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1 Introduction

In flat space holography the natural observables are the S-matrix elements. They are the

analogues of the correlation functions of the boundary CFT in the AdS/CFT correspon-

dence. In a holographic description it is expected that the global symmetries of the dual the-

ory should match the asymptotic symmetries of the bulk theory of quantum gravity. When

the bulk is four dimensional asymptotically flat space-time, the asymptotic symmetry group

is the extended BMS group [21–32] which, besides supertranslation, also contains superro-

tation. Superrotations are local conformal transformations acting on the two dimensional

celestial sphere. This is an extension of the Lorentz group SL(2,C) which acts on the celes-

tial sphere as the group of global conformal transformations. Therefore, from a holographic

perspective, it is desirable to have a (complete) set of observables which transform natu-

rally under the (Lorentz) conformal group. In order to achieve this [1–3] has put forward a

very interesting proposal in which, instead of plane-waves, one uses the conformal primary

wave-functions to describe the states of the incoming and outgoing particles in an S-matrix

element. To be more precise, for massless particles, the change of basis is given by [1–3],

S̃
(

{zi, z̄i, λi, σi}
)

=
n
∏

i=1

∫

∞

0
dωi ω

iλi

i S
(

{ωi, zi, z̄i, σi}
)

(1.1)
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Here σi denotes the helicity of the i-th particle1 and the on-shell momenta are parametrized

as,

pi = ωi(1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), p2i = 0 (1.2)

Under SL(2,C) (Lorentz) transformation ω and z transforms as,

ω → ω|cz + d|2, z → az + b

cz + d
, z̄ → c.c,

(

a b

c d

)

∈ SL(2,C) (1.3)

The new amplitude S̃
(

{zi, z̄i, λi, σi}
)

is a Mellin transformation of the standard S-

matrix element S
(

{ωi, zi, z̄i, σi}
)

and is known as the celestial amplitude because (zi, z̄i)

can be thought of as complex coordinates of points on the celestial sphere. Under Lorentz

transformation S̃ transforms covariantly,

S̃
(

{zi, z̄i, λi, σi}
)

=
n
∏

i=1

1

(czi + d)2hi

1

(c̄z̄i + d̄)2h̄i
S̃

(

azi + b

czi + d
,
āz̄i + b̄

c̄z̄i + d̄
, λi , σi

)

(1.4)

where,

h =
1 + iλ− σ

2
, h̄ =

1 + iλ+ σ

2
(1.5)

Equation (1.4) shows that S̃ transforms like the correlation function of conformal (quasi)

primaries of weights (hi, h̄i), inserted at the points (zi, z̄i) on the celestial sphere. This

transformation law is natural because the Lorentz group acts on the celestial sphere as the

group of global conformal transformations. The action of global space-time translations on

the Mellin-amplitude S̃ was studied in [11].

Now, a modified form of Mellin amplitude was defined in [4, 5],

A
(

{ui, zi, z̄i, λi, σi}
)

=
n
∏

i=1

∫

∞

0
dωi ω

iλi

i e−iεiωiuiS
(

{ωi, zi, z̄i, σi}
)

(1.6)

where εi = +1 for an outgoing particle and εi = −1 for an incoming particle. The u

coordinate has the interpretation of (retarded) time and (u, z, z̄) can be thought of as

coordinates at null-infinity in asymptotically flat space. This interpretation is further

confirmed by the transformation property of (u, z, z̄) under Lorentz transformation [4, 5],

u → u

|cz + d|2 , z → az + b

cz + d
, z̄ → c.c (1.7)

The modified Mellin transformation (1.6) can also be inverted in the standard way to

recover the standard S-matrix element,

S
(

{ωi, zi, z̄i, σi}
)

= ei
∑n

i=1 εiωiui

n
∏

i=1

∫

∞

−∞

dλi

2π
ω−iλi−1
i A({ui, zi, z̄i, λi, σi}) (1.8)

1From the perspective of the Mellin amplitude S̃, σi should be regarded as the spin of the quasi-primary

operator dual to the corresponding external state in the S-matrix as shown in equation (1.5) . In a later

part of the paper we will denote the simplex variables [3] also by σ. This should be clear from the context.

– 2 –



J
H
E
P
0
3
(
2
0
2
0
)
1
2
5

Under (Lorentz) conformal transformation the Mellin amplitude A transforms as,

A
(

{ui, zi, z̄i, λi, σi}
)

=
n
∏

i=1

1

(czi + d)2hi

1

(c̄z̄i + d̄)2h̄i
A
(

ui
|czi + d|2 ,

azi + b

czi + d
,
āz̄i + b̄

c̄z̄i + d̄
, λi , σi

)

(1.9)

and under global space-time translation,

A
(

{ui + f(zi, z̄i), zi, z̄i, λi, σi}
)

= A
(

{ui, zi, z̄i, λi, σi}
)

(1.10)

where

f(z, z̄) = a+ bz + b̄z̄ + czz̄ (1.11)

For the sake of completeness, let us now briefly explain the origin of the modified

transformation equation (1.6). In the usual S-matrix the asymptotic states are described

by the direct product of the single particle Wigner states |p, σ〉 where p is an on-shell

momentum and σ is the helicity. Here p is parametrized as in (1.2). Now, in the Mellin

amplitude S̃
(

{zi, z̄i, λi, σi}
)

the asymptotic states are described as the direct product of the

single particle states |z, z̄, λ, σ〉 which are the Mellin transform of the |p, σ〉 states [1–4], i.e,

|z, z̄, λ, σ〉 = N

∫

∞

0
dωωiλ |p(ω, z, z̄), σ〉 (1.12)

where N is a normalization constant. Now, given these states, one can calculate the quan-

tum mechanical transition amplitude given by [4] ,

〈z, z̄, λ, σ| e−iH(U−U ′)
∣

∣z′, z̄′, λ′, σ′
〉

=
〈

u, z, z̄, λ, σ
∣

∣u′, z′, z̄′, λ′, σ′
〉

= lim
δ→0+

δσσ′

2π

Γ
(

i(λ′ − λ)
)

