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1 Introduction

Many important physical systems are described by conformal field theories (CFTs), ranging

from statistical physics to high energy physics. The conformal bootstrap program aims

at classifying and solving conformal field theories using general principles [1, 2], such as

conformal invariance, crossing symmetry, unitarity and analyticity. Although considerable

results in 2d have been obtained for a long time [3], the conformal bootstrap in higher

dimensions have made major progress only since the work of [4]. This modern numerical

approach of the conformal bootstrap has led to nontrivial bounds on the parameter space

of unitary CFTs. The impressive results include the precise determinations of the 3d Ising

critical exponents [5–8]. We refer to [9] for a comprehensive review.

In parallel, the analytic approach has also made notable progress after the revival

of the d > 2 conformal bootstrap. By considering the lightcone limit of the crossing

equation, it was shown in [10, 11] that the twist spectrum of a d > 2 CFT is additive

at large spin: if the twist spectrum contains scalars of twist τ1, τ2, then there will be

accumulation points at τ1 + τ2 +2n with n = 0, 1, 2, · · · for the large spin sector. An earlier

discussion in a more specific context can be found in [12]. The analytic conformal bootstrap

can be formulated as an algebraic problem [13–15]. More recently, significant advances

towards the nonperturbative regime have been made by upgrading the analytical toolkit

from asymptotic expansion at large spin [13–22] to convergent Lorentzian inversion at finite

spin [23, 24].1 They were based on the elegant Lorentzian OPE inversion formula proposed

by Caron-Huot in [26],2 which established the analyticity in spin assumed earlier [29]. As

we will see, the Lorentzian inversion formula also provides new insights into the analytic

expression of conformal blocks.

We will consider 4-point functions of spin-0 primaries:

〈ϕ1 ϕ2 ϕ3 ϕ4〉 =

(
x24

x14

)2a(x14

x13

)2b G(z, z̄)

x∆1+∆2
12 x∆3+∆4

34

, (1.1)

1See [25] for convergent results from a different method.
2See [27] for an alternate derivation and [28] for a generalization.
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where xi denotes the positions of the external scalars ϕi, xij = |xi − xj | is the distance

between two operators, a = (∆1−∆2)/2, b = (∆3−∆4)/2 are the differences in the external

scaling dimensions, z, z̄ are related to the conformally invariant cross-ratios by

zz̄ =
x2

12 x
2
34

x2
13 x

2
24

, (1− z)(1− z̄) =
x2

14 x
2
23

x2
13 x

2
24

. (1.2)

In the conformal bootstrap method, the nontrivial equation from crossing symmetry

schematically reads:∑
O

direct conformal block =
∑
O

crossed conformal block , (1.3)

where O indicates intermediate primary operators, and “direct” and “crossed” are short

for direct- and cross-channels, sometimes called s- and t- channels. The two channels of

operator product expansions (OPEs) are related by the crossing transform, which exchanges

ϕ1 and ϕ3. The crossing equation (1.3) is a consequence of OPE associativity, namely

correlation functions are independent of the order of operator product expansions. By

solving (1.3) near the lightcone, the scaling dimensions and OPE coefficients of low-twist

operators in the direct-channel are associated with the Lorentzian inversion of cross-channel

conformal blocks in the lightcone limit.

A conformal block encodes the contributions of a primary and its descendants, labeled

by the scaling dimension and spin of the primary. As functions of two variables, confor-

mal blocks satisfy the Casimir differential equations [30, 31]. In the lightcone limit, the

quadratic equation for direct-channel conformal blocks is truncated to a closed equation

with one variable. The solutions are the SL(2,R) conformal blocks, given by 2F1 hyper-

geometric functions. On the other hand, the quadratic differential equation for generic

cross-channel conformal blocks is not truncated to a closed equation. Accordingly, their

analytic expressions are more sophisticated than those in the direct-channel.

