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Abstract

Neuropeptides are a class of bioactive peptides shown to be involved in various physiologi-

cal processes, including metabolism, development, and reproduction. Although neuropep-

tide candidates have been predicted from genomic and transcriptomic data, comprehensive

characterization of neuropeptide repertoires remains a challenge owing to their small size

and variable sequences. De novo prediction of neuropeptides from genome or transcrip-

tome data is difficult and usually only efficient for those peptides that have identified ortho-

logs in other animal species. Recent peptidomics technology has enabled systematic

structural identification of neuropeptides by using the combination of liquid chromatography

and tandem mass spectrometry. However, reliable identification of naturally occurring pep-

tides using a conventional tandem mass spectrometry approach, scanning spectra against

a protein database, remains difficult because a large search space must be scanned due to

the absence of a cleavage enzyme specification. We developed a pipeline consisting of in

silico prediction of candidate neuropeptides followed by peptide-spectrum matching. This

approach enables highly sensitive and reliable neuropeptide identification, as the search

space for peptide-spectrum matching is highly reduced. Nematostella vectensis is a basal

eumetazoan with one of the most ancient nervous systems. We scanned the Nematostella

protein database for sequences displaying structural hallmarks typical of eumetazoan neu-

ropeptide precursors, including amino- and carboxyterminal motifs and associated modifica-

tions. Peptide-spectrum matching was performed against a dataset of peptides that are

cleaved in silico from these putative peptide precursors. The dozens of newly identified neu-

ropeptides display structural similarities to bilaterian neuropeptides including tachykinin,

myoinhibitory peptide, and neuromedin-U/pyrokinin, suggesting these neuropeptides

occurred in the eumetazoan ancestor of all animal species.
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Introduction

Neuropeptides are a highly diverse group of messenger molecules involved in neurotransmis-

sion. They are essential for many physiological processes, such as muscle contraction, food

digestion, growth, development, and reproduction, as well as more complex behaviours, such

as adaptation, learning and memory, and ageing [1]. A neuropeptide is usually encoded in a

larger neuropeptide precursor gene, which also encodes an N-terminal signal peptide. The pre-

cursor is translated on the rough endoplasmic reticulum, and the signal peptide is removed by

a signal peptidase. Afterwards, processing enzymes in the immature secretory granules typi-

cally produce one or more mature neuropeptides by processing the protein precursor at cleav-

age sites. A number of cleavage enzymes, so called prohormone convertases of the furin/

subtilisin family with specific recognition patterns, have been identified [2,3]. After cleavage,

the processed peptides can undergo various posttranslational modifications (PTMs) [4]. Espe-

cially, the N-terminal and/or C-terminal residues are often modified. A frequently observed

modification is amidation at the C-terminus of mature neuropeptides, which is usually

required for their biological activity. C-terminal amidation involves the enzymatic transforma-

tion of a glycine into an alpha-amide by peptidylglycine alpha-amidating monooxygenase [5].

First, peptidylglycine is transformed into peptidyl-alpha-hydroxyglycine in the presence of

copper, ascorbate, and molecular oxygen and subsequently converted to peptide alpha-amide

and glyoxylate. C-terminal amidation protects the mature peptide from enzymatic degradation

by carboxypeptidases. Pyroglutamic acid is a posttranslational modification that is widely

observed at N-termini of various neuropeptides and protects the peptide chain from enzymatic

degradation by aminopeptidases. In addition to PTMs, many bioactive peptides contain a pro-

line residue in the second or third position from the N-terminus. This feature also protects the

peptide from peptidase activity at the N-terminus [6]. All these structural characteristics are

widely observed in neuropeptide sequences across the Animal Kingdom [7].

Recent advances in mass spectrometry and liquid chromatography technology have led to

the establishment of peptidomics, an efficient technology that combines liquid chromatogra-

phy with tandem mass spectrometry to identify neuropeptides. Tandem mass spectrometry

combined with peptide-spectrum matching tools enables systematic neuropeptide identifica-

tion [8–10]. Unlike neuropeptide prediction tools that are based on sequence similarities, the

peptidomics approach provides evidence for the in vivo occurrence of the mature peptides,

and also shows the eventual presence of the peptide’s PTMs [11,12]. However, identification of

naturally occurring processed peptides by means of conventional peptide-spectrum matching

tools remains difficult. Unlike proteomics, in which proteins are identified based on in vitro
generated enzymatic peptide digests, peptidomics uses naturally occurring peptides already

cleaved by processing enzymes. Because cleavage sites in a protein precursor of naturally

occurring neuropeptides cannot be predicted with high accuracy [13], peptide-spectrum

matching in classical peptidomics technology has to be performed without any enzyme specifi-

cation. This drawback in peptidomics leads to a huge search space and often results in poor

identification confidence values. In addition, all possible PTMs have to be taken into consider-

ation, which further increases the search space for peptide-spectrum matching [14].

