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Research Highlights 20 

• ANNINE dyes are purely electrochromic voltage sensitive dyes with linear, 21 

nanosecond responses 22 

• Red spectral edge excitation increases voltage sensitivity and reduces 23 

phototoxicity and bleaching 24 

• Dendritic voltage signals can be studied in awake animals using two-photon 25 

imaging 26 

• Voltage and calcium imaging, pharmacology, or electrical recordings can be 27 

combined  28 

• Subthreshold dendritic voltage signals reveal a 5µm basic unit of dendritic 29 

computation  30 
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Abstract 31 

Voltage imaging is the next generation of functional imaging in neuroscience. It promises to resolve 32 

neuronal activity 10 to 100-times faster than calcium imaging and to report not only supra but also 33 

subthreshold activity on a single cell or even subcellular level. Lately, several different voltage sensors and 34 

imaging techniques were published which can achieve this. Here, we focus on a technique based on the 35 

synthetic pure electrochromic voltage-sensitive dyes ANNINE-6 and ANNINE-6plus and the excitation of 36 

this dye at the red spectral edge of absorption to maximize voltage sensitivity and minimize phototoxicity 37 

and bleaching. Importantly, voltage imaging with ANNINE dyes can be done with one and two-photon 38 

excitation. Two-photon microscopy allows in vivo, depth resolved imaging and line-scan recordings with 39 

sub-millisecond temporal resolution. Interestingly for many future applications, the spectral characteristics 40 

of ANNINE dyes allows simultaneous imaging with green indicators, like the genetically encoded calcium 41 

indicator GCaMP6. We used this method to study supra and subthreshold dendritic voltage changes in 42 

Purkinje neurons of awake mice. Simultaneously, we imaged dendritic calcium and recorded electrical 43 

activity from the soma or locally applied drugs to show the full potential of the technique to study dendritic 44 

integration in awake animals. 45 

 46 

Introduction 47 

Observing the brain at work on a cellular level is the dream of many neuroscientists. We would love to see 48 

how neuronal activity triggered in the retina of our eye travels to the brain, how this activity is transmitted 49 

from neuron to neuron, how this information of the outside world is processed and integrated in the 50 

persistent neuronal network activity, and thereby update our brain-internal model of the outside world and 51 

ourselves. This dream has already come true to some extent: there are several methods available to image 52 

neuronal calcium activity of thousands of neurons and their processes in awake animals (Chen et al 2013) 53 

with indicators which are based on a single, circularly permutated green fluorescent protein fused to a 54 

calcium binding domain (Nakai et al 2001). However, to image the electrical activity in the mammalian 55 

brain on a cellular or sub-cellular level is still a challenge. Electrical signals in the brain typically last only 56 

one millisecond and therefore imaging must be even faster to capture such signals.  57 

Voltage imaging was one of the first functional imaging methods developed, and the earliest reports go 58 

back 50 years (Cohen et al 1974, Tasaki et al 1968). Using optimized synthetic voltage-sensitive dyes and 59 

fast cameras, voltage was successfully imaged, for example, from neuronal networks in invertebrates 60 

(Grinvald et al 1977, Senseman & Salzberg 1980), brain slices (Iijima et al 1996), brain modules in vivo 61 

(Grinvald & Hildesheim 2004, Grinvald et al 1986), and single neurons and their compartments in brain 62 
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slices (Antic et al 1999, Antic & Zecevic 1995). However, voltage imaging in mammalian tissue in vivo 63 

with single cell resolution or subcellular resolution failed because no method has been available for labeling 64 

specific subgroups of neurons with synthetic dyes. If synthetic voltage-sensitive dyes are injected into tissue 65 

or applied to the brain surface, they unspecifically label all cell surfaces in tissue, with axons, dendrites, 66 

and astrocyte processes being the main plasma membrane contributors. Due to the dense packing of these 67 

processes, the single structures cannot be optically resolved and only average membrane potential changes 68 

can be measured. 69 

Already 20 years ago, also genetically encoded voltage indicators were developed (Knöpfel 2012). Their 70 

key advantage is that they can be targeted to specific cell types. Over the last few years their sensitivity and 71 

temporal resolution have reached a very promising performance level. However, millisecond-resolution 72 

single-cell-resolved voltage imaging with genetically encoded indicators in scattering tissue is still not 73 

possible.  74 

Recently, a promising hybrid approach was published, expressing a genetically encoded voltage sensor with 75 

a domain to bind washed-in synthetic dye to enhance the fluorescence intensity (Abdelfattah et al 2019). It 76 

allows to image populations of neurons in different types of tissue. This hybrid indicator system can so far 77 

not be used with two-photon microscopy, but it has a great potential to do so in the near future.  78 

