [66,67] and also has
the correct subregion duality [68]. Its construction has a lot
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of similarities to the holographic toy models built from tensor
networks [69–75].

This paper, as the second of the duology on the hyperbolic
fracton model, studies the dual eight-vertex model of the
original model, which has the advantage of visualizing the
mutual information and subsystem fluxes.

It helps to address a few key unanswered questions fol-
lowing the initial discovery. One question is whether the
hyperbolic fracton model is equivalent to any other known
holographic models/theories. This turns out to be true. The
dual eight-vertex model is a discrete realization of the bit-
thread model [76–80], which was proposed as a very powerful
framework to understand holography. It treats the nonlocal
“flow of information” instead of local fields as the elementary
physical quantity. From this perspective, many holographic
properties of entanglement entropy have an intuitive, pictorial
derivation.

Another question is about holography beyond the ground
states. This was not discussed much in the previous work.
Here equipped with the bit-thread picture and the concept
of subsystem charges, a detailed analysis is presented. We
show that “isometry,” the requirement from holography that
the boundary uniquely determines the bulk, is violated only
by a small amount at low energy levels, and all violating cases
can be determined.

The bit-thread and subsystem charge language also help
us to identify the black hole microscopic degrees of freedom
(dofs), which is encoded nonlocally on the horizon, and also
the AdS boundary. Intriguingly even though the black hole
set-up is very primitive, it yields qualitatively correct behavior
of how a boundary observer can distinguish the microstates
[81].

This work and Ref. [34] form a relatively comprehensive
investigation of the classical toy hyperbolic fracton model. In
the outlook, we discuss future directions beyond this simple
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toy model, which could be an interesting program for con-
densed matter physics, and hopefully provide some insights
in high energy theory too.

This paper is arranged as follows. Section II briefly reviews
the results from Ref. [34], Sec. III describes the dual eight-
vertex model on the Euclidean lattice, and Sec. VI on the
hyperbolic lattice. The first major result of this work, Sec. VII,
explains the eight-vertex model as a realization of the bit-
thread model. It is then utilized to derive results documented
in the two following sections: Sec. VIII analyzes the isometry
properties of the excited states and Sec. IX describes the black
hole microscopic degrees of freedom in the model. Finally
Sec. X summarizes this paper and gives an outlook of possible
future directions.

II. BRIEF REVIEW OF THE HOLOGRAPHIC
HYPERBOLIC FRACTON MODEL

In this section, we recapitulate the classical hyperbolic
fracton model and its holographic properties, which are the
main result of Ref. [34]. Interested readers are recommended
to refer to it for more details.

The classical fracton model can be defined on both the
Euclidean and hyperbolic (negative curvature, or AdS) lattice
based on uniform square and pentagon tessellations shown in
Figs. 1(a) and 1(b). In the later case, the hyperbolic lattice is
obtained by the (5,4) tessellation, i.e., tiling the 2D AdS space
with pentagons, with four pentagon sharing every corner. An
Ising spin of value Sz

i = ±1 is placed at the center of each
square in the Euclidean lattice or pentagon in the hyperbolic
lattice. The operator

Op =
4∏

i=1

Sz
i , (1)

is defined for each four-spin cluster, where i runs over its four
sites. Such a cluster on the hyperbolic lattice is shown by the
red rectangle in Fig. 1(b). The Hamiltonian for both models is

Hspin = −
∑

p

Op, (2)

where the sum runs over all four-spin clusters.
An essential property of these models is their subsys-

tem symmetry. Note that the pentagon’s edges define some
geodesics, i.e., straight lines in x or y direction on the Eu-
clidean lattice and arcs intersecting the disk boundary perpen-
dicularly on the hyperbolic disk. The energy of the system
is invariant under the operation of flipping all spins on either
side of a chosen geodesic, this is shown in Fig. 2. By starting
from any given ground state and consecutively applying such
operations for different geodesics, all ground states can be
explicitly constructed. Thus the ground-state degeneracy is
proportional to 2number of geodesics, which is also proportional
to 2boundary size. This feature is dubbed “subsystem symmetry”
in literature [6,15,26]. It is a symmetry in-between local and
global, and the origin of many exotic features of fracton
models, including the holographic ones.

Reference [34] has demonstrated the following holo-
graphic properties of the hyperbolic fracton model.

