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Abstract. In fully developed turbulent plane Couette flow the classical experimental

data of frictional factor f vs. Reynolds number Re display well-known disparities which

have long remained unexplained. These disparities are accompanied by previously

unnoticed disparities in the wakes, and only in the wakes, of the attendant mean-

velocity profiles (MVPs). To help explain these experimental data, we apply the

model of the “spectral link” for MVPs to turbulent plane Couette flows. The model

links the dissipative range, the inertial range, and the energetic range of the standard

phenomenological model of the spectrum of turbulent kinetic energy to, respectively,

the buffer layer, the log layer, and the wake of the MVPs. By assessing the empirical

data using the spectral model, we argue for the existence, in plane Couette flow,

of multiple states of turbulence which differ from one another only at the largest

lengthscales in the flow, corresponding to the energetic range, where the spectrum is

subject to finite-domain effects. Thus, the multiplicity of turbulent states is entirely

consistent with small-scale universality, and the experimental data on plane Couette

flow pose no challenge to the phenomenological theory of turbulence. Our findings

might apply more broadly to a general class of flows engendered by moving boundaries.

Keywords: turbulent plane Couette flow, friction factor, mean-velocity profile, spectral

link, macroscopic non-universality, small-scale universality
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1. Introduction

The classical experiments on turbulent plane Couette flow date back to the 1950s, to the

independent experiments by Reichardt (1956, 1959) and by Robertson (1959). These

classical experiments focused on the friction factor f . A dimensionless measure of the

wall shear stress τ0, the friction factor is defined as f ≡ τ0/ρu
2
c , where uc ≡ u(y = b),

that is, the mean velocity u evaluated at the centerline of the flow, y = b, where b is

half the thickness of the gap between the plates ‡.
From the onset, the experiments revealed a conspicuous disparity in the relation

between f and the Reynolds number Re ≡ ucb/ν (Fig. 1), where ν is the kinematic

viscosity of the fluid. In consultation with Reichardt, Robertson repeated his

experiments but the disparity prevailed and has never been resolved (Robertson and

Johnson; 1970). Later, more experiments became available, including the experiments

by Telbany and Reynolds (1982), whose measurements of f are in good accord with

Reichardt’s, and the experiments by Kitoh et al. (2005), whose measurments of f agree

well with Robertson’s. In the meantime, direct numerical simulations (DNS) of turbulent

plane Couette flow became possible. Remarkably, the computational f–Re relation turns

out to be quite distinct from either of the experimental f–Re relations (Fig. 1). At the

same value of Reynolds number Re, the friction factors of Robertson (1959) and Kitoh

et al. (2005) are consistently higher than those of Reichardt (1959) and Telbany and

Reynolds (1982), but consistently lower than the computational ones.

The Reichardt–Robertson disparity has always been thought of as an anomaly,

the inadvertent product of a systematic error that would sooner or later be identified

and factored in. The implicit notion has been that to each value of Re there should

correspond a unique turbulent state and, therefore, a unique value of f .

In view of Fig. 1, we argue that this notion should be abandoned. Thus, in what

follows, we shall accept as a fact the experimental and computational evidence that to

each value of Re there might actually correspond multiple values of f . Furthermore, we

shall assume that each one of these values of f signals a specific, alternative turbulent

state.

A number of questions are then brought to the fore: How are we to characterize

a turbulent state? In what ways do various turbulent states differ among themselves?

Can the existence of multiple turbulent states be reconciled with the phenomenological

theory of turbulence?

Before we seek to answer these questions, we turn our attention to the mean-

velocity profiles (MVPs) of turbulent plane Couette flow. The MVPs have been ignored

in discussions of the Reichardt–Robertson disparity. And yet, the friction factor f

is closely related to the MVPs (Furuichi et al.; 2015), and the disparities in the f–Re

‡ In plane Couette flow the fluid is confined between two mutually parallel plates which move parallel

to one another at a constant relative velocity. Here, we will consider the frame of reference in which

the lower plate is stationary. No pressure gradient is imposed on the fluid; thus the total shear stress

is uniform across the thickness and coincides with τ0.
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FIG. 1. Log-linear plots of experimental and computational data on the relation

between the friction factor f and the Reynolds number Re of turbulent plane Couette

flow. � from Reichardt (1959). 4 from Telbany and Reynolds (1982). � from

Robertson (1959). N from Kitoh et al. (2005). © DNS from Lee and Kim (1991)