A commonly employed approach to identify neuropeptides is based on sequence similari-

ties and has allowed the in silico prediction of putative peptide signatures in sequenced

genomes and transcriptomes of several animal species [15–18]. Multiple reports have success-

fully tracked down the evolutionarily conserved neuropeptides within a phylum or between

closely related phyla, by means of sequence similarity-based searches against protein databases

[19]. This approach is very useful for searching peptide sequences that have been evolution-

arily conserved between closely related species. However, when peptides have become
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evolutionarily diverged, such as evolutionarily ancient organisms, the sequence similarity-

based prediction of new neuropeptides may not always be successful. Moreover, within a par-

ticular peptide sequence, only a short motif required for the peptide’s biological activity is con-

served during evolution [18,20], and the non-peptide-coding region of the precursor is in

general not conserved. These issues hamper reliable sequence similarity-based peptide predic-

tion. This is especially true for neuropeptides and corresponding genes, based on homology

searches, among evolutionarily distant species, thus necessitating experimental validation. To

address these hurdles, we have developed an alternative strategy to identify neuropeptides with

high sensitivity and confidence. The strategy involves the construction of a significantly

reduced dataset that only comprises mature peptide sequences, cleaved from their predicted

protein precursors in silico. The latter are extracted from the much larger protein database

based on their typical hallmarks (signal peptide, specific cleavage sites, PTMs). Peptide-spec-

trum matching is performed against the significantly reduced dataset of peptide sequences.

The narrowed search space for peptide-spectrum matching enables highly sensitive peptide

identification.

Using this approach, we here present a systematic identification of neuropeptides from

Nematostella vectensis. This sea anemone has an urbilaterian origin and is thus one of the most

evolutionarily ancient animals with a nervous system. Urbilaterian origins of neuropeptide sig-

naling systems are still debated. There are four known non-bilaterian metazoan phyla: two

phyla that have nervous systems, the Ctenophora (comb jellies) and Cnidaria (e.g., sea anemo-

nes and jelly fish); and two phyla that lack nervous systems, the Placozoa (e.g., Trichoplax) and

the Porifera (sponges). A variety of bioactive neuropeptides have been identified in the cnidar-

ians Renilla köllikeri (class Anthozoa) and Hydra magnipapillata (class Hydrozoa) [21–27].

The cnidarian genome of Nematostella predicts the presence of putative neuropeptide precur-

sors with following C-terminal motifs: RIamides, Rpamides, Rwamides, Lwamides, Itamide,

Mtamide, Vramide, Rramide, Pgamides, Rgamides, Pvamides, and LVamide [28,29]. How-

ever, none of these neuropeptides appear to be orthologues of bilaterian neuropeptides. This

complicates our understanding of the evolution of neuropeptides. To get deeper insight into

the puzzle of neuropeptide evolution, identification of neuropeptides in urbilaterian animals is

not only fascinating, but of utmost importance. We successfully identified 20 neuropeptides in

Nematostella, many of which have not been predicted or annotated as neuropeptides before

[28].

Materials and methods

Experimental design

A comprehensive and highly sensitive neuropeptide identification pipeline was designed for

Nematostella vectensis, using a combination of in silico neuropeptide prediction combined

with tandem mass spectrometry (MS/MS). Fig 1 shows an overview of the approach used.

First, the protein database of Nematostella was processed with a software tool to extract poten-

tial neuropeptide precursor sequences, based on their structural hallmarks. These include cni-

darian-specific amino- and carboxyterminal cleavage motifs that flank the peptides sequences

and their associated posttranslational modifications (PTMs). Fragmentation spectra were

acquired by liquid chromatography-matrix-assisted laser desorption/ionization (LC-MALDI)

MS/MS. Unlike conventional peptide-spectrum matching for naturally occurring peptides (as

in peptidomics) or for enzymatic (tryptic) digests (as in proteomics), we narrowed the search

space by using a smaller target dataset for peptide-spectrum matching. This smaller dataset

only contains peptide sequences that are cleaved in silico from extracted putative peptide pre-

cursors from the Nematostella protein database. In contrast to searches in a conventional
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peptidomics workflow, which considers any amino acid residue as a potential cleavage site, the

spectral matching search in the present method was performed directly against theoretical

spectra of the mature forms of extracted neuropeptide sequences as in top-down proteomics.

Sample preparation

Adult polyps of Nematostella vectensis originally collected from the Rhode River in Maryland

[30] were kept in 1/3 artificial seawater at 18˚C and fed three time per week with nauplius lar-

vae of Artemia salina. The culture medium was changed once a week. Five adult polyps were

homogenized with a probe sonicator in 1.5 mL methanol/water/formic acid (FA) solution

(90:9:1) in 3 cycles (on for 5 s and off for 5 s) on ice. Large proteins were removed by centrifu-

gation at 10,000 × g for 15 min, and the supernatant was transferred to new tube. The sample

was freeze-dried using a vacuum centrifuge (Speedvac concentrator SVC200H, Savant, USA)

and stored at -80˚C for further treatment.