Here, we first summarize our voltage imaging approach which is based on the synthetic voltage-sensitive 79 

dyes ANNINE-6 and ANNINE-6plus. An in-depth primer of the method (Kuhn & Roome 2019) and 80 

detailed protocols (Roome & Kuhn 2019) were published previously. In the second part, we give an 81 

example of voltage imaging from dendrites of Purkinje neurons in awake mice (Roome & Kuhn 2018).  82 

 83 

Voltage sensing mechanism of ANNINE dyes  84 

About 20 years ago, we developed a novel family of synthetic voltage-sensitive dyes, in chemical terms 85 

anellated hemicyanines, short ANNINEs (Hübener et al 2003, Kuhn & Fromherz 2003). The ANNINE 86 

dyes, here represented by ANNINE-6 and ANNINE-6plus (Fromherz et al 2008) with a 6-ring chromophore 87 

(Fig. 1a), are similar in most respects to other voltage-sensitive dyes like di-4-ANEPPS (Fig. 1a) (Fluhler 88 

et al 1985) or RH-160 (Grinvald et al 1982). They have a hydrophobic tail group and a hydrophilic head 89 

group. The headgroup of ANNINE-6 has a positive and a negative charge, while ANNINE-6plus has two 90 

positive charges which makes it less hydrophobic. The amphiphilic design allows these dyes to bind to lipid 91 

membranes (Fig. 1b). Their chromophore is formed by C and N atoms connected by conjugated single-92 

double bonds. As a result of this bonding type the electrons involved in the π-bond are delocalized and their 93 
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orbitals define the chromophore. These electrons are bound weakly and therefore the energy of a single 94 

photon in the visible wavelength range, typically blue, is enough to excited one of the outermost electrons 95 

from the ground state to an excited state. Importantly, the chromophore is elongated and asymmetric; aniline 96 

forms one end, pyridinium the other. As a result of this asymmetry the center of charge of the delocalized 97 

electrons is shifted towards aniline due to its higher electronegativity than pyridinium (Fig. 1c, center). 98 

However, if one of the delocalized electrons gets excited by the absorption of a photon it is pulled toward 99 

pyridinium and pushed away from aniline (Fig. 1c, center). So, a charge moves along the elongated axis of 100 

the molecule.  101 

The special feature of ANNINE dyes is that the chromophore is fully anellated. This makes the chemical 102 

synthesis difficult, but the advantage is that the anellation prohibits conformational changes within the 103 

chromophore due to rotation around single bonds or flipping at double bonds. ANNNE chromophores are 104 

rigid. Conformational changes as rotations and flipping are associated with triplet state generation, 105 

bleaching, and phototoxicity (Ephardt & Fromherz 1993, Röcker et al 1996). Conformational changes 106 

might be also associated with movement of the dye at the membrane-water interface, resulting in a 107 

fluorescence change that interferes with fluorescence changes due to the voltage sensing mechanism. 108 

The design of the voltage-sensitive dye molecules with two carbohydrate chains and an elongated 109 

chromophore ensures that the molecule axis is roughly aligned with the membrane normal. If the molecule 110 

axis is aligned to the membrane normal and there is an electric field over the membrane, then the charge 111 

movement within the molecule will be modulated by the external electric field over the membrane (Fig 1c, 112 

left and right). For example, if the delocalized electron is shifted against the external electric field, less 113 

energy is needed compared to no external electric field because the field pulls the electron (Fig. 1c left). 114 

Therefore, the absorption spectrum shifts to lower energy, that is to longer wavelength. During the emission 115 

process, the electron moves with the electric field and therefore loses energy. Hence, also the emission 116 

spectrum will be shifted to lower energy. If the external electric field turns, as during an action potential, 117 

the excitation and emission spectrum will be shifted to higher energy, that is shorter wavelength (Fig. 1c 118 

right). If there are no other mechanisms of fluorescence change involved, the energy shift of both, the 119 

excitation and emission spectrum, should be the same. Importantly, ANNINE dyes are so far the only 120 

voltage-sensitive dyes which show this pure electrochromic effect where excitation and emission spectrum 121 

are shifted by the same energy (Kuhn & Fromherz 2003). Additionally, ANNINE-6 exhibits the largest so 122 

far measured charge shift in any voltage-sensitive dye. The charge shifts by 0.81 nm within the 123 

chromophore (Kuhn & Fromherz 2003).  124 
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For voltage-sensitive dyes of this type only the spectra are shifted but the amplitude of the spectrum remains 125 

unchanged. Unfortunately, the spectral shift is only very small (a few nanometer) as the external electric 126 

field over the membrane and its changes are small in comparison with the electric fields within the dye 127 

molecule. This contrasts with the widely used calcium indicators for which the amplitude is changing upon 128 

binding of calcium ions while the spectral shape remains almost unchanged.  129 

One advantage of ANNINE dyes is that the effect is purely based on the interaction of the charge in the 130 

molecule and the electric field. As a result, the responses are linear and not influenced by diffusion 131 

processes, conformational changes, or binding processes as for calcium indicators. Also, ANNINE dyes do 132 

not move within the membrane and the chromophore conformation cannot change due to the anellation. 133 

