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Abstract
Weexplore the influence of contact interactions on a synthetically spin–orbit coupled systemof two
ultracold trapped atoms. Even though the systemwe consider is bosonic, we show that a regime exists
inwhich the competition between the contact and spin–orbit interactions results in the emergence of
a ground state that contains a significant contribution from the anti-symmetric spin state. This ground
state is unique to few-particle systems and does not exist in themean-field regime. The transition to
this state is signalled by an inversion in the averagemomentum frombeing dominated by centre-of-
massmomentum to relativemomentum and also affects the global entanglement shared between the
real- and pseudo-spin spaces. Indeed, competition between the interactions can also result in avoided
crossings in the ground state which further enhances these correlations. However, wefind that
correlations shared between the pseudo-spin states are strongly depressed due to the spin–orbit
coupling and therefore the systemdoes not contain spin–spin entanglement.

1. Introduction

Spin–orbit coupling (SOC) is an effect that was initially discussed in systems of charged particles. It is of large
prominence in condensedmatter physics and underlies, for example, the appearance of the spinHall effect [1] or
of topological insulator states [2]. However, as controlling the SOCparameters in condensedmatter systems is
usually hard, exploring all possible states and limits is often not feasible. The recent progress in implementing
synthetic SOC in systems of cold neutral atoms has led to significant progress in this respect and controllable
systemswith long coherence times and a lack of impurities are now experimentally available. In particular,
Bose–Einstein condensates (BECs) coupled by Raman lasers can be used to generate synthetic SOC, using a
pseudo-spin realised by two internal states of the atoms and selectivemomentum transfer. In recent years SOC
has been realised in (pseudo) spin-1/2Bose gases [3, 4], spin-1 Bose gases [5] and also in Fermi gases [6, 7].

The effect SOChas in BECs can be understoodwithin themean-field approximation of a two-component
gas by calculating the dispersion relation and the related phase diagram [8–11]. In this regime three distinct
phases can exist when the two components are in themiscible regime andwhen all interactions are repulsive. For
zero or small Raman coupling, the system exhibits a striped density pattern, which originates from a
superposition of states with positive and negativemomentum. In this parameter regime the gas is therefore in a
supersolid phase. If the Raman coupling strength is increased, the system enters themagnetised phase, where the
ground state is degenerate between the positive and the negative-momentum state. Finally, increasing the
Raman coupling strength even further, the system enters the singleminimumphase, where the ground state no
longer carriesmomentum.However, themean-field approximation imposes classicalfields and ignores the
quantumfluctuations, whichmeans that certain effects can be lost.

While solving largemany-body systemswith approaches beyondmean-field is a very difficult task and only
possible in special cases [12–14], few-particle systems can actually be amenable to exact treatments across the
whole range of interactions and correlation strengths [15–19]. Several treatments of SOC in such systems have
already been carried out [20–26] and, for example, amapping to an effective spinmodel was recently suggested
by a perturbative approach to account forweak Raman coupling [21]. It was also shown that, while there is no
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entanglement in themean-field regime, in two-particle systems the ground state can bemaximally entangled in
the pseudo-spin space [23].

In this workwe exactly solve the systemof two interacting particles in a harmonic trap in the presence of
SOC, using a numerical approach that allows us to obtain accurate solutions for any strength of the contact and
SOC interactions.Wefind that the interplay between the contact interactions and the SOC leads to lifting of
degeneracies in the energy spectrum,which in certain parameter regimes results in the appearance of a unique
ground state that is not revealedwithin amean-field treatment.Our choice of basis provides a convenientmeans
to describe the composition of this ground state, andwe show that it consists of afinite component of the anti-
symmetric pseudo-spin state.We therefore refer to this state as the anti-symmetric (AS) ground state. This AS
ground state is distinct from the three phases existing in themean-field limit and can be signalled by the non-
classical correlations between the real space and the pseudo-spin degrees of freedom.Our results are a useful
contribution to the understanding of the emergent behaviour of quantum systems and the bridging of the gap
between single andmany-body states. The framework presented is alsowell suited to investigate these systems’
dynamical properties [27–29].

Themanuscript is organised as follows. In section 2we introduce theHamiltonian describing the two-
particle system in the presence of SOC in position space and expand the atomic positionHilbert space of the
system in harmonic oscillator basis states associatedwith the centre ofmass and relativemotional degrees of
freedom, using this to embed the bosonic symmetry of the system. In section 3we investigate the effects of the
interactions and SOCon the energy spectrum and the ground states, and in particular discuss the appearance of
the AS ground state.We also explore the entanglement in the pseudo-spin degrees of freedomand between the
real space components and the pseudo-spin components. In section 4we conclude. Details about the systematic
representation of theHamiltonian inmatrix form are given in appendix.