FIG. 1. The fracton model [Eq. (2)] on the Euclidean and hyper-
bolic lattice. (a) The model defined on the Euclidean lattice. (b) The
model defined on the hyperbolic lattice of (5,4) tessellation. Spins sit
at the centers of the pentagons. The plaquette operator is defined on
each cluster of the four corner-sharing pentagons as shown by the red
box.

Rindler reconstruction and subregion duality. For the hy-
perbolic fracton model defined by Eq. (2), given a spin con-
figuration on a connected boundary segment, the bulk spins
in a specific region [Fig. 3(a)] are determined unambiguously
at zero temperature. This region, dubbed minimal convex
wedge, agrees with the reconstructible entanglement wedge
determined by Rindler reconstruction or subregion duality of
holography [68].

Ryu-Takayanagi formula for mutual information. Given
a bipartition of the boundary into two connected segments
A and Ac, their mutual information (the classical analog of
entanglement entropy),

I (A, Ac) = SA + SAc − SA∪Ac , (3)

is twice the entanglement entropy for a pure state, thus a
proper classical analog of it. It obeys the Ryu-Takayanagi
formula [66,67]:

I (A, Ac) = kB ln 2 × |γA| . (4)

where |γA| is the area of the minimal covering surface, or in
this case, the length of the geodesic that separates A and Ac

[Fig. 3(a)].
Black hole entropy. A very naively defined black hole in the

system, i.e., with a convex horizon but not changing the AdS
geometry, has entropy proportional to the area of its horizon
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FIG. 2. Ground-state degeneracy of the fracton models on the
Euclidean [(a) and (b)] and hyperbolic [(c) and (d)] lattices. The blue
region are the spins flipped from the original ground state. Note that
the four-spin clusters always have even number of spins flipped.

[Fig. 3(b)]

SBH = kB ln 2

2
× |γA|. (5)

which is consistent with the Hawking-Bekinstein black hole
entropy [82]. The difference of the factor 2 between Eqs. (4)
and (5) is consistent, since by definition the mutual informa-
tion is twice the entanglement entropy [34].

FIG. 3. Holographic properties of the hyperbolic fracton model.
(a) Subregion duality and RT formula for mutual information. Give
the boundary spins on segment A (orange), the reconstructible bulk at
T = 0 are those in the minimal convex wedge colored in light green.
The mutual information between boundary bipartition A and Ac (red)
is proportional to the length of the minimal covering surface (dark
green geodesic). (b) A black hole in the bulk. This naively defined
black hole (dark gray region) has entropy proportional to its horizon
area, or the number of orange geodesics.

III. DUAL EIGHT-VERTEX MODEL ON
THE SQUARE LATTICE

The main results of this paper revolve around a physically
equivalent model of the hyperbolic fracton model—the dual
eight-vertex model. Formulated in the language of arrows and
vertices, it has the advantage of illuminating various connec-
tions between the hyperbolic fracton model and other estab-
lished results in fracton phases and holography. In this section,
we will describe the dual eight-vertex model, and discuss
how it works as a straightforward demonstration of fracton-
elasticity duality [36,38,39] and subsystem charge [26].

The square-lattice eight-vertex model is a canonical ex-
actly solvable model [83–87]. It is constructed by placing a
binary arrow (left/right or up/down) on every edge of the
square lattice, but only allowing vertex configurations of even
number of arrows pointing in/out. The eight allowed vertex
configurations are shown in Fig. 4. Under open boundary con-
dition, each vertex can be independently assigned an energy
cost Ei (i = 1, . . . , 8) in the most generic case. Specifying Ei

completes the definition of the classical model.
The eight-vertex model can be reformulated as an equiva-

lent spin model that involves up to four-spin interactions [87].
The classical fracton model [Eq. (2)] described in Sec. II is a
special case of the more general equivalence. The prescription
of the duality is given below.

The eight-vertex model is defined on the dual square lattice
of the original fracton model. The mapping between the arrow
and spin configurations is illustrated in Fig. 5. Each edge of
the dual lattice neighbors two spins of the original lattice,
at the ends of the perpendicularly intersecting edge. The
arrow of the dual edge points right or down if the two spins
are aligned in the same direction, and left or up otherwise.
Such assignment guarantees that any four-spin configuration
is mapped to one of the eight vertices listed in Fig. 4. The
mapping has a global twofold degeneracy: the vertices remain
the same after flipping all spins.