The direct-channel OPE of a scalar 4-point function gives

G(z, z̄) =
∑
i

Pi G̃τi,`i(z, z̄) , (1.4)

where Pi is the product of two OPE coefficients associated with the intermediate operator

Oi, G̃τi,`i(z, z̄) denotes the direct-channel conformal blocks, τ = ∆ − ` is known as twist,

and ∆i, `i are the scaling dimension and spin of Oi.
In this paper, we are interested in the lightcone limit of cross-channel conformal blocks:

Gτi,`i(z, z̄) = G̃τi,`i(1− z, 1− z̄)
∣∣∣
z→0

. (1.5)

The direct and crossed blocks are related by the crossing transform (z, z̄)→ (1− z, 1− z̄).

Our normalization is Gτ,`(z, z̄)
∣∣
a=b=0

= − (1− z̄)τ/2 log z + · · · as z̄ → 1.

In general dimensions, the conformal block of an intermediate scalar can be written as

Appell’s function F4 [32]. One can easily derive the lightcone limit:

G∆,0(z, z̄) =
(1− z̄)∆/2

(zz̄)
b−a
2

(
Γ(a− b) (zz̄)

b−a
2

(∆/2)a (∆/2)−b
2F1

[
∆/2− a, ∆/2 + b

∆− d/2 + 1
; 1− z̄

]
+ (a↔ b)

)
,

(1.6)

– 2 –



J
H
E
P
0
1
(
2
0
2
0
)
0
5
5

where

(X)Y =
Γ(X + Y )

Γ(X)
, (1.7)

and Γ(X) is the gamma function.

For spinning intermediate operators, compact expressions for the full conformal blocks

were only known in d = 2, 4, 6 dimensions [30, 32]. Here we are interested in the analytical

expression in any dimensions. For a given spin, one can compute the crossed block using

Dolan-Osborn’s recursion relation in spin [32], which transforms the spinning block into a

linear combination of spin-0 blocks with polynomial insertions. Alternatively, the crossed

spinning block can be calculated using the Mellin-Barnes representation. The lightcone

limit again reduces to a linear combination of 2F1 hypergeometric functions, where the

coefficients are given by sums of 4F3 hypergeometric series from Mack polynomials [31, 33].

For identical external scaling dimensions, several leading series coefficients with arbitrary

spin have been computed using recursion relations [13] or a quartic differential equation [26],

but no closed-form results were presented in [13, 26].

The cross-channel conformal blocks in the lightcone limit play a central role in the

analytic conformal bootstrap method. However, the formulae from spin recursion or Mack

polynomials are not satisfactory. They are a bit bulky, and hence the Lorentzian inversion

and the associated numerical evaluation can be quite involved. It is especially hard to

study the leading corrections to OPE coefficients, due to the complexity of the regular part

in these formulae. Some results from Mack polynomials can be found in [24].

In this paper, we will present a new closed-form expression (3.1), which naturally

extends the spin-0 expression (1.6) to the spinning case. For identical external scaling

dimensions, we will also show in (4.12) that the Lorentzian inversion of both the logarithmic

and regular parts can be readily derived.

2 Nonperturbative poles in spin

To find the natural basis functions, we will study the pole structure of the Lorentzian inver-

sion of crossed conformal blocks. Since Riemann, the 2F1 hypergeometric function is known

to be characterized by the singularity structure of the hypergeometric differential equation,

which explains its wide application, including the direct blocks near the lightcone. As a

quadratic differential equation for the crossed blocks is not yet available,3 we will instead

study the singularity structure of a nontrivial integral transform, the Lorentzian inversion.4

We will concentrate on the case of identical external scaling dimensions, which sim-

plifies the analysis but still captures the main insights. In the lightcone limit, Caron-

Huot’s Lorentzian inversion formula reduces to an inversion formula for SL(2,R) conformal

blocks [26, 35]:

L[f(z̄)] =
(2h− 1) Γ(h)2

π2 Γ(2h)

∫ 1

0

dz̄

z̄2
z̄h 2F1

[
h, h, 2h; z̄

]
dDisc[f(z̄)] , (2.1)

