
The 28th Annual Conference of the Japanese Neural Network Society (October, 2018)

Adaptive Detrending for Accelerating the Training of Convolutional
Recurrent Neural Networks

Minju Jung (P)1,2, and Jun Tani2

1 School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Korea
2 Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology, Japan

E-mail: tani1216jp@gmail.com

Abstract— Convolutional recurrent neural net-
works (ConvRNNs) provide robust spatio-temporal in-
formation processing capabilities for contextual video
recognition, but require extensive computation that
slows down training. Inspired by detrending meth-
ods, we propose “adaptive detrending” (AD) for tem-
poral normalization in order to accelerate the training
of ConvRNNs, especially of convolutional gated recur-
rent unit (ConvGRU).

Keywords—Detrending, normalization, internal covari-
ate shift, convolutional recurrent neural networks (Con-
vRNNs)

1 Introduction

The current paper focuses on the time domain in
order to accelerate training of convolutional recurrent
neural networks (ConvRNNs). Much of time series
analysis and many forecasting methods can be ap-
plied only to stationary time series. Detrending trans-
forms non-stationary time series to stationary series
by identifying the change as a trend and removing it.
The current research applies this method to normal-
ize sequences of neurons in recurrent neural networks
(RNNs). Our key insight here is that the hidden state
of a gated recurrent unit (GRU) [1] can be considered
as a trend that can be approximated by the form of an
exponential moving average with an adaptively chang-
ing decay factor. Based on this insight, we propose a
novel temporal normalization method, “adaptive de-
trending” (AD), for use with GRU and convolutional
gated recurrent unit (ConvGRU). The implications of
AD are fourfold:
• AD is easy to implement, reducing computational

cost and consuming less memory than competing
methods.

• AD eliminates temporal internal covariate shift.
• AD controls the degree of detrending (or normal-

ization) through decay factor adaptability.
• AD is fully compatible with existing normalization

methods.

2 Model

2.1 Gated Recurrent Unit

The gated recurrent unit (GRU) was proposed by
Cho et al. [1] to overcome the vanishing gradient prob-
lem by using a gating mechanism. Specifically, GRU
has two gating units, called a reset gate r and an up-
date gate z, and is defined as follows:

ht = zt � h̃t + (1 − zt) � ht−1 (1)

zt = σ(Wzxt + Uzht−1 + bz) (2)

h̃t = tanh(Whxt + rt � Uhht−1 + bh) (3)

rt = σ(Wrxt + Urht−1 + bh) (4)

where σ(·) is a sigmoid function and � is an element-
wise multiplication.

The convolutional gated recurrent unit (ConvGRU)
is a natural extension of GRU by replacing the weight
multiplication of GRU with convolution.

2.2 Gated Recurrent Unit Normalization in
the Spatial Domain

Following Ba et al. [2], in this paper we apply recur-
rent batch normalization (recurrent BN) [3] and layer
normalization (LN) [2] to GRU. We refer to recurrent
BN and LN as “spatial” normalization methods to dif-
ferentiate the present approach from normalization in
the time domain reviewed above. The following equa-
tions represent GRU normalization in the spatial do-
main:

rt = σ(Nγ,β(Wrxt) + Nγ(Urht−1)) (5)

zt = σ(Nγ,β(Wzxt) + Nγ(Uzht−1)) (6)

h̃t = tanh(Nγ,β(Whxt) + rt � Nγ(Uhht−1)) (7)

ht = zt � h̃t + (1 − zt) � ht−1 (8)

where Nγ,β(·) represents the normalization followed
by an affine transformation with two learnable param-
eters (gain γ and bias β) for recurrent BN and LN,
and Nγ(·) is the same as Nγ,β(·) except for an affine
transformation with only the gain γ to remove the bias
redundancy within an equation.

2.3 Adaptive Detrending
In statistics, a MA is widely used to extract long-

term trends from noisy time series by filtering out fluc-
tuations. Among these variants, an exponential mov-
ing average (EMA) is preferred when the MA needs
to quickly respond to recent data because past data
decay exponentially over time. The value of the EMA
µt at time step t is calculated by

µt = α · xt + (1 − α) · µt−1 (9)

where xt is the current input value and α is a constant
decay factor or smoothing factor between 0 and 1.