Other voltage-sensitive dyes move and can change their confirmation which influences their fluorescence. 134 

Also, as the voltage-sensing mechanism is purely based on the interaction of a charge with an electric field, 135 

the so-called molecular Stark effect (Kuhn & Fromherz 2003, Stark 1914), voltage imaging with ANNINE 136 

dyes is independent of the membrane composition which makes the ANNINE dyes applicable in very 137 

different tissue. Another advantage of using a pure molecular Stark-shift probe is that the responses are 138 

almost instantaneous. For example, ANNINE-6 was used to resolve membrane voltage changes on a 139 

nanosecond time scale (Frey et al 2006).  140 

 141 

Voltage imaging with ANNINE dyes 142 

Detectors, like camera sensors or photomultiplier tubes detect changes in fluorescence intensity. To convert 143 

the spectral shift of the voltage-sensitive dyes into a measurable intensity change, spectral band pass filters 144 

for excitation and emission are used. Here, as an example, we show the excitation spectrum of ANNINE-6 145 

labeling the outer leaflet of the plasma membrane at resting potential (Fig. 2a, black spectrum). If the 146 

voltage changes by 100 mV, the excitation spectrum shifts by about 3 nm (Fig. 2a, red spectrum). The 147 

difference between two spectra is called the fluorescence change ΔF (Fig. 2b). The fluorescence change 148 

normalized with the fluorescence spectrum results in the relative fluorescence change (Fig. 2c). Simplified, 149 

there are two basic strategies to optimize the voltage signal, differing in the excitation light source.  150 

If a white light source with the overall intensity distributed over a wide spectral range, such as a Xe-arc or 151 

halogen lamp, and a band pass filter is used for excitation, it is best to choose the excitation filter so that at 152 

the steepest slope of the spectrum is excited (Fig. 2a-c, blue arrows). Whenever the spectrum is shifted, this 153 

will result in the largest signal, that is the largest fluorescence change (in this case, a decrease in intensity). 154 

However, the sensitivity is relatively low and, therefore, many photons are needed to detect a signal. A 155 
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signal can only be detected if it overcomes the noise intrinsic to any optical measurement. Importantly, the 156 

number of generated photons is proportional to phototoxicity caused by the excited dye. This is typically 157 

not a problem for bulk loaded tissue but hampers recordings from fine structures as dendrites or axons.  158 

The second strategy is to use a light source with almost unlimited intensity, i.e. lasers, for excitation and to 159 

optimize the relative fluorescence change (Kuhn et al 2004). As the relative fluorescence change is 160 

normalized to the number of detected photons, it is proportional to information about the voltage change 161 

gained per detected photon. In this case it is best to excite at the spectral edge (Fig. 2a-c, black arrow) where 162 

the relative fluorescence change is largest. However, the excitation spectrum corresponding to the excitation 163 

probability is here very low (only a few % of the maximum) and, therefore, a white light source, e.g. Xe-164 

arc or halogen lamp, for excitation has insufficient intensity to generate a fluorescence intensity which 165 

overcomes the photon shot-noise. This problem can be overcome by using lasers to excite. So, a very high 166 

excitation intensity is required to achieve a useful fluorescence intensity, but at the spectral edge the 167 

fluorescence change will be large as the relative fluorescence change is large. Important to note is that light 168 

by itself is not harmful to tissue if it is not absorbed. Using high excitation intensity at the red spectral edge 169 

is thus within a range that does not disturb or damage the tissue. With excitation at the red spectral edge of 170 

the absorption spectrum, ANNINE-6 achieves a sensitivity of about 50% per 100 mV voltage change. 171 

Additionally, bleaching or phototoxic effects are neglectable due to the low number of excited dye 172 

molecules necessary to achieve a large optical signal for a voltage change. Additionally and for all 173 

fluorescent molecules, it can be assumed that excitation at the red spectral edge of absorption is less harmful 174 

as the smallest amount of energy is absorbed to generate an electronically excited state (Kuhn & Roome 175 