MALDI-MS/MS mass spectrometry

The sample was pre-fractionated on a C18 column (BEH C18 column, Waters, Milford, MA,

USA) using mobile phase at high pH (MilliQ and acetonitrile with ammonium hydroxide (20

mM), pH 10) and five fractions were made during the gradient (B: 5 to 90% in 30 min) at a

flow rate of 100 μL /min. Pre-fractionated samples were further separated on a C18 column at

low pH. The eluent was (A) water containing 0.5% FA and (B) 90% acetonitrile in 0.5% aque-

ous formic acid. The column was first washed and equilibrated with eluent A and 5% of eluent

B. After loading the sample, a linear gradient from 5% B to 60% B in 60 min at a flow rate of

100 μL /min was used as the mobile phase. Thirty fractions of 200 μL were collected from the

beginning of the gradient using an automatic fraction collector. The resulting samples were

dried in a Speedvac and stored at -80˚C until further analysis. Fractionated samples were

resuspended in 1.5 μL water/ acetonitrile/FA (50/49.5/0.5 v/v). Subsequently, they were trans-

ferred onto a MALDI target plate (Bruker Daltonics, Bremen, Germany) and mixed with 1.5

mL of a saturated solution of CHCA in 50% acetonitrile containing 0.5% FA. After evaporation

of the solvent, the MALDI target was introduced into the mass spectrometer ion source. Tan-

dem mass spectrometry analysis was performed using the Ultraflex II instrument (Bruker

Fig 1. Schema of the neuropeptide identification strategy using a combination of peptide-spectrum matching

against a dataset of in silico cleaved neuropeptide sequences extracted from putative neuropeptide precursors

from the Nematostella protein database. Amino- and carboxyterminal motifs were used to scan the Nematostella
protein database for neuropeptide precursor candidates, from which the peptides sequences were cleaved in silico.

Peptide sequences were then exported into a target database for MS/MS spectral searching.

https://doi.org/10.1371/journal.pone.0215185.g001
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Daltonics, Bremen, Germany) in a positive ion, reflectron mode. The instrument was cali-

brated externally with a commercial peptide mixture (peptide calibration standard, Bruker

Daltonics). All spectra were obtained using Flex Control software (Bruker Daltonics, Bremen,

Germany). The plate was initially examined in MS1 mode and spectra were recorded within a

mass range from m/z 500 to 4000. Subsequently, the peaks with S/N 10 were selected and used

for the optimized LIFT method from the same target. All tandem mass spectra were processed

by means of the FlexAnalysis software (Bruker Daltonics, Bremen, Germany), and m/z values

and intensities of each peak were recorded in peak list files.

Mass spectrometry data analysis

An in-house software module was developed, enabling the prediction and extraction of potential

neuropeptide sequences from Nematostella proteins as assembled from the genome at JGI (Nema-
tostella vectensis version 1.0, all models) [31]. First, a protein was scanned for residues correspond-

ing to the input C-terminal amino acid motif (e.g., GK or GR for C-terminal amidation).

Second, an amino acid sequence corresponding to an N-terminal motif (e.g., XP or XXP; X is any

amino acid)) was searched at the N-terminal side from the detected C-terminal motif within a

given sequence length. In case multiple stretches matched N-terminal motif, they were considered

potential N-termini of peptide sequences. All combinations of input amino acid motifs were

applied. All peptide sequences that met the criteria were cleaved in silico and written in a FASTA

formatted file that was subsequently used as a target database for peptide-spectrum matching.

To design the input motifs, we first assembled the sequences of all presently known cnidarian

neuropeptides and their precursors from the UniProt sequence database and other public avail-

able resources (S1 Table) [23,25,32–39]. It is well known that bilaterian neuropeptide precursor

proteins contain dibasic KR, KK, RK, and RR residues that flank the N- and C-termini of the

peptides for cleavage of the peptides from their precursors [3]. We observed, however, that the

already known cnidarian neuropeptide precursors rarely contain these dibasic residues (see S1

Table), which prompted us to search for cnidarian-specific input motifs. We observed that 52%

of the cnidarian neuropeptide sequences had N-terminal prolines and 54% have N-terminal glu-

tamines. In total, 84% had either an N-terminal proline or glutamine or both, indicating that

these hallmarks can be used as input motifs to extract potential neuropeptide sequences from

the Nematostella protein dataset. Currently known cnidarian neuropeptides also contain an

amidation at their C-termini, which is a commonly observed PTM of neuropeptides across all

animal species. Based on these observations, the following amino acid motifs were used to

extract potential neuropeptide sequences from the Nematostella protein dataset:

C-terminal motif:

GK# or GR#: glycine, required for amidation, before K or R
N-terminal motif:

#XP: proline from the second position from N-terminus

#XXP: proline from the third position from N-terminus

#Q: glutamate for the formation of pyroglutamic acid

(# indicates the cleavage site)

C-terminal K or R of the extracted peptides were then removed and the saved sequences

were stored as a FASTA formatted file.