δ2(z′ − z)
(

− i(u′ − u+ iδ)
)i(λ′−λ)

(1.13)

where u = (1 + zz̄)U and we have also defined the Heisenberg picture basis state,

|u, z, z̄, λ, σ〉 = eiHU |z, z̄, λ, σ〉 = N

∫

∞

0
dωωiλeiωu |p(ω, z, z̄), σ〉 (1.14)

The action of the Poincare group on the states |u, z, z̄, λ, σ〉 is simply given by,

U(Λ) |u, z, z̄, λ, σ〉 = 1

(cz + d)2h
1

(c̄z̄ + d̄)2h̄

∣

∣

∣

∣

u

|cz + d|2 ,
az + b

cz + d
,
āz̄ + b̄

c̄z̄ + d̄
, λ, σ

〉

(1.15)

and

e−iP.a |u, z, z̄, λ, σ〉 = |u+ f(z, z̄), z, z̄〉 (1.16)

where f(z, z̄) = (a0 − a3)− (a1 − ia2)z − (a1 + ia2)z̄ + (a0 + a3)zz̄.

This suggests a picture in which the particle is moving in a three dimensional space-

time with coordinates (u, z, z̄) on which the Poincare group acts geometrically, i.e,

(u,z, z̄)
L.T−−→

(

u

|cz+d|2 ,
az+b

cz+d
,
āz̄+ b̄

c̄z̄+ d̄

)

(1.17)

(u,z, z̄)
Translation−−−−−−−→ (u+(a0−a3)−(a1− ia2)z−(a1+ ia2)z̄+(a0+a3)zz̄,z, z̄) (1.18)
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In fact, this is exactly the way in which the Poincare group acts on null infinity in Minkowski

space parametrized by the Bondi coordinates (u, z, z̄). One can also check that as expected,

the transition amplitude (1.13) is (covariant) invariant under the Poincare transformation.

Now, the modified Mellin amplitude A
(

{ui, zi, z̄i, λi, σi}
)

is essentially the S-matrix

element when the asymptotic in and out states are described by free particles moving in

this three dimensional space with coordinates (u, z, z̄). To be more precise, the states of the

incoming or outgoing particles are now given by the direct product of the states,

|u, z, z̄, λ, σ, in/out〉 = N

∫

∞

0
dωωiλeiωu |p(ω, z, z̄), σ, in/out〉 (1.19)

The main difference between the Mellin transforms S̃ and A is that in S̃ all the incoming

and outgoing particles are constrained to lie on the same equal-u hyper surface, whereas in

A the particles are separated in time. Let us now explain the difference between S̃ and A
from the point of view of the (Minkowski space) wave functions of the asymptotic particles.

For simplicity we consider the external particles to be scalars.

Now, as we have already discussed, the Mellin amplitude S̃ describes the scattering

process when the asymptotic particles are described by the conformal primary wave func-

tions [1–3],

Φ±

∆(x
µ|z, z̄) = (∓i)∆Γ(∆)

(−q(z, z̄) · x∓ iδ)∆
, ∆ = 1 + iλ, δ → 0+ (1.20)

where qµ(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) is a unit null-vector. The superscript ±
refers to the Mellin transformation of positive and negative energy plane waves, respectively.

Now, the wave function (1.20) is distinguished by the fact that it is singular along the null-

hyperplane, x·q(z, z̄) = 0, which passes through the origin of the Minkowski space. In other

words, one can say that the particle described by (1.20) is localised on the null-hyperplane,

x · q(z, z̄) = 0. Now, since the Klein-Gordon equation is Poincare invariant, it is natural to

consider other solutions in which the particle is localised on different null-hyperplanes in

Minkowski space. The complete set of such solutions can be parametrized as [4],

Φ±

∆(x
µ|u, z, z̄) = (∓i)∆Γ(∆)

(−q(z, z̄) · x+ u∓ iδ)∆
, −∞ < u < ∞, δ → 0+ (1.21)

The particle described by the wave function (1.21) is now localized along the null-

hyperplane, x · q(z, z̄) − u = 0 and by varying (u, z, z̄) we can generate all the null-

hyperplanes in the Minkowski space. From the Poincare transformation property of the

wave function (1.21) one can conclude that the three parameters (u, z, z̄) have the interpre-

tation of Bondi coordinates at null-infinity [4]. The modified Mellin amplitude A describes

the scattering process when the asymptotic particles are described by wave functions (1.21).

To be more precise, for the S̃ amplitude the wave functions are
{

Φ±

∆i
(xµ|u, zi, z̄i)

}

. Since

the retarded time u is the same for all the particles, we can set u = 0 by time translation

invariance. On the other hand, the A amplitude is computed with the external particle

wave functions
{

Φ±

∆i
(xµ|ui, zi, z̄i)

}

and so different particles are now localized at different

– 4 –
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retarded times. The separation in retarded time is the main difference between the A and

S̃ amplitudes.

The rest of the paper is organized as follows. In section-(2) we discuss the role of iδ

in regularizing the modified amplitude A. In section-(3) we evaluate A corresponding to

4-graviton and 4-gluon MHV amplitudes. We find that for gravitons A is finite even in

Einstein gravity. This is a welcome feature from a holographic perspective. We then go on

to study the conformal soft factorization property of A. Soft factorization is non-trivial in

the Mellin basis because one integrates over the energies of the asymptotic particles. It has

been proposed and studied in [12–18] that soft limit in the Mellin amplitude corresponds to

taking λp → 0 if the p-th particle is going soft. To be more precise, it has been shown that

the limiting value of iλpS
(

{zi, z̄i, λi, σi}
)

, as λp → 0, factorizes. We show in section-(4) that

analogous (conformal) soft factorization is also true for iλpA
(

{ui, zi, z̄i, λi, σi}
)

, as λp → 0.

