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ABSTRACT
Background: Heliopora coerulea, the blue coral, is a reef building octocoral that is
reported to have a higher optimum temperature for growth compared to most
scleractinian corals. This octocoral has been observed to grow over both live and dead
scleractinians and to dominate certain reefs in the Indo-Pacific region. The molecular
mechanisms underlying the ability of H. coerulea to tolerate warmer seawater
temperatures and to effectively compete for space on the substrate remain to be
elucidated.
Methods: In this study, we subjectedH. coerulea colonies to various temperatures for
up to 3 weeks. The growth and photosynthetic efficiency rates of the coral colonies
were measured. We then conducted pairwise comparisons of gene expression among
the different coral tissue regions to identify genes and pathways that are expressed
under different temperature conditions.
Results:A horizontal growth rate of 1.13 ± 0.25 mm per week was observed for corals
subjected to 28 or 31 �C. This growth rate was significantly higher compared to corals
exposed at 26 �C. This new growth was characterized by the extension of whitish
tissue at the edges of the colony and was enriched for a matrix metallopeptidase, a
calcium and integrin binding protein, and other transcripts with unknown function.
Tissues at the growth margin and the adjacent calcified encrusting region were
enriched for transcripts related to proline and riboflavin metabolism, nitrogen
utilization, and organic cation transport. The calcified digitate regions, on the other
hand, were enriched for transcripts encoding proteins involved in cell-matrix
adhesion, translation, receptor-mediated endocytosis, photosynthesis, and ion
transport. Functions related to lipid biosynthesis, extracellular matrix formation, cell
migration, and oxidation-reduction processes were enriched at the growth margin in
corals subjected for 3 weeks to 28 or 31 �C relative to corals at 26 �C. In the digitate
region of the coral, transcripts encoding proteins that protect against oxidative stress,
modify cell membrane composition, and mediate intercellular signaling pathways
were enriched after just 24 h of exposure to 31 �C compared to corals at 28 �C.
The overall downregulation of gene expression observed after 3 weeks of sustained
exposure to 31 �C is likely compensated by symbiont metabolism.
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Discussion: These findings reveal that the different regions of H. coerulea have
variable gene expression profiles and responses to temperature variation. Under
warmer conditions, the blue coral invests cellular resources toward extracellular
matrix formation and cellular migration at the colony margins, which may promote
rapid tissue growth and extension. This mechanism enables the coral to colonize
adjacent reef substrates and successfully overgrow slower growing scleractinian
corals that may already be more vulnerable to warming ocean waters.

Subjects Computational Biology, Marine Biology, Climate Change Biology
Keywords Heliopora coerulea, Blue coral, Transcriptomics, Climate change

INTRODUCTION
The increasing scale and frequency of mass coral bleaching events linked with unusually
warm water has greatly contributed to the decline of coral cover across the globe. Since
the 1980s, rising sea surface temperatures have resulted in three pan-tropical bleaching
events in 1998, 2010 and 2015–2016 (Heron et al., 2016). Recent reports showed that even
the most highly protected reefs are not resistant to extreme heat stress (Hughes et al., 2017).
Recurrent bleaching leads to less recovery time for corals and, as a consequence, the
community structure on some reefs has changed dramatically (Hughes et al., 2017, 2018). If
severe bleaching events continue, it is predicted that only 10% of the world’s coral reefs will
survive beyond 2050 (Heron et al., 2016). Nevertheless, it has become increasingly evident
that coral susceptibility and resilience to bleaching is highly variable (Grottoli et al., 2014;
Guest et al., 2012;Marshall & Baird, 2000; Sampayo et al., 2008). Coral genera that are able
to withstand or recover from heat stress can repopulate affected reef areas and drive
changes in coral reef community structure (Edmunds et al., 2014; Hoegh-Guldberg et al.,
2007; Mumby & Van Woesik, 2014).

Corals that are able to tolerate stressors or survive bleaching events are valuable models
for revealing the mechanisms underlying differences in resilience (Van Oppen et al., 2015).
Analysis of gene expression through transcriptome sequencing provides a means to
evaluate the contribution of phenotypic plasticity and local adaptation to the coral
environmental response (Kenkel & Matz, 2016). Transcriptome sequencing approaches
have revealed high levels of gene expression variation in adult corals from different
environments (Barshis et al., 2013;Maor-Landaw et al., 2017), as well as altered expression
for many coral genes in response to temperature stress (Bellantuono, Hoegh-Guldberg &
Rodriguez-Lanetty, 2011; DeSalvo et al., 2008, 2010a; Kaniewska et al., 2015; Parkinson
et al., 2015; Seneca & Palumbi, 2015). Most of these differentially expressed transcripts
were derived from the host coral, with only a small proportion originating from the
dinoflagellate symbionts (Barshis et al., 2013; Parkinson et al., 2018). Coexpression of genes
that function within similar cellular pathways reveal processes that are critical for
mounting the coral stress response (Bay & Palumbi, 2017; Rose, Seneca & Palumbi, 2015).
Although transcriptome responses vary by species and treatment regime, common
biological functions that have been found to be responsive to temperature conditions
include protein folding chaperones, removal of damaged macromolecules, redox signaling,

