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Abstract

We explore the influence of contact interactions on a synthetically spin—orbit coupled system of two
ultracold trapped atoms. Even though the system we consider is bosonic, we show that a regime exists
in which the competition between the contact and spin—orbit interactions results in the emergence of
a ground state that contains a significant contribution from the anti-symmetric spin state. This ground
state is unique to few-particle systems and does not exist in the mean-field regime. The transition to
this state is signalled by an inversion in the average momentum from being dominated by centre-of-
mass momentum to relative momentum and also affects the global entanglement shared between the
real- and pseudo-spin spaces. Indeed, competition between the interactions can also result in avoided
crossings in the ground state which further enhances these correlations. However, we find that
correlations shared between the pseudo-spin states are strongly depressed due to the spin—orbit
coupling and therefore the system does not contain spin—spin entanglement.

1. Introduction

Spin—orbit coupling (SOC) is an effect that was initially discussed in systems of charged particles. It is of large
prominence in condensed matter physics and underlies, for example, the appearance of the spin Hall effect [1] or
of topological insulator states [2]. However, as controlling the SOC parameters in condensed matter systems is
usually hard, exploring all possible states and limits is often not feasible. The recent progress in implementing
synthetic SOC in systems of cold neutral atoms has led to significant progress in this respect and controllable
systems with long coherence times and a lack of impurities are now experimentally available. In particular,
Bose—Einstein condensates (BECs) coupled by Raman lasers can be used to generate synthetic SOC, using a
pseudo-spin realised by two internal states of the atoms and selective momentum transfer. In recent years SOC
has been realised in (pseudo) spin-1,/2 Bose gases [3, 4], spin-1 Bose gases [5] and also in Fermi gases [6, 7].

The effect SOC has in BECs can be understood within the mean-field approximation of a two-component
gas by calculating the dispersion relation and the related phase diagram [8—11]. In this regime three distinct
phases can exist when the two components are in the miscible regime and when all interactions are repulsive. For
zero or small Raman coupling, the system exhibits a striped density pattern, which originates from a
superposition of states with positive and negative momentum. In this parameter regime the gas is therefore in a
supersolid phase. If the Raman coupling strength is increased, the system enters the magnetised phase, where the
ground state is degenerate between the positive and the negative-momentum state. Finally, increasing the
Raman coupling strength even further, the system enters the single minimum phase, where the ground state no
longer carries momentum. However, the mean-field approximation imposes classical fields and ignores the
quantum fluctuations, which means that certain effects can be lost.

While solving large many-body systems with approaches beyond mean-field is a very difficult task and only
possible in special cases [ 12—14], few-particle systems can actually be amenable to exact treatments across the
whole range of interactions and correlation strengths [15—19]. Several treatments of SOC in such systems have
already been carried out [20-26] and, for example, a mapping to an effective spin model was recently suggested
by a perturbative approach to account for weak Raman coupling [21]. It was also shown that, while there is no
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entanglement in the mean-field regime, in two-particle systems the ground state can be maximally entangled in
the pseudo-spin space [23].

In this work we exactly solve the system of two interacting particles in a harmonic trap in the presence of
SOC, using a numerical approach that allows us to obtain accurate solutions for any strength of the contact and
SOCinteractions. We find that the interplay between the contact interactions and the SOC leads to lifting of
degeneracies in the energy spectrum, which in certain parameter regimes results in the appearance of a unique
ground state that is not revealed within a mean-field treatment. Our choice of basis provides a convenient means
to describe the composition of this ground state, and we show that it consists of a finite component of the anti-
symmetric pseudo-spin state. We therefore refer to this state as the anti-symmetric (AS) ground state. This AS
ground state is distinct from the three phases existing in the mean-field limit and can be signalled by the non-
classical correlations between the real space and the pseudo-spin degrees of freedom. Our results are a useful
contribution to the understanding of the emergent behaviour of quantum systems and the bridging of the gap
between single and many-body states. The framework presented is also well suited to investigate these systems’
dynamical properties [27-29].

The manuscript is organised as follows. In section 2 we introduce the Hamiltonian describing the two-
particle system in the presence of SOC in position space and expand the atomic position Hilbert space of the
system in harmonic oscillator basis states associated with the centre of mass and relative motional degrees of
freedom, using this to embed the bosonic symmetry of the system. In section 3 we investigate the effects of the
interactions and SOC on the energy spectrum and the ground states, and in particular discuss the appearance of
the AS ground state. We also explore the entanglement in the pseudo-spin degrees of freedom and between the
real space components and the pseudo-spin components. In section 4 we conclude. Details about the systematic
representation of the Hamiltonian in matrix form are given in appendix.