2. Formalism

Weconsider an effective one-dimensionalmodel of two repulsively interacting bosons in a harmonic trap in the
presence of SOC. The pseudo-spin is given by twohyper-fine states of each atom and the coupling can be
experimentally realised by using a two photon process and interpreting it as an effective Raman couplingwith an
additionalmomentumboost [3]. TheHamiltonian for such a systemhas the form
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wherem is themass of the particles,ω is the trap frequency, ksoc is the SOC strength,Ω is the Raman coupling
strength, andΔ is a detuning. Theσi are the Paulimatrices. The third termdescribes SOCwhich couples the
momentum and pseudo-spin degrees of freedom. Experimentally, this coupling is facilitated by themomentum
difference between the twoRaman laser pulses [3] and ksoc is the projectedwave number determined by the
wavelength and the angle of intersection between the Raman lasers [30]. At low temperatures one can assume
that the scattering between the particles has s-wave character only, which permits description of the interaction
potentials by point-like δ-functionswith internal state-dependent coupling constants
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These coupling constants are a function of the respective 3D scattering lengths, a3D, via
( )= - ^ ^g a Ca d md4 1i j,

2
3D 3D

2 for =  i j, , , where w=^ ^d m quantifies the trapwidth in the
transverse direction for a trap of frequencyω⊥ and the constantC is given byC≈ 1.4603 [31]. For simplicity and
to discuss the interesting physics clearly, we neglect the effects of the detuning by settingΔ=0 and restrict
ourselves to the symmetric situation by assuming that the interactions between atoms in the same spin state are
independent of the spin direction, = = g g g . A generalisation to arbitrary values for g↑↑ and g↓↓ is
technically straightforward. In the absence of Raman coupling, theHamiltonian (1) is diagonal within the
pseudo-spin basis, and the solutions are given by the eigenstates of the bare harmonic oscillatorHamiltonian for
two interacting particles with an addedmomentumboost of k2 soc due to the SOC [20]. In the presence of
Raman coupling, theHamiltonian (1) has off-diagonal terms that couple the different pseudo-spin basis states.

To clarify the symmetries inherent in the system, let us introduce scaled centre-of-mass (COM) and relative
coordinates as ( )= x x x 21 2 and an alternative pseudo-spin basis given by ∣ñ, ∣ñ,
∣ (∣ ∣ )ñ = ñ + ñS 2 and ∣ (∣ ∣ )ñ = ñ - ñA 2 . Thefirst three states of this basis are symmetric under
exchange of spins, and the last is anti-symmetric. In this basis theHamiltonian can bewritten as

2

New J. Phys. 22 (2020) 013050 AUsui et al



⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ˆ ˆ ˆ ˆ

( ˆ ˆ )(∣ ∣ ∣ ∣) ( ˆ ˆ )(∣ ∣ ∣ ∣)
(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )

† †

† †

w w= + + +

- L - ñá - ñá - L - ñá + ñá
+ ¡ ñá + ñá + ñá + ñá +

+ + - -

+ + - -

 H a a a a

a a a a

H

1

2

1

2

i i S A A S

S S S S , 3int

where the ˆ ˆ†
 a a, are creation and annihilation operators formodes in theCOMand relative coordinate space,

wL =  k msoc and ¡ = W 2 . The basis states of thisHamiltonian are labelled as ∣ hñ+ -n n, , for the
quantumnumbers n+, n− of theCOMand relativemotion, and the pseudo-spin states given by

{ }h Î   ,S, ,A . Since the system is bosonic, all the states are symmetric with respect to particle exchange.
While particle exchange does not affect the COMcoordinate, the same is not true for the relativemotion. Thus,
we impose a restriction on the quantumnumber n− of the relativemotion as
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for integer n�0 and the eigenstates of theHamiltonian (3) can bewritten as
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tonian can be expandedwithin this basis and described using the eigenstatesfn(x) of the harmonic oscillator by
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which follows from equation (A.17) together with the representation given in equation (A.16) andwith
= = g g gS A . Note that the states with η= A do not feel the contact interaction because ( )f

-
0n =0 for n− odd

and that the interactions in general lead to energy shift and coupling between different basis states and energy
shift. See the appendix formore details on how to systematically construct amatrix representation of this
Hamiltonian.

This description allows for a clear and intuitive interpretation of the basis states and the coupling between
them. For simplicity let usfirst consider non-interacting particles, for which the basis states can be grouped
according to harmonic oscillator energies (rows infigure 1(a)). The SOC terms then lead to twopossible
transitions, depending on the spin-states of the atoms. If both particles have the same spin, states with different
COMquantumnumbers, n+, and the same relative-motion quantumnumber, n−, are coupled. This results in a
positivemomentumkick for theCOMmotion, +e k xi 2 soc , if the atoms are in ∣ñ, and a negative one, - +e k xi 2 soc ,
if the atoms are in ∣ñ. On the other hand, if the particles have different spins, states with the sameCOM
quantumnumbers, n+, and different relative-motion quantumnumber, n−, are coupled, and SOC leads to a
relativemotion kickwith -e k xi 2 soc for (∣ ∣ ) ∣ñ + ñ = ñS A 2 and - -e k xi 2 soc for (∣ ∣ ) ∣ñ - ñ = ñS A 2 .
Contrary to this, Raman coupling only connects symmetric pseudo-spin states of the sameCOMand the same
relativemotional state. For finite interactions these interpretations of the couplings remain, however the
interaction term Hint increases the energy of the ∣ñand ∣ñ states forfinite g and of the ∣ ñS state forfinite g↑↓
(see figures 1(b) and (c)). These increases can be calculated exactly and are equal to n w2 , where ν is given by
solving
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ij
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for =  i j, , with harmonic oscillator length w= a mho [15]. As 2ν is always smaller than 1, the interaction
energy shifts do not lead to level crossings or newdegeneracies.