Guzman et al. (2019), PeerJ, DOI 10.7717/peerj.7785 2/22

http://dx.doi.org/10.7717/peerj.7785
https://peerj.com/


apoptosis, calcium homeostasis, and modifications to the actin cytoskeleton and
extracellular matrix (DeSalvo et al., 2010a; Kaniewska et al., 2015; Meyer, Aglyamova &
Matz, 2011; Parkinson et al., 2015; Seneca & Palumbi, 2015). Resilient corals typically
expressed higher levels of thermal tolerance genes, particularly heat shock proteins,
antioxidant enzymes, apoptosis regulators, tumor suppressors, innate immune response
genes, and cell adhesion molecules (Barshis et al., 2013). It should be noted that most of
these studies have been conducted on scleractinian corals, with limited reports for
octocorals (Pratlong et al., 2015; Sammarco & Strychar, 2013). Transcriptome sequencing
of alcyonacean octocorals, such as Gorgonia ventalina and Corallium rubrum, revealed
expression of immune response genes related to pattern recognition, anti-microbial
peptides, and wound repair in response to pathogen exposure (Burge et al., 2013), as well as
gene expression signatures of thermal adaptation (Pratlong et al., 2015).

The reef-building octocoral Heliopora coerulea is an example of a coral species that
survives bleaching events better than most scleractinian corals. Commonly known as the
blue coral,H. coerulea is thought to be highly resistant to temperature stress and bleaching
(Harii et al., 2002; Kayanne et al., 2002; Richards et al., 2018). This coral exhibits
considerable morphological plasticity with laminar and digitate forms (Villanueva, 2016;
Yasuda et al., 2014), as well as an encrusting form that is observed along colony margins. In
contrast, H. hiberniana, a newly described Heliopora species from north Western
Australia, has a distinctive slender branching growth form with a white skeleton (Richards
et al., 2018).

Heliopora coerulea is found in the Indo-Western Pacific region between 25�N and 25�S
(Zann & Bolton, 1985). Specifically, H. coerulea thrives in waters with a mean annual
minimum temperature above 22 �C, which is considerably higher than the 18 �C
marginal isotherm for many corals (Zann & Bolton, 1985). Recently, the northernmost
populations of H. coerulea have been discovered in Tsukazaki, Japan where the lowest
temperature is around 18 �C (Nakabayashi et al., 2017). H. coerulea can dominate large
reef areas although, in most cases, its colonies are patchily distributed due to its short
larval duration (Atrigenio, Aliño & Conaco, 2017; Harii et al., 2002). It has also been
observed that adultH. coerulea can inhibit the settlement of other scleractinian larvae in its
vicinity (Atrigenio, Aliño & Conaco, 2017). In the Bolinao-Anda Reef Complex in
northwestern Philippines facing the South China Sea,H. coerulea coral cover has increased
from just 1% in the 1990s to about 50% after 20 years (Atrigenio, 1995; Vergara, 2009),
during which time two mass bleaching events were reported (Arceo et al., 2001; Shaish
et al., 2010). The increasing prevalence of H. coerulea coincides with rising sea surface
temperature in the South China Sea region, which was estimated at 0.50 ± 0.26 �C per
decade from 1993–2003 (Fang et al., 2006) and 0.31 �C per decade from 2003–2017 (Yu
et al., 2019) based on high-resolution satellite data. The ability of H. coerulea to compete
for space on the reef may be attributed to various factors, chief among which could be
resistance to environmental stressors affecting the area, which include temperature
variability (Penaflor et al., 2009), reduced salinity (Cardenas et al., 2010), and
eutrophication (Ferrera et al., 2016). However, little is known about how these factors
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influence the growth of H. coerulea. Furthermore, no studies have yet been conducted to
examine gene expression dynamics in this coral under different temperature conditions.

To understand the molecular mechanisms governing the response of H. coerulea to
varied temperatures, we observed the growth rate of the coral at temperatures spanning the
typical range experienced at the study site. We then analyzed changes in the patterns of
gene expression both in the coral host and its symbionts. The findings of this study reveal
the underlying processes that control the rapid growth of H. coerulea over the reef.

