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The flavor moonshine hypothesis is formulated to suppose that all particle masses (leptons,
quarks, Higgs, and gauge particles—more precisely, their mass ratios) are expressed as coef-
ficients in the Fourier expansion of some modular forms just as, in mathematics, dimensions
of representations of a certain group are expressed as coefficients in the Fourier expansion of
some modular forms. The mysterious hierarchical structure of the quark and lepton masses is
thus attributed to that of the Fourier coefficient matrices of certain modular forms. Our inten-
tion here is not to prove this hypothesis starting from some physical assumptions but rather to
demonstrate that this hypothesis is experimentally verified and, assuming that the string theory
correctly describes the natural law, to calculate the geometry (Kähler potential and the metric)
of the moduli space of the Calabi–Yau manifold, thus providing a way to calculate the metric of
the Calabi–Yau manifold itself directly from the experimental data.
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1. Introduction

Some researchers, including one of the authors of this work (H.S.), have been working on flavor
physics, assuming that some discrete symmetry plays an important role in its understanding [1–9];
S3, S4, A4, etc. However, the outcome is very limited and so far we have no clear understanding
of flavor physics. A topological definition of Higgs Yukawa coupling has also not led to any useful
prediction on flavor physics to date [10].

On the mathematical side, a dramatic phenomenon called “moonshine” has been described
[11–14], in which a discrete symmetry (specifically, the dimensions of a representation of the mon-
ster group) is manifested in a modular form in a rather unexpected manner. When this happens, we
may use this fact for the discrete symmetry in flavor physics: We start by assuming that the symmetry
of flavor physics is manifested in a certain modular form. Corresponding to each flavor we assume
such a modular form. The modular forms must contain all the information about flavor physics with
the understanding that all this information is contained in the Higgs coupling to leptons and hadrons.

More precisely, we assume that the particle masses (the mass ratios), rather than the dimensions of
a representation of a discrete group, are directly written in the Fourier coefficients of these modular
forms—the flavor moonshine hypothesis. The mass ratios are scale-independent quantities [15] and
do not vary with energy scale. We observe that at least in the lowest-order perturbation calculations
the logarithmic scale dependence cancels out completely both in quantum chromodynamics (QCD)
and in electroweak theory, although it does not exclude the renormalization effect proportional to
such terms as log(m1/m2). We refer to Ref. [15] here for the non-perturbative calculations. Therefore,
the mass ratio is an appropriate quantity to discuss physics even at the highest energy scale. The
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gauge particle masses must also be written as some modular forms but we will not discuss that matter
in this work.

In pure mathematics, we anticipate a generalization of conventional “moonshine” from a single-
variable modular form to a multi-variable modular form. A certain mathematical “object,” perhaps
the representation matrix of a certain group rather than the dimension of the monster group, must
be written in the Fourier expansion of the multi-variable modular forms. We will identify the mass
matrix with this “object.”

The question arises: What are those modular forms that manifest the discrete symmetry appearing
in flavor physics? For the time being, we postpone the question of justifying our adoption of a
certain modular form for each flavor based on a general formalism such as string theory, but rather
we proceed backward and investigate instead what the experimentally acceptable modular forms
are. We then determine what kind of geometry can yield such a modular form when we consider the
compactification of the string theory.

We define the flavor modular form in the following way. Suppose we have a two-variable modular
form for each flavor. Then it can be Fourier expanded as

J (q, r) = 1

g

∞∑
i=0,j=−∞

gijq
irj (1)

where gij for i ≥ 0 and gi,−j = gij for the symmetric modular form [16]. The gij is supposed to
correspond to the Higgs coupling of i and j quarks or to the corresponding leptons. By solving Eq.
(1) backwards we have

gij = g
∫ 1

0

∫ 1

0
J (q, r)q−ir−jdτdσ = g

(2π i)2

∫
C

∫
C

J (q, r)q−i−1r−j−1dqdr. (2)

Here, q = e2π iτ and r = e2π iσ . The integration is done along the circle C of radius 1 with the center
at the origin. It is important that we integrate over the modular variables to obtain the coefficient.

If the modular form is based on the ring of integers, the forms are numerous and it is hard to
pinpoint the appropriate form. Fortunately, if we generalize the integer ring appropriately to constrain
the possible forms, then in the case that we are considering where gi,−j = gij, called the symmetric
modular form, it is known that all the modular forms can be constructed rather easily [16].

Specifically, as the simplest generalization, we use SL(2, Z(
√

2)) to define the flavor modular
group of the two-variable modular form rather than SL(2, Z).1 We put

q = eπ i(z+z′), r = eπ i(z−z′)/
√

2; 2τ = z + z′, 2
√

2σ = z − z′. (3)

Then the condition for the modularity is the transformation property:

J (e2π iz, e2π iz′
) → J (e2π iz, e2π iz′

)
(
(γ z + δ)(γ ′z′ + δ′)

)2k (4)

1 When we thought of flavor moonshine, it was clear that the relevant modular form must have more than
one variable. It also seemed that SL(2, Z) is insufficiently constrained, allowing too many choices for the
forms. Therefore, we looked for some work enlarging SL(2, Z) so that the choice becomes manageable, and
we encountered a paper by H. Cohn and J. Deutsch [16] where we learned that there are only three generators
for the entire SL(2, Z(

√
2)), which is the simplest kind of SL(2, Z) extension. To our great surprise, we found

that its modular form in the lowest level (k = 1) describes the charged lepton mass ratios correctly (in Sect.
2.1).
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under