2019). 176 

Summarizing, the strategy for optimizing voltage imaging depends on the light source available. White 177 

light sources such as Xe-arc lamps or halogen lamps are typically very stable light sources but only achieve 178 

a limited relative fluorescence change. Alternatively, with lasers, high sensitivities can be achieved, but 179 

some lasers tend to be less stable than white light sources and, for wide field excitation the speckle pattern, 180 

resulting from the coherence of the laser light, hampers their applicability. For wide field imaging with 181 

bright signals, both strategies work. However, for voltage imaging of fine structures, where bleaching and 182 

phototoxicity affect the experiments, excitation with lasers at the red spectral edge of absorption becomes 183 

crucial.  Bright LED light sources, if available with a spectrum in the range between the steepest slope and 184 

the spectral edge of the excitation spectrum, might bridge these two strategies 185 

Labeling with synthetic voltage-sensitive dyes can be achieved by bath application to cell cultures or 186 

injection into tissue in vivo. If the dye is externally applied, it will bind to the outer leaflet of the lipid 187 
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bilayer membrane. A depolarization of the membrane results in a decrease of the fluorescence intensity. 188 

The advantage of this approach is that the labeling is easy to achieve. The disadvantage is that all membrane 189 

surfaces are labeled, including glia, so that it is typically not possible to extract signals from a single neuron. 190 

Using this approach, ANNINE dyes can be used to measure, for example, voltage changes of single neurons 191 

in cell cultures (Pages et al 2011) or average membrane voltage changes and oscillations in vivo (Kuhn et 192 

al 2008).  193 

If the voltage-sensitive dye is intracellularly applied the dye will label the inner leaflet of the lipid 194 

membrane. As the orientation of the dye in respect to the electric field over the membrane is reversed in 195 

comparison to the extracellular application, the signal turns: The intensity increases with a depolarization 196 

of the cell. The filling of single cells is tedious but allows to image the voltage from dendrites and axons in 197 

vitro and in vivo (Antic et al 1999, Antic & Zecevic 1995, Roome & Kuhn 2018).  198 

In general, voltage-sensitive dyes can flip from one leaflet of the lipid bilayer to the other until an 199 

equilibrium is reached based on statistics and the dye’s charge. If the dye will be equally distributed on both 200 

sides, the voltage signal disappears. If the dye has a net charge the signal might even turn. Interestingly, 201 

ANNINE dyes barely flip and show a similar sensitivity even after 2 weeks in vivo when intracellularly 202 

applied (Roome & Kuhn 2018). Also when extracellularly applied to HEK293 or primary cell cultures 203 

ANNINE dyes barely flip or internalize allowing extended imaging sessions (Pages et al 2011). 204 

Voltage imaging is typically performed with one-photon excitation and cameras detection. In this case, 205 

huge numbers of photons can be detected reducing the relative photon noise (photon noise divided by the 206 

average number of detected photons). However, in scattering tissue as in the mammalian brain the spatial 207 

resolution is limited. Two-photon microscopy can partly overcome the scattering problem (Helmchen & 208 

Denk 2005). Additionally, two-photon microscopy allows optical sectioning. Due to the sectioning, the 209 

number of excited dye molecules and detected photons is typically orders of magnitudes lower than with 210 

wide-field one-photon excitation and camera imaging. Therefore, the relative photon noise is much higher. 211 

ANNINE dyes can be easily excited at the red spectral edge of absorption with confocal microscopy (Kuhn 212 

et al 2004, Pages et al 2011) and with two-photon microscopy, where the sensitivity increases (Fig. 2d-h) 213 

(Kuhn et al 2008, Kuhn et al 2004, Roome & Kuhn 2018).  214 

Finally, ANNINE-6 dyes can be easily combined with green calcium indicators, like GCaMP, because of 215 

their spectral properties. This compatibility will allow a wide range of novel experiments. 216 
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The applicability of ANNINE dyes in neuroscience was previously demonstrated in neuronal cell cultures 217 

(Pages et al 2011), in bulk loaded tissue in anesthetized and awake animals (Kuhn et al 2008), and, recently, 218 

to image voltage in the dendrites of single Purkinje neurons in awake mice (Roome & Kuhn 2018). 219 

To give an example of the full potential of the technique, we focus in the following paragraphs on the 220 

Purkinje dendrite experiments (Roome & Kuhn 2018). At first, we argue for the importance of studying 221 

dendritic integration under fully physiological conditions and the difficulties faced to do so. Then, we 222 

explain the experimental design to overcome these difficulties and summarize our findings.  223 