MATERIALS AND METHODS
In situ coral overgrowth measurements
Overgrowth measurements were done on coral colonies found within a 10 × 10 m area at
three to five m depth in Lucero, Bolinao, Pangasinan, Philippines (N 16�2441, E 119�5420)
from January to December 2016. A total of 10 H. coerulea colonies naturally growing over
massive Porites sp. were randomly selected and tagged with numbered pieces of aluminum.
Horizontal growth of the H. coerulea colony was measured by taking the distance from the
growing edge to a permanent reference line marked by two concrete nails hammered onto
the reef floor near the colony. Growth measurements were taken every 2 weeks for 1 year.
Two loggers (HOBO) were deployed near the site for continuous monitoring of
temperature.

Coral collection and temperature-controlled experiments
Coral colonies (~7.5 cm in diameter) were collected by SCUBA diving at three to five m
depth in Lucero, Bolinao, Pangasinan, Philippines (N 16�2441, E 119�5420) in 2015
with permission from the Philippines Department of Agriculture Bureau of Fisheries
and Aquatic Resources (DA-BFAR GP-0097-15). Independently growing colonies of
H. coerulea (digitate form), as well as colonies of H. coerulea growing over massive Porites
sp. (encrusting form), were collected using hammer and chisel. Corals were glued to
tiles (7.5 cm2) underwater and were left for a 2-week healing period at the collection site.
Corals were then transported to the Bolinao Marine Laboratory and acclimated in
flow-through seawater tanks at 28 �C for another week. Corals were randomly placed into
independently-aerated glass aquaria containing flow-through sand-filtered seawater.
Temperature in experimental tanks was gradually lowered or raised (0.25 �C h−1) to the
desired setting using using chillers (Hailea 1HP) or submersible aquarium heaters (Eheim
Jaeger 300W). Corals were maintained at three temperatures that were selected to span the
typical temperature range recorded in Bolinao: 26 ± 1 �C represents the average
temperature during the coldest months of the year, 28 ± 1 �C represents the yearly average
temperature, and 31 ± 1 �C represents the average temperature during the warmest
months of the year. Three replicate tanks were used for each temperature regime. Each
tank contained six corals consisting of three digitate colonies and three encrusting colonies
(a total of 54 colonies for each experimental run). Temperature-controlled experiments
were performed with two outdoor runs conducted from January to March 2015 (trials 1
and 2). Due to difficulties in maintaining temperature stability in the outdoor experimental
tanks, a third experimental run was conducted indoors from June to July 2015 (trial 3).
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Samples for sequencing of digitate tissues were collected from corals in the outdoor
experiments under shaded natural sunlight of ~1,000 lux. The margin and encrusting
tissues were collected from corals from the indoor experiment conducted under ~500 lux
illumination on a 12:12 light-dark cycle provided by 20W LED daylight lamps.

Water temperature in the tanks was monitored using temperature probes (Vernier
LabQuest) and underwater temperature and light loggers (HOBO) set to record every 30
min. Horizontal growth at the edges of H. coerulea growing over a flat portion of Porites
was measured using a plastic caliper with a set reference point. Photosynthetic efficiency
was measured using a pulse amplitude-modulated fluorometer (Diving-PAM; Walz Inc.,
Effeltrich, Germany). Coral fragments were collected after 24 h or 3 weeks of exposure.
White margin tissues were carefully separated from adjacent calcified encrusting tissues
using surgical scissors. Coral fragments were immediately flash-frozen in liquid nitrogen
for transport and subsequent RNA extraction.

RNA extraction and sequencing
Total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s protocol. For digitate colonies, coral fragments (~2.5 cm length) from each
coral colony were manually homogenized using a mortar and pestle. The new growth and
calcified encrusting tissues of H. coerulea colonies growing over Porites were dissected and
treated as separate tissue samples. Contaminating genomic DNA in the RNA extracts was
removed using the Turbo DNA-free kit (Life Technologies, Carlsbad, CA, USA) followed
by ethanol precipitation. Nucleic acid concentrations were quantified using the Qubit 3.0
fluorometer (Life Technologies, Carlsbad, CA, USA). RNA integrity was assessed by
electrophoresis on native agarose gels with denaturing loading dye and using an Agilent
Bioanalyzer 2100. Duplicate or triplicate samples were selected for RNA sequencing. Total
RNA samples were sent to the Beijing Genomic Institute, Hong Kong, for mRNA
enrichment and preparation of barcoded libraries using the Illumina TruSeq RNA Sample
Prep Kit V2 protocol. A total of 20 libraries were sequenced on the Illumina HiSeq 2000
platform with 100-bp paired-end reads (Table S1).

Gene abundance estimation and differential expression analyses
Raw sequence reads were filtered to remove adapter sequences and low-quality reads.
Trimmomatic 0.32 (Bolger, Lohse & Usadel, 2014) was used to trim the first 10 bases of the
reads. Reads were scanned using a four-base sliding window, deleting bases with average
quality below 20. Bases with quality scores below 30 at leading and trailing ends were also
trimmed. Only reads that passed the quality filters and that were longer than 30 bases were
retained for further analysis. Gene abundance estimation for each sequence library was
performed by mapping paired-end reads back to a previously assembled
metatranscriptome of H. coerulea (Guzman et al., 2018) using the RNASeq by expectation
maximization with Bowtie2 alignment method included in the Trinity package suite
(Grabherr et al., 2011; Langmead & Salzberg, 2012; Li & Dewey, 2011).