Asmentioned, the interactions give rise to couplings between different basis states and energy shifts. The
couplings cause avoided crossings as shown in section 3 and [20]. The energy shifts compete with the SOC and
generate different effects depending onwhether their origin is due to g or g↑↓ (see figure 1). For non-zero g↑↓, the
energy gaps for transitions from ∣ ñS to ∣ ñA shrink, while they grow for transitions from ∣ ñA to ∣ ñS (see figure 1(b)).
On the other hand, for non-zero g, the energies of states with ∣ñand ∣ñall rise by the same amount, which
means that the energy gaps between the coupled states stayfixed at w (seefigure 1(c)). The exact strengths of the
different contact interactions therefore havewell-defined and, in principal different effects on the energy-level
structure of the SO-coupled system.Wewill explore the consequences of these below.
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3. Results

In the followingwewill discuss the ground state and energy spectrumof the system for the three cases of no
interactions, finite anti-aligned interactions, andfinite aligned interactions. The respective ground states will be
interpreted by looking at the populations of the different pseudo-spin states, theirmomentum and density

Figure 1.Energy level diagrams forHamiltonian (3), using as a basis the eigenstates in the absence of SOC andRaman coupling. The
basis states are labelled as ∣ hñ+ -n n, , for the quantumnumbers n+, n− of the COMand relativemotion, and the pseudo-spin states
given by { }h Î  ,S, ,A . Black arrows represent transitions due to SOC, with full arrows exciting COMmotion and dashed arrows
exciting relativemotion. Gray, dotted arrows represent transitions due toRaman coupling. In panel (a) the interaction effects are
absent, whereas in panels (b) and (c) the level shifts due to the interactions can be seen.
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correlations, and their entanglement properties. As an aid to clarity and generality wewill use scaled parameters
for all plots by giving all energies in units of w , allmomenta in units of  aho, and all interaction strengths in
units of w aho. However, throughout the text wewill workwith unscaled variables.

3.1. Zero interactions ( )= =g g 0
Forweakly interacting bosons in themean-field regime, the presence of SOC leads to the possibility of having
three different ground state phases [8, 32]: the stripe phase, themagnetised phase, and the singleminimum
phase. The stripe phase is named after the fact that an interference pattern appears due to superposition of
positive and negativemomenta [8]. In contrast, in themagnetised phase the gas either fully adopts positive or
negativemomentum and in the singleminimumphase the spectrumonly possess a singleminimum. For non-
interacting bosons only the stripe phase and the singleminimumphase exist. In free space the critical point
between these two phases is given by W =  k m2c

2
soc
2 and it is knownnumerically that for harmonically

trapped systems the value of the critical point is lower [23].
It is worth noting that in the non-interacting limit the aboveHamiltonian is analogous to that of certain

collective spinmodels, namely theDickemodel [33] and the Lipkin–Meshkov–Glick (LMG)model [34]. The
explicit connection between SO-coupled systems and theDickemodel was established in [10, 35], and there is a
direct relation between theDicke and LMGmodels shown in, for example [36]. In the thermodynamic limit the
ground state of the LMGmodel is known to exhibit a second order phase transition at a critical value of an
appliedfield [37, 38], which corresponds to the transition between the stripe phase and the singleminimum
phase for SO-coupled systemswhen changing the Raman coupling strength. This transition is signalled by a
divergence in the second derivative of the ground state energy and can also be seen in the lifting of existing
degeneracies [39]. This duality between themany-body spin system and the SO-coupled atoms emerges due to
the nature of the phase transition in the LMGcase. There the infinite range of the spin–spin interactions permits
expression of themany-body system in terms of collective spin operators with the total angularmomentum
being conserved. In this picture the LMGmodel is represented by a single largeN-dimensional spin, and in
thermodynamic limit one phase is effectively given by a double-well configuration possessing a ground state
energy degeneracy, while in the other a gaped spectrum exists. This is analogous to the formof the dispersion
relation for the stripe phase and the singleminimumphase. Naturally, a two-particle system is far from the
thermodynamic limit and therefore cannot be expected to exhibit all characteristics of the transition, e.g. the
discontinuity in the second derivative of the energy [35]. Nevertheless, it is interesting to note that at a value of
Ω;Ωlift the degeneracies in the two-particle spectrum are still lifted (see figure 2 and see figure 1 of [39]).