2. Formalism

We consider an effective one-dimensional model of two repulsively interacting bosons in a harmonic trap in the
presence of SOC. The pseudo-spin is given by two hyper-fine states of each atom and the coupling can be
experimentally realised by using a two photon process and interpreting it as an effective Raman coupling with an
additional momentum boost [3]. The Hamiltonian for such a system has the form

2

2| p; . . .
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where m is the mass of the particles, wis the trap frequency, kg, is the SOC strength, 2 is the Raman coupling
strength, and A is a detuning. The o; are the Pauli matrices. The third term describes SOC which couples the
momentum and pseudo-spin degrees of freedom. Experimentally, this coupling is facilitated by the momentum
difference between the two Raman laser pulses [3] and k. is the projected wave number determined by the
wavelength and the angle of intersection between the Raman lasers [30]. Atlow temperatures one can assume
that the scattering between the particles has s-wave character only, which permits description of the interaction
potentials by point-like d-functions with internal state-dependent coupling constants

(1, 753, T [ Hindx, 5%, T) = 4,000 — x),
(o, T3 | [Hindx, T 5%, 1) =g 000 — %) = (0, | 2, T [Hindx, | 5%, 1),
<X1, l 3% l |Hint|x1) l 3X25 l> = gil(s(xl - xZ)' (2)

These coupling constants are a function of the respective 3D scattering lengths, asp, via
8= 4ﬁza3D/(1 — Casp/d, )md? fori, j = |,T,whered, = \//2/mw, quantifies the trap width in the
transverse direction for a trap of frequency w, and the constant Cis given by C ~ 1.4603 [31]. For simplicity and
to discuss the interesting physics clearly, we neglect the effects of the detuning by setting A = 0 and restrict
ourselves to the symmetric situation by assuming that the interactions between atoms in the same spin state are
independent of the spin direction, g, = g = g.A generalisation to arbitrary values for g;j and g| | is
technically straightforward. In the absence of Raman coupling, the Hamiltonian (1) is diagonal within the
pseudo-spin basis, and the solutions are given by the eigenstates of the bare harmonic oscillator Hamiltonian for
two interacting particles with an added momentum boost of 2 7k due to the SOC [20]. In the presence of
Raman coupling, the Hamiltonian (1) has off-diagonal terms that couple the different pseudo-spin basis states.
To clarify the symmetries inherent in the system, let us introduce scaled centre-of-mass (COM) and relative
coordinates as x. = (x; & %) /+/2 and an alternative pseudo-spin basis given by | | | ), |1 1),
1S) = (141) + 1TL)/~2 and |A) = (|11) — |11))/~/2. The first three states of this basis are symmetric under
exchange of spins, and the last is anti-symmetric. In this basis the Hamiltonian can be written as
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H= m(ﬂm + %) + m(aia, + %)
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where the 4], 4. are creation and annihilation operators for modes in the COM and relative coordinate space,
A = koo /aw/m and T = /:€2/~/2. The basis states of this Hamiltonian are labelled as |12, n_, 1)) for the
quantum numbers n,, n_ of the COM and relative motion, and the pseudo-spin states given by

n € {l1,S, T T,A}. Since the system is bosonic, all the states are symmetric with respect to particle exchange.
While particle exchange does not affect the COM coordinate, the same is not true for the relative motion. Thus,
we impose a restriction on the quantum number n_ of the relative motion as

2u for € {|L.S, 1T}
n_= R (4)
2u+ 1 for ne€ {A}
forinteger u > 0. Thus, the basis states are given by
|n, 2u, |1), |n, 2u, S), |n, 2u, 11), |n, 2u + 1, A), (5)
forinteger n > 0 and the eigenstates of the Hamiltonian (3) can be written as
b= 3 al e no ) (6)

Maty1)

for{n,, n_,n} € {n, 2u, || }, {n, 2u, S}, {n, 2u, 17 }, {n, 2u + 1, A}. Theinteraction part of the Hamil-
tonian can be expanded within this basis and described using the eigenstates ¢,,(x) of the harmonic oscillator by

<7”l+, n_, 77|Hint|n/+> nlfa 77/> = 37,5n+,,,’> 67],7]’ f dx,é(xl - Xz) ¢n7(x7) ¢n’ (x,)
&,
= _2]5 S B (0),1-(0), @)

which follows from equation (A.17) together with the representation given in equation (A.16) and with

gs = 8, = & - Note that the states with 7 = A do not feel the contact interaction because ¢, (0) = 0forn_odd
and that the interactions in general lead to energy shift and coupling between different basis states and energy
shift. See the appendix for more details on how to systematically construct a matrix representation of this
Hamiltonian.

This description allows for a clear and intuitive interpretation of the basis states and the coupling between
them. For simplicity let us first consider non-interacting particles, for which the basis states can be grouped
according to harmonic oscillator energies (rows in figure 1(a)). The SOC terms then lead to two possible
transitions, depending on the spin-states of the atoms. If both particles have the same spin, states with different
COM quantum numbers, 7, , and the same relative-motion quantum number, #_, are coupled. This resultsin a
positive momentum kick for the COM motion, eiﬁkmxﬂ iftheatomsarein || | ), and a negative one, e‘iﬁksncx+,
iftheatomsarein |771). On the other hand, if the particles have different spins, states with the same COM
quantum numbers, 7, and different relative-motion quantum number, #_, are coupled, and SOCleads to a
relative motion kick with eV2kee®= for (|S) + [A))/~/2 = || 1)and e ¥2keex for (|S) — |A)) /V2 = |T1).
Contrary to this, Raman coupling only connects symmetric pseudo-spin states of the same COM and the same
relative motional state. For finite interactions these interpretations of the couplings remain, however the
interaction term Hj, increases the energy of the || |) and |1 1) states for finite gand of the |S) state for finite gy
(see figures 1(b) and (c)). These increases can be calculated exactly and are equal to 217w, where v is given by
solving

—V2/way, _ T(=v))
8 2 (—v + 1/2)

®)

for i, j = |,] with harmonic oscillator length ay, = /% /mw [15]. As 2vis always smaller than 1, the interaction
energy shifts do not lead to level crossings or new degeneracies.