(z, z′) →
(
αz + β

γ z + δ
,
α′z′ + β ′

γ ′z′ + δ′

)
, α,β, γ , δ, . . . ∈ Z(

√
2) (5)

and α = a + b
√

2, α′ = a − b
√

2, . . . with a, b: integer. 2k is called the “level”.
Cohn–Deutsch [16] shows that there are only three generator modular forms in this case. They are

given by G2, G4, G6 with k = 1, 2, 3. What we use are the coefficients in Fourier expansion of these
modular forms. We may also choose different combinations H2, H4, H6, which are given by

H2 = G2, H4 = 11G2
2 − G4

576
, H6 = 361G3

2 − G6 − 50 976G2H4

224 640
. (6)

We have only one modular form for k = 1: G2; two forms for k = 2: G4 and G2
2; and three forms

for k = 3: G6, G3
2, and G2G4. A linear combination of forms of the same level 2k is again a modular

form. Therefore all modular forms up to level 6 (k = 3) are given by

k = 1 : G2 (7)

k = 2 : G4 + a4G2
2 (8)

k = 3 : G6 + a6G3
2 + b6G2G4 (9)

where a4, a6, and b6 are complex numbers.
In order to write down the Higgs coupling of quarks and leptons, we define the following: First

we define, for the Higgs coupling of a certain flavor,

F(q−1, r−1) ≡ gH lim
G→∞

G−1∑
i,j=0

ψRjψLiq
−ir−j (10)

where H is the Higgs field and ψL,ψR are quark or lepton fields. The Yukawa coupling is given by

Y =
∫

J (q, r)F(q−1, r−1)dτdσ = 1

(2π i)2

∫
J (q, r)F(q−1, r−1)

dqdr

qr

= H
∞∑

i,j=0

gijψRjψLi = gH
∞∑

i,j,k=0

U †
LikλkURkjψRjψLi (11)

where UL, UR are unitary matrices and λ denotes elements of the diagonalized gij matrix, i.e.,

gij = g lim
G→∞

G−1∑
k=0

U †
LikλkURkj (12)

for i, j = 0, 1, . . . , G − 1. Then we have

Y = gH lim
G→∞

G−1∑
k=0

λkχRkχLk (13)

where χLk = U †
LikψLi and χRk = ψRjU

†
Rjk . To maintain the modular invariance of the Yukawa

coupling, we assume the transformation property:

F(q−1, r−1) = F(z, z′) → (
(γ z + δ)(γ ′z′ + δ′)

)−2k+2 F(z, z′) (14)
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under the modular transformation (5). The level −2k +2 is to take care of the transformation property
of dqdr/qr:

dqdr

qr
= dτdσ

(2π i)2
= dzdz′

2
√

2(2π i)2
→ (γ z + δ)−2(γ ′z′ + δ′)−2 dzdz′

2
√

2(2π i)2
. (15)

If the original τ , σ are real, so are the transformed τ , σ . Therefore, the unit circle goes to the unit
circle and the modular invariance is maintained.

Some remarks are in order:

(1) This construction suggests the definition of the fields:

ψL(x, q) = lim
G→∞

G−1∑
i=0

ψLiq
−i, ψR(x, r) = lim

G→∞

G−1∑
j=0

ψRir
−j . (16)

We do not need to assume any specific transformation property of the individual field under
modular transformation, while the bilinear form expressed in Eq. (10) must transform covariantly
under the modular transformation. We also note that the transformation property (10) is consistent
only when the number of generations G is infinite. Finite G violates the modular invariance of
the Yukawa coupling.

(2) We treat here, just for simplicity, a pristine Higgs field H . However, in Sect. 4, we will define and
use the modular form corresponding to the Higgs field:

JH (w) =
∑

k

hkwk (17)

corresponding to J (q, r). We can also define the field

H (w−1) =
∑

k

Hkw−k (18)

with the Higgs field H = H0.
(3) Our modular variables q, r eventually become the moduli of the Calabi–Yau manifold as will

be shown later in Sect. 4. The usual treatment of these variables is to regard them as a scalar
field in the 4D space-time and to try to find a way to stabilize them. We regard them as variables
to distinguish different vacua, and we integrate over them as in Eq. (13) to obtain the Yukawa
coupling. This roughly corresponds to superposing all possible equivalent vacua. The Yukawa
interaction resolves this degeneracy, so that each value of generation G corresponds to a different
vacuum. We have G = 3 in this work as it concerns the low-energy experimental data. It may
happen that a phase transition occurs at high energy, in which case the particle masses would
change suddenly at that energy scale.

(4) Our definition of the “generation” is not the same as the usual one in string theory. It corresponds
to the expansion coefficient of the modulus-dependent fields defined in Eqs. (16) and (18).