One can also see from figure 1(a) that in the absence of Raman coupling the ground state of the two atom
system is three-fold degenerate: ∣ñwithCOMmotion +e k xi soc in the positive direction, ∣ñwithCOMmotion
- +e k xi soc in the negative direction, and the symmetric combination of ∣ñand ∣ñwith non-zero relative
motion. Finite strengths of the Raman coupling thenmix these states, and in the strong Raman coupling limit,
Ω?Ωlift, the ground state becomes an equally-weighted superposition of all pseudo-spin
states, (∣ ∣ ∣ ∣ )y ~ ñ - ñ - ñ + ñ 2.

3.2. Anti-aligned interactions ( )> =g g0, 0
Let us next investigate the competition between SOC and repulsive contact interactions between anti-aligned
spins, >g 0. The level scheme is shown infigure 1(b) and one can immediately see that the finite interaction lifts
a number of degeneracies, as the energy of the basis states of the relativemotion is increased. The spectra

Figure 2.Energy differences Ej–E0 between the jth excited states ( j=1, 2,K) and the ground state, for fixed ksocaho=5 and
w =g a 0ho . (a)No interactions, w = g a 0;ho (b)weak interactions, w = g a 1;ho (c) strong interactions, w = g a 10ho .

The dotted lines indicate the point at which the degeneracies are lifted: (a) wW 38lift for w = g a 0ho , (b) wW 41lift for
w = g a 1ho , and (c)Ωlift/ω;38 for w = g a 10ho . It is defined as the pointwhere E0 andE1 start to deviate,

( ) w- - E E 101 0
2.
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resulting from these nontrivial energy shifts for two different interaction strengths are shown infigures 2(b)
and (c).

Let us consider W Wlift first.While without interactions the lowest energy states are composed from three
degenerate states, for >g 0 the energies of ∣ñand ∣ñrise, and the lowest energy states are thus the symmetric

spin states with positivemomentumofCOMmotion, ∣ñ +e k xi soc , and negative one, ∣ñ - +e k xi soc . Thefirst
excited state is given by the symmetric superposition of the anti-aligned states, which each have non-zero relative
motion, ∣ ∣y ~ ñ + ñ -- -e ek x k xi isoc soc , and it has an energy shift of n w2 , ν ofwhich is given by solving
equation (8) and depends on the interaction strength g↑↓. In the strong coupling regime (Ω?Ωlift), the effect of
the interactions becomes negligible, and the ground state approaches that of no interactions. As the states for
weak and strongRaman coupling regimesmust be adiabatically connected, the crossover from states that are
dominated by the interaction to those that are not leads to the appearance in the spectrumof higher-lying
avoided crossings [20]. However, the position of the critical point is only slightlymodified by the interactions,
due to the fact that the resulting energy shift can atmost be wD = E , which is small compared to the energy
scales given by the recoil energy and the Raman coupling.

The contributions to the ground state of each pseudo-spin state are shown infigure 3. Forweak interactions
( w = g a 1ho , see panel (a)) and forweak Raman coupling (Ω/ω10) the ground state is given

approximately by (∣ ∣ )y ~ ñ + ñ 2 , and is reminiscent of that of the stripe phase in BECswith SOC as
each spin component possesses afinite COMmomentum [8]. For increasingΩ, a greater proportion of anti-
aligned states ismixed into the ground state, however the symmetric states {∣ñ, ∣ ñS , ∣ }ñ always dominate (see
inset in panel (a)). This behaviour is similar for systemswith strong interactions ( w = g a 10ho , see panel (b)),
but one can also see a region inwhich the contributions from the aligned spins drops faster with increasingΩ, to
the point where the contribution from the anti-aligned states exceeds those from aligned states. This occurs
around the value ofΩ=Ωlift andwe show in panel(c) that this inversion appears already for interaction
strengths w  g a 2ho . The phase after the inversion is not analogous to any phase of BECswith SOC in the
weakly interactingmean-field limit andwewill discuss it inmore detail below. IncreasingΩ even further, the
ground state againmoves towards that corresponding to that for the singleminimumphase.

While onewould naively assume that the ground state containsmore interaction energywhen larger
contributions of the ∣ñand ∣ñ states are present, one can see from the inset in panel (b) that the increase in
contributions from the anti-aligned states is due to an increase in the populations of the anti-symmetric state
∣ ñA , which does not feel the interaction [21]. In fact, when the contribution of ∣ ñA rises, the interaction energy can
be seen to decrease (insets in panels (a) and (b)). This population imbalance inversion is a few-body effect and is
not seenwhen treating single-particle states or BECswithin themean-field approximation.We therefore refer to
the distinct and unique regime after this inversion as the AS ground state phase, as the anti-symmetric states are
the dominant contribution.