As mentioned, the interactions give rise to couplings between different basis states and energy shifts. The
couplings cause avoided crossings as shown in section 3 and [20]. The energy shifts compete with the SOC and
generate different effects depending on whether their origin is due to g or g;| (see figure 1). For non-zero g; |, the
energy gaps for transitions from |S) to |A) shrink, while they grow for transitions from |A) to |S) (see figure 1(b)).
On the other hand, for non-zero g, the energies of states with | | | ) and |1 1) all rise by the same amount, which
means that the energy gaps between the coupled states stay fixed at /zv (see figure 1(c)). The exact strengths of the
different contact interactions therefore have well-defined and, in principal different effects on the energy-level
structure of the SO-coupled system. We will explore the consequences of these below.
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Figure 1. Energy level diagrams for Hamiltonian (3), using as a basis the eigenstates in the absence of SOC and Raman coupling. The
basis states are labelled as |1, n_, 1)) for the quantum numbers 7., n1_ of the COM and relative motion, and the pseudo-spin states
givenby n € {|],S, 11,A}. Black arrows represent transitions due to SOC, with full arrows exciting COM motion and dashed arrows
exciting relative motion. Gray, dotted arrows represent transitions due to Raman coupling. In panel (a) the interaction effects are
absent, whereas in panels (b) and (c) the level shifts due to the interactions can be seen.
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3. Results

In the following we will discuss the ground state and energy spectrum of the system for the three cases of no
interactions, finite anti-aligned interactions, and finite aligned interactions. The respective ground states will be
interpreted by looking at the populations of the different pseudo-spin states, their momentum and density
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Figure 2. Energy differences E~E, between the jth excited states (j = 1,2, ...) and the ground state, for fixed kyocap, = 5and

g/ /wayp, = 0. (a) No interactions, & / Jiway, = 0; (b) weak interactions, &) / Jawap, = 1; (c) strong interactions, & //’p;uaho = 10.
The dotted lines indicate the point at which the degeneracies are lifted: (a) (s /w ~ 38 for 8 / Jwan, = 0, (b) Qg /w = 41 for
& / Jwan, = 1,and (¢) Qip/w =~ 38 for & / Jwap, = 10. Itis defined as the point where E, and E; start to deviate,

(E; — Eg)//w 2 1072,

correlations, and their entanglement properties. As an aid to clarity and generality we will use scaled parameters
for all plots by giving all energies in units of /v, all momenta in units of 7 /ay,,, and all interaction strengths in
units of /wan,. However, throughout the text we will work with unscaled variables.

3.1. Zero interactions (¢ = g, = 0)

For weakly interacting bosons in the mean-field regime, the presence of SOC leads to the possibility of having
three different ground state phases [8, 32]: the stripe phase, the magnetised phase, and the single minimum
phase. The stripe phase is named after the fact that an interference pattern appears due to superposition of
positive and negative momenta [8]. In contrast, in the magnetised phase the gas either fully adopts positive or
negative momentum and in the single minimum phase the spectrum only possess a single minimum. For non-
interacting bosons only the stripe phase and the single minimum phase exist. In free space the critical point
between these two phases is given by /2 Q). = 2/4%k2 . /m and it is known numerically that for harmonically
trapped systems the value of the critical point is lower [23].

Itis worth noting that in the non-interacting limit the above Hamiltonian is analogous to that of certain
collective spin models, namely the Dicke model [33] and the Lipkin—Meshkov—Glick (LMG) model [34]. The
explicit connection between SO-coupled systems and the Dicke model was established in [10, 35], and thereis a
direct relation between the Dicke and LMG models shown in, for example [36]. In the thermodynamic limit the
ground state of the LMG model is known to exhibit a second order phase transition at a critical value of an
applied field [37, 38], which corresponds to the transition between the stripe phase and the single minimum
phase for SO-coupled systems when changing the Raman coupling strength. This transition is signalled by a
divergence in the second derivative of the ground state energy and can also be seen in the lifting of existing
degeneracies [39]. This duality between the many-body spin system and the SO-coupled atoms emerges due to
the nature of the phase transition in the LMG case. There the infinite range of the spin—spin interactions permits
expression of the many-body system in terms of collective spin operators with the total angular momentum
being conserved. In this picture the LMG model is represented by a single large N-dimensional spin, and in
thermodynamic limit one phase is effectively given by a double-well configuration possessing a ground state
energy degeneracy, while in the other a gaped spectrum exists. This is analogous to the form of the dispersion
relation for the stripe phase and the single minimum phase. Naturally, a two-particle system is far from the
thermodynamic limit and therefore cannot be expected to exhibit all characteristics of the transition, e.g. the
discontinuity in the second derivative of the energy [35]. Nevertheless, it is interesting to note that at a value of
Q =~ Quir the degeneracies in the two-particle spectrum are still lifted (see figure 2 and see figure 1 of [39]).