For comparison, another set of potential neuropeptide sequences was created in a similar

way, but now making use of the processing sites commonly found in bilaterian neuropeptide

precursors, such as those for prohormone convertases (PC1-3) and for furin [40]. These include

the dibasic amino acid sites (KK, RR, KR, RK), as well as sites containing monobasic amino

acid residues separated by 2, 3, or 6 other residues (e.g. RXXR, KXXK) [2]. Extraction of
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potential neuropeptide sequences was thus achieved by applying the following cleavage pattern

according to Falth et al.: (K/R) Xm(K/R) #Xk(K/R) Xn(K/R) #. where m and n = 0, 2, 4, 6; X

can be any amino acid residue and k = 6–40 [41]. Residues in bold were subsequently removed

and the sequence Xk was stored and saved as FASTA formatted file. To create decoy sequences,

the amino acid sequences of the original protein dataset were randomly rearranged and sub-

jected to the aforementioned peptide prediction and extraction processes.

The FASTA files used in the present study is available online.

The software was coded in C++ using Visual Studio 2008 (Microsoft) and Boost library. It

is available online (https://sourceforge.net/projects/enpg/) with the source code under the

MIT license.

The obtained tandem mass spectra were searched against three datasets for comparison: (i)

a database holding all Nematostella proteins (ii) a database containing predicted neuropeptide

sequences by applying cnidarian neuropeptide precursor hallmarks and (iii) a database con-

taining predicted neuropeptide sequence by applying common bilaterian neuropeptide pre-

cursor processing motifs ((K/R) Xm(K/R) #Xk(K/R) Xn(K/R) #). The Mascot search engine

version 2.3 (Matrix science, London, UK) was used. Peptide-spectrum matching was per-

formed, allowing C-terminal amidation of glycine extended peptides, pyroglutamic acid (Q
and E), and oxidation (M), all being common posttranslational modifications of neuropep-

tides. Searches against the reduced dataset containing the predicted peptide sequences were

performed with “No Cleavage” setting, in which cleavage of input sequences was not consid-

ered. Precursor masses were matched to the theoretical masses of intact peptide sequences.

Mass tolerance for precursor and fragment ions were set to 0.4 and 0.8 Da. Peptides were first

tentatively identified with a Mascot expect value less than 0.05; then, they were further con-

firmed by manual verification of the product ions assigned. Decoy search was conducted by

using the aforementioned decoy FASTA file. The presence of an N-terminal signal peptide in

the protein precursor of a mass spectrometry-identified peptide was examined using SignalP

(version 5) [42]. The output files of SignalP can be found in the supporting materials.

Expression analysis

Partial ORF sequences for the identified peptides were obtained from the National Center for

Biotechnology Information (NCBI) trace archive of Nematostella vectensis (data generated by

the Joint Genome Institute) and from Stellabase (http://cnidarians.bu.edu/stellabase/index.

cgi). Gene-specific primers were designed based on the ORF sequences. The primer sequences

are available in S3 Table. PCR products for the neuropeptide-encoding genes were subcloned

into pGEM-T (Promega) and sequenced. Riboprobes were synthesized and purified as

described previously [43]. In situ hybridization was performed as previously described [44],

with the following modifications: specimens were fixed with 4% paraformaldehyde/PBS

+ 0.1% Tween 20 (PBST) for 1 h, washed with methanol 3 times and stored at -20˚C. Hybrid-

ization of 0.4- to 1.1-kb digoxygenin (DIG)-labeled antisense RNA probes was carried out

using hybridization solution containing 1% SDS at 50–65˚C for at least 22 h. For post-hybrid-

ization washes, specimens were washed by serial dilutions (75%, 50%, and 25%) of hybridiza-

tion solution with 2× SSC at 55˚C. After DIG-labeled probe was visualized using BM purple

(Roche), specimens were washed with PBST.

Results

Peptide identification by MALDI MS/MS

The tandem mass spectra were acquired from off-line LC-MALDI MS/MS analysis of a peptide

extract of Nematostella vectensis. Peptide identification was carried out using the Mascot
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peptide-spectrum matching tool, considering pyroglutamic acid formation, C-terminal amida-

tion of glycine extended peptides, and methionine oxidation. In order to reduce the search

space for peptide spectrum matching, we employed a reduced dataset that only comprised

potential neuropeptide sequences that were extracted and cleaved from the Nematostella pro-

tein dataset using cnidarian-specific amino acid motifs as input queries in silico. This way, 400

to 800 peptides were extracted, efficiently reducing the size of the search space. This dataset

was then used as a target sequence dataset for peptide-spectrum matching, and the search was

done in the top-down fashion with “no-cleavage” setting. Twenty unique peptides were identi-

fied with a Mascot E-value < 0.05. Table 1 shows the identified peptide sequences. The repre-

sentative fragment spectra used for neuropeptide identifications are shown in Fig 2. The

amino acid sequences and the details of their precursor protein coding genes can be found in

Fig 3 and S2 Table.

We compared the performance of our peptide identification approach, using peptide-spec-

trum matching against a reduced cnidarian-dedicated dataset, with the conventional peptido-

mics approach that instead uses the entire protein dataset.