The crossover from a ground state resembling the stripe phase to the AS ground state has direct
consequences on the overallmomentum anddensity distributions (see figure 4). For weak interaction
( w = g a 1ho , see panels (a) and (b)), when theAS state does not appear, the ground statemomentum
distribution is dominated by afinite COMmomentumon both sides ofΩlift. However, for a strong interaction
( w = g a 10ho , see panels (c) and (d)) this distribution changes frombeing dominated by theCOM
contribution to havingmore equal contributions from theCOMand relativemomenta, which is a sign that
considerable amounts of ∣ñand ∣ñappear. For the density distribution an interference pattern along the
COMcoordinate is visible forΩΩlift (see panels (e) and (g)), which is reminiscent of the stripe phase, butwith

Figure 3.Population of each pseudo-spin state of the ground statewith ksocaho=5fixed for (a)weak interactions, w = g a 1ho and
(b) strong interactions, w = g a 10ho . The black dotted lines indicateΩlift/ω;41 in (a) andΩlift/ω;38 in (b). The insets show
the population of the states ∣ ñS (red line) and ∣ ñA (pink dotted line) using the left axis and the interaction energy (black dashed line)
using the right axis. (c)Population difference (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )ò ò y y y y+ - -   x xd d1 2

2 2 2 2 of the ground state as a function ofΩ and
g↑↓. Only positive values, where the anti-aligned states dominate, are shown.
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a bisection due to the contact interaction at x−=0. AsΩ increases, the interference pattern remains for aweak
interaction (see panel (f)), however, for a strong interaction amore pronounced pattern in the direction of the
relative coordinate appears while that in theCOMdirection vanishes (see panel (h)). These changes in the spatial
andmomentumdistributions clearly indicate the appearance of the AS ground state.

We next turn our attention to the non-classical correlations inherent in the system. For this we use the
concurrence as the entanglementmeasure of the pseudo-spin degree of freedom,which is constructed from the
densitymatrix after tracing over the position space components. Representing thewave function of the ground
state as ∣ ( )∣y f cñ = å ñc c x x,1 2 for { }c Î    , , , , the densitymatrix can bewritten as ∣ ∣r y y= ñá , and
the reduced densitymatrix is real and given by

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )r

q b b g
b m b
b m b
g b b q

=



. 9spin

The inner products of the two aligned components are given by ∣ ∣q f f f f= á ñ = á ñ    and
∣ ∣g f f f f= á ñ = á ñ    , while the inner products of two anti-aligned components are given by
∣ ∣f f f f= á ñ = á ñ    and ∣ ∣m f f f f= á ñ = á ñ    . The diagonal elements of the densitymatrix therefore

describe the population of each pseudo-spin state. Finally, the inner products of one aligned and one anti-
aligned component are all equivalent and given by ∣ ∣ ∣ ∣b f f f f f f f f= á ñ = á ñ = á ñ = á ñ        and the
same for theirHermitian conjugates.

The concurrence is then given as

{ } ( )l l l l= - - -C max 0, , 10spin 1 2 3 4

where theλj are the eigenvalues of ( ) ( )r s s r s sÄ Äy y y yspin spin
* in descending order for j=1, 2, 3, 4 [40, 41]. For

separable states the concurrence vanishes, and formaximally entangled states it is equal to one. Infigure 5(a)we
show the behaviour of the concurrence as a function of Raman coupling and SOC strengths for afixed contact
interaction, w = g a 10ho . In the limit of ksoc,Ω→0, the ground state is given by (∣ ∣ )ñ + ñ 2 , and
henceCspin→1, i.e.themaximally entangled Bell state [42]. It is a key point that the diagonal terms θ and the
off-diagonal terms γ of the reduced densitymatrix (9) go to 1/2 and the remaining inner products disappear in
this limit. The off-diagonal terms γ show the correlation between ∣ñand ∣ñ. However forfinite ksoc the
entanglement decays for all values ofΩ, which is despite the fact that for smallΩ the ground state is equally
weighted between ∣ñand ∣ñ, and therefore onewould expect amaximally entangled state. The entanglement
decays because themomentumprovided by SOC suppresses the off-diagonal terms γ and kill the correlation.
The SOC term therefore acts as an effective dephasing channel on the pseudo-spin states causing the coherences
to decay rapidly while the diagonal terms, which account for the populations, remain unaffected. Afinal
remarkable feature of the entanglement is its sudden vanishing, a phenomenon sometimes referred to as
entanglement sudden death [43].With the red line indicating the values at which the degeneracies are lifted (see
figure 5(a)) one can immediately see that the pseudo-spin entanglement is not a useful indicator of the
population inversion.However the effective dephasing caused by the SOC also implies that strong correlations
are established between the pseudo-spin space and real-space.