(Green), Bech et al. (1995) (black), Tsukahara et al. (2006) (Purple), Avsarkisov

et al. (2014) (Blue), and Pirozzoli et al. (2014) (Red), respectively. Solid lines are the

empirical formulas from Telbany and Reynolds (1982): 0.0331/(log Re)2, Robertson

(1959): 0.0361/(log Re)2, and Pirozzoli et al. (2014): 0.0399/(log Re)2, respectively.

relation should be reflected in concomitant disparities in the MVPs, which in turn might

help shed light upon the nature of the different turbulent states that prevail in turbulent

plane Couette flow.

In Fig. 2, we plot the MVPs for the highest Re available in various experiments and

computations, all for plane Couette flow. The MVPs are plotted in terms of the classical

dimensionless “wall variables” ỹ and ũ, where ỹ ≡ uτy/ν and ũ ≡ u/uτ . From Fig. 2 we

can verify that at similar values of Reτ (the friction Reynolds number, an alternative

form of the Re defined as Reτ ≡ uτb/ν) the various MVPs are indistinguishable

everywhere in the domain of the flow except for the wake. Indeed, the disparities in

the f–Re relation are reflected in the wakes of the MVPs, and only there, in the form

of varying degrees of overshooting of the log law.

Even though some of the values of Reτ that appear in Fig. 2 are not entirely

comparable with the others (especially for the experiment of Kitoh et al. (2005) and the

computations of Avsarkisov et al. (2014), where the highest available values of Reτ are
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FIG. 2. Log-linear plots of experimental and computational data on the MVPs of

turbulent plane Couette flow. � Reτ = 723 (Reichardt; 1959). 4 Reτ = 805 (Telbany

and Reynolds; 1982). � Reτ = 700 (Robertson; 1959). N Reτ = 192 (Kitoh et al.;

2005). © DNS from (Avsarkisov et al.; 2014) (Blue) at Reτ = 550, and Pirozzoli et al.

(2014) (Red) at Reτ = 986, respectively. The grey line denotes the “log law,”Prandtl

(1953); Tennekes and Lumley (1972) ũ(ỹ) = (1/κ) ln ỹ+B with κ = 0.81 (the “Kármán

constant”) and B = 5. The dashed grey line denotes the laminar solution of the viscous

layer, ũ(ỹ) = ỹ. Each MVP extends from the wall to ỹ = Reτ , which corresponds to

the centerline of the flow. The MVPs collapse on a single curve close to the wall in

the viscous layer, the buffer layer, and the log layer (where the log law prevails), while

there are significant discrepancies in the wakes.

rather small), it can be clearly seen that the overshooting of the log law is largest for the

experiments of Reichardt (1959) and Telbany and Reynolds (1982), second largest for the

experiments of Robertson (1959), and smallest for the computations of Pirozzoli et al.

(2014) (Fig. 2). That is, a higher friction factor consistently corresponds to a smaller

overshooting in the wakes of the MVPs. Indeed, the overshooting can be quantified by

the value of the non-dimensional velocity slope at the flow centerline, which is defined

as

Rs ≡
b

uτ

du

dy
|y=b ≡

dũ

dlnỹ
|
ỹ=Reτ

. (1)

A higher value of Rs indicates a larger overshooting in the wakes of the MVPs. In

Fig. 3 it is possible to confirm the conclusion from Fig. 2, namely that a higher friction

factor consistently corresponds to a smaller overshooting in the wakes of the MVPs (if
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we exclude as an outlier, likely due to scatter, the only counterexample, which occurs

at a very small Reynolds number).
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FIG. 3. Log-linear plots of experimental and computational data on the relation

between the non-dimensional velocity slope at the flow centerline, Rs, and the Reynolds

number Re of turbulent plane Couette flow. 4 from Telbany and Reynolds (1982). �
from Robertson (1959). N from Kitoh et al. (2005). © DNS from Tsukahara et al.