The dual Hamiltonian for the eight-vertex model is

HEV = −1

2

∑
v

(σ1σ3 + σ2σ4). (6)

Here, v denotes all vertices in the dual lattice, and σi is the
value of arrows on edge i, defined as

σi =
{

1 if it points right or down;
−1 if it points left or up. (7)

The assignment of subscripts 1, 2, 3, 4 around a vertex is
shown in Fig. 5(a).

One comment is in order here. The eight-vertex Hamilto-
nian can be further reorganized as

HEV = −1

2

∑
L

∑
i∈L

σiσi+1, (8)

where sum over L is to sum over all geodesics on the lattice.
Superficially this Hamiltonian looks like a number of indepen-
dent 1D spin chains with classical antiferromagnetic coupling,
each in the form of

Hspin chain = −1

2

∑
i∈L

σiσi+1.
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vertex
1 2 3 4 5 6 7 8

winding number Nw 0 0 0 0 1 1 -1 -1
net flux Cn 0 0 0 0 4 -4 0 0

flux in x-direction Cx 0 0 0 0 2 -2 2 -2
flux in y-direction Cy 0 0 0 0 2 -2 -2 2

FIG. 4. Vertex configurations in eight-vertex model and their winding numbers around the vertex center, total fluxes and fluxes in x and y
directions.

However, it is actually not the case, except when the system
is in its ground states. Because on each vertex, the spins
from two different chains are constrained to be in the eight-
vertex configurations, which is not explicitly shown in the
Hamiltonian.

The vertices of winding number zero (cf. Fig. 4) corre-
spond to the ground-state spin configurations of

Op = 1 (9)

and have energy cost

Ei = −1, i = 1, 2, 3, 4. (10)

Those of winding number ±1 correspond to the spin configu-
rations of

Op = −1 (11)

and have energy cost

Ei = +1, i = 5, 6, 7, 8 , (12)

which agree with the original fracton model [Eq. (2)]. The
prescription of the duality is concluded here.

IV. CONNECTION TO RANK-2 U(1) THEORY

In this section, we explain how the fracton model and eight-
vertex model can be obtained from the electrostatics sector of

FIG. 5. Mapping between the spin configurations and the ver-
tices. [(a)–(d)] Spin configurations of ground states Op = 1 corre-
spond to vertices with zero winding number. Their energy cost is
Ei = −1. [(e)–(h)] Spin configurations of fractons Op = −1 corre-
spond to vertices with winding number ±1. Their energy cost is
Ei = +1. The correspondence is two-to-one, since flipping all spins
maps to the same vertex.

a rank-2 U(1) gauge theory. The rank-2 U(1) theory is set up
as follows: we consider a “hollow,” scalar charged rank-2 U(1)
gauge theory in 2D. In this case, the tensorial electric field is

E =
[

0 Exy

Exy 0

]
,

which has actually only one degree of freedom. The charge is
then defined as

ρ = (∂x∂y + ∂y∂x )Exy,

and the low-energy sector corresponds to

ρ = (∂x∂y + ∂y∂x )Exy = 0.

Exy are placed at the centers of plaquettes of a square lattice,
same as the Ising spins in the original fracton model. On each
site i, Exy

i takes a Z2 value 0, 1. As a consequence, the charge
ρ also takes a 2 × Z2 value 0,2.

To build the correspondence between the spin fracton
model and the rank-2 U(1) theory, we map the Z2 value 0
to −1 in the spin model, and Z2 value 1 to 1. That is, the Ising
spin Sz

i are then identified by the correspondence

Exy
i = 1 → Sz

i = 1,

Exy
i = 0 → Sz

i = −1.

For each four-spin cluster as shown in Fig. 2, we have

∂xExy = Exy
2 − Exy

1 (Z2 value) → −Sz
1Sz

2

and

ρ2 = ρ = ∂x∂yExy + ∂y∂xExy (Z2 value) → −2Sz
1Sz

2Sz
3Sz

4.

Hence the electrostatics sector of the rank-2 U(1) gauge theory
and the spin fracton model are identified.

The correspondence between the eight-vertex arrows and
rank-2 U(1) theory is built by

∂xExy = Exy
2 − Exy

1 (Z2 value) → σ4, (13)

∂x∂yExy → −σ4σ2, (14)

∂y∂xExy → −σ1σ3, (15)

so that

ρ2 = ρ = ∂x∂yExy + ∂y∂xExy (Z2 value)

→ −σ4σ2 − σ1σ3,

which leads to Eq. (6).
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FIG. 6. Ground-state degeneracy in the two dual models. (a) A
spin configuration of ground state, and its dual eight-vertex model
state. In the eight-vertex model, the ground state is such that all
arrows on the same line align in the same direction. (b) Another
spin configuration of ground state, obtained from (a) by flipping all
spins in the light-blue shaded area. In the dual eight-vertex model, it
corresponds to flipping a line of arrows.