 224 

Why study dendritic integration with voltage imaging in awake animals? 225 

Dendritic information processing is fundamental to how neurons work, and consequently, to how we 226 

perceive and interact with the world around us. The elaborate geometries of neuronal dendrites, their non-227 

linear electrical properties, and the distribution and strength of their varied synaptic inputs, enables neurons 228 

to perform complex computations (Häusser et al 2000, Stuart & Spruston 2015). The computations 229 

underlying how we respond to sensory input and learn to make controlled movements for example, is 230 

thought to occur through rapid spatio-temporal decoding of signals generated at dendritic synapses of 231 

individual neurons, at the scale of microns and milliseconds (London & Häusser 2005, Segev & London 232 

2000).  233 

Over 60 years of experimental and theoretical studies devoted to understanding dendritic function have 234 

provided great insight into the complex processing that dendrites can perform (Stuart et al 2016). However, 235 

due to technological limitations, most experiments have been performed in brain slices and therefore lack 236 

the synaptic inputs that occur in awake behaving animals. These key components are essential for 237 

understanding dendritic signal processing in living animals.  238 

Dendritic signal processing in the intact brain remains elusive, especially when investigating how dendritic 239 

input influences somatic activity (neuronal output), also known as ‘dendritic integration’. This is 240 

predominantly due to the technical limitations of recording from soma and dendrites simultaneously in 241 

awake animals. 242 

A well-known example of dendritic integration involves action potential back-propagation, whereby a 243 

somatic action potential signal propagates backwards into the dendrites (Waters et al 2003) (in addition to 244 

forwards along the axon). In doing so, it is thought to communicate a message of successful somatic action 245 

potential generation to active dendritic synapses, and thereby modulate synaptic plasticity through local 246 

dendritic calcium influx. This form of dendritic processing occurs in several neuron types, including 247 
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neocortical pyramidal neurons, and has been well-studied in brain slices (Stuart & Sakmann 1994). Back-248 

propagating action potentials are thought a key mechanism underlying how we learn and build memories 249 

(Svoboda et al 1999). Their function in the intact brain, however, is highly controversial, if or how back- 250 

propagating action potentials contribute during learning and memory remains unknown.  251 

Another important example of dendritic integration thought to occur in cerebellar Purkinje neurons is 252 

coincidence detection, whereby temporally coincident synaptic input from two distinct excitatory synaptic 253 

inputs, parallel fibers and climbing fibers, is thought to trigger a neuronal signal that modifies the strength 254 

of parallel fiber input to Purkinje neuron synapses, through synaptic plasticity (Ito 2000, Wang et al 2000). 255 

Electrical recording in vivo (Margrie et al 2002), and somatic whole-cell recording in particular (Petersen 256 

2017), has provided many insights into how neurons behave in their natural environment. However, 257 

electrical recording from neuronal dendrites in vivo is challenging, and is often limited to anaesthetized 258 

animals (Smith et al 2013) or restricted to single dendritic processes with limited spatial resolution across 259 

the neuron (Moore et al 2017). Importantly, although generally considered the current state-of-the-art, these 260 

techniques do not allow voltage and calcium recording from the finest spiny dendritic processes, that 261 

receive the majority of synaptic inputs. 262 

On the other hand, optical functional imaging techniques in awake animals combining two-photon 263 

microscopy (Denk et al 1990), chronic cranial windows (Holtmaat et al 2009) and genetically encoded 264 

indicators (Chen et al 2013) provide high spatio-temporal resolution from spiny dendrites (Yang & Yuste 265 

2017). However, these techniques typically only use calcium indicators, reporting supra-threshold dendritic 266 

signals at a temporal resolution limited by second messenger and indicator dynamics.  267 

Thus, despite its importance, recording rapid (~ 1ms) signals from fine (< 1µm) dendritic processes in 268 

awake animals is not possible through conventional approaches. Novel optical recording techniques 269 

designed to overcome these limitations have been eagerly anticipated. Specifically, high resolution spatio-270 

temporal mapping of dendritic signaling using simultaneous voltage and calcium imaging is essential for 271 

investigating dendritic integration in awake animals.  272 

 273 

Simultaneous voltage and calcium imaging from dendrites and electrical somatic recording from 274 

Purkinje neurons in awake mice 275 

By combining simultaneous sub-millisecond voltage and calcium two-photon imaging from spiny dendrites 276 

with somatic electrical recording, we investigated dendritic processing of spontaneously active cerebellar 277 

Purkinje neurons (PNs) in awake resting mice. These multidimensional dendritic-somatic recordings are 278 
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the first to be conducted in an awake animal, serving as an introduction to the much-anticipated field of 279 

voltage imaging from neuronal dendrites in behaving animals.  280 

Several experimental challenges had to be overcome to do the experiments (Fig. 3). 281 