Figure 4.Overallmomentumdistributions (left) and overall density distributions (right) for weak interaction w = g a 1ho (upper
row) and for strong interaction w = g a 10ho (lower row)with =k a 5soc ho fixed. In panels (a), (c), (e), (g),Ω/ω=35, and in
panels (b), (d), (f), (h)Ω/ω=42,which are below and above the value forwhich the inversion occurs.
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As the overall state is pure, we can analyse this entanglement using the vonNeumann entropy (vNE) of the
reduced densitymatrix ρspin, defined as

[ ] { }

( )å

r r r

a a

=-

= -
=

S Tr log

log , 11
j

j j

spin spin 2 spin

1

4

2

whereαj is the jth eigenvalue of the reduced densitymatrix, ρspinfj=αjfj. The behaviour of the vNE can be
linked to the pseudo-spin populations through the eigenvalues of ρspin (seefigure 5(c)), wherebywe can explicitly
calculate two eigenvalues as ∣ ∣a q g f f f f= - = á ñ - á ñ   1 (yellow dotted) and a m= -2 =

∣ ∣f f f fá ñ - á ñ    (orange dotted). Also, noticing thatα3≈ 0 (blue dotted) allows us to approximate the last
eigenvalue as ∣ ∣ ∣ ∣a q g m f f f f f f f f» + + + = á ñ + á ñ + á ñ + á ñ       4 (purple dotted). In the
weakRaman coupling limit,Ω=Ωlift, the vNE remains close to 1, which is half itsmaximal value (see
figures 5(b) and (c)). That is to be expected as the ∣ñ state and ∣ñ state, which dominate the system, are
connected toCOMmotion in the positive and negative directions, respectively, while the other two pseudo-spin
states, ∣ñand ∣ñ, have lower populations and do not playmajor roles in the correlations. For Raman coupling
strengths closer toΩlift one can see a kink appear in the behaviour of the vNE,which can be directly linked to the
increase in population of the ∣ ñA state. This is also signalled by the eigenvalueα2 becoming non-zero, which
implies the establishment of entanglement between the ∣ñand ∣ñ states. For W W lift the vNEdecreases
dramatically (the red line infigure 5(b) indicatesΩ=Ωlift) as the systempossesses an almost equal contribution
of all the pseudo spin states in the AS phase. Finally, when thewavelength of the SOC is on the order of thewidth
of the ground state, ~k a2 1soc ho, the vNE becomesmaximal due to an enhanced coupling between the spin
states as a result of the finite system size.

3.3. Aligned interaction, > =g g0, 0
Finally we investigate the casewhere only the aligned interactions are finite, while the anti-aligned interactions
are switched off (see figure 1(c)). In this situation, the basis states ∣ñand ∣ñare shifted in energy, while the
symmetric ∣ ñS and anti-symmetric ∣ ñA states are unaffected, resulting in a different ground state compared to
that seen for anti-aligned interactions. The energy spectra are shown infigures 6(a) and (b), and one can
immediately confirm that for all values ofΩ the ground state is non-degenerate (see inset in panel (a)). In fact, for
smallΩ it is given by ∣ ∣y ~ ñ + ñ -- -e ek x k xi isoc soc and unsurprisingly composedmostly of anti-aligned
pseudo-spin states. Thefirst excited states are composed of two degenerate states with COMmomentum,

∣y ~ ñ +e k xi soc and ∣y ~ ñ - +e k xi soc , and one can see that this degeneracy is resolved at a critical value similar
to the one for thefinite anti-aligned interactions. Interestingly, for weak aligned interactions ( w =g a 0.4ho ,
see the inset infigure 6(a)) an avoided crossing between the ground state and the first excited states exists when

 w wW W39 lift . This avoided crossing is the result of the interaction and the Raman coupling trying to
shift the energy in opposite directions [20]. For stronger interactions ( w =g a 1.5soc , see figure 6(b)), the
energy gap at the avoided crossing is increased as the contact interactions push the excited states to higher
energies. The presence of the avoided crossing also impacts the population imbalance after the inversion.
Compared to the case of the anti-aligned interactions, the inversion from the anti-aligned basis states being the
dominant contributions to the ground state to the aligned ones nowoccursmore sharply (see figure 6(c)).
Although the inversion does not occurwithout the interaction, it is worth noting that it appears even for an
infinitesimal weak interaction and decays for increasing g (see figure 6(d)). This is amanifestation of a non-zero g
shifting energy levels differently fromnon-zero g↑↓. For the case of finite anti-aligned interaction, populating the
∣ ñA state reduces the interaction energy (see figure 1(b)), whereas for non-zero g increasingΩ leads to larger

Figure 5. (a)Concurrence and (b) vNEof the ground state for a range of ksocahowith w = g a 10ho fixed. The red lines indicate the
value ofΩlift for each ksoc and in (a) the white area corresponds toCspin=0. (c) vNE as a function ofΩ for ksoc aho=5fixed (black
line). The coloured, dotted lines represent the values of the eigenvaluesαj of the reduced densitymatrix ρspin for j=1, 2, 3, 4. The
black dotted line indicatesΩlift/ω;38.
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contributions of ∣ñand ∣ñ to the ground state (see figure 1(c)). However, these states both contribute to the
interaction energy, and therefore for large g they are no longer favourable and the inversion disappears.

The effect of the inversion on the overallmomentumdistribution is shown infigures 7(a) and (b). For
Ω=Ωlift, the largest contribution to the ground state is the anti-aligned states ∣ñand ∣ñwhich possess net
relativemomentum from the SOC.WhenΩ;Ωlift, the population inversion occurs and the ground state
possesses net COMmomentum in themajority aligned states ∣ñand ∣ñ. This corresponds directly to the
overall density distribution exhibiting a reorientation of the interference fringes from the relative to theCOM
direction in the crossover region (see figures 7(c) and (d)).