One can also see from figure 1(a) that in the absence of Raman coupling the ground state of the two atom
system is three-fold degenerate: | | | ) with COM motion elf«<*+ in the positive direction, | 1) with COM motion
e~ kocX+ in the negative direction, and the symmetric combination of || 1) and |T| ) with non-zero relative
motion. Finite strengths of the Raman coupling then mix these states, and in the strong Raman coupling limit,
Q > Oy the ground state becomes an equally-weighted superposition of all pseudo-spin

states, ¥ ~ ([L]) — [LT) = [TL) + 111))/2.

3.2. Anti-aligned interactions (g;| > 0, ¢ = 0)

Let us next investigate the competition between SOC and repulsive contact interactions between anti-aligned
spins, g, >0. Thelevel scheme is shown in figure 1(b) and one can immediately see that the finite interaction lifts
anumber of degeneracies, as the energy of the basis states of the relative motion is increased. The spectra
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Figure 3. Population of each pseudo-spin state of the ground state with ks, = 5 fixed for (a) weak interactions, 8 / Jawap, = 1and
(b) strong interactions, g;| //way, = 10. The black dotted lines indicate ;/w =~ 41 in (a) and Qy;r/w =~ 38 1in (b). The insets show
the population of the states |S) (red line) and |A) (pink dotted line) using the left axis and the interaction energy (black dashed line)
using the right axis. (c) Population difference f dx f dxo(Jy? + |91 — 19 P — |¥1?) of the ground state as a function of 2 and
&1, Only positive values, where the anti-aligned states dominate, are shown.

resulting from these nontrivial energy shifts for two different interaction strengths are shown in figures 2(b)
and (c).

Letus consider 2 < ;¢ first. While without interactions the lowest energy states are composed from three
degenerate states, for 8,>0 the energies of || T) and | 7] ) rise, and the lowest energy states are thus the symmetric

spin states with positive momentum of COM motion, || | ) e/~*+, and negative one, | T) e X+, The first
excited state is given by the symmetric superposition of the anti-aligned states, which each have non-zero relative
motion, ¢ ~ || 1)ekec*= 4 |T|) e kec* and it has an energy shift of 2v/w, v of which is given by solving
equation (8) and depends on the interaction strength g; |. In the strong coupling regime (€2 >> y¢), the effect of
the interactions becomes negligible, and the ground state approaches that of no interactions. As the states for
weak and strong Raman coupling regimes must be adiabatically connected, the crossover from states that are
dominated by the interaction to those that are not leads to the appearance in the spectrum of higher-lying
avoided crossings [20]. However, the position of the critical point is only slightly modified by the interactions,
due to the fact that the resulting energy shift can at most be AE = /aw, which is small compared to the energy
scales given by the recoil energy and the Raman coupling.

The contributions to the ground state of each pseudo-spin state are shown in figure 3. For weak interactions
(gT ! / Jwap, = 1, see panel (a)) and for weak Raman coupling (€2/w < 10) the ground state is given
approximatelyby ¢ ~ (||} + |T1))/+/2,and is reminiscent of that of the stripe phase in BECs with SOC as
each spin component possesses a finite COM momentum [8]. For increasing (2, a greater proportion of anti-
aligned states is mixed into the ground state, however the symmetric states {|] ), [S), |11) } always dominate (see
inset in panel (a)). This behaviour is similar for systems with strong interactions (& L / Jway, = 10, see panel (b)),
but one can also see a region in which the contributions from the aligned spins drops faster with increasing €2, to
the point where the contribution from the anti-aligned states exceeds those from aligned states. This occurs
around the value of 2 = ;¢ and we show in panel (c) that this inversion appears already for interaction
strengths g, //wan, 2 2. The phase after the inversion is not analogous to any phase of BECs with SOC in the
weakly interacting mean-field limit and we will discuss it in more detail below. Increasing €2 even further, the
ground state again moves towards that corresponding to that for the single minimum phase.

While one would naively assume that the ground state contains more interaction energy when larger
contributions of the || 1) and |1 | ) states are present, one can see from the inset in panel (b) that the increase in
contributions from the anti-aligned states is due to an increase in the populations of the anti-symmetric state
|A), which does not feel the interaction [21]. In fact, when the contribution of |A) rises, the interaction energy can
be seen to decrease (insets in panels (a) and (b)). This population imbalance inversion is a few-body effect and is
not seen when treating single-particle states or BECs within the mean-field approximation. We therefore refer to
the distinct and unique regime after this inversion as the AS ground state phase, as the anti-symmetric states are
the dominant contribution.