As shown in Table 1, the e-values in the spectral search against the reduced dataset of pre-

dicted Nematostella peptides (first column) significantly improved compared to those of the

search against the entire Nematostella protein dataset (second column). Second, spectral

searching against the reduced dataset yielded more than twice as many peptide identifications.

Table 1. Sequences of detected peptides and their Mascot E-values.

Mascot E-value

Peptide name

ID

Peptide sequence Peptide database

Cnidarian-specific motifs

Protein database

No motif

Peptide database-

bilaterian neuropeptide processing motif

HIRamide 1 APPLDLSGPAYFHIRa 1.9E-02 4.2E+00 nd

2 GPPYIDLTEPSFFHIRa 8.8E-09 2.1E-06 nd

3 NPPIDLGPAYFHIRa 7.3E-07 1.6E-04 5.9E-07

4 pQPPIDLSPAAYFHIRa 1.1E-04 2.5E-02 7.7E-05

5 pQPPLDLGPAYFHIRa 5.0E-07 1.1E-04 nd

6 pQPPYLDLGEPSFFHIRa 4.5E-04 1.0E-01 3.6E-04

7 pQPPYLDLTPAYFHIRa 2.5E-04 5.5E-02 nd

8 pQPPYLDLTPSYFHIRa 5.4E-06 1.2E-03 nd

9 pQPPMIDLSEPAFFHIRa 1.2E-06 2.7E-04 nd

10 pQQPPMIDLSEPAFFHIRa 1.7E-03 3.5E-01 nd

PRGamide 11 GPRGGRATEFGPRGa 1.2E-04 2.8E-02 nd

12 GPRGGREVNLEGPRGa 6.7E-03 1.7E+00 nd

QWamide 13 IPPQGFRFNQWa 3.4E-02 8.2E+00 nd

14 IPPQGLRFNQWa 2.9E-03 6.7E-01 nd

15 IPPQGLRFSQWa 2.8E-03 6.4E-01 nd

RFamide 16 MPEQDANPQTRFDa 2.3E-05 5.3E-03 nd

17 pQGRFGREDQGRFa 3.2E-03 6.3E-01 nd

RPamide 18 FPPGFHRPa 2.0E-03 4.9E-01 nd

RHamide 19 GPPMIKIPVRHa 2.0E-03 5.0E-01 nd

20 GPPMoIKIPVRHa 7.7E-04 2.5E+01 nd

E-values lower than the threshold (0.05) are indicated in bold. Mascot E-values in the first column result from peptide spectrum matching (PSM) against the smaller

dataset of peptides extracted in silico. Mascot E-values in the second column result from PSM against the Nematostella protein database. Mascot e-values in the third

column result from PSM against a database of peptide sequences that were extracted from the Nematostella protein database using the most common neuropeptide

processing motif, which is based on the presence of dibasic cleavage sites as substrates for prohormone convertases and carboxypeptidase E in bilaterian neuropeptide

precursors. C-terminal amidation, oxidation, and N-terminal pyroglutamic acid are indicated as “a”, “o,” and “p,” respectively. PC: protein convertase; nd: not detected.

https://doi.org/10.1371/journal.pone.0215185.t001
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Indeed, the E-values of the peptide hits in the second column (search against entire Nematos-
tella protein dataset) were not only distributed in the higher range; many of them were also

similar to the E-values of the decoy search result (S1 Fig), which evidently complicates the pep-

tide identification process. In contrast, the E-values of the peptide hits in the first column

(search against the reduced dataset of predicted candidate Nematostella peptide sequences)

were distributed in a lower range, showing clear separation from the range of E-values of the

decoy search result (S1 Fig).

By comparison, scanning the much larger search space of the entire Nematostella protein

dataset, without any cleavage site specification (which is the conventional peptidomics search),

revealed about 100,000 to 200,000 peptide sequences that matched the molecular masses of the

mass spectrometry-detected peptides in the sample. In this third peptide spectrum matching

search, we therefore used the most common cleavage rule of neuropeptide precursors, instead

of the ‘no cleavage setting’. This includes sites containing 2 basic amino acid residues (KK,
RR, KR, RK), as well as sites containing pairs of basic amino acid residues separated by 2, 3,

or 6 other residues (e.g. RXXR, KXXK), followed by removal of C-terminal basic residues [2].

Fig 2. Representative fragment spectra of identified peptides. Fragmentation spectra of the peptide

“QPPYLDLTPSYFHIRa” (A) and “MPEQDANPQTRFDa” (B). The dotted lines indicate fragment ions assigned. Ion

labeled with � means loss of NH3.

https://doi.org/10.1371/journal.pone.0215185.g002
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Fig 3. Primary structures of neuropeptide precursor proteins. The location of the detected neuropeptides is

indicated by full lines. Numbers correspond to the ID in Table 1. Predicted neuropeptides that were not detected in

this study are indicated by dotted lines. Signal peptides predicted by SignalP are highlighted in red.

https://doi.org/10.1371/journal.pone.0215185.g003
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In this approach proposed by Falth et al, the search space is also narrowed, preserving only

potential neuropeptide structures that are cleaved through the most common cleavage patterns

in bilaterian neuropeptide precursors. [41]. However, the third column in Table 1 shows that

only 3 peptides could be identified this way. This poor peptide identification indicates that

bilaterian-typical dibasic prohormone convertase cleavage sites are not commonly utilized for

neuropeptide precursor processing in Nematostella, which is in accordance with neuropeptide

precursor sequences identified in other cnidarian species [33,36,45–47].