2. Numerical results

Equation (12) shows that gij is a mass matrix, and Eq. (1) shows that it is just the Fourier coefficient
of the modular form J (q, r). In this section we consider each case of Eqs. (7), (8), and (9) separately.
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2.1. Case of k = 1

The modular form J (q, r) = G2 in this case. From a table given by Cohn and Deutsch [16], we have

gij = g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
144 48 0 0 0 · · ·
720 384 336 0 0 · · ·
1440 864 1152 480 144 · · ·
3024 1536 2688 1152 1488 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

From now on we restrict ourselves to the G = 3 case:

gij = g

⎛
⎜⎝ 1 0 0

144 48 0
720 384 336

⎞
⎟⎠ =: gM3. (20)

The mass square matrix is given by gg† and it will be diagonalized as

(gg†)ij = g2U †
Lik |λk |2URkj (21)

with sum over the indices k . We diagonalize the mass square matrix M 2
3 and find that its square root

is

√
M3M T

3 =
⎛
⎜⎝0.2929 0 0

0 61.63 0
0 0 893.3

⎞
⎟⎠. (22)

By normalizing the lowest mass to be the electron mass of 0.5110 MeV, we obtain

(√
M3M T

3

)
normalized

=
⎛
⎜⎝0.5110 0 0

0 107.5 0
0 0 1558

⎞
⎟⎠. (23)

This shows that the modular form G2 embodies the charged lepton masses in its Fourier coefficients.
There is no free parameter in this case except for the entire normalization, which is of course scale
dependent, unlike the mass ratios [15].

The corresponding experimental data are in Appendix A: the central values of the μ and τ masses
are (mμ, mτ ) = (105.7, 1776)MeV. Deviations of our results are at most 12.32%, so we may say that
our calculations reproduce the experimental data well. In the following, we mainly use the central
values of the experimental results, i.e., we neglect the errors just for simplicity.

2.2. Case of k = 2

In this case, we have the modular form

J (q, r) = G4 + a4G2
2. (24)

For the time being we ignore the second term (i.e., put a4 = 0). Then we have, for the three-generation
case,

G4 → M3 =
⎛
⎜⎝ 11 0 0

4320 480 0
280 800 165 120 35 040

⎞
⎟⎠. (25)
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The normalized and diagonalized mass matrix becomes

(√
M3M T

3

)
normalized

=
⎛
⎜⎝0.000163 0 0

0 0.964 0
0 0 173

⎞
⎟⎠. (26)

Here we used a top quark mass of 173 GeV as the input mass. Then the charm quark mass is obtained
as 0.964 GeV, which is a little smaller than the actual mass 1.27 GeV (by 24.1%). The up quark
mass turns out to be 0.163 MeV, which is too small compared with the QCD calculations. We have
one complex parameter a4 in this case and we must work out its effect: The detailed fit to the quark
masses and also the CKM matrix will be given in Appendix A. This discussion justifies that the
modular form of k = 2 (level 4) gives the charge +2/3 quark masses in its Fourier coefficients.

2.3. Case of k = 3

In this case, we have

J (q, r) = G6 + a6G3
2 + b6G2G4. (27)

Suppose that for the sake of argument we take

J (q, r) = H6 = 361G3
2 − G6 − 50 976G2H4

224 640
, (28)

then we find

H6 → M3 =
⎛
⎜⎝ 0 0 0

1 0 0
12 −16 −2

⎞
⎟⎠. (29)

We regard the modular form of k = 3 as an expression of the charge −1/3 quark masses. With the
QCD calculated bottom quark mass of 4.18 GeV as an input mass, we obtain

(√
M3M T

3

)
normalized

=
⎛
⎜⎝0 0 0

0 0.167 0
0 0 4.18

⎞
⎟⎠. (30)

The down quark mass is zero and the strange/bottom mass ratio is off by a factor of 1.6. Of course
we have two complex parameters a6, b6 to be fixed in this case, and we must adjust these parameters
to get a more precise fit to the experimental data.

As shown above, in the case of k = 1 where there is no adjustable parameter the fit is almost
perfect, and the other two cases require refinement but it is amazing that the values obtained in these
cases are also not that distant from the experimental data. Now we need to choose appropriate values
for a4, a6, and b6. In fact, these complex parameters are needed to fit the CKM matrix that contains
some phase factor to explain the CP violation. See Appendix A for the concrete calculation.

2.4. Case of k = 4

In this case, we assume that the modular form describes the neutrino masses. The neutrino has two
possibilities: 1. Dirac neutrino and 2. Majorana neutrino.

In the case of the pure Dirac neutrino, the mass matrix becomes

MD = a8G4
2 + b8G2

4 + c8G4G2
2 + G6G2 (31)
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where

G4
2 =

⎛
⎜⎝ 1 0 0

576 192 0
154 944 84 480 15 168

⎞
⎟⎠, G2

4 =
⎛
⎜⎝ 121 0 0

95 040 10 560 0
25 300 800 7779 840 1001 280

⎞
⎟⎠

G4G2
2 =

⎛
⎜⎝ 11 0 0

7488 1536 0
1911 744 878 592 113 856

⎞
⎟⎠, G6G2 =

⎛
⎜⎝ 361 0 0

85 248 18 336 0
39 242 304 18 822 912 1235 136

⎞
⎟⎠.

(32)

In the case of the Majorana neutrino with the seesaw approximation, the mass matrix is given as

MM = MDM−1
R M T

D . (33)

Although the right-handed Majorana mass MR has the same form as in Eq. (31), it turns out that it
has the following unique form since it must be a symmetric matrix:

MR = d8

⎛
⎜⎝1 0 0

0 −720 0
0 0 −82 080

⎞
⎟⎠. (34)

In this work we discuss these two limiting cases: one is the pure Dirac case corresponding to Majorana
mass = 0 and the other is the seesaw case where the Majorana mass is much larger than the Dirac
mass. The actual data fitting is done in Appendix A.