2 Regularization

The modified Mellin amplitude A has the form,

A
(

{up, zp, z̄p, λp, σp}
)

=
n
∏

p=1

∫

∞

0
dωp ω

iλp
p e−iεpωpupS

(

{ωp, zp, z̄p, σp}
)

(2.1)

For large values of energy the exponential factors e±iωu oscillate rapidly. These can be

regulated by adding a small imaginary part to u. To be more precise, we make the following

shift,

up → up − iεpδ, δ → 0+ (2.2)

The origin of the convergence factor can also be traced back to the conformal primary

wave-functions (1.21),

Φ±

∆(x
µ|u, z, z̄) = (∓i)∆Γ(∆)

(−q(z, z̄) · x+ u∓ iδ)∆
(2.3)

We can see that effectively u has a small imaginary part ∝ δ, whose sign depends on the

sign of the energy.

Therefore the amplitude A should be understood as,

A
(

{up, zp, z̄p, λp, σp}
)

=
n
∏

p=1

∫

∞

0
dωp ω

iλp
p e−iεpωp(up−iεpδ)S

(

{ωp, zp, z̄p, σp}
)

(2.4)

=

n
∏

p=1

∫

∞

0
dωp ω

iλp
p e−iεpωpupe−δsS

(

{ωp, zp, z̄p, σp}
)

, δ → 0+

where

s =
∑

p

ωp > 0 (2.5)

This provides the necessary damping for the integrals to be well defined and plays a crucial

role in the rest of the paper. In most of the formulas below, we will not explicitly write

down the convergence factor but it should always be kept in mind.

– 5 –
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3 Modified Mellin amplitudes

Mellin transform of scattering amplitudes in the absence of the retarded time has been

studied in detail in [1, 3, 6–10]. In this section we calculate the modified Mellin transform

of some low-point tree level amplitudes for gravitons and gluons.

3.1 Four particle graviton tree amplitude in Einstein gravity

It is known that the tree-level Mellin amplitude S̃ for gravitons is divergent in Einstein grav-

ity [10]. An interesting resolution suggested by [10] is that instead of Einstein gravity one

should consider graviton scattering in string theory and this indeed makes the amplitude S̃

finite. However, it seems that there is no limit in which one can recover a classical Einstein

gravity result from the S̃ amplitude computed in string theory. In this paper we show that

the modified Mellin amplitude A is in fact finite for tree level graviton scattering amplitude

in Einstein gravity. It turns out that separating the asymptotic particles in retarded time

naturally regularizes the A amplitudes in Einstein gravity. Let us now describe the results.

With gravitons 1, 2 of negative helicities and 3, 4 of positive helicities the four graviton

tree amplitude in spinor-helicity variables is

S(1−−2−−3++4++)(ωi, zi, z̄i) =
κ2

4

〈12〉4[34]4
stu

δ4

(

∑

i

εiωiqi

)

(3.1)

where κ =
√
8πGN and GN is the 4-dimensional Newton’s constant.

We define the kinematic variables s, t, u as

s = 〈12〉[12] ; t = 〈13〉[13] ; u = 〈14〉[14] (3.2)

Using the definition of spinor helicity variables [3] and the parametrisation of null momen-

tum as in (1.2), we have,

〈ij〉 = −εiεj2
√
ωiωjzij ; [ij] = 2

√
ωiωj z̄ij ; zij = zi − zj (3.3)

So in terms of ω, z, z̄ the S-matrix (3.1) becomes,

S(1−−2−−3++4++)(ωi, zi, z̄i) = κ2
ω2ω3ω4z

4
12z̄

4
34

ω1z12z̄12z13z̄13z14z̄14
δ4

(

∑

i

εiωiqi

)

(3.4)

Now we want to find out the modified amplitude A corresponding to (3.4). Before doing

this it is convenient to change ωi’s to the simplex variables [3]: σi = s−1ωi ,
∑

i ωi = s. In

terms of simplex variables A can be written as,

A(1−−2−−3++4++)(ui, zi, z̄i, λi) =
4
∏

i=1

∫

∞

0
dωiω

iλie−iεiωiui [. . .] (3.5)

=

∫

∞

0
ds s4−1+i

∑
i λi

4
∏

i=1

∫ 1

0
dσiσ

iλi

i e−iεisσiuiδ

(

∑

i

σi − 1

)

[. . .]

– 6 –
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where,

[. . .] = S(1−−2−−3++4++)(s, σi, zi, z̄i) = s−2κ2
σ2σ3σ4z

3
12z̄

4
34

σ1z13z̄13z14z̄14z̄12
δ4

(

∑

i

εiσiqi

)

(3.6)

We can rewrite the delta functions as [3],

δ4

(

∑

i

εiσiqi

)

δ

(

∑

i

σi − 1

)

= C(zi, z̄i)
4
∏

i=1

δ(σi − σ∗

i )

C(zi, z̄i) =
1

4
δ (|z12z34z̄13z̄24 − z̄12z̄34z13z24|) =

δ(|z − z̄|)
4z13z̄13z24z̄24

σ∗

1 = −ε1ε4
D

z24z̄34
z12z̄13

, σ∗

2 =
ε2ε4
D

z34z̄14
z23z̄12

σ∗

3 = −ε3ε4
D

z24z̄14
z23z̄13

, σ∗

4 =
1

D

D = (1− ε1ε4)
z24z̄34
z12z̄13

+ (ε2ε4 − 1)
z34z̄14
z23z̄12

+ (1− ε3ε4)
z24z̄14
z23z̄13

(3.7)

In terms of these the modified Mellin amplitude A becomes,

A(1−−2−−3++4++)(ui, zi, z̄i, λi) (3.8)

=

∫

∞

0
ds s4−1+i

∑
i λi

4
∏

i=1

∫ 1

0
dσiσ

iλi

i e−iεisσiuiδ

×
(

∑

i

σi − 1

)