Analysis of differentially expressed transcripts was conducted on edgeR (Robinson,
McCarthy & Smyth, 2010) using counts obtained from the abundance estimation. Only
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transcripts with greater than one count per million in at least two samples were included in
the analysis. Genes that were up or downregulated with a log2 fold change > |2| and a
p-value < 0.05 (Benjamini–Hochberg adjusted) were considered differentially expressed.
Samples used for edgeR comparisons are listed in Table S1. Differentially expressed
transcripts are listed in Data S1.

GO enrichment analysis and PFAM domain annotation
The H. coerulea transcriptome assembly was previously annotated by alignment to the
RefSeq database at an e-value cutoff of 1 × 10−5. The top blastx hit for each gene was used
as input into Blast2GO (Conesa et al., 2005) to retrieve gene ontology (GO) terms.
Enrichment analysis for differentially expressed genes was performed using the topGO
package in R (Alexa & Rahnenfuhrer, 2018). Only GO terms with a p-value < 0.05 were
considered significantly enriched. Protein domains were identified by mapping predicted
peptides against the Pfam 28.0 database using HMMER v3.1b1.

RESULTS
Physiological response of H. coerulea to various temperature regimes
Heliopora coerulea exhibited a rapid horizontal growth rate at warmer temperature
(Fig. 1A; Fig. S1). An average horizontal growth rate of 0.41 ± 0.18 mm per week was
recorded from in situ monitoring of H. coerulea colonies over the course of a year (Fig. 1B;
Data S2). During this observation period, the average seawater temperature at the reef site
was 29.36 ± 1.49 �C, ranging from a minimum of 22.87 �C to a maximum of 32.87 �C.
Maximum growth rate reached 0.65–0.72 mm per week in the months of May–June 2016,
coinciding with a seawater temperature average of 31.25 ± 0.17 �C (Fig. 1B). On the other
hand, slowest growth rates were observed from January to April when temperatures
averaged 27.73 ± 1.12 �C at the site. From April to July, maximum temperatures recorded
at the site reached >32 �C, which resulted in bleaching of several coral genera. Quantitation
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Figure 1 Heliopora coerulea grows rapidly over the reef. (A)H. coerulea growing over other scleractinian corals. The new growth is visible as white
tissues at the margins or edges of the colony (white arrowheads). (B) In situ monitoring of H. coerulea growth over the course of a year in relation to
recorded seawater temperature at the reef site. Growth is shown in average millimeters per week (mm/week). Error bars represent standard deviation
of measurements from replicate colonies. Average monthly temperature is indicated by the red line and the shaded area represents the minimum and
maximum recorded temperatures. (C) Colony margins extend at a faster rate at 28 and 31 �C compared to 26 �C. Growth is shown in average
millimeters per week (mm/week) for three experimental runs. Error bars represent standard deviation of measurements from replicate colonies.
Asterisks indicate significant differences relative to the 26 �C treatment (p-value < 0.005, ANOVA and Tukey’s test).

Full-size DOI: 10.7717/peerj.7785/fig-1
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of bleaching in June 2016 revealed that, although H. coerulea constituted about 32% of the
coral cover in the area, only 5% of its colonies showed visible signs of bleaching (Fig. S2). In
contrast, 14–71% of the colonies of six other scleractinian species comprising 4–20% of the
coral cover in the study area exhibited bleaching.

In the controlled temperature experiments, H. coerulea colonies growing over Porites
exhibited an average growth rate of 1.13 ± 0.25 mm per week when exposed to
temperatures from 28 to 31 �C, which was significantly faster than growth at the colder
temperature of 26 �C (ANOVA p-value = 0.0007; Fig. 1C; Data S2). Growth rates observed
in the controlled experiments were higher than what was measured in the field likely due to
the stability of temperature conditions in the aquaria. The effect of temperature on
horizontal growth rates was similar for experiments conducted at different times of the
year in either outdoor or indoor aquaria. H. coerulea colonies did not show any obvious
signs of bleaching stress, such as whitening of tissue and necrosis, after 3 weeks of exposure
to the various temperature treatments. In addition, maximum photochemical yields
(Fv/Fm), which ranged from 0.68 to 0.73, did not change significantly during the 3 weeks
of exposure to different temperatures (Fig. S3).