2.5. Case of k ≥ 5

For k = 5, for instance, we have the modular forms G5
2, G3

2G4, G2G2
4, G2

2G6, G4G6. This sort of
new flavor particle presumably has neither charges nor color charges, but may have some weak
interactions in addition to gravitational interactions. Therefore, it may be a good candidate for dark
matter.

3. Some additional considerations
3.1. Lagrangian

We may write down the kinetic energy part of the Lagrangian using the fields defined in Eq. (16).
We have

KR(z) =
∞∑

i,j=−∞
ψ

a,α
Rj

(
Db,β

a,α

)
μ
γ μψb,β,Rie

−2π ize2π jz (35)

KL(z
′) =

∞∑
i,j=−∞

ψ
a,α
Lj

(
Db,β

a,α

)
μ
γ μψb,β,Lie

−2π iz′
e2π jz′

(36)

where the indices a, b indicate flavor type and α,β are indices for the gauge group representation.
The right and left modes can belong to different representations. The covariant derivative includes
the gauge field Aμ: (

Db,β
a,α

)
μ

= iδb
aδ
β
α ∂μ +

(
Ab,β

a,α

)
μ

. (37)
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Then the kinetic part of the Lagrangian density is given by∫
KR(z)dz +

∫
KL(z

′)dz′. (38)

To maintain the modular invariance we must impose the modular transformation:

KR(z) → (γ z + δ)2KR(z), KL(z
′) → (γ ′z′ + δ′)2KL(z

′), (39)

which means that the kinetic term is a single-variable modular form of level 2 in contrast to the
Yukawa coupling.

3.2. Supersymmetrization

We may trivially write the Lagrangian in a supersymmetric form. Corresponding to Eq. (10), we
define

F(q−1, r−1) = gH
G−1∑
i,j=0

RjLiq
−ir−j. (40)

Corresponding to Eq. (13), we obtain

Y =
G−1∑
i,j=0

gijRjLiH
∣∣
θθ

= g
G−1∑
i,j=0

U †
LikλkURkjRjLiH

∣∣
θθ

(41)

where Rj and Li are the chiral fields corresponding to a certain flavor. Then we have

gij = gU †
LikλkURkj (42)

for i, j = 0, 1, . . . , G − 1. Using a standard form for the chiral field = A + √
2θψ + θθF [17], we

get

RjLiH
∣∣
θθ

= (
FRjALi + ARjFLi

)
H + ARjALiFH − (

ARjψLi − ψRjALi
)
ψH − ψRjψLiH .

(43)

Then the Yukawa coupling (41) can be written as

Y = g
G−1∑
k=0

λk [χLkχRkH + (BLkχRk − χLkBRk) ψH + (GLkBRk + BLkGRk)H + BLkBRkFH ]

(44)

where

χLk = U †
LikψLi, χRk = ψRjURjk ,

BLk = U †
LikALi, BRk = ARjURjk ,

GLk = U †
LikFLi, GRk = FRjURjk . (45)

The kinetic energy part is given by

KR =
∞∑

i=0


†
RiRi

∣∣
θθθθ

,
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KL =
∞∑

i=0


†
LiLi

∣∣
θθθθ

,

KH =
∞∑

i=0


†
HH

∣∣
θθθθ

, (46)

with


†
RiRi

∣∣
θθθθ

= G†
RiGRi + B†

Ri�BRi + i∂mχRiσ
mχRi (47)

and similar forms for Li,H .

4. Calculation of the geometry of the moduli space of the Calabi–Yau manifold

In superstring theory, the generation number is customarily explained as the number of zero modes
determined by a topological quantity. Our approach is different from this interpretation as explained in
the introduction. We integrate over the modular variables when we define the low-energy Lagrangian
that includes Yukawa couplings among Higgs and fermions. Identifying the modular variables with
the Calabi–Yau moduli, this means that we superpose vacuum states defined by each modulus.
Yukawa couplings resolve the degeneracy of the vacua and each vacuum is defined by the number
of generations G. At low energy we know that G = 3, but there may be phase transitions when we
go to high energy. At the highest energy we may even reach G → ∞.

Another observation if we want to interpret our result in the context of string theory is that our case
may not be consistent with grand unification. In fact, each flavor corresponds to a modular form of
a different level: level 2 for charged leptons, level 4 for +2/3 quarks, level 6 for −1/3 quarks, and
level 8 for neutrinos. It is not entirely excluded that it is consistent with grand unification, because
we may have a finite number of generations G even at the grand unified scale, and we may not worry
about maintaining the modular invariance anyway.

With these conceptual modifications, ourYukawa coupling before the modular variable integration
may be interpreted as coming from the compactification of the superstring theory.