The concurrenceCspin and the vNE S[ρspin] for w =g a 0.4soc , where the population inversion is large, can
be seen infigures 8(a) and (b). Similar to the case offinite anti-aligned interactions, the concurrence does not
signal the lifting of the energy degeneracy, but the vNE significantly decreases at W Wlift. Furthermore, a sharp
spike is observed in the vNEwheneverΩ/ω;Ωlift (see figure 8(c) for ksocaho=5). This is the result of the
avoided crossing present infigure 6(a)which strongly entangles ∣ ñand ∣ ñ spin states at the resonance point
as their respective populations suddenly increase, while the symmetric ∣ ñS and anti-symmetric ∣ ñA state
populations are suppressed. Indeed, this is the opposite effect described for anti-aligned interactions, and shows

Figure 6. (a), (b)Energy differences Ej–E0 between the jth excited states ( j=1, 2,K) and the ground state with ksocaho=5fixed for
w =g a 0.4ho and w =g a 1.5ho , respectively. The dotted lines represent the value ofΩlift/ω, which is defined as the point where

E1 andE2 starts to deviate, ( ) w- - E E 102 1
2, andwhich is very close to the point where the avoided crossing between the ground

state and thefirst excited state appears,Ωlift/ω;39. (c)Population of each pseudo-spin state of the ground state with
w =g a 0.4soc fixed. (d)Population difference (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )ò ò y y y y+ - -   x xd d1 2

2 2 2 2 of the ground state as a function ofΩ
and g. Only positive values, where the aligned states dominate, are shown.

Figure 7.Overallmomentumdistributions (a), (b) and density distributions (c), (d) for w =g a 0.4ho with ksocaho=5fixed. In
panels(a), (c),Ω/ω=36, and in panels(c), (d)Ω/ω=39,which are just below and above the value for which the inversion occurs,
respectively.

Figure 8. (a)Concurrence and (b) vNEof the ground state for a range of ksoc with w =g a 0.4ho and ksocaho=5fixed. Thewhite
domain showsCspin=0. The red lines representΩlift/ω. (c) vNEwith ksocaho=5fixed. Themaximal value is given bymax[S
[ρspin]]=2. The coloured, dotted lines represent the eigenvaluesαj of the reduced densitymatrix ρspin for j=1, 2, 3, 4. The black
dotted line indicatesΩlift/ω;39.

9

New J. Phys. 22 (2020) 013050 AUsui et al



how the critical point can enhance correlations between interacting spin-components due to the competition
between SOC and contact interactions.

4. Conclusion

In this workwe have considered the effects of repulsive interactions on two SO-coupled particles in a harmonic
trap. Thefinite interactions raise the energy of certain states and therefore lift some of the degeneracies in the free
spectrum.Wehave shown that in the presence of interactions between the anti-aligned spins a ground state
unique to strongly correlated systems appears, which is defined by a possessing afinite component of the anti-
symmetric spin basis state. The appearance of this state can be directly observed through changes in the density
andmomentumdistributions, but also in the entanglement between the spin and the real space. In the case
where the systempossess only interactions between aligned spin, a similar inversion in the dominant
contribution around a similar value for the Raman coupling strength can be observed, however this time
towards the contributions of the aligned spins.

This work helps to bridge the gap between single andmany-body systems, and our analysis highlights the
role that symmetries play in the energetic and entanglement characteristics of SOC systems. Furthermore, our
framework can be used to study how SOC affects non-equilibriumdynamics andwill, for example, allow for the
efficient simulation of the dynamical generation of entanglement. Indeed, this work has revealed that there is a
clear trade-off between the loss of entanglement between pseudo-spins and the generation of strong
entanglement between pseudo-spin and real space. This fact indicates that SOC can be used as a tunable knob for
creating or distributing entanglement in certain degrees of freedom, and can function as a control parameter in
dynamical processes. In addition, we have shown that the SOC termbehaves as a pure dephasing channel,
allowing for the possibility that SOC systems present viable platforms for the study of certain controlled open
quantum systems.

While the population inversion is clearly related to the presence of strong correlations in the system, it is an
interesting question to consider systemsmade frommore than two atoms. Since in the case of interactions
between anti-aligned states the existence of the anti-symmetric state is the reason for the inversion, it is clear that
the symmetry of the system in terms of particle exchangematters. Thus, it is unclear whether the population
inversion remainswhen the particle number is increased. Further investigation into larger particle numbers will
therefore require careful investigations andwe expect that it is not straightforward tomake general predictions.

Finally, with the recent progress in preparing few-particle systems experimentally with highfidelities [44, 45]
and newmethods tomeasure theirmomentumdistribution [46], we believe that the observation of our
predictions is experimentally realistic.