V. FRACTONS FROM THE EIGHT-VERTEX MODEL

The dual eight-vertex model has the advantage of illustrat-
ing various concepts of fracton models.

Firstly let us examine the ground-state degeneracies. In
the dual eight-vertex model, the ground states become very
simple: all arrows on the same straight line have to align in
the same direction. The action of flipping all spins on one
side of a straight line corresponds to flipping the arrows of
the entire line. This is illustrated in Fig. 6. The ground-state
ensemble is thus equivalent to a number of Ising spin pairs.
The two spins within each pair align in the same direction, but
there is no correlation between any two pairs on the boundary,
which makes it apparent that its entropy is proportional to the
boundary area.

Next we turn to the fracton excitations. The dual model
illuminates a qualitative difference between the its effec-
tive theory—rank-2 U(1) gauge theory (the “hollow,” scalar
charged electric sector as we explained in Sec. III)— and
conventional U(1) gauge theory in two-dimensional space.
The rank-2 U(1) gauge theory accounts for the topological
excitations of nonzero winding number Nw of the underly-
ing vector field, while the conventional U(1) gauge theory
accounts for the nonzero net flux Cn.

As one can see in Fig. 5, the fractons (vertices 5, 6, 7, 8
in Fig. 4), or “charge” of the rank-2 electric field, are ac-
tually vertices with winding number ±1. In contrast, in the
conventional electromagnetism, the “charge” is the net flux of
the underlying electric field, or just the charge as we know it
(vertices 5, 6).

The observation echoes the fracton-elasticity duality [36],
where the underlying vector field is the lattice distortion,
and disclinations corresponds to a nonzero winding of the
distortion [88].

The dual eight-vertex model is also an elegant demonstra-
tion of the subsystem symmetries and charges discussed in
Refs. [6,26]. Each fracton vertex will introduce the x- and y-
subsystem charges Cx and Cy on the x- and y-direction lines,

FIG. 7. Dual eight-vertex model on the hyperbolic disk at T = 0.
Each geodesic carries an independent binary arrow.

it is located:

Cx = σ1 − σ3,

Cy = σ4 − σ2,

where indices 1,2,3,4 are defined in Fig. 5(a). The charges are
the flux in x and y listed in Fig. 4. They are related to the
winding number by

Nw = CxCy

4
. (16)

Two different lines have their independent charges. The
total charge of each line, which can be 0 or ±2, must be
conserved by local spin flipping. Therefore a single fracton
is completely localized, since moving it will change the
subsystem charges. A two-fracton bound state can move in
x direction if they give zero charge on the y-direction lines.
A four-fracton bound state has zero subsystem charge on any
line, hence is free to move.

VI. HYPERBOLIC DUAL EIGHT-VERTEX MODEL

The eight-vertex model dual to the hyperbolic fracton
model is obtained by simply upgrading the square lattice to
the (5,4) tessellation of the hyperbolic disk. In the dual model,
each pentagon’s edge has an associated binary arrow, and
vertices are still restricted to the eight configurations in Fig. 4.
Here we assign the arrow directions in the following way: We
start from the obvious fracton model ground state of all spins
pointing up. We then define the corresponding vertex model
configuration is that (1) all arrows on the same geodesic align
in the same direction; (2) the arrow on the geodesic flows
clockwise. All other vertex states are fixed following these
rules.

For the ground state, all edges on the same geodesic have
aligned arrows. Flipping all spins on one side of a geodesic
corresponding to flipping its arrow direction. Figure 7 shows
one example of ground-state eight-vertex model configu-
rations. For fracton excitations, the concept of subsystem
charges for each geodesic is also still valid.
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FIG. 8. Bit-thread realization and Ryu-Takayanagi formula for
mutual information. Each geodesic is a thread carrying a bit of
information. The threads shared between two region (blue and green)
saturates the bottleneck between them, i.e., the covering minimal
surface. Hence the mutual information obeys the RT formula.