First, we assume that the following formula first derived by Strominger and Witten [10] is correct
in spite of the above conceptual modifications:

J (q, r, w) = J (q, r)JH (w) = 1

g

∑
i,j,k

gijhkqirjwk =
∫

K
aμ ∧ bν ∧ cρ ∧�μνρ (48)

where K is a certain Calabi–Yau manifold and� is a holomorphic 3-form. The a, b, c originate from
gauge fields (principal or vector bundle) in the compactified Calabi–Yau space and are interpreted as
harmonic (massless) (0, 1)-forms. If we restrict ourselves to the case of moduli corresponding to the
complex structure deformation, rather than the Kähler structure deformation, the (0, 1)-form a, b, c
must originate in the (2, 1)-form. The gauge group A is the maximal subgroup such that, e.g.,

E8 ⊗ E8 ⊃ A ⊗ SU (3)⊗ SU (2)⊗ U (1). (49)

We restrict ourselves to this case, and then it is shown by Candelas and de la Ossa [18] that the
rightmost side of Eq. (48) can be written as∫

K
aαμ ∧ bβν ∧ cγρ ∧�μνρ = ∂3G

∂zα∂zβ∂zγ
. (50)
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Here the moduli variables zα (α = 1, 2, . . . , Betti number b2,1) are chosen to be the periods
themselves:

zα =
∫

Aα
� (51)

where Aα is an appropriate homology basis.
By identifying our modular variables with the complex structure variables zα [18], we can explicitly

calculate G and, therefore, the Kähler potential K is

eK = −i

(
zα

∂

∂zα
G − zα

∂

∂zα
G
)

(52)

and the Kähler metric of the moduli space of the Calabi–Yau manifold is

Gαβ = ∂2

∂zα∂zβ
G. (53)

The precise relation between our modular variables q, r, and w and the period zα must respect the
scaling behavior under z → λz:

G(λz) = λ2G(z), ∂3G
∂zα∂zβ∂zγ

→ λ−1 ∂3G
∂zα∂zβ∂zγ

, (54)

whereas the scaling behavior of a modular form depends on its level. Here we consider the
SL(2, Z(

√
2)) transformation (5) with β, γ ,β ′, γ ′ = 0:

z → α

δ
z = α2z, z′ → α′

δ′
z′ = α′2z′. (55)

With q = e2π iτ , r = e2π iσ , and w = e2π iρ , we have

τ → α2τ , σ → α2σ , (56)

since α must be equal to α′ so that τ and σ have the same scaling factor. This means that the
√

2
term in α = a + b

√
2 must be zero and the scaling is guaranteed only for integers. If one allows this,

then we obtain

J (q, r) → (
δδ′

)2k J (q, r) = (
αα′)−2k J (q, r) = α−4kJ (q, r) (57)

and

ρ → α2ρ, J (w) → α−hJ (w) (58)

where h is the level of the Higgs modular form. Therefore,

J (q, r)J (w) → α−h−4kJ (q, r)J (w), (59)

and we can put

α−h−4k =: λ−1 (60)

and

τ → λ
2

h+4k τ , σ → λ
2

h+4k σ , ρ → λ
2

h+4k ρ. (61)
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This shows that the period variables zα are given by our modular variables:

zα =
(
τ

h+4k
2 , σ

h+4k
2 , ρ

h+4k
2

)
. (62)

There are four of these combinations corresponding to charged leptons (k = 1), charge +2/3 quarks
(k = 2), charge −1/3 quarks (k = 3), and neutrinos (k = 4):

G =
4∑

f =1

Gf . (63)

Although ρ corresponds to the Higgs field, each combination has a different relation between ρ and
zα as in Eq. (62) because each combination has its own value of k . This means that there are multiple
modular variables corresponding to the Higgs particle, which is acceptable because these variables
turn out just to be integration variables. We obtain

J (q, r, w) = J (q, r)JH (w) = 1

g

∑
i,j,k

gijhkqirjwk

= ∂3Gf

∂zα∂zβ∂zγ
=

(
2

h+4k

)3

√
(τσρ)h+4k−2

∂3Gf

∂τ∂σ∂ρ
. (64)

Therefore,

Gf =
(

h + 4k

2

)3 ∫ τf
∫ σf

∫ ρf
√
(τσρ)h+4k−2J (q, r)JH (w)dτdσdρ. (65)

Then the metric of the moduli space of the Calabi–Yau manifold is given by

Gαβ =
4∑

f =1

Gαβ,f =
4∑

f =1

∂2

∂zα∂zβ
Gf . (66)

For example,

Gτσ ,f =
(

2
h+4k

)2

√
(τf σf )

h+4k−2

∂2Gf

∂τf ∂σf
= h + 4k

2
J (qf , rf )

∫ ρf √
ρh+4k−2

f JH (w)dρ. (67)

We remark that the other derivatives such as
∂3Gf

∂τ 3 ,
∂3Gf

∂τ 2∂σ
, etc. can correspond to some Yukawa

couplings, but all these seem not to appear in physics because of the gauge symmetry of the theory.

For example,
∂3Gf

∂τ 3 could potentially correspond to the triple Higgs coupling, but it is forbidden by
the standard model symmetry.

The Kähler metric of the moduli space (66) is related to the Calabi–Yau metric through the equation

Gαβ = 1

2V

∫
M

gκμgλν
(
∂gκλ
∂zα

∂gμν
∂zβ

+ ∂Bκλ
∂zα

∂Bμν
∂zβ

)
d6x (68)

where gμν is the Calabi–Yau metric, Bμν is a 2-form related to gμν by supersymmetry, and V is the
volume of the Calabi–Yau manifold. For example, we obtain

Gτσ ,f = 1

2V

(
2

h+4k

)2

√
(τf σf )

h+4k−2

∫
M

gκμgλν
(
∂gκλ
∂τf

∂gμν
∂σf

+ ∂Bκλ
∂τf

∂Bμν
∂σf

)
d6x. (69)
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Equation (68) must be supplemented with the Calabi–Yau condition; the Ricci flatness and Kähler
constraints. Only when there is a solution to this equation are we justified in our claim that there
exists a Calabi–Yau manifold with J (q, r, w)modularity. The existence of the solution is not a priori
guaranteed because the moduli space metric (66) may not give us the genuine Calabi–Yau metric.
Furthermore, if we restrict ourselves to the minimum Calabi–Yau manifold, meaning that all of its
moduli are directly determined by the experiments as above, we may be able to determine its metric
gμν by solving Eq. (68) together with the Ricci flat and Kähler constraints. We would like to come
back to this issue in a future publication.