The crossover from a ground state resembling the stripe phase to the AS ground state has direct
consequences on the overall momentum and density distributions (see figure 4). For weak interaction
(gT ! / Jwap, = 1, see panels (a) and (b)), when the AS state does not appear, the ground state momentum
distribution is dominated by a finite COM momentum on both sides of €2;;s. However, for a strong interaction
(gT I / Jway, = 10, see panels (c) and (d)) this distribution changes from being dominated by the COM
contribution to having more equal contributions from the COM and relative momenta, which is a sign that
considerable amounts of | | 7) and | 1| ) appear. For the density distribution an interference pattern along the
COM coordinate is visible for Q < Qi (see panels (e) and (g)), which is reminiscent of the stripe phase, but with

6
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Figure 4. Overall momentum distributions (left) and overall density distributions (right) for weak interaction & / Jwap, = 1 (upper
row) and for strong interaction & / Jway, = 10 (lower row) with kg,cap, = 5 fixed. In panels (a), (c), (e), (g), 2/w = 35,and in
panels (b), (d), (), (h) Q/w = 42, which are below and above the value for which the inversion occurs.

abisection due to the contact interaction at x_ = 0. As {2 increases, the interference pattern remains for a weak
interaction (see panel (f)), however, for a strong interaction a more pronounced pattern in the direction of the
relative coordinate appears while that in the COM direction vanishes (see panel (h)). These changes in the spatial
and momentum distributions clearly indicate the appearance of the AS ground state.

We next turn our attention to the non-classical correlations inherent in the system. For this we use the
concurrence as the entanglement measure of the pseudo-spin degree of freedom, which is constructed from the
density matrix after tracing over the position space components. Representing the wave function of the ground

stateas |1)) = 32, ¢, (%, %) |x) for x € {]], [T, T}, 1T }, the density matrix can be writtenas p = |¢) ()|, and
the reduced density matrix is real and given by

pspin -

©)

o

B B
€ u
o€

= @

vy B B0

The inner products of the two aligned components are given by 6 = (¢, [¢||) = (¢;|¢;;) and
v = (#1911) = (¢11]4))), while the inner products of two anti-aligned components are given by
€= (Pldy) = (#4191 and = (@4|dy)) = (;/1¢;;)- The diagonal elements of the density matrix therefore
describe the population of each pseudo-spin state. Finally, the inner products of one aligned and one anti-
aligned component are all equivalentand given by 8 = (¢, ||¢) = (¢/||¢1)) = (b1419;)) = (¢14]4);) and the
same for their Hermitian conjugates.

The concurrence is then given as

Copin = max{0, YN — VA — Vs — V), (10)

where the Ajare the eigenvalues of Pypin (0, ® 0y) pfpin(oy ® 0y) in descending order forj = 1,2, 3,4[40,41]. For
separable states the concurrence vanishes, and for maximally entangled states it is equal to one. In figure 5(a) we
show the behaviour of the concurrence as a function of Raman coupling and SOC strengths for a fixed contact
interaction, g, //wap, = 10.In thelimit of keoe, €2 — 0, the ground stateis given by (|| |) + |17))/~/2,and
hence Cjpin — 1,1.e. the maximally entangled Bell state [42]. It is a key point that the diagonal terms ¢ and the
off-diagonal terms +y of the reduced density matrix (9) go to 1/2 and the remaining inner products disappear in
this limit. The off-diagonal terms y show the correlation between || | ) and |17). However for finite kg, the
entanglement decays for all values of €2, which is despite the fact that for small {2 the ground state is equally
weighted between || |) and |11), and therefore one would expect a maximally entangled state. The entanglement
decays because the momentum provided by SOC suppresses the off-diagonal terms yand kill the correlation.
The SOC term therefore acts as an effective dephasing channel on the pseudo-spin states causing the coherences
to decay rapidly while the diagonal terms, which account for the populations, remain unaffected. A final
remarkable feature of the entanglement is its sudden vanishing, a phenomenon sometimes referred to as
entanglement sudden death [43]. With the red line indicating the values at which the degeneracies are lifted (see
figure 5(a)) one can immediately see that the pseudo-spin entanglement is not a useful indicator of the
population inversion. However the effective dephasing caused by the SOC also implies that strong correlations
are established between the pseudo-spin space and real-space.
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20 940 60

Figure 5. (a) Concurrence and (b) vNE of the ground state for a range of ky,cap,, with & / Jiway, = 10 fixed. The red lines indicate the
value of {25 for each ko and in (a) the white area corresponds to Cypi, = 0. (c) vNE as a function of 2 for K, an, = 5 fixed (black
line). The coloured, dotted lines represent the values of the eigenvalues ; of the reduced density matrix pypin forj = 1,2, 3,4. The
black dotted line indicates Qy;/w =~ 38.

As the overall state is pure, we can analyse this entanglement using the von Neumann entropy (vNE) of the
reduced density matrix pqpin, defined as