Novel neuropeptides in Nematostella vectensis
Most of the peptides identified in the present study have never been reported so far. Their pro-

tein-coding genes have not been annotated as neuropeptide precursor genes, except for the

RFamide precursor. Fig 3 shows the structures of the newly identified peptide precursors con-

taining the mass spectrometry-identified peptides. All precursors start with a signal peptide at

their N-terminus, typical for proteins destined for secretion, except for the QWamide precursor,

which, however, contains several hydrophobic amino acid residues at the N-terminus. Overall,

the identified peptide precursors contain multiple copies of the mature peptide sequences

sharing the same C-terminal motifs. It should be noted that the precursors also contain multi-

ple other potential neuropeptide sequences that display the same C-terminal motif as the iden-

tified peptides, as well as the structural motifs that we used for the in silico peptide extraction.

For instance, the precursor protein of HIRamide peptides contains an additional putative pep-

tide that shows the same HIRamide motif at C-terminus, together with the amidation motif

and a proline at the second and third position from the N-terminus. It remains elusive why

these peptides were not detected in our analysis. Either these peptides are not produced, or

their presence was below the detection limit of the mass spectrometer.

The HIRamide peptide precursor contains 9 structurally related peptide sequences and a

typical signal peptide sequence at the N-terminus. The HIRamide peptides share sequence sim-

ilarities with arthropod tachykinin peptides at their C-termini (Fig 4A). Tachykinins and

related peptides are well studied neuropeptides that have been evolutionarily conserved in

both protostome (nematodes, arthropods, annelids, and mollusks) and deuterostome animals

(echinodermates and chordates). Based on their C-termini, tachykinin and related peptides

can be further classified into two subfamilies: the “-FXGLMa” and “-GFXGXRa” subfamilies.

Nematostella HIR peptides display more similarities to the “GFXGXRa” subfamily, as indicated

by the aromatic phenylalanine or tyrosine residues at the fifth position from the C-terminus

and by the C-terminal arginine residue. Arthropod tachykinins and Nematostella HIRamides

share the PXXFYXXRamide motif.

The RFamide neuropeptide family is widespread among bilaterian organisms and RFa-

mides have previously been reported in cnidarians including the sea anemone. In this study,

an additional member of the RFamide family, MPEQDANPQTRFDa, was identified within the

RFamide precursor protein [29]. This peptide has an additional asparagine residue at the C-

terminus, in contrast to other peptides contained in this precursor, which all display the car-

boxyterminal RFamide motif.

Two peptides, GPRGGRATEFGPRGamide and GPRGGREVNLEGPRG, share the C-terminal

motif GPRGamide. The corresponding peptide precursor contains many peptide copies,

which all share this motif. These cnidarian peptides seem to display sequence similarities with

protostomian pyrokinins that are characterized by the C-terminal FXPRLamide sequence (Fig

4B) [65,66].

Three peptides derived from a single precursor protein display either the C-terminal

sequence motif FSQWamide or FNQWamide (Fig 4C). This motif aligns with the motif that
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typifies bilaterian myoinhibitory peptide/allatostatin type B peptide family, which is a neuro-

peptide family widespread among protostomes with various functions such as inhibitory effect

on muscles, juvenile hormone synthesis, mating behavior, sleep and learning. [60,67–70].

In addition to the peptides described above, we discovered two groups of peptides (RPa-

mide and RHamide) that originated from two precursor proteins. So far, we have not found

any sequence similarities to known neuropeptide families (Table 1).

Expression patterns of HIRamide, PRGamide, and VRHamide

neuropeptides

Our whole mounts in situ hybridization (WISH) analyses confirmed that the peptide genes

encoding the identified peptides HIRamide, PRGamide, and VRHamide are exclusively

expressed in neurons. As shown in Fig 5, the expression of all peptide genes as detected by

WISH was observed in specific cells housed mainly in the endodermal layer at the juvenile

polyp stages. Careful observation of the morphology of the positively stained cells showed

round-shaped cell bodies with neurite-like processes (Fig 5, lower panel). This indicates that

the genes encoding the detected peptides are expressed in neurons, and that the newly identi-

fied peptides are true neuropeptides. The genes encoding HIRamide and PRGamide neuro-

peptides were strongly expressed in neuronal subsets around the mouth opening (Fig 5A),

indicating that these neurons develop at the oral side to form region-specific neural network.