5. Concluding remarks

(1) As we have shown above, the hypothesis of flavor moonshine is at least correctly realized exper-
imentally to some extent. We need to use multi-variable modular forms for this purpose. These
forms are well studied in mathematics as a branch of number theory and they constitute part of
more general forms called Hilbert modular forms [19].

(2) We use only the Fourier coefficients of these forms to define theYukawa coupling and the modular
invariance of the total Lagrangian is assumed.2 As such, it corresponds to the procedure of
integrating over the modular variables that are identified as Calabi–Yau moduli if we combine
our model with string theory. We do not regard these moduli as scalar fields to be stabilized.
Insofar as we can see, the moduli are not related to any physical quantities in the low-energy
theory. Thus they seem to have no physical degrees of freedom as scalar fields, although we are
fully aware that this interpretation is different from the conventional idea of regarding the Calabi–
Yau moduli as some scalar fields. Therefore, our treatment of them as moduli to be integrated out
when we define the low-energy action seems to be a natural process.

(3) Of course, there are many mysteries to be solved. Why does nature seem to choose a very specific
form such as the one we used that is based on SL(2, Z(

√
2))? Why do we have k = 1 for charged

leptons, k = 2 for charge +2/3 quarks, k = 3 for charge −1/3 quarks, and k = 4 for neutrinos?
There remain a lot of work to be done: How good or bad are the other modular groups like
SL(2, Z(

√
N ), SL(2, Z(i)) etc.? Can we extend the modular form to be more than two variables?

What exactly is the mathematical moonshine for the modular form of two variables? If we under-
stand the mathematical implication of the matrices that appear in the Fourier coefficients of
two-variable modular forms, we will be able to prove flavor moonshine by understanding the
physical principle that identifies mass matrices with these matrices.

(4) Probably more urgent work from the string theory standpoint is to find out the specific Calabi–Yau
metric by solving Eq. (68) and to elucidate its other physical consequences. Further questions
arise such as: Do we have a grand unified scale? Do we have a phase transition from G = 3 to
G ≥ 4 at some point at higher energy?

(5) Experimentally, we need to explore the properties of the Higgs particle in more detail, especially
its coupling to low-mass particles such as u, d, e, μ, and even neutrinos. Construction of the
International Linear Collider (ILC), therefore, is urgent. A good neutrino facility is also highly

2 During the preparation of this paper, we encountered work by Criado and Feruglio [20] and Feruglio [21].
Their work has nothing to do with moonshine, but, since they assume the modular invariance of the low-energy
action, although the way they impose it is very different from ours, theirYukawa coupling depends on modular
forms (not their Fourier coefficients) and it may be possible to calculate the Calabi–Yau moduli space geometry
in this case, too.
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desirable. The Higgs particle is indeed the “God particle”, the term coined by Leon Lederman [22],
in the sense that its Yukawa couplings determine the highest-energy physics without the need to
perform the highest-energy experiments.

(6) It is possible that the whole idea of flavor moonshine is just nonsense,3 although the agreement
with the experimental data seems to us too good to be just an accident.
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Appendix A. Numerical fitting for experimental data

We calculated numerically the CKM and PMNS matrices and fit the experimental data to them. In
the former case we have three complex parameters a4, a6, and b6 as shown in Eqs. (8) and (9). For
the PMNS matrix we have two choices of pure Dirac neutrino or Majorana neutrino (with the seesaw
approximation). Either way, we have again three complex parameters a8, b8, and c8 shown in Eq.
(31). Since the parameter d8 in Eq. (34) is an overall factor, we need not consider it in our discussion.

Let us briefly explain how we get the CKM matrix, which is parallel to the PMNS matrix. Now
we have the mass matrix M3 for u, c, t quarks, as in Sect. 2.2, with the complex parameters.

First we calculate the squared mass matrix as in Eq. (21): M3M †
3 or M †

3 M3. Here we have two
choices that give us the same eigenvalues but different eigenvectors. To obtain its eigenvalues and
eigenvectors, we compute

U †(M3M †
3 )U = D or U †(M †

3 M3)U = D (A.1)

where U is a unitary matrix and D is a diagonal matrix. The masses of u, c, t quarks are given by the
square root of the eigenvalues:

D =
⎛
⎜⎝m2

u 0 0
0 m2

c 0
0 0 m2

t

⎞
⎟⎠. (A.2)

Here we have swapped the columns of U and D so that mu < mc < mt . Then the eigenvectors are
regarded as the quark mass states(

u c t
)

mass
= U

(
u c t

)
current

= U (A.3)

3 Reference [23] says, “The term ‘monstrous moonshine’ was coined by Conway, who, when told by John
McKay in the late 1970s that the coefficient of q (namely 196 884) was precisely one more than the degree
of the smallest faithful complex representation of the monster group (namely 196 883), replied that this was
‘moonshine’ (in the sense of being a crazy or foolish idea). Thus, the term not only refers to the monster group
M ; it also refers to the perceived craziness of the intricate relationship between M and the theory of modular
functions.” M in the present work refers to “mass” rather than “monster group”.
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where we set the quark current states as

ucurrent =
⎛
⎜⎝1

0
0

⎞
⎟⎠, ccurrent =

⎛
⎜⎝0

1
0

⎞
⎟⎠, tcurrent =

⎛
⎜⎝0

0
1

⎞
⎟⎠. (A.4)

