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Abstract. This paper proposes that the mind comprises emergent phenomena 
that appear via intricate and often conflicting interactions between top-down in-
tentional processes involved in proactively acting on the external world, and 
bottom-up recognition processes involved in inferring possible causes for the 
resultant perceptual reality. This view has been tested via a series of neuroro-
botics experiments employing predictive coding principles implemented in 
“deep” recurrent neural network (RNN) models. The current paper illuminates 
phenomenological accounts of the minimal self and the narrative self from the 
analysis of those synthetic neurorobotics experiments. 
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1 Introduction 

If we suppose that entangling interactions between top-down intention and bottom-up 
recognition of perceptual reality from the objective world is essential in development 
of embodied minds, what sorts of models could best account for such dynamic inter-
actions? The developmental psychologists Gibson and Pick [1] suggest that learning 
an action is not just about learning a motor command sequence, but that it also in-
volves learning possible perceptual structures extracted during intentional interactions 
with the environment. This view can be explained by predictive coding [2]. 
 In predictive coding frameworks, the learning process involves extracting causal 
structure between the intention for action and resultant perceptual reality, by means of 
prediction error minimization. It has been suggested that brains utilize specific macro-
scopic constraints, such as timescale differences and connectivity among local regions 
in terms of downward causation for development of composition/decomposition 
mechanisms [3]; therefore, it is expected that the predictive coding framework im-
plemented in neural network models provided with such spatio-temporal constraints 
could extract hidden causal structure in a compositional manner from accumulated 
sensory-motor experiences [4]. Our group conducted neurorobotics experiments fol-
lowing the aforementioned considerations [5-7]. The current review of these robotics 
experiments suggests that the phenomenology of self and consciousness can be best 
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explained by self-organizing phenomena that emerge through intricate interaction 
between top-down intentional processes and bottom-up perceptual reality. 

2 Neurorobotics experiments 

Yamashita and Tani [8] proposed a predictive coding recurrent neural network model, 
known as the multiple timescale RNN (MTRNN), which is composed of stacks of 
continuous-time RNNs (CTRNN) with different timescales assigned to each. This 
model has been extended to a dynamic visual processing predictive coding model, 
characterized by its multiscale property, both in temporal and spatial dimensions in 
terms of its range of local connectivity [6]. Furthermore, Hwang et al. [7] integrated 
this visual processing predictive coding model and MTRNN for the purpose of con-
ducting human-robot interaction experiments. The following provides a review of this 
study. 

2.1 P-VMDNN Model 

Fig. 1 illustrates the integrated model, the predictive visuo-motor dynamic neural 
network (P-VMDNN) [7], or experiment setup using a simulated humanoid robot and 
part of the information flow. P-VMDNN consists of the visual pathway, the proprio-
ceptive (movement) pathway, and the associative layers. Each pathway consists of 
stacks of CTRNNs, where CTRNNs in the lower layer comprise neural units with 
smaller time constants, while those in higher layers have larger time constants. In 
addition to this timescale constraint, the visual pathway also utilizes spatial-scale 
constraint in terms of the connectivity range. As in the convolutional neural network, 
retinotopically allocated neural units are connected only locally in the lower layers, 
while those units in higher layers are connected fully in the same layer. The associa-
tive layers also comprise CTRNNs with larger time constants for each unit. 
 The whole network functions as a generative model. The current internal state in 
the highest associative layer, which encodes the current intention, dynamically drives 
internal states in the next layer through top-down connectivity. The drive propagates 
downward through layers to both the visual and proprioceptive pathways, and finally 
generates a prediction of the pixel pattern and joint angles of next time step in the 
lowest layers in the visual pathway and the proprioceptive pathway, respectively. 
 Training of the P-VMDNN is conducted in an end-to-end supervised manner. Dur-
ing the robot tutoring phase, a set of visuo-proprioceptive sequences consisting of 
video frame sequence and arm joint trajectories is sampled. This training enables the 
network to regenerate exemplar sequence patterns by adapting connectivity weights 
from the whole network. This is performed using a backpropagation-through-time 
(BPTT) algorithm [9]. Actual training of multiple sequence patterns uses initial sensi-
tivity characteristics of nonlinear dynamics of the network. More specifically, training 
by BPTT infers optimal values for initial internal states in all layers, for each se-
quence, as well as all connectivity weights. After training converges, each training 
sequence can be regenerated with top-down prediction by setting values of the initial 
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internal states to those inferred for this sequence through training. By this means, it 
can be said that initial states represent the intention for generating the corresponding 
sequence. Then, recognition of a particular sequence pattern after learning can be 
conducted by inferring the corresponding intention in terms of initial states that can 
reconstruct the sequence pattern while preserving connectivity weights as fixed 

 
Fig. 1. P-VMDNN model (a), a simulated iCub imitates visually perceived human movement 

patterns (b), and the underlying mechanism of compositional movement generation (c). 