Chronic cranial windows have been instrumental in advancing in vivo optical imaging studies, permitting 282 

long-term high-resolution imaging in various brain regions in awake animals, however it does not allow to 283 

access the brain. Using a simple modification to the chronic cranial window technique we incorporated a 284 

sterile silicone access port into the window (Fig. 3a) that permits long-term repeated physical and optical 285 

access to the brain (Fig. 3b) (Roome & Kuhn 2014). 286 

Filling single neurons with ANNINE-6plus turned out to be a real challenge. However, ANNINE-6plus 287 

dissolves well in ethanol (Fig. 3c) and we used this ANNINE-6plus/ethanol solution to labelled individual 288 

neurons in vivo under a two-photon microscope (Fig. 3d) by electroporation (Fig. 3e-h). After some 289 

practice, the electroporation procedure is a reliable way to fill Purkinje neurons in vivo (Fig. 3i-k) and also 290 

other neurons such as cortical pyramidal neurons (Fig. 3l). 291 

The chronic cranial window with access port also allowed us to perform simultaneous electrophysiology or 292 

pharmacological manipulations and optical imaging on awake mice over several weeks (Roome & Kuhn 293 

2018). Since animals recover quickly from surgery and can be used repetitively for many weeks (until bone 294 

regrowth obscures the window), behavioral training may be implemented. Perhaps equally important, the 295 

total number of animals used in research is significantly reduced, while the information gained from a single 296 

animal is dramatically increased.  297 

We double-labelled single cerebellar Purkinje neurons with ANNINE-6plus and GCaMP6f for 298 

simultaneous dendritic voltage and calcium imaging. To reduce phototoxicity and increase signal 299 

amplitude, we excited at the red spectral edge of absorption (1020nm). Using line scans (position indicated 300 

in Fig. 3k) at a temporal resolution of 2 kHz we simultaneously recorded voltage and calcium signals from 301 

the PN spiny dendrites (Fig. 4a,b). Extracellular electrophysiology was performed at the labelled PN soma 302 

to record somatic activity (Fig. 4c). Pharmacological manipulations were also used to identify the voltage 303 

and calcium dendritic signals that we recorded and importantly, these dendritic recordings could be repeated 304 

for up to two weeks in an awake mouse (Roome & Kuhn 2018, Roome & Kuhn 2019). 305 

Our results confirmed many findings that were described previously only in brain slices, including highly 306 

attenuated back-propagating action potentials in the PN dendrites (Roome & Kuhn 2018). Dendritic voltage 307 

imaging revealed spatio-temporal dendritic signaling patterns in PNs that was far more complex, dynamic, 308 

and fine scaled than previously anticipated, and surprisingly, even in resting animals. We observed discrete 309 
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1−2 ms suprathreshold voltage spikelets that invaded the distal spiny dendrites during dendritic complex 310 

spike events (Fig. 4d). These spikelets and their calcium correlates are highly variable in number, timing 311 

and most striking, in their spatial variability, such that the number of calcium spikelets generated by a single 312 

climbing fiber input varied across different dendritic regions to produce fully spatially and temporally 313 

graded calcium signals evoked by the formally assumed monolithic (‘all-or-none’) complex spike event 314 

(Fig. 4d). 315 

Dendritic voltage imaging also detected rapid subthreshold voltage signals evoked by parallel fiber synaptic 316 

input for the first time in vivo (Fig. 5a, also visible in Fig. 4a). These events, we refer to as ‘hotspots’, were 317 

localized to fine dendritic processes and had no corresponding calcium signal. Hotspots were partially 318 

blocked by AMPA/kainate antagonist (CNQX) and by Na+ channel antagonist (lidocaine) and showed 319 

regimes of linear and nonlinear relationship with the somatic simple spike firing rate (Fig. 5c-d) (Roome & 320 

Kuhn 2018). It was surprising to find that hotspot synaptic EPSPs were remarkably fast (5–10 ms) and 321 

localized to short (~5m) dendritic segments, with a shorter apparent length constant than had been 322 

predicted from computational modelling techniques (De Schutter & Bower 1994b, Roth & Häusser 2001). 323 

It is worth noting however that the spatial extent of these signals agrees well with clustered co-activated 324 

synaptic input observed in layer 2/3 pyramidal neurons in the cortex (Scholl et al 2017, Wilson et al 2016), 325 

and supports theories for spatio-temporally clustered synaptic input and fine-scale (5-10 micrometer) units 326 

of dendritic computation in vivo (Larkum & Nevian 2008, Wilms & Häusser 2015, Yasuda & Murakoshi 327 