(2006) (Purple), Avsarkisov et al. (2014) (Blue), and Pirozzoli et al. (2014) (Red),

respectively.

To summarize our discussion so far: we have ascribed the disparities in the f–Re

relation to the existence of multiple turbulent states in turbulent plane Couette flow.

In addition, we have verified that these disparities are reflected in the wakes of the

MVPs, and only there, in the form of varying degrees of overshooting of the log law. In

what follows, we intend to harness this latter fact in order to explain, with help from

a spectral model of the MVPs (Gioia et al.; 2010) of turbulent plane Couette flow, the

way in which the multiple turbulent states differ from one another. Thus, we turn to

the spectral model.

2. The model of spectral link

As a starting point of our analysis, here we outline the model of the “spectral link”

for MVPs in turbulent pipe flows and channel flows (Gioia et al.; 2010). In the next

section, we adapt this spectral model to turbulent plane Couette flows. The model
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is grounded on the existence of a mathematical link between the MVPs and the eddy

velocity distribution of the phenomenological theory of turbulence (or, alternatively, the

spectrum of turbulent kinetic energy of the phenomenological theory of turbulence).

2.1. The spectrum of turbulent kinetic energy

The spectrum of turbulent kinetic energy, or the spectrum for short, is a function of

the wavenumber k, E(k), defined by the expression dv2k/dk = E(k), where vk is the

characteristic velocity of a turbulent eddy of wavenumber k. Note that k ∝ 1/s, where

s is the size of the eddy; thus the eddy velocity distribution of the phenomenological

theory is but a derivative of the spectrum. Indeed, the velocity of an eddy of size s, vs,

can be computed as

vs =

√∫ ∞
1/s

E(k)dk, (2)

where

E(k) =
2

3
(κεε)

2/3k−5/3exp(−βdηk)(1 + (βe/bk)2)−17/6. (3)

This expression for E(k) corresponds to the standard model of the spectrum. It consists

of

(i) the power-law spectrum of Kolmogórov, 2
3
(κεε)

2/3k−5/3, valid in the inertial range,

where the dynamics of the turbulent eddies is dominated by the inertial forces of the

energy cascade, with vanishing interference from viscous and finite-domain effects.

Here, κε is a dimensionless, non-negative constant which can be theoretically

estimated as 4/5 (Gioia et al.; 2010; Gioia and Chakraborty; 2006), ε is the

turbulent power per unit mass (that is, the characteristic invariant of the energy

cascade), and −5/3 is the spectral exponent.

(ii) The dissipative-range correction that accounts for the effect of viscosity at high

wavenumber (small eddies), exp(−βdηk), where βd is a dimensionless, non-negative

constant known as the dissipative-range parameter, and η is the viscous lengthscale,

η = ν3/4ε−1/4.

(iii) The energetic-range correction that accounts for effect of finite domain at low

wavenumber (large eddies), (1 + (βe/bk)2)−17/6, where βe is a dimensionless, non-

negative constant known as the energetic-range parameter, and b is the size of

the largest eddies, which size is commensurate, for plane Couette flow, with the

thickness of the gap between the plates.

The standard model of the spectrum has been tested successfully by comparison with

extensive measurements of the velocity fluctuations carried out over a wide range

of Reynolds numbers, and by a variety of probing techniques, in laboratory flows,

atmospheric flows, flows with shear and flows without shear, as well as by comparison

with velocity fluctuations computed in numerical simulations (Pope; 2000). In spite of

its relative simplicity, the standard model provides a comprehensive, quantitative and
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Spectral link and macroscopic non-universality in turbulent plane Couette flow 7

physically meaningful account of each of the features of the spectrum evinced by the

empirical data.

For future reference, note that E(k) > 0 for all k. Thus, from vs =
√∫∞

1/s
E(k)dk,

we conclude that vs is a monotonically increasing function of s. In other words, the

larger the eddy, the larger its characteristic velocity.