VII. BIT-THREAD REALIZATION

When restricted to its ground states, the dual eight-vertex
model becomes a collection of geodesics, each associated
with a binary arrow. This is a simple discrete and classical
realization of the bit-thread model proposed in Ref. [76] as a
powerful conceptual tool to visualize holography.

In the bit-thread model, the elementary physical object
is a divergence-free vector field in the bulk with pointwise
bounded norm, referred to as the flow. Like how physi-
cists visualize electric/magnetic fields, the flow lines can be
viewed as threads. Each thread carries an independent bit
of information (or two entangled qubits), and stretches from
one boundary point to another. The full-fledged geometric
theory of the bit-thread model is able to account for various
properties of holographic entanglement entropy. For example,
since the covering geodesic of boundary subregion A is the
narrowest bottleneck separating A and its complement Ac, it
sets the upper bound of the entanglement entropy between
them. Following the max-flow min-cut principle [76], this
upper bound is saturated, so that the entanglement entropy
obeys the RT formula.

In the eight-vertex model at zero temperature, each
geodesic is a thread or discretized flow, and carries the binary
arrow as one bit of classical information. The bit threads
visualize the mutual information between two subregions. It
is simply counted by how many geodesics the two subregions
share, as both subsystems can measure the directions of these
arrows.

The idea of the minimal covering surface being the bot-
tleneck is clearly represented in the eight-vertex model. As
shown in Fig. 8, the geodesics highlighted in orange are
the threads carrying the mutual information from boundary
segment A (green) to its complement Ac (blue). It is straight-
forward to identify that the minimal covering surface, or the
geodesic homologous to A, is the bottle neck of the orange
region-crossing threads, which is exactly the picture described

FIG. 9. An example of RT-formula violation of the mutual infor-
mation for disconnected boundary subregion. The red bit-threads do
not contribute to the mutual information.

in the bit thread model. The flow also satisfy the fine structure
of entanglement contour proposed by Wen [89].

In our previous work, the RT formula for a connected
boundary subregion was demonstrated. In general, toy models
of such type violate RT formula for a disconnected boundary
subregion. Here we can show that for a “nice” n-component
boundary subregion, there is an upper limit n2 − n on the
deviation of mutual information from RT formula. The term
“nice” means each component of the boundary region is
covered exactly by a geodesic in the lattice (see Fig. 9 for
an example).

In this case, each component i (i = 1, . . . , n) has a cov-
ering geodesic γi, and |γi| bit threads crossing the geodesic.
If none of the bit threads end up in the boundary subregion,
i.e., all the bit threads end up in its complement, then the
RT formula is still satisfied. This situation actually happens
depending on the choice of boundary subregion. However,
it may also happen that a bit thread connects subregion
components i and j, so it does not contribute to the mutual
information and leads to deviations from the RT formula. An
example is shown in Figure 9.

Note that on the lattice all geodesics intersect perpen-
dicularly. Using the property of hyperbolic geometry that
rectangles (four edges with four corners of π/2) cannot exist,
it is obvious that between components i and j there can be
at most one intersecting bit thread. So in the worst scenario
we may have one bit thread between every two components,
which contributes n2 − n deviation in total (see Fig. 9 for an
example).

For generic disconnected boundary, the counting becomes
much more complicated and often need to be examined
case by case. However, based on the “nice” case, it seems
reasonable to guess that the deviation of mutual information
from RT-formula will be at order O(n2) for a n-component
disconnected boundary subregion.

The bit-thread model realization is simple, yet bears some
nontrivial implications. The rank-2 U(1) theories are lin-
earized limit of certain gravitational theory [90], and the
toy fracton model here is a lattice version of a rank-2 U(1)
theory. By studying the field theory and utilizing the duality

245138-6



HYPERBOLIC FRACTON MODEL, SUBSYSTEM SYMMETRY, … PHYSICAL REVIEW B 100, 245138 (2019)

FIG. 10. Two examples of isometry violation. [(a) and (b)] The
dense three-fracton excited states cannot be distinguished from the
two-fracton excited states from the boundary. [(c) and (d)] Two
states with four-fracton excitations cannot be distinguished from the
boundary.

established here, it might be possible to derive the full bit-
thread model from (linearized) gravity. This would be an
interesting result for holographers.

Finally, we noticed a recent development yields very sim-
ilar results. In Ref. [91], Jahn et al. studied the holographic
tensor network in the language of majorana dimers, and
discovered that the tensor networks have the same picture
as we described here—entangled EPR pairs are linked by bit
threads that form the hyperbolic lattice. This is a very strong
indication of hidden connections between fracton models and
holographic tensor networks.