We repeat similar calculations for d, s, b quarks (see Sect. 2.3) and obtain(
d s b

)
mass

= V
(

d s b
)

current
= V (A.5)

where V is a unitary matrix including the eigenvectors of the squared mass matrix for d, s, b quarks.
Note that, by definition, the current quarks should satisfy⎛

⎜⎝u†

c†

t†

⎞
⎟⎠

current

(
d s b

)
current

= I . (A.6)

Therefore, the CKM matrix can be calculated as

CKM =
⎛
⎜⎝u†d u†s u†b

c†d c†s c†b
t†d t†s t†b

⎞
⎟⎠

mass

= U †V . (A.7)

For calculation of the PMNS matrix, we use the mass matrix M3 for charged leptons in Sect. 2.1
and M3 = MD or MM for neutrinos in Sect. 2.4.

Appendix A.1. Methods

Our goal is to find a set of complex parameters that best fit the experimental results. The experimental
results that we use here are

◦ the absolute values of the elements of the mixing (CKM or PMNS) matrix ζij
◦ the ratios of masses ξk .

The mixing matrices in both cases have 3 × 3 = 9 elements. Note that the CP violation phases are
not used for our fittings. For quark masses, we choose the parameters ξk = (mt/mc, mb/ms). This
means that we do not fit u and d quark masses: In all the results that we obtained they are much
smaller than the experimental results, just as we saw in Sect. 2.2. For lepton masses, we choose
ξk = �m2

21/�m2
32, i.e., a ratio of difference of squared neutrino masses. Since the masses of e, μ,

and τ are already fixed, as in Sect. 2.1, we have no parameters to fit them.
Then we define the loss function to measure a “difference” between our results and the experimental

results:

Loss =
3∑

i,j=1

∣∣∣∣∣log
ζ cal

ij

ζ
exp
ij

∣∣∣∣∣ + 2
∑

k

∣∣∣∣∣log
ξ cal

k

ξ
exp
k

∣∣∣∣∣ (A.8)

where ζ exp
ij and ξ exp

k are the experimental results, while ζ cal
ij and ξ cal

k are the results of our numerical
calculations (which depend on the three complex parameters). The factor of 2 existing in the second
term ensures that the contribution from this term cannot be much smaller than that from the first
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term: the ratios of masses have only 2 (or 1) parameters in the quark (or lepton) case, while the
mixing matrix has 9 parameters.

Now let us search the complex parameters at the minimum of the loss function (A.8). First we
divide the 3 complex parameters into 6 real parameters xi. Since the following discussion includes
calculating eigenvectors of matrices, the iterative approximation with gradient descent is not suitable
to be used. Instead, we choose 11 lattice points for each real parameter:

xi = x0
i − 5δx, x0

i − 4δx, . . . , x0
i + 5δx (A.9)

where for simplicity the lattice spacing δx is the same for all i, and at first we set x0
i = 0 for all i.

Then we have 116 lattice sites in total.
After calculating the loss function (A.8) at all the lattice sites, we find a set of parameters xmin

i with
the minimum loss among them. Next we set x0

i = xmin
i and δx → δx/6, and repeat this procedure

six times. Finally the lattice spacing becomes δx/66.
We tried several cases satisfying 10−3 ≤ δx/66 ≤ 10−2, and calculated both cases of the squared

mass matrix (A.1). Then we obtain a certain set of parameters with the minimum loss among all the
results that we obtained. In our discussion we regard it as the best fit for the experimental results.

Appendix A.2. CKM matrix

The best fit that we obtained for the CKM matrix is

CKM =
⎛
⎜⎝ 0.974 0.226 0.004e−1.17i

−0.226 0.973 0.043
0.009e−0.435i −0.042 0.999

⎞
⎟⎠ (A.10)

with quark masses

(mu, mc, mt) = (5.30 × 10−5, 1.30, 173) GeV

(md , ms, mb) = (1.18 × 10−6, 0.013, 4.18) GeV. (A.11)

Here we input mt and mb for normalization. The CKM can be expressed in terms of Wolfenstein
parameters: ⎛

⎜⎝ 1 − λ2

2 λ Aλ3(ρ − iη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎟⎠ + O(λ4), (A.12)

and we obtain

λ = 0.226, A = 0.839, ρ = 0.161, η = 0.382. (A.13)

The experimental values for these are [24]

λ = 0.226, A = 0.836, ρ = 0.125, η = 0.364 (A.14)

with quark masses

(mu, mc, mt) = (2.2 × 10−3, 1.27, 173) GeV

(md , ms, mb) = (4.7 × 10−3, 0.093, 4.18) GeV. (A.15)
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Note that, again, we look at only the central values of the experimental data.
Some comments are in order for these results:

(1) The agreement is generally excellent.
(2) The masses of u, d, s quarks come out rather small. This is due to the large hierarchical property

of the mass matrices. The lattice QCD mass is somewhat different from the Higgs coupling,
especially its renormalization corrections, but it is not clear at this time whether this fact can
account for the difference.