3One can consider differential equations of higher orders [26]. For instance, closed-form results for the

diagonal limit of conformal blocks were obtained using both quadratic and quartic Casimir equations [34].
4Mack polynomials are associated with the Mellin transform.
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Figure 1. Lorentzian inversion of the logarithmic (blue) and regular (orange) terms of the cross-

channel conformal block, as functions of h = τ/2 + J , where τ, J are the direct-channel twist and

spin. The spacetime dimension is d = 3. The scaling dimensions of the intermediate and external

scalars are ∆ = 1,∆ϕ = 1/2 + 1/3. There are poles at h = 2/3 − k,−k with k = 0, 1, 2, · · · . The

first pole is at 2/3, in accordance with (2.5). The logarithmic case has only the first type of poles

due to q = p.

where the double discontinuity is defined by analytic continuations around z̄ = 1:

dDisc [f(z̄)] = f(z̄)− 1

2
f	(z̄)− 1

2
f�(z̄) . (2.2)

Here h = τ/2 + J , and J indicates the spin of direct-channel operators. The eigenvalue of

the quadratic SL(2,R) Casimir is h(h − 1). The Lorentzian inversion of a power-function

building block is

L

[
(1− z̄)p

z̄q

]
=

2(2h− 1) Γ(h)2 Γ(h− q − 1)

Γ(−p)2 Γ(p+ 1) Γ(2h) Γ(h+ p− q) 3F2

[
h, h, h− q − 1

2h, h+ p− q
; 1

]
. (2.3)

The standard expansion around z̄ = 1 uses (1 − z̄)p as the basis functions. Another

convenient choice is (1− z̄)p/z̄p, since (2.3) becomes a product of gamma functions.

It is straightforward to analytically continue (2.3) to small or negative h. Generically,

there are poles at h = q+ 1− k with k = 0, 1, 2, · · · due to Γ(h− q− 1). As q characterizes

the singularity at z̄ = 0, they are nonperturbative poles for the expansion around z̄ = 1.

The first of them is at h = q + 1. The basis functions (1 − z̄)p/z̄p lead to an asymptotic

series, as the first pole moves to larger h at higher order. There are also poles at h = −k
from Γ(h). Some poles may disappear for certain values of p, q.

Perturbatively, the pole structure seems to depend on the choice of basis functions,

but the nonperturbative results should be independent of our choice. As spurious poles

will cancel out and nonperturbative poles will appear in the final results, it is reasonable

to consider basis functions that are manifestly consistent with the nonperturbative pole

structure, which should lead to a more natural formulation of conformal blocks.

As an example of the pole structure, let us consider the intermediate scalar with

∆ = d− 2. The crossed lightcone block is particularly simple:

Gd−2,0(z, z̄) = −
(

1− z̄
z̄

) d
2
−1 (

log z − log z̄ + 2H d
2
−2

)
. (2.4)
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In the crossing equation, the cross-channel block is multiplied by (1− z̄)−∆ϕ/z̄−∆ϕ , so the

first nonperturbative pole is at
d

2
−∆ϕ = 1− γϕ , (2.5)

where ∆ϕ, γϕ are the scaling and anomalous dimensions of ϕ. The pole positions of the

log z term can be deduced from (2.3) by setting p = q = (d − 2)/2 −∆ϕ. For the regular

part, one can generate the log z̄ term by taking a q-derivative. The concrete results of

d = 3, ∆ = 1, ∆ϕ = 1/2 + 1/3 are presented in figure 1. Analytic continuation across the

first pole was first discussed in concrete models in [35], which explicitly extends analyticity

in spin to J = 0 ! Our pole analysis is partly motivated by the remarkable results in [35].

Then we consider spinning intermediate operators. There are additional singularities at

h = 1−∆ϕ−k, associated with the standard expansion. Surprisingly, although the residues

change, the locations of nonperturbative poles do not vary with the spin and twist of Oi,
which hints at a hidden universal structure! Accordingly, the natural basis functions are

(1− z̄)p

z̄d/2−1
, (2.6)

as they are manifestly compatible with the locations of nonperturbative poles. For generic

external scalars, the exponents also depend on the external dimensions. Below, we will

discuss the series expansion in terms of (2.6).

