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Abstract— The ability to plan and visualize ob-
ject manipulation in advance is vital for both humans
and robots to smoothly reach a desired goal state. In
this work, we demonstrate how our predictive coding
based deep visuomotor recurrent neural network (P-
DVMRNN) can generate plans for a robot to manipu-
late objects based on a visual goal. A Tokyo Robotics
Torbo Arm robot and a basic USB camera were used
to record visuo-proprioceptive sequences of object ma-
nipulation. Although limitations in resolution resulted
in lower success rates when plans were executed with
the robot, our model is able to generate long predic-
tions from novel start and goal states based on the
learned patterns.
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1 Introduction

The use of neural networks in robotics has be-
come popular in recent years [1], as unlike the tra-
ditional method of programming complex models by
hand, a neural network can self-determine optimal
model parameters. This work employs a hierarchi-
cal recurrent neural network (RNN) structure, utiliz-
ing Long-Short Term Memory (LSTM) and Convolu-
tional LSTM (ConvLSTM) neural networks [2]. The
RNNs can then generate output in a closed loop man-
ner, without any input by using the previous predicted
output. In order to mimic biological visuomotor cou-
pling we employ a dual hierarchical visuomotor struc-
ture which learns visuo-proprioceptual sequences in an
end-to-end manner [3] as shown in Fig. 1.
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Figure 1: Overall network architecture of P-DVMRNN

The predictive coding model [4] used in this work

takes intention at the top level, that is, instead of
attempting to learn a mapping from all possible mo-
tor sequences to sensory sequences, the model embeds
information learned from the high dimensional visuo-
proprioceptive space to a low dimensional intention
space. As shown in Fig. 2, predictive coding can pro-
duce visuo-proprioceptive sequences from a single in-
tention state. Not only can learned sequences be re-
generated given the original intention state, but novel
patterns can be generated by altering the intention
state [5].

Figure 2: Comparison of the forward and predictive
coding models. The predictive coding model is trained
to generate both visual and motor sequences

2 Method

During training, our model learns the intention
states for each of the training sequences, represented
by initial states (IS) of the internal LSTM units as well
as the connectivity weights, using back-propagation
through time (BPTT) [6] in minimizing prediction er-
ror.

When a new input is given, its IS values can be in-
ferred using an error regression (ER) scheme, which
minimizes prediction error by changing IS but does
not change the network connectivity weights. If the
network has sufficient generalization from its training
sequences, it is expected that given a novel input an
IS value that is between other similar states can be
inferred.

For a novel input, as we have no information of the
actual IS, it must be searched with the IS initially set
to a random value. A prediction is made using the
randomly set IS, and given the output using a random
IS value is unlikely to match the target sequence, a
prediction error is produced. As shown in Eq. 1, this



error will be minimized to optimize an IS during ER.
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Vout,t, Vtarget,t,M
j
out,t,M

j
target,t are the visual pre-

dicted output at step t, the visual target at step t,
the jth joint angle predicted output at step t and the
jth joint angle target at timestep t respectively. T̂ is
the timestep at which which the goal state is reached
in the plan. KL refers to Kullback–Leibler divergence.

3 Experimental Results
For this experiment, the experimenter first tutored

the robot by completing the task for a set of ran-
domly generated positions. After the joint angles were
recorded, the robot recreated the trajectories and cap-
tured video of the motions. As this data was generated
by a human, it will naturally have noise, gaps and fluc-
tuations. If our model is able to generalize the training
trajectories, it should still be able to generate accurate
predictions to reach the goal state.

The object used was a plastic cylinder with a diame-
ter of 5cm and a height of 10cm. The target is a circle
with a diameter of 12cm, and both the object and tar-
get were randomly placed. The task for the robot was
to 1) grasp the object and 2) place it in the target cir-
cle. 100 training sequences and 50 test sequences were
used. During testing, the task was deemed successfully
completed if the robot grasped the object and placed
it upright within the target circle.

As shown in Fig. 3, our model is able to generate
both visual and proprioceptual predictions for the en-
tire sequence of picking up the object and placing it
in the goal circle, although the visual prediction shows
some noise. The results are summarized in Tab. 1.

Table 1: Success rate for object manipulation task,
with varying degrees of permitted positioning error

Success
rate

With error in grasping
1 pixel 2 pixels 3 pixels

Closed loop
Prediction

48% 48% 64% 71%

Open loop
Prediction

74% 74% 88% 93%

The unsuccessful cases were often due to deviations
in the positioning of the end effector when grasping
the object. Due to the low resolution of the visual in-
put and the geometry of the object in relation to the
end effector, any error greater than 2cm (less than 2
pixels) typically resulted in a failure to grasp the ob-
ject. In the cases where the robot successfully grasped
the object, the object was placed within the goal circle
94% of the time.
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Figure 3: Example of plan generation. The top row
shows images of the initial and target visual states, the
second row shows the generated image sequence (sam-
pled), and the third row shows the image sequence
captured when the robot followed the plan, for com-
parison. The bottom row shows generated joint angles
(solid lines) and ground truth joint angles from the ex-
perimenter (dotted lines)

4 Conclusion
In this work, we proposed a new architecture for

goal-directed action planning using a predictive cod-
ing type deep dynamic neural network. We demon-
strated that our model is able to generate visuomotor
plans for a novel initial and goal position by inferring
a new initial state. These visuomotor plans can be
either long (closed loop) or one-step (open loop) pre-
dictions, with the success rate of the generated plans
being limited by the low image resolution and high
precision required to grasp the object. In future work
we plan to improve the visual input, model parame-
ters, as well as our robot hardware for better results
with long predictions of object manipulation tasks.
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