S(1−−2−−3++4++)(σi, zi, z̄i)

=
κ2

4

(
∫

∞

0
ds s1+i

∑
i λie−i

∑
i εisσ

∗

i ui

)

×
(

∏

i

σ∗iλi

i

)

σ∗
2σ

∗
3σ

∗
4z

3
12z̄

4
34

σ∗
1z13z̄13z14z̄14z̄12

δ(|z − z̄|)
z13z̄13z24z̄24

4
∏

i=1

1[0,1](σ
∗

i )

= lim
δ→0+

κ2

4

(
∫

∞

0
ds s1+i

∑
i λie−i

∑
i εisσ

∗

i uie−δs

)

×
(

∏

i

σ∗iλi

i

)

σ∗
2σ

∗
3σ

∗
4z

3
12z̄

4
34

σ∗
1z13z̄13z14z̄14z̄12

δ(|z − z̄|)
z13z̄13z24z̄24

4
∏

i=1

1[0,1](σ
∗

i )

Here we have regularized the integral as described in section-(2). The σi integrals are done

by simply using the delta functions. Here the term
∏4

i=1 1[0,1](σ
∗
i ) ensures that σ∗

i are in

range [0, 1].

1[0,1](σ
∗

i ) =

{

1, σ∗
i ǫ [0, 1]

0, otherwise
(3.9)

Now using

lim
δ→0+

∫

∞

0
ds s1+i

∑
i λie−i

∑
i εisσ

∗

i uie−δs = lim
δ→0+

Γ(2 + i
∑

λi)

(i
∑

εiσ∗
i ui + δ)2+i

∑
λi

(3.10)

– 7 –



J
H
E
P
0
3
(
2
0
2
0
)
1
2
5

the final result for the modified Mellin amplitude becomes,

A(1−−2−−3++4++)(ui,zi,z̄i,λi) (3.11)

=
κ2

4

[

lim
δ→0+

Γ(2+i
∑

λi)

(i
∑

εiσ∗
i ui+δ)2+i

∑
λi

]

(

∏

i

σ∗iλi

i

)

σ∗
2σ

∗
3σ

∗
4z

3
12z̄

4
34

σ∗
1z13z̄13z14z̄14z̄12

δ(|z−z̄|)
z13z̄13z24z̄24

4
∏

i=1

1[0,1](σ
∗

i )

One can check that the amplitude (3.11) is translationally invariant. Under global

space-time translation, ui → ui + A + Bzi + B̄z̄i + Cziz̄i, and the change in the term
∑4

i=1 εiσ
∗
i ui is always proportional to (z− z̄). Hence the amplitude is invariant due to the

δ(|z − z̄|) constraint.

3.2 Four particle gluon tree amplitude in Yang-Mills

Four particle gluon amplitude for particles 1, 2 with negative helicity and 3, 4 with positive

helicity is given as,

S(1−2−3+4+)(ωi, zi, z̄i) =
〈12〉3

〈23〉〈34〉〈41〉δ
4

(

4
∑

i=1

εiωiqi

)

(3.12)

Writing this amplitude in terms of ω, z, z̄ we get,

S(1−2−3+4+)(ωi, zi, z̄i) =
ω1ω2

ω3ω4

z312
z23z34z41

δ4

(

4
∑

i=1

εiωiqi

)

(3.13)

Rewriting this amplitude in terms of simplex variables,

S(1−2−3+4+)(σi, zi, z̄i) = s−4σ1σ2
σ3σ4

z312
z23z34z41

δ4

(

4
∑

i=1

εiσiqi

)

(3.14)

Using (3.7) and (3.5) we find the modified Mellin amplitude for four gluons to be,

A(1−2−3+4+)(ui, zi, z̄i, λi) (3.15)

=

∫

∞

0
ds s4−1+i

∑
i λi

4
∏

i=1

∫ 1

0
dσiσ

iλi

i e−iεisσiuiδ

(

∑

i

σi − 1

)

S(1−2−3+4+)(σi, zi, z̄i)

=
1

4

(
∫

∞

0
dss−1+i

∑4
i=1 λie−i

∑4
i=1 εisσ

∗

i ui

)

×
(

∏

i

σ∗iλi

i

)

σ∗
1σ

∗
2

σ∗
3σ

∗
4

z312
z23z34z41

δ(|z − z̄|)
z13z̄13z24z̄24

4
∏

i=1

1[0,1](σ
∗

i )

The ui dependence of the amplitude is given by,
∫

∞

0
ds s−1+i

∑4
i=1 λie−i

∑4
i=1 εisσ

∗

i ui = lim
δ→0+

Γ(i
∑

i λi)
(

i
∑4

i=1 εiσ
∗
i ui + δ

)i
∑

i λi
(3.16)

The final result is given by,

A(1−2−3+4+)(ui, zi, z̄i, λi) (3.17)

=
1

4

[

lim
δ→0+

Γ(i
∑

i λi)

(i
∑

εiσ∗
i ui + δ)i

∑
i λi

]

(

∏

i

σ∗iλi

i

)

σ∗
1σ

∗
2

σ∗
3σ

∗
4

z312
z23z34z41

δ(|z − z̄|)
z13z̄13z24z̄24

4
∏

i=1

1[0,1](σ
∗

i )
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Just like in the graviton case this amplitude is also translationally invariant due to the

Dirac delta function constraint on the cross ratios.

Now it is also worth noting that in the absence of the retarded time coordinates ui, the

integral in equation (3.16) yields δ(
∑4

i=1 λi). In that case it follows that the result in 3.17

will reduce to the expression of the Mellin transformed 4-point gluon MHV amplitude

obtained in [3].

4 Conformal soft factorization

Let us now show that the modified amplitudes admit conformal soft factorization [12–18].