Global transcriptome profiles
We sequenced and analyzed the transcriptomes of different tissues (Fig. 2A) taken from
coral colonies that had been incubated under various temperature conditions. Comparison
of global transcriptome profiles revealed greater similarity with respect to tissue type rather
than to temperature treatment. The calcified tissues of H. coerulea, including both
encrusting and digitate regions, clustered together in the correlation matrix (Fig. 2B). The
margin tissues also formed a separate cluster, although this was interspersed with some
samples of calcified encrusting tissues from the 26 �C treatments. The calcified digitate
tissues from corals that had been subjected to different temperatures for only 24 h showed
variable clustering with the other samples. Variability between biological replicates may
reflect inter-colony differences in gene expression responses. It is important to note that
this correlation matrix was generated using the full metatranscriptome, which includes
transcripts originating from the coral host and its symbionts.

Differential gene expression across coral regions
New growth at the margins of H. coerulea colonies consisted of whitish tissue that is more
flexible to the touch compared to adjacent calcified encrusting tissues. Only five transcripts
were more highly expressed in the margin tissues relative to the calcified encrusting region,
of which one is a matrix metallopeptidase with hemopexin domains, another is a calcium
and integrin binding (CIB) protein with multiple EF-hand domains, and three are
unknown sequences (Fig. 3A; Data S3). A total of 147 transcripts were significantly
upregulated in the calcified encrusting region relative to the margin and this set is enriched
for collagen, trypsin, SapB, TPR, Kazal, EF hand, peptidase M14, protein kinase, and LRR
domains (Fig. 3A; Data S3). Enriched functions in the calcified encrusting region include
proteolysis, carbohydrate metabolic process, response to oxidative stress, chitin metabolic
process, and sphingolipid metabolic process (Fig. 3B; Data S4).
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Compared to the vertical (digitate) growth region, 443 transcripts were more highly
expressed in the horizontal growth region, that includes both margin and calcified
encrusting areas, with 41.53% of the transcripts originating from symbionts and 58.47%
from the host (Fig. 2C; Table S2). These transcripts are enriched for epidermal growth
factor (EGF), leucine-rich repeat (LRR), and ankyrin domains (Fig. 3C; Data S3). The
encoded genes are enriched for functions related to biosynthesis of proline and riboflavin,
nitrogen utilization, and organic cation transport (Fig. 3B; Data S4). On the other hand,
12,783 transcripts were found to be more highly expressed in the vertical (digitate)
region of the coral compared to the horizontal region, with only 4.93% originating from
symbionts and 95.07% from the host. Common domains found in these transcripts
include SRCR, ankyrin repeats, EF hand, immunoglobulin, collagen, and EGF (Fig. 3C;
Data S3). These domains are associated with functions related to cell-matrix adhesion,
translation, receptor-mediated endocytosis, chitin metabolism, vesicle-mediated transport,
photosynthesis, carbohydrate and lipid metabolic processes, actin cytoskeleton
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reorganization, and calcium and iron ion transport (Fig. 3B; Data S4). Interestingly,
transcripts encoding homologs of biosynthetic enzymes for biliverdin IXa, the blue
pigment found in the H. coerulea skeleton (Hongo, Yasuda & Nagai, 2017), were detected
in all tissues examined (Fig. S4). Most of these transcripts were expressed at higher relative
abundance in the calcified encrusting and vertical (digitate) regions, whereas biliverdin
reductase, which reduces biliverdin to bilirubin, was detected only in the vertical region.
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Effect of temperature on differential gene expression at the margin
Controlled temperature experiments revealed higher horizontal growth rates for
H. coerulea colonies kept at 28 and 31 �C compared to controls at 26 �C. To identify
transcripts that correspond to this enhanced growth, we compared the transcriptome of
margin tissues obtained from colonies subjected to 28 and 31 �C to margin tissues from
colonies kept at 26 �C. Exposure to temperatures of 28 or 31 �C for up to 3 weeks resulted
in upregulation of 16 transcripts and downregulation of 19 transcripts at the margin
compared to corals subjected to 26 �C (Fig. 2C; Table S2). Upregulated transcripts encoded
proteins containing CmcI methyltransferase, tetraspanin, fibrillar collagen, peroxidasin,
and BTB domains (Fig. 4A; Data S3), with enrichment for functions related to lipid
biosynthesis, extracellular matrix formation, and response to oxidative stress (Fig. 4B;
Data S4). On the other hand, downregulated transcripts contain cadherin, granulin, and
fibronectin domains (Fig. 4A; Data S3) and are predicted to be involved in cell adhesion,
lipid synthesis and transport, and inositol metabolism (Fig. 4B; Data S4).