2011). It is likely that the EPSP length constant is modulated by intrinsic dendritic mechanisms (i.e. active 328 

and passive channels) and/or coincident synaptic mechanisms, such as through feedforward inhibition via 329 

molecular interneurons (De Schutter 1998, De Schutter & Bower 1994a, Mittmann et al 2005).  330 

In addition to the well-known climbing fiber evoked dendritic calcium spikes, we also detected rare non-331 

climbing fiber evoked dendritic spikes that occurred following a sharp increase in hotspot activity in the 332 

spiny dendrites (Fig. 5a and e). Unlike climbing fiber evoked dendritic spikes, dendritic spike events 333 

generated a smaller localized elevation in dendritic calcium and with no associated somatic signal. Parallel 334 

fiber evoked dendritic spikes had not previously been observed in vivo. PF evoked dendritic spike events 335 

frequently follow climbing fiber evoked dendritic complex spike events, and thus contribute to the overall 336 

dendritic calcium signal. Our findings indicate that a strong increase in parallel fiber input evoked by 337 

sensory stimulation, for example, may function to enhance dendritic calcium influx if a coincident climbing 338 

fiber-evoked event occurs. This form of dendritic coincidence detection of parallel fiber and climbing fiber 339 

input is known to induce long-term depression (LTD) at PF-PN synapses (in brain slices) (Wang et al 2000) 340 

and is thought a key mechanism underlying learning for the control of movements by the cerebellum. 341 

 342 
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Figures 463 

 464 

 465 

Figure 1 Mechanism of voltage-sensitivity in electrochromic dyes. (a) Structure of three electrochromic 466 

dyes, ANNINE-6, ANNINE-6plus, and Di-4-ANEPPS. (b) Due to their hydrophobic and hydrophilic 467 

domains, electrochromic dyes bind to lipid membranes. (c) Excitation and emission of an electrochromic 468 

dye molecule causes a charge shift within the chromophore (center). This charge shift is modulated by an 469 

external electric field and shifts both the absorption and emission spectrum to either lower (left) or higher 470 

energy (right), corresponding to higher and lower wavelength, respectively. (Kuhn & Roome 2019)  471 
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 472 

 473 

Figure 2 Optimizing voltage imaging with a charge-shift probe by excitation at the red spectral edge of 474 

absorption, exemplified by ANNINE-6. (a) An external electric field shifts the excitation and the emission 475 

spectrum. In this example, the absorption spectrum of ANNINE-6 in the outer lipid membrane leaflet of a 476 

neuronal membrane at resting potential (black) is shifted by a 100 mV membrane voltage change (red), 477 

corresponding to an action potential. The spectral shift is about 3 nm. (b) The difference between the two 478 

spectra, the fluorescence change ΔF, shows a maximum and a minimum at the steepest slope of the 479 

spectrum. (c) The fluorescence change normalized by the spectrum at rest results in the relative fluorescence 480 

change ΔF/F. The relative fluorescence change diverges at the red spectral edge of absorption. If a white 481 

light source – i.e. the photon output is distributed over a wide spectral range - is used for voltage imaging 482 

experiments, the signal ΔF is optimized by exciting a range around the steepest spectral slope (blue arrows, 483 

excitation band of about 440 to 470 nm). The ΔF integral of this spectral range is proportional to the detected 484 

voltage signal. With laser excitation, however, it is possible to optimize the relative fluorescence change 485 

ΔF/F or sensitivity by excitation at the red spectral edge of the absorption spectrum (black arrows). ΔF/F is 486 

a measure of information gained per detected photon, and it rises steeply at the spectral edge. As the 487 

absorption cross-section in this spectral range is very low, practically infinitely bright light sources with 488 
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narrow spectral range, such as lasers, are required for this optimization to reach a sufficient intensity level 489 

above photon shot-noise. Experimentally, the increase of sensitivity at the red spectral edge of absorption 490 

can be shown with one-photon excitation (Kuhn et al 2004) and, here, two-photon excitation at twice the 491 

excitation wavelength of one-photon excitation. (d,e) A HEK293 cell labeled with ANNINE-6 (f) is 492 

exposed to external electric fields (field direction indicated by arrows in (d)) while scanning along the 493 

membrane with two-photon excitation. (g) By increasing the excitation wavelength, the responses for the 494 

same membrane voltage change get larger. The excitation power of the laser is increased to keep the 495 

measured fluorescence intensity constant when exciting closer to red spectral edge of absorption. (h) The 496 

responses are linear in the physiological range of membrane voltage changes. Modified with permission 497 

from Elsevier (Kuhn et al 2004).  498 
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 499 