4.1 n-point graviton amplitudes

Consider a n-point graviton scattering amplitude Sn (ωi, zi, z̄i, σi). Now if we take the limit

where the momentum of the n-th particle goes to zero, then according to Weinberg’s soft

graviton theorem [19] the n-point amplitude factorizes into a (n − 1) point amplitude as

follows

Sn (ωi, zi, z̄i, σi) = F (0)Sn−1 (ωi, zi, z̄i, σi) + . . . (4.1)

where F (0) is the universal leading Weinberg soft factor. The ellipses in equation (4.1)

denote subleading contributions in the soft momentum. However, in this section we will

only concern ourselves with the leading soft factor.

Now if the soft graviton has positive helicity, the soft factor can be expressed in terms

of spinor helicity variables as [20]

F (0)
+ = −

n−1
∑

i=1

[ni]

〈ni〉
〈xi〉〈yi〉
〈xn〉〈yn〉 (4.2)

Here we have introduced a subscript (+) in the soft factor to explicitly denote the case

that the soft graviton here has positive helicity. Now using the parametrisation of null

momenta in equation (1.2) this becomes

F (0)
+ = −

n−1
∑

i=1

εiωi

εnωn

z̄nizxizyi
znizxnzyn

(4.3)

Similarly in the case where the soft graviton has negative helicity, we have

F (0)
− = −

n−1
∑

i=1

〈ni〉
[ni]

[xi][yi]

[xn][yn]
= −

n−1
∑

i=1

εiωi

εnωn

zni
z̄ni

z̄xiz̄yi
z̄xnz̄yn

(4.4)

Let us now consider the conformal soft limit of the modified Mellin transform of the

n-point graviton amplitude. Following [12–14], we define this as,

lim
λn→0

iλnAn(ui, zi, z̄i, λi, σi) (4.5)

Recently in [17] the conformal soft limit of graviton amplitudes has been studied. It is

important to note that the main difference between our analysis and the analysis in [17] is
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that we are using the prescription (1.6) of [4, 5] for defining the Mellin transform of scat-

tering amplitudes which is a modification of the definition proposed in [3] and subsequently

used in [17]. Now, using our definition for the Mellin transform in equation (1.6) we get

lim
λn→0

iλnAn(ui, zi, z̄i, λi, σi) (4.6)

=

∫ n−1
∏

k=1

dωk ω
iλk

k e
−i

n−1∑

k=1
εkωkuk

∫

∞

0
dωn

(

lim
λn→0

iλnω
iλn−1
n

)

ωn e
−iεnωnunSn (ωi, zi, z̄i, σi)

=

∫ n−1
∏

k=1

dωk ω
iλk

k e
−i

n−1∑

k=1

εkωkuk
∫

∞

0
dωn δ(ωn)ωn e

−iεnωnunSn (ωi, zi, z̄i, σi)

where in the last line above we have used the identity

δ(x) =
1

2
lim
ǫ→0

ǫ |x|ǫ−1 (4.7)

Using this limit representation of the delta function inside the ωn integral is well

defined only if remaining integrand does not diverge for large ωn. In our case this is a valid

operation since as we argued in section (2), the factor e−iεnωnun guarantees convergence of

the integral for large ωn upon analytically continuing un to un − iεnδ. Here δ → 0+ and

εn = ±1 if the n-th particle is outgoing (incoming).

Now using (4.1) in equation (4.6) we get

lim
λn→0

iλnAn(ui, zi, z̄i, λi, σi) = −
∫ n−1

∏

k=1

dωk ω
iλk

k e
−i

n−1∑

k=1
εkωkuk

×
n−1
∑

i=1

(

εiωi

εn

z̄nizxizyi
znizxnzyn

)

Sn−1 (ωi, zi, z̄i, σi)

= −iεn

n−1
∑

j=1

z̄nizxizyi
znizxnzyn

∂

∂uj

∫ n−1
∏

k=1

dωk ω
iλk

k e
−i

n−1∑

k=1
εkωkuk

× Sn−1 (ωi, zi, z̄i, σi)

= −
(

iεn

n−1
∑

i=1

z̄ni
zni

zxizyi
zxnzyn

∂

∂ui

)

An−1(ui, zi, z̄i, λi, σi)

(4.8)

where in the second line above we have used,

ωje
−iεjωjuj = iεj

∂

∂uj

(

e−iεjωjuj
)

(4.9)

Thus in the conformal soft limit the Mellin transformed graviton amplitude takes the

form

lim
λn→0

iλnAn(ui, zi, z̄i, λi, σi) = F̃ (0)
+ An−1(ui, zi, z̄i, λi, σi) (4.10)

where we have defined the conformal soft factor F̃ (0)
+ to be

F̃ (0)
+ = −iεn

n−1
∑

i=1

z̄ni
zni

zxizyi
zxnzyn

∂

∂ui
(4.11)
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Similarly for a negative helicity soft graviton, we obtain

lim
λn→0

iλnAn(ui, zi, z̄i, λi, σi) = F̃ (0)
− An−1(ui, zi, z̄i, λi, σi) (4.12)

where

F̃ (0)
− = −iεn

n−1
∑

i=1

zni
z̄ni

z̄xiz̄yi
z̄xnz̄yn

∂

∂ui
(4.13)

Now, supertranslation acts naturally on the modified amplitude A(ui, zi, z̄i, σi) by

shifting ui to ui+f(zi, z̄i). The appearance of the derivative ∂/∂u is related to the fact that

the leading soft graviton theorem is essentially the Ward identity for supertranslation [24–

26]. In [17] the analog of ∂/∂u, acting on the lower point amplitude, is the shift of each λ

to λ− i in the lower point amplitude appearing on the R.H.S of the conformal soft theorem

for gravitons.

In the next subsection we will explicitly check this general result in the case of 4-point

MHV graviton amplitudes. For this let us first compute the modified Mellin transform of

3-point graviton amplitudes which will now appear on the R.H.S. of the soft theorem.