S[pspm] —Tr {pspm logz pspm}

—Z ajlog, aj, (11)
j=1

where o;is the jth eigenvalue of the reduced density matrix, py,in¢; = ;j¢;. The behaviour of the vNE can be
linked to the pseudo-spin populations through the eigenvalues of py;, (see figure 5(c)), whereby we can explicitly
calculate two eigenvaluesas ay = 0 — v = (¢ ||¢|) — (¢|||$;) (vellow dotted)and a, = € — p=
(Dy1l@1) — (@1]#4)) (orange dotted). Also, noticing that a3 ~ 0 (blue dotted) allows us to approximate the last
eigenvalueas ay ~ 0 + v + € + p = (@ ||9) ) + (P |P11) + (P1]D4) + (B4]9;)) (purple dotted). In the
weak Raman coupling limit, 2 < €y, the VNE remains close to 1, which is half its maximal value (see
figures 5(b) and (c)). That is to be expected as the | | | ) state and |1 1) state, which dominate the system, are
connected to COM motion in the positive and negative directions, respectively, while the other two pseudo-spin
states, || T) and |T]), have lower populations and do not play major roles in the correlations. For Raman coupling
strengths closer to {2;r one can see a kink appear in the behaviour of the vNE, which can be directly linked to the
increase in population of the | A) state. This is also signalled by the eigenvalue a, becoming non-zero, which
implies the establishment of entanglement between the || 1) and |1 | ) states. For > Qi the VNE decreases
dramatically (the red line in figure 5(b) indicates 2 = ;) as the system possesses an almost equal contribution
of all the pseudo spin states in the AS phase. Finally, when the wavelength of the SOC is on the order of the width
of the ground state, /2 kyoc ~ 1/ap,, the VNE becomes maximal due to an enhanced coupling between the spin
states as a result of the finite system size.

3.3. Aligned interaction, g > 0, g;| =0

Finally we investigate the case where only the aligned interactions are finite, while the anti-aligned interactions
are switched off (see figure 1(c)). In this situation, the basis states | T 1) and | | | ) are shifted in energy, while the
symmetric |S) and anti-symmetric |A) states are unaffected, resulting in a different ground state compared to
that seen for anti-aligned interactions. The energy spectra are shown in figures 6(a) and (b), and one can
immediately confirm that for all values of €2 the ground state is non-degenerate (see inset in panel (a)). In fact, for
small Qitisgivenby ¢ ~ || 1)eke*- 4 |1|)e~e* and unsurprisingly composed mostly of anti-aligned
pseudo-spin states. The first excited states are composed of two degenerate states with COM momentum,

P ~ ||])eke*+and ) ~ |17)e Ko+, and one can see that this degeneracy is resolved at a critical value similar
to the one for the finite anti-aligned interactions. Interestingly, for weak aligned interactions (g//away, = 0.4,
see the inset in figure 6(a)) an avoided crossing between the ground state and the first excited states exists when
Q/w ~ 39 ~ Qus/w. This avoided crossing is the result of the interaction and the Raman coupling trying to
shift the energy in opposite directions [20]. For stronger interactions (g/ /avas,. = 1.5, see figure 6(b)), the
energy gap at the avoided crossing is increased as the contact interactions push the excited states to higher
energies. The presence of the avoided crossing also impacts the population imbalance after the inversion.
Compared to the case of the anti-aligned interactions, the inversion from the anti-aligned basis states being the
dominant contributions to the ground state to the aligned ones now occurs more sharply (see figure 6(c)).
Although the inversion does not occur without the interaction, it is worth noting that it appears even for an
infinitesimal weak interaction and decays for increasing g (see figure 6(d)). This is a manifestation of a non-zero g
shifting energy levels differently from non-zero g; . For the case of finite anti-aligned interaction, populating the
|A) state reduces the interaction energy (see figure 1(b)), whereas for non-zero gincreasing €2 leads to larger

8



I0OP Publishing New J. Phys. 22 (2020) 013050 AUsuietal

: ’ ol 15
g - il | bt 0.1
= . gl
= } 0.05
8 0 g 0.5
'——._,‘0. 1) % % =0 e~
- 0 0

gl
0 20 0 40 60 0 20 40 60

[t 7 day

20 940

Figure 6. (a), (b) Energy differences Ei~E, between the jth excited states (j = 1,2, ...) and the ground state with ks,cah, = 5 fixed for
g/ fwan, = 0.4 and g/ /wan, = 1.5, respectively. The dotted lines represent the value of (q/w, which is defined as the point where
E, and E; starts to deviate, (E, — E;) /7w 2, 1072, and which is very close to the point where the avoided crossing between the ground
state and the first excited state appears, {2j;¢/w =~ 39. (c) Population of each pseudo-spin state of the ground state with

/ Fwag,. = 0.4 fixed. (d) Population difference [dx; [ dx (o> + 11> — by l> — [¥11]%) of the ground state as a function of Q
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Figure 7. Overall momentum distributions (a), (b) and density distributions (c), (d) for g/ /wan, = 0.4 with ky,can, = 5 fixed. In
panels (a), (c), {2/w = 36,and in panels (c), (d) 2/w = 39, which are just below and above the value for which the inversion occurs,

respectively.
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Figure 8. (a) Concurrence and (b) vNE of the ground state for a range of ks with g//awan, = 0.4 and ksocano = 5 fixed. The white
domain shows Cqpin, = 0. The red lines represent Qi /w. (¢) VNE with Kgycano = 5 fixed. The maximal value is given by max[S
[Pspin]] = 2. The coloured, dotted lines represent the eigenvalues o; of the reduced density matrix pgyip forj = 1,2, 3, 4. The black
dotted line indicates ;¢ /w =~ 39.

contributions of || | ) and |1 1) to the ground state (see figure 1(c)). However, these states both contribute to the
interaction energy, and therefore for large g they are no longer favourable and the inversion disappears.