Figure 3 Double-labelling individual neurons for combined voltage and calcium two-photon imaging in 500 

awake mice. (a) 5-mm glass cover slip with silicone access port (Roome & Kuhn 2014). (b) A chronic 501 

cranial window with access port on the vermis of the cerebellum allows access to the brain with a pipette 502 

(schematically indicated). (c) ANNINE-6plus dissolved in pure ethanol at 3 mM concentration. (d) Sketch 503 

of the setup with a mouse mounted on a treadmill under a two-photon microscope. An electrode is used to 504 

fill single neurons by electroporation and to electrically record from their soma. A behavioral camera allows 505 

detailed observation of the pupil, the vibrissa, and the face of the mouse. (e-h) A patch pipette filled with 506 

ANNINE-6plus/ethanol solution is used to label single GCaMP6f expressing neurons by electroporation in 507 

the anesthetized mouse. (i) During the imaging experiment the mouse is fully awake, sitting on a treadmill 508 

and monitored with behavioral a camera. 24 hours after labelling a Purkinje neuron with ANNINE-6plus, 509 

the dye has spread out evenly, as can be seen in (j) the cross section of the Purkinje neuron dendrite as an 510 

overlay of the green channel (GCaMP6f) and the red channel (ANNINE-6plus) and in (k) the reconstruction 511 

of the Purkinje neuron in the red channel (ANNINE-6plus). The dotted line indicates the line scan position 512 

used in Fig. 4 and 5. It is also possible to fill other neurons with ANNINE-6plus by electroporation, as, for 513 

example, (l) cortical layer 2/3 pyramidal neurons shown as overlaid z-projection of the green channel 514 

(GCaMP6f) and the red channel (ANNINE-6plus). (Roome & Kuhn 2019) 515 
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 516 

Figure 4 Simultaneous voltage and calcium imaging of Purkinje neuron dendrites and somatic recording 517 

in the awake mouse. (a) A line scan at 2 kHz was taken along the Purkinje neuron dendrites (scan position 518 

shown in Fig. 3j) to record a voltage spatio-temporal map in an awake mouse. The spatially averaged 519 

dendritic voltage (red trace) clearly shows suprathreshold dendritic complex spikes (black triangles). (b) 520 

The corresponding dendritic calcium spatio-temporal map and spatially averaged dendritic calcium (green 521 

trace) shows large calcium transients for every dendritic complex spike. (c) The access port also allowed 522 

simultaneous extracellular electrical recordings from the soma (black trace) while imaging voltage and 523 
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calcium transients from the dendrites. Simple spikes (somatic Na+ spikes) result in a current sink at the 524 

soma, while complex spikes (dendritic Ca2+ spikes) result in a dominant current source signal at the soma. 525 

(d) Different parts of the dendritic tree show a different number of spikelets during the same complex spike 526 

event. The number of spikelets correlate with the amplitude of the calcium transients in each part of the 527 

dendritic tree. Open arrowheads indicate spatially localized low activity, filled arrowheads show high 528 

activity. Spatially localized dendritic spikelets during complex spikes correlate with a local boost in the 529 

dendritic calcium transient (small arrowheads). (Roome & Kuhn 2018)   530 
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 532 

Figure 5 Sub- and suprathreshold dendritic signaling in awake mice. (a) Dendritic voltage spatio-temporal 533 

maps show epochs of low and high frequency subthreshold ‘hotspot’ events in Purkinje neuron dendrites 534 

(scan position shown in Fig. 3j). White arrow heads indicate single hotspot events. (b) The corresponding 535 

calcium spatio-temporal map does not show any correlated calcium transients except following 536 

suprathreshold complex spikes and dendritic spikes indicated in (a) by filled and open triangles, 537 

respectively. (c) By thresholding and additional spatio-temporal selection criteria, a spatio-temporal hotspot 538 

map can be generated. (d) Hotspot activity correlates with the simple spike (SS) activity at the soma. (e) 539 

Spatially averaged dendritic voltage (red) and calcium (green) recorded at 2kHz, reveal rapid (1-2 ms) and 540 
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variable suprathreshold dendritic spikelets during complex spikes (filled triangle). Extracellular somatic 541 

recordings (black) were used to identify the somatic output signals; simple spikes (SS: black binary trace) 542 

and complex spikes (CS: red binary trace). Non-climbing fiber evoked suprathreshold dendritic calcium 543 

spikes (open triangles) were detected in the awake mouse which enhance local calcium influx and showed 544 

no coincident sodium influx (simple spike) at the soma. (Roome & Kuhn 2018) 545 