The tissue around the mouth of cnidarian polyps has been shown to express a number of neu-

ronal markers including RFamides, which are evolutionarily conserved in metazoans (Fig 5,

upper panel) [28], and to develop a regionalized nervous system, which is known as the oral

nervous system (Nematostella) or the nerve ring (Hydrozoa) [71–73]. The expression pattern

Fig 4. Structural similarities of identified neuropeptides in Nematostella vectensis and other species. A:

HIRamides and Tachykinin related peptides[18,48–52]. B: PRGamides and PRXamide related peptides [53–57]. C:

QWamides, myoinhibitory peptide (MIP) and allatostatin type B [58–64]. Conserved amino acid residues are shown in

red.

https://doi.org/10.1371/journal.pone.0215185.g004
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of the VRHamide-encoding gene was in sharp contrast with that of HIRamide, PRGamide, and

RFamide-encoding genes. Expression of this gene could not be detected at the oral tissue.

Instead, VRHamides were strongly and exclusively detected in neurons located at the most dis-

tal region of the tentacle endoderm (Fig 5, upper panel). This unexpected and interesting

expression pattern suggests a specific function of VRHamides in development and/or in con-

tractility of the tentacles.

Discussion

We studied the neuropeptidome of Nematostella vectensis, a sea anemone that belongs to the

Cnidaria phylum, possessing one of most basal nervous systems in the Animal Kingdom.

Recent advances in mass spectrometry technologies have greatly enhanced the identification of

neuropeptidomes from biological matrices [14,74–76]. However, an effective bioinformatics

solution for neuropeptide identification is still missing and leaves the interpretation of tandem

mass spectral data difficult. We overcame this difficulty by performing peptide spectrum match-

ing against a narrowed database comprising in silico cleaved putative neuropeptide sequences.

We successfully identified 20 peptides encoded in six neuropeptide precursor genes from

Nematostella and experimentally confirmed that at least four precursor genes are expressed in

neurons exhibiting distinct neurophysiological activities. Our approach can be easily incorpo-

rated with recent advanced technologies in peptidomics, and such a combination will greatly

improve the analysis of the neuropeptidome in a broad range of biological samples.

Strategies for the improvement of peptide identification

Peptide-spectrum matching has become the main tool for identifying naturally occurring pep-

tides. Unlike classical methods, such as Edman degradation, this approach takes advantage of

the high sensitivity of modern mass spectrometry instruments and high throughput peptide

search engines, therefore enabling comprehensive neuropeptide characterization. One of the

Fig 5. WISH staining of juvenile polyps of Nematostella vectensis (8 days post fertilization). The figure shows

localized expression of HIRamide, PRGamide RFamide, and VRHamide genes at low (upper panels) and high

magnification (lower panels). Scale bars, 100 μm (upper) and 50 μm (lower). Neural processes are indicated by red

arrows.

https://doi.org/10.1371/journal.pone.0215185.g005
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main difficulties in peptidomics is that the peptide-spectrum matching tool needs to used with

the “no enzyme” setting, which results in an enormous search space. Consequently, the pep-

tide-spectrum matching result is usually worse in comparison with a peptide search in a prote-

omics setting.

The peptide characterization strategy employed in this study is a combination of predicting

potential neuropeptide sequences and peptide-spectrum matching. This approach is effective

in narrowing the search space and thereby significantly increases the sensitivity of peptide

identification. Fälth et al. employed a similar approach to narrow search space in order to

improve peptide-spectrum matching [41]. They used the most common processing rule of

neuropeptide precursors to extract potential neuropeptide sequences from a large protein

database, which significantly improved peptide identification rate. We tested their approach

by extracting peptide sequences from the Nematostella protein dataset using the most common

cleavage sites containing basic residues, but failed to identify the majority of Nematostella neu-

ropeptides identified by the present strategy. This is explained by the fact that the most com-

mon basic amino acid cleavage site in bilaterian neuropeptide precursors seems to be rare in

cnidarian (Nematostella) neuropeptide precursors.

Southey et al. developed a dedicated tool to predict basic cleavage sites in neuropeptide pre-

cursor genes [77]. The prediction engine, NEUROPRED, needs to be trained with the infor-

mation of known neuropeptides and their precursors; hence many identified peptides and

information of processing sites are required. Compared to the prediction with simple motif

matching, the prediction by NEUROPRED using logistic regression modeling is more reliable,

but, on the other hand, rather strict and potentially discards many forms of cleaved peptides,

especially if the large amount of training data is not available. These approaches are very effec-

tive for the prediction of neuropeptides in bilaterian phyla where a lot of sequence information

is already available. In contrast, the number of known cnidarian neuropeptides is limited com-

pared to the massive amounts of peptide sequences in bilaterian phyla. Cnidarian neuropep-

tides display, however, very clear N/C-terminal motifs. The limited number of peptide

sequences and highly conserved motifs in cnidarian neuropeptides make regression modeling

unnecessary and less effective for peptide identification in this animal group.