4.2 3-point MHV amplitude

Since 3-point graviton amplitudes vanish in ordinary Minkowski signature, in this section

we will work with the mixed signature spacetime metric (−,+,−,+). In this case the

parametrisation of null momenta becomes

pi = ωi(1 + ziz̄i, zi + z̄i, zi − z̄i, 1− ziz̄i) (4.14)

where zi, z̄i are now independent real numbers. The 3-point graviton MHV amplitude is

then given by

S(1−−, 2−−, 3++)(ωi, zi, z̄i) =
κ

2

〈12〉6
〈23〉2〈31〉2 δ

(4)

(

3
∑

i=1

ǫip
µ
i

)

= 2κ
ω2
1ω

2
2

ω2
3

z612
z223z

2
31

δ(4)

(

3
∑

i=1

ǫiωiq
µ
i

)
(4.15)

As in the case of 4-point amplitudes, it is convenient to first define the simplex variables,

σi = s−1ωi, s =
∑

i ωi before computing the Mellin transform of the amplitude. Then we

can write the momentum conservation imposing delta function as [3]

δ(4)

(

3
∑

i=1

ǫiωiq
µ
i

)

= s−4 δ(4)

(

3
∑

i=1

ǫiσiq
µ
i

)

δ

(

3
∑

i=1

σi − 1

)

=
δ(z12)δ(z13)

4σ1σ2σ3D2
3

3
∏

i=1

δ(σi − σ∗

i )

(4.16)

where

σ∗

1 =
z23
D3

, σ∗

2 = −ε1ε2
z13
D3

, σ∗

3 = ε1ε3
z12
D3

D3 = (1− ε1ε2)z13 + (ε1ε3 − 1)z12

(4.17)
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Now the modified Mellin transform of the 3-point MHV amplitude is

A(1−−, 2−−, 3++)(ui, zi, z̄i, λi)

=
3
∏

i=1

∫

dωiω
iλi

i e−iǫiωiuiS(1−−, 2−−, 3++)(ωi, zi, z̄i) (4.18)

= 2κ

∫ 3
∏

i=1

dσi σ
iλi

i

∫

dss
i
∑

i

λi

e
−is

∑

i

ǫiσiui σ2
1σ

2
2

σ2
3

z612
z223z

2
31

δ(4)

(

3
∑

i=1

ǫiσiq
µ
i

)

δ

(

3
∑

i=1

σi − 1

)

The integral over the energy scale s yields,

∫

dssi
∑

i λie−is
∑

i ǫiσiui =

[

lim
δ→0+

Γ(1 + iΛ)

(i
∑

εiσiui + δ)1+iΛ

]

(4.19)

where Λ =
3
∑

i=1
λi. Then performing the σi integrals using the representation of the delta

functions in equation (4.16) we get

A(1−−, 2−−, 3++)(ui, zi, z̄i, λi) (4.20)

= κ

[

lim
δ→0+

Γ(1 + iΛ)

(i
∑

εiσ∗
i ui + δ)1+iΛ

]

3
∏

i=1

(σ∗

i )
iλi

(

σ∗
1σ

∗
2

σ∗
3

z312
z23z31

)2
δ(z̄12)δ(z̄13)

2σ∗
1σ

∗
2σ

∗
3D

2
3

3
∏

i=1

1[0,1] (σ
∗

i )

where the indicator function
3
∏

i=1
1[0,1] (σ

∗
i ) imposes the constraint that σ∗

i ∈ [0, 1].

4.3 3-point MHV amplitude

Here we will compute the modified Mellin transform of the 3-point graviton MHV ampli-

tude. In momentum space this is given by

S(1++, 2++, 3−−)(ωi, zi, z̄i) =
κ

2

[12]6

[23]2[31]2
δ(4)

(

3
∑

i=1

ǫip
µ
i

)

= 2κ
ω2
1ω

2
2

ω2
3

z̄612
z̄223z̄

2
31

δ(4)

(

3
∑

i=1

ǫiωiq
µ
i

)
(4.21)

Now the modified Mellin transform can be obtained following essentially identical

steps as for the MHV amplitude in the previous section. The final result is simply given

by equation (4.20) with the subsitiution zij → z̄ij as follows

A(1++, 2++, 3−−)(ui, zi, z̄i, λi) (4.22)

= κ

[

lim
δ→0+

Γ(1 + iΛ)

(i
∑

εiσ∗
i ui + δ)1+iΛ

]

3
∏

i=1

(σ∗

i )
iλi

(

σ∗
1σ

∗
2

σ∗
3

z̄312
z̄23z̄31

)2
δ(z12)δ(z13)

2σ∗
1σ

∗
2σ

∗
3D

2
3

3
∏

i=1

1[0,1] (σ
∗

i )

where now we have

σ∗

1 =
z̄23
D3

, σ∗

2 = −ε1ε2
z̄13
D3

, σ∗

3 = ε1ε3
z̄12
D3

D3 = (1− ε1ε2)z̄13 + (ε1ε3 − 1)z̄12

(4.23)
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4.4 Conformal soft limit of MHV graviton amplitudes

We can now verify the conformal soft factorization result obtained in equations (4.10)

and (4.12) for 4-point tree-level MHV graviton amplitudes. Our analysis in this section

will be similar to the one carried out in [17]. Here again we will take the signature of the

spacetime metric to be (−,+,−,+).