By substituting the standard model of the spectrum in Eq. (2), we obtain (Gioia

et al.; 2010)

vs = (κεεs)
1/3
√
I, (4)

where

I ≡ I(η/s, s/b) ≡ 2

3

∫ ∞
1

ξ−5/3Exp(−ξβdη/s)(1 + (βes/b)
2/ξ2)−17/6dξ (5)

and ξ ≡ sk. In general, for an eddy of size s in the inertial range (η � s � b), I = 1

and vs = (κεεs)
1/3, which is the eddy velocity distribution in the inertial range. For

an eddy size s in the dissipative range (s . η) or the energetic range (s & b), I < 1

and vs < (κεεs)
1/3, with the implication that the eddy is slower than an imaginary

eddy of the same size in the inertial range. Thus, the dissipative-range correction

and the energetic-range correction may be said to depress the spectrum relative to

the power-law spectrum of Kolmogórov. Indeed, if we set βd = βe = 0—that is, if there

were no dissipative-range correction and no energetic-range correction (an unphysical

proposition)—vs = (κεεs)
1/3 for all s, and all eddies would be inertial.

2.2. Turbulent shear stress and spectral link

We seek to derive an expression for the turbulent shear stress that acts on a wetted

surface Wy at a distance y from the wall (Fig. 4). Here we use a method different from

the original derivation of Gioia et al. (2010): our derivation is grounded on the concept

of control volume (CV) (Vincenti; 1982). Consider a cuboidal CV whose upper face (of

surface area S) overlaps with Wy and whose lower face is at a distance y1 from the wall.

The length of the CV is X. Here, y1 and X are arbitrary. Eddies of size s and velocity

vs bring high-momentum fluid (momentum per unit mass ∼ ρu(y+ s)) into the CV and

take low-momentum fluid (momentum per unit mass ∼ ρu(y − s)) out of the CV. The

net momentum exchanged in a time interval ∆t is

∆M ∼ Svs∆t ρu(y + s)− Svs∆t ρu(y − s) ≈ 2Sρvs∆ts
du(y)

dy
. (6)

Thus, there is a turbulent force F acting on CV, F = ∆M/∆t ∼ 2ρSvss du(y)/dy, and

the turbulent shear stress τt12 must be the same as this turbulent force per unit area,

that is τt12 = F/S ∼ ρsvs du(y)/dy.

Now, we have seen that vs is a monotonically increasing function of s. Thus, τt12
is also a monotonically increasing function of s, and the production of turbulent shear
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Spectral link and macroscopic non-universality in turbulent plane Couette flow 8

FIG. 4. Schematic used to derive an expression for the turbulent shear stress on the

wetted surface Wy. For the coordinate axes, we choose the x axis to be along the

streamwise direction and the y axis to be along the wall-normal direction. Note that

y = 0 corresponds to the wall, so that Wy is at a distance y from the wall.

stress must be dominated by the largest eddies that straddle Wy—that is, the eddies of

size s = y. We conclude that

τt12 = κτρyvy
du(y)

dy
, (7)

where κτ is a dimensionless proportionality constant. Next, we set s = y in Eq. (4)

to obtain, vy = (κεεy)1/3
√
I, where ε = τt12

du(y)
dy

/ρ is the energy equation (or, more

precisely, the turbulent kinetic budget equation (Kundu and Cohen; 2002)); substituting

in Eq. (7):

τt12 = κ2ρI3/4y2(
du(y)

dy
)2, (8)

where κ ≡ (κεκ
3
τ )

1/4 and I ≡ I(η/y, y/b).

Eq. (7) links the turbulent shear stress to vy, the eddy velocity distribution, which

is a function of the spectrum. In other words, Eq. (7) is the “spectral link”. It was first

derived (along with Eq. (8)), for turbulent pipe flow and channel flow by Gioia et al.

(2010), who showed that the parameter κ in Eq. (7) is but the Kármán constant of the log

law, which according to the model can be expressed as κ ≡ (κεκ
3
τ )

1/4. Thus, the Kármán

constant is set by κτ and κε, which relate to the mechanism of momentum transfer and

to the spectrum, respectively. The fact that the Kármán constant depends explicitly

on a parameter related to the spectrum, namely κε, serves as a striking reminder of the

fundamental spectral nature of the model.
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Spectral link and macroscopic non-universality in turbulent plane Couette flow 9

3. Equations of the MVPs

For turbulent plane Couette flow, the total shear stress can be expressed in the form

τ(y) = τv12 + τt12 = τ0. (9)

By substituting the total shear stress and viscous shear stress τv12 ≡ ρν du(y)
dy

in Eq. (8)

and rewriting the result in terms of Reτ and the wall variables ỹ and ũ, we obtain the

momentum equation:

κ2I3/4ỹ2(
dũ

dỹ
)2 +

dũ

dỹ
= 1, (10)

where I ≡ I(η/y, ỹ/Reτ ).