The effect of the inversion on the overall momentum distribution is shown in figures 7(a) and (b). For
Q < Qyig the largest contribution to the ground state is the anti-aligned states | | T) and |1 | ) which possess net
relative momentum from the SOC. When 2 ~ Qy;¢, the population inversion occurs and the ground state
possesses net COM momentum in the majority aligned states || | ) and |11). This corresponds directly to the
overall density distribution exhibiting a reorientation of the interference fringes from the relative to the COM
direction in the crossover region (see figures 7(c) and (d)).

The concurrence Cypiy, and the VNE S[pgpin] for g/ 7wage. = 0.4, where the population inversion is large, can
be seen in figures 8(a) and (b). Similar to the case of finite anti-aligned interactions, the concurrence does not
signal the lifting of the energy degeneracy, but the vNE significantly decreases at {2 ~ ;. Furthermore, a sharp
spike is observed in the vNE whenever 2/w ~ ;4 (see figure 8(c) for ksocan, = 5). This is the result of the
avoided crossing present in figure 6(a) which strongly entangles | 17)and | | |) spin states at the resonance point
as their respective populations suddenly increase, while the symmetric |S) and anti-symmetric |A) state
populations are suppressed. Indeed, this is the opposite effect described for anti-aligned interactions, and shows
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how the critical point can enhance correlations between interacting spin-components due to the competition
between SOC and contact interactions.

4, Conclusion

In this work we have considered the effects of repulsive interactions on two SO-coupled particles in a harmonic
trap. The finite interactions raise the energy of certain states and therefore lift some of the degeneracies in the free
spectrum. We have shown that in the presence of interactions between the anti-aligned spins a ground state
unique to strongly correlated systems appears, which is defined by a possessing a finite component of the anti-
symmetric spin basis state. The appearance of this state can be directly observed through changes in the density
and momentum distributions, but also in the entanglement between the spin and the real space. In the case
where the system possess only interactions between aligned spin, a similar inversion in the dominant
contribution around a similar value for the Raman coupling strength can be observed, however this time
towards the contributions of the aligned spins.

This work helps to bridge the gap between single and many-body systems, and our analysis highlights the
role that symmetries play in the energetic and entanglement characteristics of SOC systems. Furthermore, our
framework can be used to study how SOC affects non-equilibrium dynamics and will, for example, allow for the
efficient simulation of the dynamical generation of entanglement. Indeed, this work has revealed that thereis a
clear trade-off between the loss of entanglement between pseudo-spins and the generation of strong
entanglement between pseudo-spin and real space. This fact indicates that SOC can be used as a tunable knob for
creating or distributing entanglement in certain degrees of freedom, and can function as a control parameter in
dynamical processes. In addition, we have shown that the SOC term behaves as a pure dephasing channel,
allowing for the possibility that SOC systems present viable platforms for the study of certain controlled open
quantum systems.

While the population inversion is clearly related to the presence of strong correlations in the system, it is an
interesting question to consider systems made from more than two atoms. Since in the case of interactions
between anti-aligned states the existence of the anti-symmetric state is the reason for the inversion, it is clear that
the symmetry of the system in terms of particle exchange matters. Thus, it is unclear whether the population
inversion remains when the particle number is increased. Further investigation into larger particle numbers will
therefore require careful investigations and we expect that it is not straightforward to make general predictions.

Finally, with the recent progress in preparing few-particle systems experimentally with high fidelities [44, 45]
and new methods to measure their momentum distribution [46], we believe that the observation of our
predictions is experimentally realistic.

All the code for this paper is available online at https: //doi.org/10.5281/zenodo.3592115.
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Appendix

In this appendix we detail the matrix representation of the Hamiltonian for the two interacting bosons in a
harmonic trap in the presence of SOC used for the calculations in this work. Starting by ordering the basis states
of the harmonic oscillator according to their total energy and value of

0,0, 1 1),10,0,8),10,0,T71),10, 1, A), |1, 0, | ), [1,0,85), 1,0, T 1), 1, 1, A),

0,2, 1 1),10,2,8),10,2,71),10,3,A), 12,0, | |),12,0,5),2,0,T 1), 12, 1, A),

11,2, 01),11,2,8), 11,2, T 1), 11,3, A), 13,0, L 1),13,0,S),13,0, 7 1), 13, 1, A),--+,
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one can produce a matrix representation of the Hamiltonian excluding the interaction term Hj,, as

Aoy B G 0 0 0 0 0 0
Bl Ay 0 B, C; 0 0 0 0
Cj 0 Ay, 0 B 0 C, 0 0
0 Bf 0 Ay 0 B; 0 C, 0
0 CJ Bf 0 A, 0 0 B 0 -
H — Hiy = > I 2 2 , (A.1)
0 0 0 B3 0 A3,() 0 0 B4
0 0 C/f 0 0 0 Ag 0 0
0 0 0 Cf Bfj 0 0 A, 0
0 0 0 0 B 0 0 Ay -
where each element is a four-by-four matrix such that
n+2u+1 T 0 0
T n+2u-+1 T iAV2u + 1
An,2u - (AZ)
0 T n-+2u-+1 0
0 —iA2u + 1 0 n-+2u-+ 2
iAvm 0 0 0
0 0 0 0
B, = A3
! 0 0 —iAym 0 (A-3)
0 0 0 0
0 0 00
0 0 00
Cy = 0 0 00 (A.4)
0 iAvV2u 0 0
for integer n, u > 0. A more compact representation, which also makes the patterns of matrix elements clear, is
given by
Ay B C, 0
Bl A B, C
C B A, By C4
H—-Hny=]0 C; B; ./43 By Cy -} (A.5)
0 0 C, B} Ay Bs
0 0 0 C, Bl As -
where for even and odd indices
Agon 0 0 0
0 Appn—1) 0 0
A = : : .. : R (A.6)
0 0 < Ayn-1)2 0
0 0 0 ANy
AjpN 0 0 0
0 Aspwn-p - 0 0
A=\ ¢ : .. : : , (A7)
0 0 - AwN-1+12 0
0 0 0 ANy
0 B, 0 0 0
0 0 Bj 0 0
Boy = E : , (A.8)
0 0 Bywn-1y O
0 0 O 0 BN