2.2 Learning to imitate compositional movement patterns 

 In the current task of imitation learning shown in Fig. 1a, tutoring of the simulated 
robot was conducted as follows. Three human subjects volunteered to play the role of 
imitatees. Volunteers were instructed in 9 different cyclic two-arm movement patterns 
as movement primitives. Then, each subject generated 9 different ways of concatenat-
ing 3 movement primitives arbitrarily selected from 9 predefined movement primi-
tives. All 27 3-primitive concatenated patterns were demonstrated by each subject. 
While the robot visually perceived each concatenated pattern demonstrated by the 
subjects, a tutor guided the movement trajectory of both arms of the robot by syn-
chronously imitating the movement patterns of the subjects. In this manner, 27 visuo-
proprioceptive sequences were sampled for training the network. Network training 
was conducted for 50,000 epochs. Fig. 2 shows some examples of generation of imi-
tated movement patterns after training.  
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Fig. 2. Imitative generation of differently concatenated movement primitive sequences.  

Three concatenated movements were generated as pantomime-like behaviors, while 
generating visual imagery by providing corresponding initial internal state values 
obtained via training. Each column shows an imitation of a movement pattern demon-
strated by a different subject, in which labels above indicate the subject ID and the 3-
primitive-concatenated pattern, with numbers indicating the corresponding primitive. 
For each column, the top, middle, and bottom rows show neural activity after PCA in 
the visual higher layer, visual lower layer, and proprioceptive lower layer, respective-
ly. Each concatenation of cyclic movement primitives can be seen in the lower visual 
and proprioceptive layers. However, those sequences are abstractly represented with 
more slowly changing profiles in the higher layer. 

Further analysis of network activities converged upon an understanding of the un-
derlying mechanism for generation of compositional movements (Fig. 1c). Slowly 
changing profiles develop differently from different initial states in the higher layer 
(as illustrated by “plan-1 and plan-2” (Fig.1c). On the other hand, in both lower layers 
in the visual and proprioceptive pathways, a set of movement primitives is self-
organized as limit cycle attractors (three movement primitives illustrate (Fig. 1c, mid-
dle). Eventually, the higher layer manipulates the lower layers by feeding bifurcation 
parameters that change slowly in a specific manner. This induces corresponding se-
quential transitions from one limit cycle to another. Consequently, movement patterns 
can be generated in a compositional, yet fluid manner, using nonlinear dynamic char-
acteristics, including the initial sensitivity, bifurcation, and self-organization. 

 
2.3 Online inference of intentions of others 

This subsection describes an experiment involving online inference of intentions of 
human subjects during synchronous imitation [6]. In this experiment, only the visual 
pathway, consisting of 6 layers, was used. The network was trained to predict visually 
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perceived movement patterns, with 6 non-concatenated movement primitive patterns 
generated by 5 subjects. After learning, the network task was to continue to predict 
the next step visual image demonstrated by human subjects, while they occasionally 
switched movement patterns from one of the trained patterns to another. For the pur-
pose of following such sudden switching, a scheme called online error regression [10] 
was used. In this scheme, a certain step length for the previous window is allocated. 
When a prediction error is generated, the error is back-propagated through time to the 
onset of the previous window for the purpose of updating initial internal states in the 
direction of error minimization. This corresponds to online inference of the intentions 
of movement demonstrators.  

Fig. 3 shows an instance of online inference 
where the target visual image and its prediction 
after PCA, the prediction error, the internal state 
in the higher and lower layers is shown from top 
to bottom. The movement pattern in the target is 
switched near step 290, which is accompanied by 
a sharp rise in errors. However, error is reduced 
within 10 steps, as prediction outputs start to 
follow the switching. This recovery is accompa-
nied by a shift in internal states in the higher 
layer. This immediate shift, enabled by means of 
error minimization, accounts for possible mecha-
nisms for online inference of intentions of others, 
as well as segmentation of the perceptual flow.  

 
Fig. 3. Online inference of intention. 

3 Discussion: Phenomenology of self from synthesis 

Here, I discuss possible correspondence of this synthetic robotics study to phenome-
nological understanding of self and consciousness. The second experiment showed 
that shifts in intentions of others can be inferred by means of the error regression in 
the previous window. When a robot’s own prediction went well, adequately synchro-
nizing with the other, everything went smoothly and automatically, where the distinc-
tion between self and other was submerged under coherently coupled dynamics. 
However, when synchrony broke down due to a sudden intention change by the other, 
the robot should become aware of the gap between the two. This should entail con-
sciousness, because the process of inferring the newly changed intentional state re-
quires considerable effort to minimize the prediction error. Here, self, as defined via 
the gap, could consciously represent the minimal self [11, 12] in a pre-reflective form. 

Gallagher [11] accounts that the minimal self should entail the sense of agency by 
considering possible neural mechanisms underlying the pathology of delusion of con-
trol in schizophrenia. Our prior study [13] on synthetic modeling of schizophrenia 
shows that the proposed predictive coding model can support this account. It was 
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shown that mild perturbation in the connectivity from the higher level to sensory-
motor level possibly caused by this disease can generate fictive error and resultant 
maladaptation of the intention state. This could generate the sense of fictive agency. 

Next, let us consider an account of the narrative self [11] in a reflective form. The 
first experiment showed that the robot was able to extract compositional structure 
from the experience of continuous perceptual flow by learning iterative interaction 
with the other. This process includes segmentation of continuous visuo-proprioceptive 
stream into a set of primitives, accompanied by minimal self-consciousness. These 
primitives can be reused later by the higher layer to account for different experiences 
in different contexts by recombining them. The experience re-represented in the high-
er layer in this manner is no longer a pure experience, but an objectified experience. 
Finally, we see the development of a narrative self that can represent its own experi-
ence objectively, as episodes.  
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