Similarly, by taking into account that η = ν3/4ε−1/4 and ε = τt12
du(y)
dy

/ρ (the energy

equation), we obtain a recast form of the energy equation:

η/y = (
dũ

dỹ
− (

dũ

dỹ
)2)−1/4ỹ−1, (11)

which is coupled to the momentum equation via the dependence of I on η/y. Eqs. (10)

and (11) are the equations of the MVPs for turbulent plane Couette flow.

We proceed following the analysis of Gioia et al. (2010). When the flow is laminar,

the turbulent shear stress vanishes (τt12 = 0) and Eq. (10) reduces to dũ/dỹ = 1, which

is the law of laminar flows (Kundu and Cohen; 2002). When the flow is turbulent, the

no-slip boundary condition (Pope; 2000) gives rise to a thin laminar viscous layer next

to the wall (y � b). With the no-slip boundary condition ,that is, ũ = 0 for ỹ = 0, the

viscous layer solution reads ũ = ỹ. We shall show next that the thickness of the viscous

layer can be determined starting with Eqs. (10) and (11).

Consider a point y � b, τt12 > 0, thus I = I(η/y, 0) > 0. Then dũ/dỹ can be

eliminated from Eqs. (10) and (11) to obtain

ỹ =

(
(η/y)4/3 + κ4/3I1/2(η/y, 0)

κ2/3(η/y)8/3I1/4(η/y, 0)

)1/2

. (12)

Now, for a given value of κ and a given value of βd, Eq. (12) gives ỹ as a function of η/y.

As it turns out, this function has a minimum, denoted ỹv (Fig. 5), with the implication

that for ỹ < ỹv there is no turbulent solution (Gioia et al.; 2010). Thus, for ỹ < ỹv the

only possible solution is the viscous solution, ũ = ỹ, and ỹv represents the thickness of

the viscous layer. For κ = 0.81 and βd = 7, we obtain ỹv = 4.2 (Fig. 5). For ỹ > ỹv,

turbulence prevails and the turbulent MVP can be computed by integrating Eq. (10)

with boundary condition ũ = ỹv at ỹ = ỹv. Note that the MVP is determined by all

three parameters (κ, βd and βe) whereas the thickness of the viscous layer depends only

on κ and βd.

From the equations above, it is apparent that the standard model of the spectrum

should in itself be sufficient to compute, with no additional assumptions, the turbulent

MVP corresponding to any given Reynolds number, over the entire domain of flow.

Indeed, the model yields complete MVPs with viscous layer, buffer layer, log layer, and
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FIG. 5. Plot of ỹ vs. η/y as per Eq. (12), for κ = 0.81 and βd = 7. The thick red dot

indicates the point where ỹ is minimized; the minimum is denoted by ỹv and represents

the thickness of the viscous layer.

wake (Gioia et al.; 2010). Furthermore, each part of the MVP relates to a specific spectral

range: the viscous layer to the dissipative range, the buffer layer to the dissipative range,

the log layer to the inertial range, and the wake to the energetic range (Gioia et al.;

2010).

The one-to-one correspondence between the layers of the MVPs and the ranges

of the spectrum plays a crucial role in our analysis of turbulent plane Couette flow.

Specifically, in section I we noted that the disparities in the f–Re relation are reflected

in only the wakes of the MVPs. In the spectral model the amplitude of the wake is set

by only one spectral parameter: the dimensionless parameter βe of the energetic-range

correction. In the next section we turn to how this single parameter can shed light on

the disparities.