All the code for this paper is available online at https://doi.org/10.5281/zenodo.3592115.
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Appendix

In this appendixwe detail thematrix representation of theHamiltonian for the two interacting bosons in a
harmonic trap in the presence of SOCused for the calculations in this work. Starting by ordering the basis states
of the harmonic oscillator according to their total energy and value of n+

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 

 ñ ñ  ñ ñ  ñ ñ  ñ ñ
 ñ ñ  ñ ñ  ñ ñ  ñ ñ
 ñ ñ  ñ ñ  ñ ñ  ñ ñ

0, 0, , 0, 0, S , 0, 0, , 0, 1, A , 1, 0, , 1, 0, S , 1, 0, , 1, 1, A ,

0, 2, , 0, 2, S , 0, 2, , 0, 3, A , 2, 0, , 2, 0, S , 2, 0, , 2, 1, A ,

1, 2, , 1, 2, S , 1, 2, , 1, 3, A , 3, 0, , 3, 0, S , 3, 0, , 3, 1, A , ,
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one can produce amatrix representation of theHamiltonian excluding the interaction termHint as
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where each element is a four-by-fourmatrix such that

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )=

+ + ¡
¡ + + ¡ L +

¡ + +
- L + + +

A

n u

n u u
n u

u n u

2 1 0 0

2 1 i 2 1
0 2 1 0

0 i 2 1 0 2 2

A.2n u,2

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )=

L

- L
B

n

n

i 0 0 0
0 0 0 0
0 0 i 0
0 0 0 0

A.3n

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )=

L

C

u

0 0 0 0
0 0 0 0
0 0 0 0

0 i 2 0 0

A.4u2

for integer n, u� 0. Amore compact representation, which alsomakes the patterns ofmatrix elements clear, is
given by
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The terms containing the δ-function type interactions are given by

[ ∣ ∣ (∣ ∣ ∣ ∣) ∣ ∣] (∣ ∣)

[ ∣ ∣ (∣ ∣ ∣ ∣) ∣ ∣] ( ) ( )

d

d

=  ñá   + ñá + ñá +  ñá   -

=  ñá   + ñá + ñá +  ñá  



 -

H g g g x x

g g g x

S S A A

1

2
S S A A . A.11

int 1 2

As the interaction does not affect the COMdegree of freedomor the pseudo-spin degrees, the interaction energy
matrix elements are given by
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wherefn(x) are the eigenstates of harmonic oscillator in the position representation, andwhere
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Note that off-diagonal terms fu,ν for u<ν are smaller than diagonal terms fu,u, and off-diagonal terms fu,ν
disappear for increasing difference ν−u (see figure A1).

The interaction termHint can then be represented using fu,ν as

( ∣ ∣

∣ ∣ ∣ ∣) ( )

å å å n

n n

=  ñá   +

´ ñá +  ñá  
n

n
=

¥

=

¥

=

¥

H f g n u n g

n u n g n u n

, 2 , , 2 ,

, 2 , S , 2 , S , 2 , , 2 , A.17
n u

uint
0 0 0

,

Figure A1.Plot of fu,ν/fu,u, each ofwhich is given by (A.16). fu,ν quantifies strength of coupling caused by contact interactions. The
decay of fu,ν to zero is slow as seen, which requires one to consider sufficient energy levels to converge the system.
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and expressed inmatrix form as

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

( )











         

=H

F F F

F F

F F F

F F

F F

F

F F F

F F

F

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

, A.18int

0,0 0,1 0,2

0,0 0,1

1,0 1,1 1,2

0,0 0,1

1,0 1,1

0,0

2,0 2,1 2,2

1,0 1,1

0,0

where each element is a four-by-fourmatrix such that

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

=

=

n

n

n

n

n

F

f g

f

f

F

0 0 0

0 0 0

0 0 0

0 0 0 0
. A.19

u

u

u

u

u

,

,

,

,

,

Similar to equation (A.5) it can bewritten in a compact form as

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

( )

†

†

† †

† †










      

=

  
  

  

  

  

  

H

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

, A.20int

0,0 0,1 0,2

0,0 0,1 0,2

0,1 1,1 1,2

0,1 1,1 1,2

0,2 1,2 2,2

0,2 1,2 2,2

where forN�M thematrix elements are given by the four-by-fourmatrices in equation (A.19) and the
additionalM−N columns arefilledwith zeros

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

· ( )

 
 

      
 


  

=

- -

- +

-
-



F

F

F

F

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

. A.21N M

N M

N M

M N

M N
M N

,

,

1, 1

1, 1

0,

The fullHamiltonian can thenfinally be expressed in compact form as

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

( )

†

† † †

† † †

† † † †

† † † †










      

=

+ +

+ +

+ + +

+ + +

+ +

+ +

     

      

       

       

      

     

H

0 0

0

0

0

0

0 0

. A.22

0 0,0 1 2 0,1 0,2

1 1 0,0 2 2 0,1 0,2

2 0,1 2 2 1,1 3 4 1,2

2 0,1 3 3 1,1 4 4 1,2

0,2 4 1,2 4 4 2,2 5

0,2 4 1,2 5 5 2,2
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