3 Lightcone limit of crossed conformal blocks

To see the general pattern, we consider several 3d examples with identical external scalars at

low spin. They are computed using Dolan-Osborn’s recursion relation in spin [32] and Mack

polynomials [31, 33], which lead to equivalent results. Then we expand the lightcone limit of

crossed blocks in terms of (2.6), and simplify the series carefully. As expected, they exhibit

a universal pattern. The results can be further extended to arbitrary spacetime dimensions

and generic external scalars. In the end, we arrive at a general expression in closed form:

Gτ,`(z, z̄) =
(1− z̄)τ/2 (zz̄)

a−b
2

z̄d/2−1

(
Γ(b− a) (z/z̄)

a−b
2

(τ/2 + `)−a (τ/2 + `)b
(3.1)

×F 0,2,2
0,2,1

[∣∣∣−`, 3− d− `
γ, 2− d/2− `

∣∣∣γ/2− a, γ/2 + b

τ/2 + γ/2 + `

∣∣∣x,−x]+ (a↔ b)

)
,

where

x = 1− z̄ , γ = τ − d+ 2 . (3.2)

Note that γ is the anomalous dimension when ` > 0. The Kampé de Fériet function

F a1,a2,a3b1,b2,b3
is a two-variable hypergeometric function. Our definition is

F 0,2,2
0,2,1

[∣∣∣A1, A2

B1, B2

∣∣∣A3, A4

B3

∣∣∣x, y] =

∞∑
m,n=0

(A1)n (A2)n
(B1)n (B2)n

(A3)m+n (A4)m+n

(B3)m+n

xm yn

m!n!
. (3.3)

The complete crossed blocks contain higher order terms in z.
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For ` = 0, our expression (3.1) reduces to (1.6) after a linear transformation of 2F1.

Although (1.6) looks simpler, its direct generalization to ` > 0 will have much more com-

plicated coefficients when expanded into 2F1. The additional factor z̄−(d/2−1) from the

nonperturbative-pole analysis is crucial to the compactness of (3.1).

For non-negative integral spin,5 our formula (3.1) is consistent with the closed-form

expressions in d = 2, 4, 6 dimensions [30, 32], and reproduces the leading series coefficients

in [13, 26].6 Furthermore, (3.1) is significantly simpler than the expressions in general

dimensions from either Dolan-Osborn’s recursion relation or Mack polynomials.

4 Identical external scaling dimensions

Using the d = 2, 4 analytical expressions in [32], closed-form results for the Lorentzian

inversion of cross-channel conformal blocks were presented in [23].7 Here, we are again

interested in the lightcone limit in general spacetime dimensions and consider identical ex-

ternal scaling dimensions. The associated crossing equation is the first nontrivial equation

for the analytic conformal bootstrap, the main equation in many concrete studies.

For identical scaling dimensions, the cross-channel conformal block (3.1) becomes

Gτ,`(z, z̄) = −
(

log z + 2H τ
2

+`−1 + ∂α
)

(4.1)

×

(
(1− z̄)τ/2

z̄d/2−1+α
F 0,2,2

0,2,1

[∣∣∣−`, 3− d− `
γ, 2− d/2− `

∣∣∣γ/2− α, γ/2− α
τ/2 + γ/2 + `

∣∣∣x,−x])∣∣∣∣∣
α→0

,

where HX = H(X) is the harmonic number. In the limit

α =
∆1 −∆2

2
=

∆4 −∆3

2
→ 0 , (4.2)

the external scaling dimensions become identical. More explicitly, we can write (4.1) as:

Gτ,`(z, z̄) = −
(

log z + 2H τ
2

+`−1 + ∂α

)∑̀
n=0

cn gn(z̄)
∣∣∣
α→0

, (4.3)

where

cn =
`!

n! (`− n)!