Before discussing the results, we note that here our emphasis will be on that which

the spectrum may tell us about the salient qualitative features of the disparities rather

than on how accurately the spectral model can reproduce, on the basis of the standard

model of the spectrum, plots of the empirical data on these disparities. In particular,

our interest will be on qualitative, or generic, aspects of the energetic-range correction
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Spectral link and macroscopic non-universality in turbulent plane Couette flow 11

and their relation to salient characteristics of the wake, notably the relation between the

generic fact that the energetic-range correction decays for small k, and the concomitant

fact that the MVP overshoots the log law in the wake §. We are not considering the

specific form of the energetic-range correction and the exact shape of the overshooting

wake. Keeping this outlook in mind, we will not try to fit the f–Re curves and the MVPs

from the spectral model (computed using the standard model) to that from empirical

data. Instead we will show the computed and the empirical ones in separate yet readily-

comparable plots, and focus on the capacity of the spectral model to reproduce all of

the salient features of the empirical data, allowing us to trace the cause of each one of

those salient features to the corresponding feature of the spectrum.

4. Analysis

7 8 9 10

0.002

0.003

0.004

0.005

ln Re

f

FIG. 6. Log-linear plots of the friction factor of plane Couette flow as a function of

Re computed from the spectral model with κ = 0.81, βd = 7, and three different values

of βe: βe = 1 (black line), βe = 2 (red line), βe = 3 (blue line).

We use the spectral model of the previous section to make the theoretical predictions

shown in Figs. 6 and 7. The different curves correspond to different values of the

dimensionless parameter βe. Note that the spectral model can reproduce all of the salient

§ Analysis of such generic aspects of the spectrum can be used to shed light on the scaling relations

for the MVPs (Gioia and Chakraborty; 2017).

Page 11 of 20 AUTHOR SUBMITTED MANUSCRIPT - FDR-101133

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t
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FIG. 7. Log-linear plots of the MVPs of plane Couette flow at the same value of

Reτ = 1000 computed from the spectral model with κ = 0.81, βd = 7, and three

different values of βe: βe = 1 (black line), βe = 2 (red line), βe = 3 (blue line).

trends in the experimental and computational data (also shown in Figs. 1 and 2). Since

the disparities in friction factor and the attendant disparities in the wakes are accounted

for by a single parameter, βe, of the energetic-range correction, we conclude that the

multiple turbulent states we introduced in section I can only differ at the lengthscales

of the energetic-range correction, the largest lengthscales of the flow. Experimental and

DNS studies of plane Couette flows (Tsukahara et al.; 2006; Avsarkisov et al.; 2014;

Lee and Moser; 2018) show that these largest lengthscales appear as counter-rotating,

streamwise vortices. While, to our knowledge, there is no systematic study of how these

vortices are affected by details of the flow, we posit that the different turbulent states

correspond to different configurations of the vortices, which are affected by flow details

such as finite-domain effects or the initial conditions. We submit that such a study

would shed important insight into plane Couette flows.

From our results we note that, contrary to the view that multiple turbulent states

might be somewhat at odds with the phenomenological theory of turbulence, which

view was put forward in a discussion of multiple turbulent states in Taylor-Couette flow

(Huisman et al.; 2014; van der Veen et al.; 2016), but might be thought applicable to

plane Couette flow as well, the difference between any one such state and another is

totally circumscribed to the largest lengthscales in the flow. This implies that, at any
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Spectral link and macroscopic non-universality in turbulent plane Couette flow 13

given Reynolds number, all turbulent states are indistinguishable at inertial and viscous

lengthscales, and that small-scale universality (Kolmogórov; 1941; Liao and Su; 2015;

Schumacher et al.; 2014) holds regardless of state, in accord with the phenomenological

theory.

4.1. Disparities in macroscopic properties other than the MVPs

As per the spectral model, a higher value of βe indicates stronger finite-domain effects

and results in a lower friction factor and a larger overshooting in the wakes of the

MVPs (Figs. 6 and 7). From this conclusion we expect that a change in turbulent state

(and the attendant change if the f–Re relation) should have a marked effect on the

turbulent velocity fluctuation profile V (y) ≡ u′iu
′
i; this is because most of the turbulent

energy is carried by the largest turbulent eddies in the flow. Indeed, we can predict

that a turbulent state with a lower friction factor corresponds to stronger finite-domain

effects, which in turn should correspond to higher turbulent velocity fluctuations. This

prediction is confirmed in Fig. 9, where we plot the most recent DNS and experimental

data, for the highest available values of Re, on the Ṽ (ỹ) profile, where Ṽ ≡ V/u2τ .

y

Wy

s

vs

FIG. 8. Schematic used to derive the expression for the turbulent wall-normal velocity

fluctuation vrms(y).