Effect of temperature on differential gene expression in the digitate
region
Transcriptome profiles in the digitate region of the coral were examined to elucidate the
effect of temperature levels typically experienced during the warmest months of the year on
H. coerulea gene expression. Digitate tissues from coral colonies subjected to 31 �C
(summer average) were compared to tissues from colonies kept at 28 �C (yearly average).
After 24 h of exposure to 31 �C, 1,797 transcripts were upregulated relative to corals
maintained at 28 �C (Fig. 2C; Table S2). Overrepresented PFAM domains include EF hand,
collagen, ankyrin, and trypsin (Fig. 4C; Data S3). Enriched functions include oxidation-
reduction, neuropeptide and intracellular signaling, protein import, and carbohydrate
metabolic process (Fig. 4D; Data S4). Only 178 transcripts were downregulated at 24 h,
with overrepresentation of spectrin, EGF, and immunoglobulin domains (Fig. 4C; Data S3).

After 3 weeks of sustained exposure to 31 �C, 382 transcripts were upregulated in the
digitate region, 7.07% of which originated from the symbionts (Fig. 2C; Table S2).
Common domains represented in this set of transcripts are ankyrin and LRR repeats
(Fig. 4E; Data S3). Enriched functions are related to the chitin metabolic process, immune
response, neuropeptide signaling, tricarboxylic acid cycle, and exocytosis (Fig. 4D;
Data S4). In contrast, 11,556 transcripts were downregulated under these conditions, with
only 0.58% originating from symbionts (Fig. 2C; Table S2). This set of transcripts
represents a wide array of cellular functions, including translation, cell and cell-matrix
adhesion, oxidation-reduction, vesicle-mediated transport, iron ion homeostasis, and
carbohydrate metabolic process (Fig. 4D; Data S4). The set of downregulated transcripts
were enriched for EF hand, protein kinase, ankyrin, collagen, SRCR, WD40, sushi, and
EGF domains (Fig. 4E; Data S3).

DISCUSSION
Heliopora coerulea can tolerate prolonged exposure of up to 3 weeks to conditions
approximating the mean summer temperature at the site. Blue coral colonies did not show
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Full-size DOI: 10.7717/peerj.7785/fig-4

any obvious signs of bleaching stress in the form of tissue whitening and necrosis or tissue
sloughing throughout the entire duration of the experiments. Results of the controlled
temperature experiments were supported by field observations that showed less prevalence
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of bleaching for H. coerulea colonies compared to scleractinian corals in the same area.
Similar observations on the bleaching resistance ofH. coerulea have been reported by other
groups (Harii et al., 2002, 2014; Kayanne et al., 2002; Richards et al., 2018; Shaish et al.,
2010).

Heliopora coerulea colonies were observed to grow faster over substrate when subjected
to warm temperatures (28 or 31 �C) than when exposed to cold (26 �C), both in situ and in
aquaria with controlled seawater temperature. Corals subjected to 26 �C revealed low
or negative growth at the margins, suggesting loss or shrinkage of living tissue. This
suggests that the distribution ofH. coeruleamay be limited by its apparent susceptibility to
cooler temperatures, although more studies are needed to investigate the cold tolerance
limits of this species. The average in situ horizontal growth rate of H. coerulea was 0.41 ±
0.18 mm per week (approximately 21 mm per year) and could reach 0.65–0.72 mm per
week during the warmest months of the year. These rates of growth are greater than what
has been reported for massive Porites (about 0.20 per week or approximately 10 mm
per year) (Lough & Barnes, 2000). In the eastern Pacific, growth rates ranging from 13.9 to
19.3 mm per year were reported for the encrusting growth form of Porites lobata, although
this rapid growth was shown to correlate only with longer light period and higher
salinity but not with differences in temperature (Guzmán & Cortés, 1989). The correlation
between H. coerulea growth and temperature suggests that, under future ocean conditions
where temperatures may increase by 1.2–3.2 �C (IPCC, 2014), H. coerulea will have the
advantage over slower-growing scleractinians in colonizing available reef substratum.

Coral growth and mineralization is biologically controlled and involves cycles of
extension and skeletal thickening (Cuif & Dauphin, 2005). Extension is the secretion of a
mineralizing matrix consisting of a mixture of proteins, polysaccharides, and
glycoproteins, while skeletal thickening is the crystallization of mineral material onto the
organic framework. The spatial organization of the organic framework upon which
calcification occurs is determined by cell-cell and cell-substrate adhesion mediated by the
extracellular matrix, which contains collagen and cadherins (Helman et al., 2008; Mass
et al., 2014). Cytoskeletal components, such as actin, control cell shape and are important
for vesicular transport and cellular movement (Svitkina, 2018). Thus, differential
activation of growth and mineralization processes in corals can be inferred through
comparative transcriptome profiling across different tissue regions or across different
treatment conditions.