VIII. BULK-BOUNDARY ISOMETRY FOR DILUTED
FRACTON EXCITATIONS

Isometry is a core issue for toy models of holography
[70,72–74]. In the context of the classical fracton toy mod-
els, roughly speaking, isometry means to require that the
boundary can unambiguously determine the bulk. It can be
rigorously defined as follows.

Definition. A subset of all possible spin/vertex states is
isometric, if none of its two elements have the same boundary
state.

That is to say, within the chosen subset of all possible
spin/vertex states, the boundary state uniquely determines the
bulk. Of course, the subset has to be a sensible choice—
normally we would expect it to contain many low energy
states. For example, if it is the set of all the ground states,
then isometry holds exactly.

If the subset includes certain configurations at higher ener-
gies, the isometry will eventually break down. Two examples
are given in Fig. 10. This means the violation of holography,

FIG. 11. (a) A single fracton excitation can be reconstructed
from the boundary by identifying the geodesics with nonzero sub-
system charges. [(b) and (c)] Two-fracton excitations can also be
reconstructed, even if they lie on the same geodesic which has zero-
charge from boundary point of view. Because such geodesic can be
uniquely identified. (d) Geodesics in this configuration are forbidden
by the lattice geometry, which guarantees situations of (b) are always
unambiguous about the locations of two fractons.

but is acceptable. Because for toy models, it is often the case
that isometry (and thus holography) only holds at low energy.
After all, the AdS geometry will be distorted beyond small
perturbations by local high energy excitations, which is not
captured by the toy models at all.

The question now becomes: how can we include more
configurations at higher energy levels but maintain isometry?
Or equivalently, if we include all states below a certain energy
level, how much is the isometry broken?

To start with, including all single fracton excited states
does not break isometry. This is almost obvious, but we
still analyze it in the eight-vertex picture to pave way for
more complicated situations. As we discussed in Sec. III,
each geodesic has its own subsystem charge. A fracton will
introduce nonzero subsystem charges to the two geodesics
γ1 and γ2 it sits on. So the subsystem charge is zero if
there are zero or even number of fractons sitting on it, and
±2 if there are odd number of fractons sitting on it. In
the case of a single fracton excitation, by examining the
boundary arrows, we can identify γ1 and γ2 with ±2 charges,
thus determine the location of the fracton, and the entire
bulk [Fig. 11(a)].

All the two fracton excited states can also be included
in this subset. The most likely case is that we have four
geodesics with nonzero subsystem charges, which pins down
the two fractons [Fig. 11(b)]. The hyperbolic lattice geometry
guarantees us that situation like Fig. 11(d) will never happen,
since in that case the four geodesics form a rectangle with
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all its corners of angle π/2. Such rectangles cannot exist in
hyperbolic geometry.

The other possibility is when the two fractons sit on the
same geodesic, a situation illustrated in Fig. 11(c). In this
case, there are only two geodesics with nonzero subsystem
charges. However, due to the lattice geometry, there is one and
only one geodesic that intersects both, so it can be uniquely
determined. Hence the two fractons’ positions can always be
located.

Finally, for the pentagon tessellation, situations like
Fig. 11(d) are forbidden so that the two fracton locations
are always uniquely determined. Unlike the single fracton
excitation isometry which is general for any tessellation of
the hyperbolic disk, the isometry for two-fracton excitation is
thanks to the pentagon tessellation we use. For other choices
of tessellation, there can be cases like Fig. 11(d) that break
the isometry, but their number is small compared to all two-
fracton excitation configurations.

The isometry will be broken if we further include all
three-fracton excited states. Figs. 10(a) and 10(b) illustrate
one of such examples, in which the three-fracton excited state
has the same boundary as the two-fracton excited state. This
can be fixed by excluding the cases when the three-fracton
excitations are dense, that is, they locate around the same
pentagon. Once such cases are removed from the subset, so
that only the diluted three-fracton excitations are included,
isometry is recovered.

The same procedure can be applied as higher-energy states
are included: if by local operations a state can be turned into
a lower energy one [Figs. 10(a) and 10(b)] or one at the same
energy level [Figs. 10(c) and 10(d)], it should excluded in the
subset. In this way, we include as many lower energy states
possible while maintaining isometry. To enumerate all cases
is a slightly tedious task, but in principle achievable. Roughly
speaking, as long as the fracton excitations are “diluted,”
isometry holds. This is actually very sensible, since high
energy density means distortion of the local space geometry,
where the lattice model is not a good representation anymore.