Detrending is a method that removes a slowly chang-
ing component, called a “trend”, in order to render
time series stationary. We think that detrending can
be applied to RNNs to eliminate temporal internal co-
variate shift. Notice that the definition of EMA in (9)



Figure 1: Graph of test recognition error averaged
over three splits versus training epochs on the object-
related with modifier (OA-M) recognition dataset.

Table 1: Comparison of convergence speed on the OA-
M recognition dataset.

Model
Epochs to

Baseline’s max accuracy
Acceleration

Baseline 200 ×1.0
AD 63 ×3.2

LN+AD 28 ×7.1

is the same as that for the hidden state h of GRU in
(1) when, rather than being fixed, the decay factor α
is continuously changing at each time step as shown in
(2). By considering the hidden state h as a trend of
the candidate hidden state h̃, we can apply detrending
to GRU for temporal normalization, as follows:

yt = h̃t − ht (10)

where yt is the detrended output at time step t, and
is input into the next layer.

As mentioned above, the proposed detrending
method uses the update gate z in (2) as the decay
factor α in (9), but it is adaptively changed over time
rather than fixed. Hence, we call this method “adap-
tive detrending” (AD) to differentiate it from conven-
tional detrending methods that employ a pre-defined
or fixed setting to estimate a trend.

3 Object-Related Action with Modifier
Recognition Experiment

We tested AD on the object-related action with
modifier (OA-M) recognition dataset. The dataset
for OA-M recognition consisted of 840 videos in 42
object-action-modifier combination classes created by
non-exhaustively and non-redundantly combining four
objects, four actions, and six modifiers. Each object-
action-modifier combination class was performed by
10 subjects two times each with a randomly selected
distractor present in each video.

Surprisingly, LN performs worse than the baseline
in terms of training speed and recognition accuracy
(Fig. 1). We hypothesize that the statistics estima-
tion error plaguing LN when implemented in CNNs is

accumulated through time in ConvRNNs, leading to
significant decrease in convergence speed.

AD improves convergence speed significantly as well
as increasing recognition accuracy over those of the
baseline and LN (Fig. 1) and needs 3.2 times fewer
epochs than the baseline (Table 1). These results im-
ply that the time domain is more critical than the spa-
tial domain when normalizing RNNs. Furthermore, by
solving the limitation of LN with neuron-wise normal-
ization of AD, LN+AD shows the most significant im-
provements in both training speed and generalization
over the baseline, as well as over LN or AD, alone.
Specifically, LN+AD requires 7.1 and 2.2 times fewer
epochs, and improves recognition accuracy by 4.3%
and 1.8% compared with those of the baseline and AD.
These results show that utilizing the time domain as
well as the spatial domain for normalization generates
beneficial synergy.

4 Conclusion
This paper proposes a novel temporal normaliza-

tion method, “adaptive detrending” (AD), to accel-
erate training of recurrent neural networks (RNNs)
by removing the temporal internal covariate shift.
Although several normalization methods employing
batch normalization (BN) [4] have been proposed to
accelerate training of RNNs, these methods utilize
only the spatial domain and neglect the time domain
for statistical estimation. The key insight of this pa-
per is to view the hidden state of the gated recurrent
unit (GRU) as a trend with an exponential moving
average. With this in mind, and with simple modifi-
cations, we were able to implement AD in GRU. AD
has several advantages over other normalization meth-
ods: It is highly efficient in terms of computational and
memory requirements. Unlike conventional detrending
methods that require manual parameter setting, AD
learns and estimates trends automatically. AD is gen-
erally applicable to both GRU and ConvGRU, which
is not the case for either BN or for layer normalization
(LN).

References
[1] K. Cho, B. van Merrienboer, C. Gulcehre,

D. Bahdanau, F. Bougares, H. Schwenk, Y. Ben-
gio, Learning phrase representations using rnn
encoder–decoder for statistical machine transla-
tion, in: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), 2014.

[2] L. J. Ba, R. Kiros, G. E. Hinton, Layer normaliza-
tion, CoRR abs/1607.06450.

[3] T. Cooijmans, N. Ballas, C. Laurent, A. Courville,
Recurrent batch normalization, in: International
Conference on Learning Representations (ICLR),
2017.

[4] S. Ioffe, C. Szegedy, Batch normalization: Accel-
erating deep network training by reducing internal
covariate shift, in: Proceedings of the 32nd Inter-
national Conference on Machine Learning, 2015.