Transcriptome analysis revealed that the vertical digitate and horizontal extension
regions of the coral exhibit very different expression profiles. However, these tissues show
an enrichment of symbiont-related functions, such as photosynthesis, carbohydrate
metabolism, nitrogen utilization, superoxide metabolic process, and ATP synthesis,
suggesting that symbiont metabolism is active throughout the coral. In the vertical region,
enrichment of calcium ion transport and iron ion sequestration functions may be related
to calcification of the blue-pigmented H. coerulea skeleton. Some transcripts encoding
enzymes for the synthesis of the blue pigment, biliverdin IXa (Hongo, Yasuda & Nagai,
2017), were relatively more abundant in the vertical region of the coral. Enrichment of
chitin metabolism in the vertical region indicates its importance in formation of the coral
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skeleton. Chitin, along with other sulfur-containing proteins, has been shown by Raman
spectroscopy to form part of the organic matrix that controls aragonite crystal size, shape,
and orientation in the fibers of the H. coerulea skeleton (Zhang et al., 2011).

Tissues at the H. coerulea growth margin were enriched for transcripts that may
enhance cell migration. For example, the matrix metallopeptidase with hemopexin
domains has been reported to promote cell migration through a non-proteolytic
mechanism in epithelial cells (Dufour et al., 2008). The CIB protein, on the other hand, is
known to positively regulate cell migration and focal adhesion complex formation (Naik &
Naik, 2011). Furthermore, upon exposure to warmer temperatures, transcripts encoding
proteins with roles in extracellular matrix formation were upregulated, including
peroxidasin and fibrillar collagen. Peroxidasin is an oxidative stress response gene that is
often reported as differentially expressed in many coral heat stress studies (Barshis et al.,
2013; Louis et al., 2017; Voolstra et al., 2011). In myofibroblasts, peroxidasin is secreted
into the extracellular space where it helps form the extracellular matrix as a means of
wound repair and tissue fibrosis (Peterfi et al., 2009). Peroxidasin has also been reported to
be strongly upregulated during symbiont colonization of coral tissue (Yuyama et al., 2018).
Fibrillar collagens, on the other hand, provide mechanical strength and stability to tissues.
The unique arrangement of fibrillar collagens in octocorals is an important hydroskeleton
structure to support soft coral tissues (Orgel et al., 2017). This suggests that warmer
temperature may promote the production of proteins required for the extracellular matrix
and cell migration at colony margins. The organic matrix laid down by migrating cells at
the colony margin serves to promote nucleation of aragonite crystals that eventually build
up its massive skeleton. The ability to shift from one form to another in order to compete
for substrate has been previously observed in the scleractinian coral, Montipora
aequituberculata, which can overgrow the sponge, Terpios hoshinota, by shifting from
foliose to encrusting morphology (Elliott et al., 2015). Interestingly, genome sequencing of
Montipora capitata, a coral that also exhibits an encrusting morphology at its base,
revealed enrichment for functions related to proteinaceous extracellular matrix, collagen
trimer, and cell-matrix adhesion in the set of genes under diversifying selection (Shumaker
et al., 2019). Proliferation of the encrusting or plating growth form of some corals may
eventually lead to reduction of reef rugosity and complexity (Magel et al., 2019).

Upregulation of transcripts encoding proteins involved in the extracellular matrix,
cytoskeleton, and cell migration or morphogenesis has been reported in other scleractinian
corals subjected to elevated temperature conditions, although these studies did not look
specifically at transcripts expressed at colony growth margins. Upregulation of
extracellular matrix genes were observed in Acropora palmata subjected to 2 �C above
ambient for 24–48 h (DeSalvo et al., 2010b), as well as in A. hyacinthus subjected to 4 �C
above ambient for 5 or 20 h (Seneca & Palumbi, 2015). However, in contrast to the
upregulation of collagens at the growth margin of H. coerulea subjected to 28 to 31 �C for
3 weeks, collagen transcripts were downregulated in heat-stressed A. hyacinthus (Seneca &
Palumbi, 2015). In addition, enrichment of functions related to translation, adhaerens
junction, cytoskeleton, and morphogenesis were observed in Stylophora pistillata exposed
to 2 �C above ambient for 1 week (Maor-Landaw et al., 2017). On the other hand,
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decreased cytoskeletal and cell adhesion functions were reported in Montastrea faveolata
subjected to 3 �C above ambient for up to 9 days (DeSalvo et al., 2008). Similarly, Galaxea
fascicularis subjected to 7 �C above ambient for 18 h showed downregulation of transcripts
involved in the regulation of cell migration and cell morphogenesis (Hou et al., 2018).
In these latter two studies, the downregulation of cytoskeleton, cell adhesion, and cell
migration functions may be linked to tissue damage and visible coral bleaching. It should
be noted, however, that the differences in gene expression response reported in these
studies may be due to the different treatment conditions that were used. Further studies
that apply similar conditions, approximating either natural temperature maxima or
bleaching thresholds, to investigate the differential response of diverse coral species are
warranted.