Coming back to the question in the beginning of this
section, at low-energy levels, we can include most of the
states without violating isometry. Or, if we include all
states at low-energy levels, the isometry is not broken too
much.

Now we can come back to the question of isometry in the
beginning of this section. It can be answered in two ways: the
isometry is absolutely preserved if we include only the dilute
excited bulk states. This means hand-picking and excluding
the dense excited bulk states. However, at low energy, such
states are very small in number. Equivalently, the isometry
is partially violated at finite temperature or below certain
energy level. But the violation is minor at low temperature or
below low energy levels. This is perhaps a more pragmatic
view since a thermal ensemble or the Hamiltonian cannot
distinguish dense and diluted excitations. This is also the case
of holographic tensor networks [72].

An interesting side note is that the mostly preserved
isometry for low energy excitations is a consequence of
the negative curvature geometry. On the Euclidean lattice,
isometry is completely violated starting from two fracton
excitations.

FIG. 12. A black hole in the hyperbolic fracton model. The five
labeled geodesics are cut into five pairs. The black hole microscopic
degrees of freedom are whether each pair has aligned arrows (pair 3
here) or anti-aligned arrows (pair 1, 2, 4, 5 here).

IX. NONLOCAL BLACK HOLE MICROSTATE
DEGREE OF FREEDOM

Another concept made clear in the dual picture is the black
hole microstates, which turn out to be nonlocally encoded on
the horizon and also on the boundary.

In Ref. [34], we used the increase of ground-state entropy
in the bulk to compute the black hole entropy. An equiv-
alent definition of black hole entropy is the entropy from
the microstates of the black hole [82]. In the spin picture
from the hyperbolic fracton model, how to identify them is
a bit obscure: the microstate dofs are not the spins next to
the horizon, since they are collectively constrained by the
nonlocal symmetry structure, and not independent from each
other.

In the dual vertex model, the microstates of the black hole
become clear. Let us take the black hole in Fig. 12 as an
example. There are five geodesics cut open by the black hole.
So attached to the horizon are ten threads, extending to the
boundary.

Let us first consider the original ground states without the
black hole. From the boundary point of view, they are those
that each pair of threads aligned in the same direction, so
that each geodesic has zero subsystem charge. We define the
normalized subsystem charge

ci = Ci

2
mod 2, (17)

where the Ci denotes the subsystem charge from the ith pair
of bit threads observed from the boundary. The ground states
then can be expressed collectively as states satisfying

(c1, c2, c3, c4, c5) = (0, 0, 0, 0, 0). (18)

After introducing the black hole, the two bit threads in each
pair become independent. For the boundary, that means the
normalized subsystem charges for these pairs can be

ci = 1, or 0. (19)
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The different black hole microstates correspond to differ-
ent arrays (c1, c2, c3, c4, c5). That is, the dofs living on the
horizon are whether each pair of threads is aligned or not.
Or in more mathematical terms, the microstates are all the
ground states quotient the subsystem symmetries from the no-
black-hole bulk. Here we emphasis that the single bit threads
should not be viewed as the dofs individually. This is a critical
to identify the correct black hole microstates: different states
connected by subsystem symmetries should not be counted,
since they are already included in the entropy contribution of
ground states without black holes. This is also reason we use
the normalized subsystem charge ci instead of the original Ci:
to guarantee that the microstate is invariant under subsystem
symmetries.

A sanity check is to consider the “entanglement entropy” as
half the classical mutual information between the black hole
and the AdS boundary. As mentioned, the mutual information
is counted by the number of threads ending on the horizon
on one side and the AdS boundary on the other side. So
the entanglement entropy is counted by this number divided
by two, i.e., each pair of thread counts as one dof. This is
consistent with the microstate dof counting.

One interesting implication of the result is that the black
hole dofs are encoded nonlocally. A single thread of a pair
only gives some information of Ci but no information of ci

at all. Only when both bit threads are known can we recover
the value of ci. Thus the black hole microstate information is
nonlocally encoded on its horizon and also the AdS boundary.

Such conclusion agrees with the analysis in Ref. [81],
where the authors discussed how much of the AdS boundary
subregion needs to be measured to distinguish black hole
microstates.