(3− d− `)n [(γ/2− α)n]2

(γ)n (2− d/2− `)n (τ/2 + γ/2 + `)n
, (4.4)

and

gn(z̄) =
(1− z̄)τ/2+n

z̄d/2−1+α 2F1

[
γ/2 + n− α, γ/2 + n− α

τ/2 + γ/2 + `+ n
; x

]
. (4.5)

5One should set ` to a non-negative integer before taking the limit d = 2, 4, 6. If we take the latter limit

first, the results are different from those from the closed-form expressions in [30, 32], but the differences

can be obtained from (3.1) by the spin-shadow transform ∆→ ∆, `→ 2− d− `.
6We would like to point out some typos in the references. In the last line of eq. (2.20) in [30], the

denominator should contain (∆− `− 4)(∆− `− 6), rather than (∆ + `− 4)(∆ + `− 6). In the last line of

eq. (A.35) in [26], the second term of the numerator should be ∆(3 − 2J + 2J2), without a factor 2.
7For generic spin `, when 0 � z � z̄ � 1, the boundary condition in [26] is G̃τ,`(z, z̄) ∼

zτ/2 z̄τ/2+`(1 + · · · ), where · · · indicates integer powers of z/z̄ and z̄. We use the same boundary con-

dition. Note that the closed-form expressions in [30, 32] behave differently as G̃τ,`(z, z̄) ∼ zτ/2 z̄τ/2+`[(1 +

· · · ) + cd(`) (z/z̄)`+d/2−1(1 + · · · )].
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Note that the even d limit and non-negative integer ` limit of cn do not commute because

of the singularities from the denominator (2 − d/2− `)n.

For a conserved current, the twist is τ = d−2 and the anomalous dimension γ vanishes.

We can evaluate the α-derivative:

Gd−2,`(z, z̄) = −(1− z̄)τ/2

z̄τ/2

(
log z − log z̄ + 2H τ

2
+`−1 (4.6)

−
∑̀
n=1

(−`)n (1− τ − `)n (−x)n

n (1− τ/2− `)n (τ/2 + `)n
2F1

[
n, n

τ/2 + `+ n
; x

])
.

The scalar expression (2.4) is a special case of (4.6) with ` = 0. The global symmetry

current corresponds to the case of ` = 1. Using a contiguous relation, the stress-tensor

block also takes a compact form

Gd−2,2(z, z̄) = −(1− z̄)τ/2

z̄τ/2

(
log z − log z̄ + 2H τ

2
+1 −

8 (τ + 1)x

(τ + 2)(τ + 4)
2F1

[
1, 2

τ/2 + 3
; x

])
.

(4.7)

To perform the Lorentzian inversion, let us introduce y = (1−z̄)/z̄, then gn(z̄) becomes

a 0-balanced 2F1 function:

gn(z̄) = yτ/2+n
2F1

[
τ/2 + `+ α, γ/2 + n− α

τ/2 + γ/2 + `+ n
; −y

]
. (4.8)

Using the Mellin-Barnes representation [23–25], one can compute the Lorentzian inversion:

L
[
y−∆ϕgn(z̄)

]
= 2(2h− 1) Γ(h− a1 + a3) Γ(h− a1 + a4) Γ(h)2 Γ(a1 + a2)

Γ(1− a1)2

×ψ(h+ a1 + a2 − 1;h, a1, a2, a3, a4) , (4.9)

where

a1 =
τ

2
+ n−∆ϕ + 1 , a2 =

γ

2
+ `+ ∆ϕ − 1 ,

a3 =
τ

2
+ `+ α , a4 =

γ

2
+ n− α . (4.10)

We have used a very well-poised hypergeometric series:

ψ(A;B1, B2, B3, B4, B5) =

Γ(A+ 1) 7F6

[
A,A/2 + 1, B1, . . . , B5

A/2, A−B1 + 1, . . . , A−B5 + 1
; 1

]
Γ
(
2A+ 2−

∑5
k=1 Bk

)∏5
k=1 Γ(A−Bk + 1)