The calcified digitate tissues of H. coerulea exhibited a diverse gene expression profile,
with enrichment for genes that function in translation, cell-matrix adhesion,
oxidation-reduction processes, photosynthesis, carbohydrate metabolic process, and
calcium and iron ion transport. This indicates that calcified tissues of the coral are invested
in energy generation and biomineralization, with photosynthetic activity of the symbionts
playing a central role. It is likely that the enrichment of oxidative response genes in
calcified coral tissues is a mechanism to counteract the negative effects of reactive oxygen
species generated by the photosynthetic activity of the symbionts (Baird et al., 2009).

Short-term exposure (24 h) to 31 �C resulted in upregulation of transcripts encoding
peptides involved in oxidation-reduction, carbohydrate metabolic processes, cholesterol
transport, and neuropeptide signaling. These changes suggest that short term fluctuations
in temperature may trigger signaling cascades that induce expression of transcripts
encoding proteins that protect against oxidative stress, modify cell membrane
composition, and mediate intercellular signaling pathways that potentially modify coral
behavior. Upregulation of protective oxidation-reduction enzymes and signaling pathways
is consistent with observations in other corals subjected to heat stress (Barshis et al., 2013;
DeSalvo et al., 2008; Seneca & Palumbi, 2015).

Three weeks of exposure to 31 �C resulted in a global decline in gene expression, as
demonstrated by the downregulation of thousands of transcripts. This effect may be
attributed to the reallocation of energy towards activation of other cellular pathways, the
elevated cost of basal metabolism, and inhibition of pathways for energy generation as the
organism nears its thermal tolerance limits (Kaniewska et al., 2015; Sokolova, 2013).
Nevertheless, we observed upregulation of some transcripts involved in immune response,
protein catabolism and vesicle exocytosis, which may be linked to cellular repair
mechanisms that are induced by protein denaturation under warmer conditions. Sustained
exposure to 31 �C also resulted in upregulation of metabolic functions that originate from
the symbionts, such as tricarboxylic acid cycle. This suggests that symbiont functions
remained intact under the treatment conditions, which is supported by the lack of
significant change in photosynthetic efficiency. In fact, only a few symbiont sequences
showed significant transcriptional response to 31 �C in H. coerulea and a greater
proportion (7.07%) were found in the upregulated set as compared to the downregulated
set of transcripts (0.58%). This is in agreement with other reports indicating that stress

Guzman et al. (2019), PeerJ, DOI 10.7717/peerj.7785 14/22

http://dx.doi.org/10.7717/peerj.7785
https://peerj.com/


triggers a greater shift in gene expression in the coral host rather than in the symbionts in
hospite due to a host buffering effect (Barshis et al., 2014; Leggat et al., 2011).

Taken together, our results revealed that H. coerulea is able to withstand temperatures
of up to 31 �C. Although sustained exposure to this condition resulted in a general decline
in gene expression, coral symbionts appeared to remain functional. This suggests that
they continue to provide energy to the coral host and thus support the rapid tissue
extension that is observed at colony margins. Horizontal growth of the blue coral colony
was correlated with enhanced expression of cell matrix, cytoskeleton, and cell migration
transcripts at the growth margins. By prioritizing tissue growth and colony margin
extension, the blue coral can continue to colonize substrate even under conditions that
may be stressful to many scleractinian corals. Whether this enhanced growth is sustained
at temperatures above 31 �C warrants further studies.

CONCLUSIONS
Continued warming of the oceans has resulted in declining coral growth and calcification
rates (Cantin et al., 2010; Cooper et al., 2008). Under present and future ocean scenarios,
only corals with a high thermal resistance, rapid growth, and low mortality are likely to
persist (Edmunds et al., 2014). The ability of H. coerulea to rapidly grow over substrates
under warmer seawater conditions allow it to outcompete slower-growing reef organisms
for benthic space. This may have contributed to the present-day dominance of the blue
coral at the study site in the Bolinao-Anda Reef Complex in northwestern Philippines.
Other factors, such as a reduction in coral recruitment or an increase in the mortality of
other corals, may have also contributed to changes in coral community structure at the
study site.

Although the persistence of H. coerulea may compensate for some ecosystem functions
that are lost due to the decline of scleractinians (Richards et al., 2018), the long-term
impact of H. coerulea dominance on other reef-associated marine organisms remains to be
determined. Competition with H. coerulea can negatively affect the growth, fecundity, and
survival of other coral species (Romano, 1990). H. coerulea may also inhibit scleractinian
coral recruitment through allelopathy or other mechanisms (Atrigenio, Aliño & Conaco,
2017). Moreover, H. coerulea may have a different calcification rate that could limit its
ability to contribute to reef growth (Perry et al., 2015). Further studies are needed to
investigate the tolerance limits of H. coerulea to temperature, as well as to other local
stressors, such as salinity shifts and eutrophication. It would also be important to examine
the interactions of the blue coral with other reef biota to understand how its dominance
may ultimately affect reef biodiversity.
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