The modified Mellin transform of the 4-point MHV amplitude was computed in sec-

tion (3.1) and is given by

A(1−−, 2−−, 3++, 4++)(ui, zi, z̄i, λi)

=
κ2

4

[

lim
δ→0+

Γ(2 + iΛ)

(i
∑

εiσ∗
i ui + δ)2+iΛ

]

(

4
∏

i=1

σ∗iλi

i

)

σ∗
2σ

∗
3σ

∗
4

σ∗
1

f(zi, z̄i)
4
∏

i=1

1[0,1](σ
∗

i )
(4.24)

where we have defined

f(zi, z̄i) =
z312z̄

4
34

z̄12z13z̄13z14z̄14
δ (z12z34z̄13z̄24 − z13z24z̄12z̄34) , Λ =

4
∑

i=1

λi (4.25)

with zi, z̄i being independent real quantities. Now let us consider the conformal soft limit

of the Mellin amplitude in equation (4.24) by taking the 1-st negative helicity particle to

be soft. Thus we have

lim
λ1→0

iλ1A(1−−,2−−,3++,4++)(ui, zi, z̄i,λi) (4.26)

=
κ2

4

(

lim
λ1→0

iλ1

[

lim
δ→0+

Γ(2+ iΛ)

(i
∑

εiσ∗
i ui+δ)2+iΛ

]

σ∗iλ1−1
1

)(

4
∏

i=2

σ∗1+iλi

i

)

f(zi, z̄i)
4
∏

i=1

1[0,1](σ
∗

i )

Then using the following identity2

δ(x) = lim
ǫ→0

ǫxǫ−1, (0 ≤ x ≤ 1) (4.27)

we get,

lim
λ1→0

iλ1

[

lim
δ→0+

Γ(2 + iΛ)

(i
∑

εiσ∗
i ui + δ)2+iΛ

]

σ∗iλ1−1
1 =

[

lim
δ→0+

Γ(2 + iΛ′)

(i
∑

εiσ∗
i ui + δ)2+iΛ′

]

δ(σ∗

1)

(4.28)

where Λ′ =
4
∑

i=2
λi. Assuming z̄34 6= 0 the delta function in the above expression gives

δ(σ∗

1) = δ

(

−ε1ε4
D

z̄34z24
z̄13z12

)

=

∣

∣

∣

∣

z12z̄13
z̄34

D

∣

∣

∣

∣

δ(z24) (4.29)

Further on the support of δ (z24), we have

f(zi, z̄i) →
z312z̄

4
34

z13z14z̄12z̄13z̄14

∣

∣

∣

∣

1

z12z̄13z̄24

∣

∣

∣

∣

δ (z34)

=
z̄434

z̄12z̄13z̄14

∣

∣

∣

∣

1

z̄13z̄24

∣

∣

∣

∣

sgn(z12)δ(z34)

(4.30)

2Note that there is no factor of 1/2 here as opposed to equation (4.7). This is because the indicator

function 1[0,1](σ
∗

1) ensures that σ1 ∈ [0, 1].
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Now due to the delta functions δ (z24) and δ (z34), the remaining simplex variables

σ∗
2, σ

∗
3 and σ∗

4 become

σ∗

2 → ρ∗2 = ε2ε4
z̄43
D3

, σ∗

3 → ρ∗3 = −ε3ε4
z̄42
D3

, σ∗

4 → ρ∗4 =
z̄32
D3

(4.31)

where

D → D3

z̄23
, D3 = (1− ε4ε3)z̄42 + (ε4ε2 − 1)z̄43 (4.32)

Combining the above results we then obtain

(

4
∏

i=2

σ∗1+iλi

i

)

f(zi, z̄i)δ(σ
∗

1) →
(

4
∏

i=2

ρ∗iλi

i

)

z12
z̄12

z̄443
z̄13z̄14D2

3

sgn(ε2ε3z̄34z̄42z̄32D3)δ(z24)δ(z34)

=

(

4
∏

i=2

ρ∗iλi

i

)

z12
z̄12

z̄443
z̄13z̄14D2

3

δ(z24)δ(z34) (4.33)

Note that the last line in the above expression follows from the fact that due to the 3-

particle indicator function
∏4

i=2 1[0,1](σ
∗
i ), we get sgn(ε2ε3z̄34z̄42z̄32D3) = sgn (ρ∗2ρ

∗
3ρ

∗
4) = 1.

Now equation (4.26) takes the form

lim
λ1→0

iλ1A(1−−, 2−−, 3++, 4++)(ui, zi, z̄i, λi) (4.34)

=
κ2

4

[

lim
δ→0+

Γ(2 + iΛ′)

(i
∑

εiρ∗iui + δ)2+iΛ′

](

4
∏

i=2

ρ∗iλi

i

)

z12
z̄12

z̄443
z̄13z̄14D2

3

δ(z24)δ(z34)

4
∏

i=2

1[0,1](ρ
∗

i )

= −κ

2
ε3ε4

[

lim
δ→0+

1 + iΛ′

(i
∑

εiρ∗iui + δ)

]

ρ∗2

(

z12
z̄12

z̄32z̄42
z̄31z̄41

)

A(2−−, 3++, 4++)(ui, zi, z̄i, λi)

where A(2−−, 3++, 4++)(ui, zi, z̄i, λi) is the modified Mellin transform of the 3-point MHV

graviton amplitude S(2−−, 3++, 4++)(ωi, zi, z̄i).This was evaluated in section (4.3) and is

given by

A(2−−, 3++, 4++)(ui, zi, z̄i, λi) (4.35)

= κ

[

lim
δ→0+

Γ(1 + iΛ′)

(i
∑

εiρ∗iui + δ)1+iΛ′

](

4
∏

i=2

ρ∗iλi

i

)

(

ρ∗4ρ
∗
3

ρ∗2

z̄343
z̄32z̄24

)2
δ(z24)δ(z34)

2ρ∗4ρ
∗
3ρ

∗
2D

2
3

4
∏

i=2

1[0,1](σ
∗

i )

Let us now differentiate the above amplitude with respect to u2. This yields,

∂

∂u2
A(2−−3++4++) = −

[

lim
δ→0+

1 + iΛ′

(i
∑

εiρ∗iui + δ)

]

iǫ2ρ
∗

2A(2−−, 3++, 4++) (4.36)

Using this in equation (4.34) we finally get

lim
λ1→0

iλ1A(1−−, 2−−, 3++, 4++)(ui, zi, z̄i, λi)

=
κ

2

(

−iε2ε3ε4
z12
z̄12

z̄32z̄42
z̄31z̄41

)

∂

∂u2

(

A(2−−3++4++)(ui, zi, z̄i, λi)
)

=
κ

2

(

−iε1
z12
z̄12

z̄32z̄42
z̄31z̄41

)

∂

∂u2

(

A(2−−3++4++)(ui, zi, z̄i, λi)
)

(4.37)
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In going from the second to the last line in the above we have used the fact ε1ε2ε3ε4 = 1

when either two particles are incoming and two particles are outgoing or all 4 particles are

incoming (outgoing).