Unlike bilaterian animals, non-basic cleavage sites are commonly observed in cnidarian

neuropeptide precursors [33,34,37,39,45–47,78]. In fact, most of the peptides identified in the

present study were generated via cleavages at non-basic residues. Therefore, the approach we

employed in the present study (i.e., the prediction of putative neuropeptide sequences based

on other structural hallmarks, such as the N-terminal pyroglutamation or Proline at the second

or third position from the N-terminus and the C-terminal amidation) is more comprehensive

and effective to preserve as many potential neuropeptide sequences as possible in the target

database for peptide-spectrum matching. Nevertheless, the approach also has a drawback in

that it only allows identification of neuropeptides that display these specific features. Non-ami-

dated peptides or peptides that are not N-terminally protected are not contained in this

reduced database.

Noteworthy, prohormone convertases distinct from the furin/subtilisin family likely exist

in other bilaterians as has been suggested in several peptidomic and non-peptidomic studies.

Hence, our method may eventually reveal novel peptides in bilaterian species [13,79–83].

Neuropeptide evolution

Many pioneer studies in the late 80s and early 90s already pointed to homologies between pro-

tostomian and deuterostomian neuropeptides based on neuropeptide sequence identifications

in vertebrate, insect, molluscan, and cnidarian species [20,36,84–88]. However, until today,
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knowledge on signaling molecules, including neuropeptides, in the more ancient eumetazoan

animals remained scarce. A previous study showed a highly conserved set of genes in the

Nematostella vectensis genome, including molecules involved in neurotransmission [28,89].

Anctil et al. has reported potential neuropeptide coding genes by means of homology search-

ing [29]. Although these predicted precursor proteins contain short repeats of neuropeptide-

like motifs, it is difficult to prove the peptide identities as the corresponding precursors were

predicted solely based on their protein sequence without any experimental evidence that the

peptides are processed. Some of the neuropeptide precursor proteins predicted by Anctil

showed a significant degree of structural similarities to non-peptide precursors, leaving doubts

on their identity as true neuropeptide precursors. In the present study, we were unable to iden-

tify any of those predicted peptides, neither by conventional “no-enzyme” searches against the

entire Nematostella protein database, nor by searches against the reduced dataset of predicted

peptides. Homology-based searches based on short neuropeptide sequences remain a difficult

task. More importantly, the homology-based prediction of neuropeptide precursor genes does

not provide evidence for the occurrence of the predicted neuropeptides in vivo. Therefore,

peptide identification approaches that are based on conventional biochemical purification

methods and powered by upcoming bioinformatic technologies are necessary to empirically

prove the predicted peptides. They will be important to identify not only evolutionary con-

served peptides, but also evolutionarily derived or species-specific peptides that correspond to

the diverged physiological traits.

Our data have also important implications on our insight into the evolution of neuropep-

tides. Since the neuropeptide repertoire in ancient eumetazoans is largely unknown, the origin

of most of neuropeptides found in bilaterian animals remains difficult to reveal. Jekely (2013)

performed a similarity-based clustering analysis of genes encoding neuropeptides and neuro-

peptide GPCRs across metazoan phyla and concluded that the last common ancestor of eume-

tazoans had various small amidated peptides including RFamide, RYamide, and Wamide) [90].

Ancestral bilaterian neuropeptide-receptor families include GnRH, vasopressin, GnIH/SIFa-

mide, CRF/diuretic hormone, calcitonin/DH31, NPY/NPF, neuromedin-U/pyrokinin, CCK/

sulfakinin, galanin/allatostatin-A, and orexin/allatotropin [90,91]. It has been suggested that

these neuropeptide families may have originated concomitantly with the origin of a complex

bilaterian body plan, with control of food intake and digestion, excretory and circulatory sys-

tems, light-controlled reproduction, a centralized nervous system, complex reproductive

behavior, and learning.

Thus far, the urbilaterian origin of neuropeptide signaling pathways remains largely elusive.

Nevertheless, the present study strongly suggests that the extent of the conservation of some

neuropeptide families may even be deeper than previously proposed. Indeed, we were able to

identify neuropeptides structurally related to the myoinhibitory peptide/allatostatin type B,

tachykinin, and neuromedin-U/pyrokinin families in the cnidarian species, Nematostella, sug-

gesting that these neuropeptide families were already present in the common ancestors of all

eumetazoan species. Neuropeptides modulate various biological processes by signaling

through G protein coupled receptors (GPCRs). The Nematostella genome contains at least 79

GPCR coding genes structurally related to known neuropeptide receptors in bilaterians [29].

However, at this moment, in any of the four non-bilaterian phyla–Porifera, Placozoa, Cteno-

phora and Cnidaria–functional studies showing which neuropeptides signal through which

GPCRs are still lacking, but at least they are now on the horizon for cnidarians.

Taken together, there are still many missing pieces in the ‘jigsaw puzzle’ of neuropeptide

evolution, but we anticipate that the discovery of the receptors, downstream targets, and func-

tions of cnidarian representatives of ancient eumetazoan neuropeptide families will provide

important new insights into the evolution of neuropeptide functions in the Animal Kingdom.
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