(3) The CKM matrix also has renormalization corrections [25]. The fact that our result is not far from
the experimental value may indicate that our theory is indeed a low-energy theory rather than a
very short distance theory.

Appendix A.3. PMNS matrix

Our best fit for the PMNS matrix is obtained as follows. We discuss the two cases of pure Dirac
neutrino and Majorana neutrino with the seesaw approximation. In each case, neutrino masses can
be in the normal order (m1 < m2 < m3) or the inverted order (m3 < m1 < m2).

Appendix A.3.1. Case of the pure Dirac neutrino
When neutrino masses are in the normal order, the best fit is

PMNS =
⎛
⎜⎝ 0.919 0.183 0.349e−1.49i

0.304e2.05i 0.598e0.09i 0.742
0.250e0.98i 0.780e3.09i 0.573

⎞
⎟⎠ (A.16)

with neutrino mass differences(
�m2

21,�m2
32

) = (
m2

2 − m2
1, m2

3 − m2
2

) = (7.53 × 10−5, 3.32 × 10−1) eV2. (A.17)

Here �m2
21 is our input for normalization, which is the same for all the fittings below.

If neutrino masses are in the inverted order, the best fit becomes

PMNS =
⎛
⎜⎝ 0.586 0.483 0.651e−2.79i

0.150e2.12i 0.814e0.13i 0.561
0.796e0.15i 0.323e2.84i 0.511

⎞
⎟⎠ (A.18)

with neutrino mass differences(
�m2

21,�m2
32

) = (7.53 × 10−5, −7.53 × 10−5) eV2. (A.19)

The PMNS matrix is can be written as⎛
⎜⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎟⎠ (A.20)

where c12 = cos θ12, s12 = sin θ12, . . .. Then we get

s2
12 = 0.0381, s2

13 = 0.122, s2
23 = 0.626, δ = 1.49 (normal order)

s2
12 = 0.404, s2

13 = 0.424, s2
23 = 0.547, δ = 2.79 (inverted order). (A.21)

16/20



PTEP 2020, 013B03 S. Shiba Funai and H. Sugawara

Lepton masses in both cases of normal and inverted orders are the same as in Sect. 2.1:

(
me, mμ, mτ

) = (0.5110, 107.5, 1558) MeV. (A.22)

Appendix A.3.2. Case of the Majorana neutrino with the seesaw approximation
The best fit in the normal order of neutrino masses is

PMNS =
⎛
⎜⎝ 0.291 0.7531.96i 0.590e1.12i

0.489e−2.96i 0.527e−2.66i 0.695
0.822e0.70i 0.394e−1.40i 0.411

⎞
⎟⎠ (A.23)

with neutrino mass differences

(
�m2

21,�m2
32

) = (7.53 × 10−5, 2.44 × 10−3) eV2. (A.24)

In the inverted order of neutrino mass, the best fit is

PMNS =
⎛
⎜⎝ 0.294 0.8803.14i 0.373e3.14i

0.490e0.00i 0.197e3.14i 0.849
0.821e3.14i 0.433e3.14i 0.373

⎞
⎟⎠ (A.25)

with neutrino mass differences

(
�m2

21,�m2
32

) = (7.53 × 10−5, −7.53 × 10−5) eV2. (A.26)

The PMNS matrix in this case can be written as⎛
⎜⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎟⎠

⎛
⎜⎝1 0 0

0 eiα21/2 0
0 0 eiα31/2

⎞
⎟⎠; (A.27)

then we get

s2
12 = 0.870, s2

13 = 0.348, s2
23 = 0.741 (normal order)

s2
12 = 0.900, s2

13 = 0.139, s2
23 = 0.838 (inverted order) (A.28)

and the CP violation phases are

δ = −1.68, α21 = 3.92, α31 = −1.13 (normal order)

δ = 0.00, α21 = 0.01, α31 = 0.00 (inverted order) (A.29)

modulo 2π . Lepton masses are the same as in the case of the pure Dirac neutrino.

Appendix A.3.3. Experimental data
The current experimental values (its central values) of the PMNS matrix are [24,26]

|PMNS| =
⎛
⎜⎝0.821 0.550 0.150

0.304 0.598 0.742
0.483 0.583 0.654

⎞
⎟⎠, (A.30)
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the angles in the expression (A.20) are

s2
12 = 0.307, s2

13 = 0.0218, s2
23 =

{
0.512 (normal order)

0.536 (inverted order)
, (A.31)

and the CP violation phase is

δ = 1.37π = −1.98 (modulo 2π ). (A.32)

The lepton masses are (
me, mμ, mτ

) = (0.5110, 105.6, 1777) MeV (A.33)

and the neutrino mass differences are

(
�m2

21,�m2
32

) =
{
(7.53 × 10−5, 2.44 × 10−3) eV2 (normal order)

(7.53 × 10−5, −2.55 × 10−3) eV2 (inverted order)
. (A.34)

We see that

(1) The agreement seems the best for the Majorana neutrino case in the normal order, especially at
the CP violation phase and the neutrino mass difference.

(2) In that case, sin θ23 matches well and sin θ12 agrees within a factor of 3. However, we obtain too
large a value for sin θ13. The discrepancy with the experimental data could be attributed to the
renormalization effect or inadequacy of our assignment. Further study is required.

(3) In the inverted order, we obtain no good agreements and the neutrino mass differences in particular
completely fail to agree. Since the masses have a large hierarchical property in our calculations,
as a consequence |�m2

32| never exceeds |�m2
21|.
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