Evidently the result in (4.37) agrees with the general case considered in equation (4.12)

if we choose the reference spinors to be x = 3, y = 4.

4.5 Conformal soft limit in gluon four point amplitude

Conformal soft limit of celestial amplitudes in gauge theory has been studied in [13]. In this

section we show how to take soft limit in modified Mellin transformed gauge amplitude.

The 4-point modified Mellin MHV amplitude in Yang-Mills theory in (−,+,+,+) spacetime

signature obtained in eq. (3.17) can be expressed as

A
(

1−2−3+4+
)

)(ui, zi, z̄i, λi) (4.38)

=
1

4











lim
δ→0+

Γ

(

i
4
∑

i=1
λi

)

(i
∑

εiσ∗
i ui + δ)

i
4∑

i=1
λi











(

4
∏

i=1

σ∗iλi

i

)

σ∗
1σ

∗
2

σ∗
3σ

∗
4

z312
z23z34z41

δ(|z − z̄|)
z13z̄13z24z̄24

4
∏

i=1

1[0,1](σ
∗

i )

=
1

4






lim

δ→0+

Γ (iΛ)
(

iε4
{

− z24z̄34
z12z̄13

u1 +
z34z̄14
z23z̄12

u2 − z24z̄14
z23z̄12

u3 + u4
}

+ δ
)iΛ







×
(

ε3
ε1

z23z̄34
z12z̄14

)1+iλ1
(

ε3
ε2

z13z̄34
z12z̄42

)1+iλ2

×
(

ε3
ε4

z̄13z23
z̄14z42

)−1+iλ4−iΛ

δ (|z12z34z̄13z̄24 − z13z24z̄12z̄34|)
z312

z23z34z41

4
∏

i=1

1[0,1](σ
∗

i ).

Here Λ =
4
∑

i=1
λi. The indicator functions signify that σ∗

i should be positive otherwise the

amplitude vanishes. For two-to-two scattering process, ij ⇄ kl with εi = εj = −εk = −εl
the indicator functions imply

12 ⇄ 34 ⇒ z1 > z3 > z2 > z4 or z1 < z3 < z2 < z4,

13 ⇄ 24 ⇒ z1 > z2 > z3 > z4 or z1 < z2 < z3 < z4,

14 ⇄ 23 ⇒ z1 > z3 > z4 > z2 or z1 < z3 < z4 < z2. (4.39)

Similar orderings exist for z̄ij . It can be checked that above conditions are consistent with

replacing the product of indicator functions by step functions as

4
∏

i=1

1[0,1](σ
∗

i ) = Θ

(

ε3
ε1

z23z̄34
z12z̄14

)

Θ

(

ε3
ε2

z13z̄34
z12z̄42

)

Θ

(

ε3
ε4

z̄13z23
z̄14z42

)

. (4.40)

Including the factor
(

ε3
ε4

z̄13z23
z̄14z42

)−iΛ
denominator of eq. (4.38) becomes

lim
δ→0+

[

iε3

(

z23z̄34
z12z̄14

u1 +
z13z̄34
z12z̄24

u2 +
z̄13
z̄12

u3 +
z̄13z23
z̄14z42

u4

)

+ δ

]iΛ

. (4.41)
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To take soft limit we multiply both sides of eq. (4.38) by limλ4→0 iλ4. Following eq. (4.7)

we get

lim
λ4→0

iλ4

(

ε3
ε4

z̄13z23
z̄14z42

)−1+iλ4

= 2δ

(

ε3
ε4

z̄13z23
z̄14z42

)

= sgn (z̄14z42z23) 2
z̄14z42
z23

δ (z̄13) . (4.42)

Using the above relation delta function appearing in eq. (4.38) becomes

δ (|z12z34z̄13z̄24 − z13z24z̄12z̄34|) =
sgn (z13z24z̄34)

z13z24z̄34
δ (z̄12) . (4.43)

These two constraints also imply z̄12 = z̄13 = z̄23 = 0. Then in the soft limit eq. (4.41)

takes the form

lim
δ→0+

[

iε3z
−1
12 (z23u1 + z13u2 + z12u3) + δ

]
i

3∑

i=1
λi

. (4.44)

We note that in the soft limit argument inside the last Θ function in eq. (4.40) vanishes

which gives Θ (0) = 1
2 . Then combining the delta functions and other z-dependent factors

we get

lim
λ4→0

iλ4A
(

1−2−3+4+
)

(ui, zi, z̄i, λi)

= sgn (z23z31)
z31

z34z41
δ (z̄12) δ (z̄13) ε1ε2ε

iλ1
1 εiλ2

2 εiλ3
3 z1+iλ3

12 z−1+iλ1
23 z−1+iλ2

31

×1

4
lim
δ→0

Γ (i (λ1 + λ2 + λ3))

[i (u1z23 + u2z31 + u3z12) + δ]i(λ1+λ2+λ3)
Θ

(

ε3
ε1

z23
z12

)

Θ

(

ε3
ε2

z31
z12

)

= −1

2

z31
z34z41

A
(

1−2−3+
)

. (4.45)

Here the 3-point gluon amplitude is expressed in spacetime with split signature (−,+,−,+).

In this case 3-point gluon amplitude can be worked out in analogous way to the graviton

3-point amplitude.
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