10P Publishing

New J. Phys. 22 (2020) 013050 AUsuietal
fu,v/fu,u
1.0
0.8
0.6
0.4 u=2
’ u=1
0.2 u=0

v-u
0 20 40 60 80 100

Figure Al. Plot off,, ,,/f,..» each of which is given by (A.16). f,,, quantifies strength of coupling caused by contact interactions. The
decay off,,,, to zero is slow as seen, which requires one to consider sufficient energy levels to converge the system.

B 0 0 0
0 Bs - 0 0
0 0 - Bypy-n41 O
o 0 - 0 Bonia
Con 0 -0 0 O
0 Cyn-1n - 0 0 0
Cow =] : : RS ¢ (A.10)
0 0 -+ Cy 00
0 0 -+ 0 C 0

The terms containing the §-function type interactions are given by

Hin=1gl L 1) (L L1+ g, (S) (S + 1A)(AD + ¢l T 1) T 1 16(x — )
%m PUCL LT+ g (8)(SI+ IAY(AD + gl T 1) (111186, (A1)

As the interaction does not affect the COM degree of freedom or the pseudo-spin degrees, the interaction energy
matrix elements are given by

(20, L L Wil 20 L 1) =~ [ 6,606, (6)860)

= %%(0) 65, (0), (A.12)

(n, 2u, S|Hijw|n, 2v, S> = %%M(O)%V(O), (A.13)

(n, 2, 1 1 |Hinln, 20, T 1) = %qsw(owzy(ox (A.14)

(n, 2u + 1, A|Hyn, 2v + 1, A) = %%M(owzm(m =0, (A.15)

where ¢, (x) are the eigenstates of harmonic oscillator in the position representation, and where

1 1 (1 Jenien)!
f%(o)%(o)* m( 2) ul!
= fo :fy’u. (A.16)

Note that off-diagonal terms f,,, for u < vare smaller than diagonal terms f,, ,,, and off-diagonal terms f,, ,,
disappear for increasing difference v—u (see figure A1).
The interaction term Hj,, can then be represented using f,, , as

oo 00 X

Hiy = Z Z Efw(gln, 2u, | [)(n, 20, | L |+ &

n=0 u=0v=0
X |n, 2u, S)(n, 2v, S| + gln, 2u, T 1Y (n, 2, 7 1)) (A.17)
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and expressed in matrix form as

Foo 0 Fou O 0O 0 Fp, O
0 Foo 0 0 Foy 0 0 0

Fp 0 F, 0 0 0 F, 0
0 0 0 Fgy 0 0 0 Foy

0 Fb, 0 0 F, 0 0 0
0 0 0 0 0 Fgoz 0 0
Fbe 0 Fby 0 0 0 F, 0
0 0 0 Fg 0 0 0 F, 0

0 0 0 0 0 0O 0 0 Fy -

Hip =

S O O O O O O

where each element is a four-by-four matrix such that

fu’yg 0 0 O
0 0 0
Et,l/ - fu’y
0 0 fu)u 0
0 0 0 O
= E/,w

Similar to equation (A.5) it can be written in a compact form as

f0,0 0 fO,l 0 ﬁ),Z 0

0 ‘E),O 0 ‘E),l 0 -7:0,2
Fg,l 0 A, 0 F, O
Huy=| 0 Fii 0 Fy 0 Fy, -
Fi, 0 Fl, 0 Fp 0

0 ‘7:8,2 0 ‘7:1‘,2 0 -7:2,2

AUsuietal

(A.18)

(A.19)

(A.20)

where for N < M the matrix elements are given by the four-by-four matrices in equation (A.19) and the
additional M — N columns are filled with zeros

-FN,M 0 0 0 0 --- 0]
0 Fyoim1 - 0 0 0 -0
Fnm = : : : : e |
0 0 - Fimens: 0 0 -+ 0
0 0 0 0 Foy-n 0 - 0
MoN |
The full Hamiltonian can then finally be expressed in compact form as
Ao + Fop B, Cy, + Foa 0 Foz 0
B] A+ Fop B, Cy + Fou 0 Fop
Ci+ Fi, B] Ax + Fia B; Cs+ Fin 0
H= 0 ch+ -7:8,1 B§ As + Fia B, Ci+ Fia
Fi, 0 Ci+ Fi, Bj Ay + Fop Bs
0 Fi, 0 Ci+ Fi, B! As + Fop -
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