The spectral model does not directly give the turbulent velocity fluctuations.

However, the turbulent wall-normal velocity fluctuation vrms(y) profile may be identified

as vy (the characteristic velocity of the dominant eddy at a distance y from the wall): in

Fig. 8, we consider that at a distance y from the wall, the turbulent wall-normal velocity

fluctuation results mostly from the turbulent eddies centering at the wetted surface Wy.

Then, the dominant eddies contributing to the turbulent wall-normal velocity fluctuation
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Spectral link and macroscopic non-universality in turbulent plane Couette flow 14

vrms(y) must be of size s = y as vs is a monotonically increasing function of s. Thus,

we assume that the vrms(y) = vy. From Eqs. (7) and (8), vy (or vrms(y)) can be directly

computed from the spectral model as

vy = vrms(y) = (κ2κε)
1/3I3/4y

du(y)

dy
. (13)

We now are ready to compare our theoretical results of vrms(y) to the corresponding

experimental and computational data. Similar to the V (y) profile, the ṽrms(ỹ) profile,

where ṽrms ≡ vrms/uτ , should also differ depending on the turbulent state. What we

expect is that because of weaker finite-domain effects, a higher friction factor should

also correspond to a higher turbulent wall-normal velocity fluctuation, which is again

confirmed by Fig. 10 and can be reproduced by the spectral model by varying the

dimensionless parameter βe of the energetic-range correction (Fig. 11).
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FIG. 9. Plots of experimental and computational data on the turbulent velocity

fluctuation profiles of turbulent plane Couette flow. 4 Reτ = 805 (Telbany and

Reynolds; 1982). © DNS from Avsarkisov et al. (2014) (Blue) at Reτ = 550, and

Pirozzoli et al. (2014) (Red) at Reτ = 986, respectively.

5. A note on the asymptotic value of the velocity slope at the flow

centerline

In plane Couette flow, the value of the non-dimensional velocity slope at the flow

centerline, Rs, has elicited considerable interest since the 1950s when the classical
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FIG. 10. Plots of experimental and computational data on the turbulent wall-normal

velocity fluctuation profiles of turbulent plane Couette flow. 4 Reτ = 805 citeptelbany.

© DNS from Avsarkisov et al. (2014) (Blue) at Reτ = 550, and Pirozzoli et al. (2014)

(Red) at Reτ = 986, respectively.

experiments on turbulent Couette flow were conducted by Reichardt (1956, 1959).

Regarding how Rs varies with Re (Fig. 3), while most recent DNS studies report a

slow decrease of Rs with increasing Re, different trends have been reported in various

experiments. The discrepancies have been attributed to the difficult measurements of

small velocity differences in experiments (Pirozzoli et al.; 2014). Regarding whether the

value of Rs will approach a constant in the limit of infinite Re, a convincing conclusion

has never been reached because of the limitation to achieve very high Reynolds number

in both experiments and simulations. Thus, the value of the non-dimensional velocity

slope at the flow centerline remains an open question till now. An alternative definition

of the non-dimensional velocity slope at the flow centerline is

S0 ≡
b

uc

du

dy
|y=b ≡

dũ

dlnỹ
|
ỹ=Reτ

√
f = Rs

√
f. (14)

Here, the spectral model will be employed to address the open question on the value

of the non-dimensional velocity slope at the flow centerline of plane Couette flow. Rs

and S0 are readily to be calculated from the theoretically computed MVP and friction

factor. At the flow centerline where the viscous shear stress is negligible, Eq. (10) gives

that Rs = I
−3/8
0 /κ, where I0 ≡ I(η/b, 1), which depends on Re via η/b. For a high

enough Reynolds number, η/b reduces to zero. Thus I0 = I(0, 1) is not dependent on
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FIG. 11. Plots of the turbulent wall-normal velocity fluctuation profiles of plane

Couette flow at the same value of Reτ = 1000 computed from present spectral model

with κ = 0.81, βd = 7, and three different values of βe: βe = 1 (black line), βe = 2 (red

line), βe = 3 (blue line).