In our bit-thread model, as the observer starts to expand
the observed subregion on the boundary, he/she will know the
arrow directions of more threads. However, any pair of thread
heads from the black hole is separated by a macroscopic
distance, so starting from zero up to a finite subregion, the
observer cannot infer any information about the black hole
microstate. As the first pair of cut-open threads is included
in the observed subregion, the observer begins to have some
information of the black hole microstates, and the amount of
information grows approximately linearly as the subregion
expands. Finally when almost covering the full boundary,
the observer can obtain all the information of the black hole
microstate.

In Fig. 13, we plot the black hole microstate information
as a function of the observed subregion from the eight-vertex
model, as well as the analytical result obtained in Ref. [81].
The behaviors of the two curves qualitatively agree, in terms
of the zero information segment in the beginning, the linear
growth in the middle and the final saturation.

We can also consider the situation in the “continuous”
limit: the hyperbolic disk is filled with geodesic bit threads
homogeneously, and at each point the threads extends to all
directions isotropically. Since a large black hole induces too
much geometrical deviation of the toy model from the genuine
gravity, it is more sensible to only examine the case of a tiny,
almost pointlike black hole in the center of the hyperbolic
disk. In this case, all relevant threads are straight lines radi-
ating from the center of the hyperbolic disk, making the bit

FIG. 13. Black hole microstate information for observer cov-
ering a subregion of the boundary. Red line: in the eight-vertex
model, the observer starts to have black hole microstate information
when covering a pair of geodesics cut open by the black hole
(Fig. 12). Such information is zero until the observer reaches about
half the boundary size, and gradually grows till the observer almost
covers the entire boundary. Blue line: analytical calculation of the
Holevo information measuring the microstate distinguishability as a
function of the boundary subregion area measurable to the observer
in Ref. [81]. Even though the black hole in the eight-vertex model is
very naively defined, the black hole information recovery behavior
looks similar to the analytical results.

thread counting simple (Fig. 14). In this limit, the continuous
bit thread model matches exactly with the analytical result.

X. OUTLOOK

In this work, we discussed in detail the implications of the
dual eight-vertex model equivalent to the original hyperbolic
fracton model. Despite the equivalence, it advances our under-
standing by providing a much clearer picture of a few aspects
of its physics.

The hyperbolic eight-vertex model becomes a discrete
bit-thread model at zero temperature. This explains why the
fracton model has the holographic properties demonstrated
before. It is also significant that we have another concrete,

FIG. 14. Black hole microstate information recovery in the con-
tinuous bit thread model, for a tiny black hole. In this limit the curve
matches with the analytical result exactly.
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sophisticated holographic model—the bit-thread model—as
a reference frame to evaluate the similarity between fracton
models and the informational-aspects of holography. It is
a very useful guideline to construct improved holographic
fracton models. For example, fracton bit threads being dis-
crete is a major obstacle for holography at higher order (for
disconnected boundary components), or below the AdS scale
(i.e., for regions smaller than the pentagon). So an improved
version should tackle such problems.

The connection between the fracton model and bit threads
also implies that it might be possible to establish a concrete
duality between linearized gravity (or theories with linearized
diffeomorphism-like gauge symmetry) and the full-fledged
bit-thread model. As we have shown in this work, the under-
lying effective theory of the hyperbolic fracton model is the
electrostatic sector of a rank-2 U(1) gauge theory, which can
be viewed as a special linearized limit of gravity with a subset
of the diffeomorphism symmetry [90]. This gives us some
confidence in constructing more sophisticated holographic
fracton models to mimic gravity better.

At finite temperature, utilizing the bit-thread picture and
subsystem charges, one can establish isometry for a subset of
low energy states, and identify the nonlocally encoded black
hole microscopic dofs. It is intriguing to ask what will these
subsystem charges become when we work on the continuous
field theory, or what is their analogy in gravity.

To explore the relationship between gravity and fracton
states can be a meaningful program for condensed matter
physics. A lot is known on how topological orders are de-
scribed by gauge theories, but not much on what kind of
(beyond) topological order can arise from gravitational-like
theories. Certain fracton states seem to be such examples
[11,35,39], but the whole picture is vastly unexplored.

If we could discover more gravitylike many-body systems,
they may also help us establish links between gravity and
various other toy models of holography, including the holo-
graphic tensor networks and the bit-thread model. This work
already serves as a primitive example of the latter case. It is
also attractive to mimic gravity in a laboratory using fracton
states, after we understand their relations better.
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