, (4.11)

which is associated with the Wilson function [36, 37]. According to Γ(h − a1 + a4), the

nonperturbative pole structure is manifest for the Lorentzian inversion of each gn(z̄).
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Finally, the Lorentzian inversion of the crossed blocks can be readily derived from (4.3)

and (4.9):

L
[
y−∆ϕGτ,`(z, z̄)

]
= −

(
log z + 2H τ

2
+`−1 + ∂α

) ∑̀
n=0

cn L
[
y−∆ϕgn(z̄)

] ∣∣∣
α→0

, (4.12)

which can be expressed in terms of the Kampé de Fériet function.8

The Lorentzian inversion integral should commute with the α-derivative when no sin-

gularity is encountered. For efficient numerical evaluation, one can write the well-poised

7F6 as a sum of two 1-balanced 4F3 functions, replace ∂αf(α) by [f(α)− f(0)]/α, and set

α to a small number. For conserved currents, one should set α � γ � 1 or use (4.6) to

derive the inversion. Our formula (4.12) can efficiently reproduce the 3d nonperturbative

results in [39] from dimensional reduction [40].

5 Conclusion

In summary, we presented a new closed-form expression (3.1) for the lightcone limit of

4-point conformal blocks in the cross-channel, where the external operators are generic

scalar primaries. This compact result was based on the basis functions (2.6) inspired by the

nonperturbative pole structure in spin of the Lorentzian inversion. Our expression applies

to intermediate operators of arbitrary spin in general dimensions. When the external scalars

have identical scaling dimensions, we also provided the expression (4.12) for the Lorentzian

inversion of a general cross-channel conformal block, which will be particularly useful for the

investigations with d 6= 2, 4, as general compact expressions were not available in the past.

They include the analytic conformal bootstrap of the Wilson-Fisher fixed points [35, 41],

conformal field theories in d = 3 dimensions [39, 42] and d > 4 dimensions [15].

It would be interesting to better understand (3.1), such as the connections to higher

order differential equations [26, 34] and integrability [43, 44]. Using Casimir equations, one

can compute the subleading terms in the lightcone expansion. It turns out that several nice

features of the leading term (3.1) are shared by the subleading terms to all orders, so our

results also lead to a new analytical understanding of the complete conformal blocks [45].

For simplicity, we focused on the Lorentzian inversion with identical external dimensions,

but one can extend (4.12) to the generic case using (3.1).

In the original paper [26], it was proposed that the Lorentzian inversion formula applies

to direct-channel operators of spin J > 1 in a unitary theory, where the Regge limit is

well-behaved. Recently, it has been noticed that analyticity in spin can be extended to

8The Lorentzian inversion of cross-channel conformal blocks can also be viewed as the crossing kernels

or 6j symbols for the conformal group [23]. The Wilson function already appeared in the study of crossing

kernels in [38]. In [25], the corrections to the anomalous dimensions of leading twist operators from a

cross-channel operator of spin ` were obtained explicitly by decomposing the crossing kernels into Wilson

functions. The results involve (2` + 1) Wilson functions with coefficients given by double finite sums of a

product of two 4F3 hypergeometric series. We checked at low ` that they are equivalent to the log z part

of (4.12), up to normalizations. Note that at low direct-channel spin the formula for ` > 0 in [25] has singu-

larities and requires additional manipulations to obtain sensible results. Our formula (4.12) is much simpler

and more efficient, which also includes the regular part associated with the corrections to OPE coefficients.
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J = 0 [35, 41, 46]. Here, the poles with negative spin were instrumental in determining the

basis functions (2.6), which are reminiscent of the nonunitary poles in scaling dimension in

the Zamolodchikov-like recursion relations [47, 48]. Along these lines, we may eventually

apply the Lorentzian inversion formula to nonunitary CFTs after a more careful treatment

of analytic continuation. Due to absence of reflection positivity, many statistical physics

models are related to nonunitary CFTs, including the Wilson-Fisher fixed points [49]. We

may study them by combining the analytical toolkit with the OPE truncation methods [50–

52], as proposed in [19].
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