Re any more and Rs becomes a constant value, which is determined by the energetic-

range correction to the spectrum via I(0, 1). Note that the conclusion that Rs becomes

a constant value at high Reynolds numbers is valid regardless of the form of the function

I(η/s, s/b), thus regardless of the form of the energetic-range correction to the spectrum,

as long as the energetic-range correction to the spectrum is a function of s/b. In the

standard model of the spectrum we are using here, the dimensionless parameter βe of

the energetic-range correction sets the constant value of Rs at high Reynolds numbers

(Fig. 12) as I0 becomes

I(0, 1) ≡ 2

3

∫ ∞
1

ξ−5/3(1 + β2
e/ξ

2)−17/6dξ, (15)

which is a constant value only depending on βe. We have argued that a certain βe signifies

a specific turbulent state of plane Couette flow. That is to say, for each turbulent state,

there is an asymptotic constant value of Rs in the limit of high Re as shown in Fig. 12.

In Fig. 13, we also plot S0 ≡ Rs

√
f as a function Re. The decreasing rate of S0 is

getting slow in high Reynolds number region as the friction factor f is decreasing slowly.

At infinite Reynolds number, if the friction factor becomes zero, then S0 will be zero.
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FIG. 12. Log-linear plots of the non-dimensional velocity slope at the flow centerline

Rs of plane Couette flow as a function of Re computed from present spectral model

with κ = 0.81, βd = 7, and three different values of βe: βe = 1 (black line), βe = 2

(red line), βe = 3 (blue line). The dashed grey lines denote that at high Reynolds

numbers, the constant values of Rs = 2.86, 3.34, and 3.69 for βe = 1, βe = 2, and

βe = 3, respectively.

6. Discussion and summary

We have used the spectral model of the MVPs of turbulent plane Couette flow to revisit

the Reichardt–Robertson disparity, with the following conclusions.

(i) The Reichardt–Robertson disparity is a manifestation of the existence of multiple

turbulent states in turbulent plane Couette flow.

(ii) By invoking the one-to-one, or bijective property of the spectral link, whereby each

successive range of the spectrum of turbulent kinetic energy relates to one, and

only one, of the successive layers of the attendant MVP (the dissipative range to

the buffer layer, the inertial range to the log layer, and the energetic range to the

wake), we have been able to ascertain the ways in which these multiple turbulent

states differ from one another, namely only at the largest lengthscales in the flow,

corresponding to the energetic range of the eddy velocity distribution.

(iii) Corollary: a change in turbulent state can only alter the wake of the attendant

MVP (which is the part of the MVP dominated by the eddies of the energetic

range).
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FIG. 13. Log-linear plots of the non-dimensional velocity slope at the flow centerline

S0 of plane Couette flow as a function of Re computed from present spectral model

with κ = 0.81, βd = 7, and three different values of βe: βe = 1 (black line), βe = 2 (red

line), βe = 3 (blue line).

(iv) At smaller lengthscales, comprising the inertial and viscous portions of the spectrum

of turbulent kinetic energy, the spectrum is one and the same regardless of the

turbulent state, consistent with the phenomenological theory of turbulence.

(v) Thus, the existence of multiple turbulent states does not contradict the universality

of the spectrum of turbulent kinetic energy (such as this universality is understood

in the phenomenological theory).

(vi) Conversely, spectral universality does not rule out the existence of multiple

turbulent states.

These conclusions might apply beyond plane Couette flow to a general class of

flows engendered by moving boundaries. Consider, for instance, the recent papers on

multiple states in highly turbulent Taylor-Couette flows (Huisman et al.; 2014; van der

Veen et al.; 2016). These studies report two branches of global torque, which is analogous

to the friction factor f . These branches correspond to differences in the wake of the

MVPs of azimuthal velocity and differences in the size of large-scale Taylor vortices,

which correspond to differences in the energetic-range corrections to the spectrum. Our

analysis might provide a unified explanation for these features.
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