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Abstract. The study of what we now call Sobolev inequalities has been stud-
ied for almost a century in various forms, while it has been eighty years since

Sobolev’s seminal mathematical contributions. Yet there are still things we

don’t understand about the action of integral operators on functions. This is
no more apparent than in the L1 setting, where only recently have optimal

inequalities been obtained on the Lebesgue and Lorentz scale for scalar func-

tions, while the full resolution of similar estimates for vector-valued functions
is incomplete. The purpose of this paper is to discuss how some often over-

looked estimates for the classical Poisson equation give an entry into these
questions, to the present state of the art of what is known, and to survey some

open problems on the frontier of research in the area.
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1. Introduction

One of the starting points for many interesting questions in harmonic analysis
is a classical problem from the field of partial differential equations, the Poisson
equation: Given f ∈ Lp(Rd), find u ∈ L1

loc(Rd) such that

−∆u = f in Rd(1.1)
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in an appropriate sense. Of course, to compute a distributional solution to (1.1) is
not the difficult part of the problem, as we discuss1 below in Section 2. The main
point is that with such a solution we want certain a priori estimates. The three
most basic estimates (and let us for the sake of discussion assume d ≥ 3 here) one
can ask for are the inequalities

‖u‖Lq(Rd) ≤ C‖f‖Lp(Rd),
1

q
=

1

p
− 2

d
,(1.2)

‖∇u‖Lq′ (Rd) ≤ C
′‖f‖Lp(Rd),

1

q′
=

1

p
− 1

d
, and(1.3)

‖∇2u‖Lp(Rd) ≤ C ′′‖f‖Lp(Rd),
1

p
=

1

p
.(1.4)

Then the classical results concerning (1.1) are that

(1.2) holds whenever 1 < p < d/2,

(1.3) holds whenever 1 < p < d,

(1.4) holds whenever 1 < p < +∞,

while in the case p = 1 one has a counterexample that shows all three of these
inequalities are all false. This raises two natural questions. Firstly, one poses

Question 1.1. If one insists to obtain estimates for u, ∇u, and ∇2u in terms of
‖f‖L1(Rd), what are the best possible spaces for such estimates?

We can give a fairly satisfying answer to this question by replacing the usual
Lebesgue spaces with weak-type spaces, which are now commonplace in harmonic
analysis. In particular, observe that Chebychev’s inequality leads one to a natural
quasi-norm of the functions we wish to estimate with the right scaling

sup
t>0

t|{|u| > t}|(d−2)/d ≤ ‖u‖Ld/(d−2)(Rd),

sup
t>0

t|{|∇u| > t}|(d−1)/d ≤ ‖∇u‖Ld/(d−1)(Rd),

sup
t>0

t|{|∇2u| > t}| ≤ ‖∇2u‖L1(Rd).

Thus, while it is not possible to control the right hand side of these inequalities by
‖f‖L1(Rd), one might try to obtain estimates for the left hand side. This can indeed
be accomplished, that one has the inequalities

sup
t>0

t|{|u| > t}|(d−2)/d ≤ C‖f‖L1(Rd),(1.5)

sup
t>0

t|{|∇u| > t}|(d−1)/d ≤ C̃‖f‖L1(Rd),(1.6)

sup
t>0

t|{|∇2u| > t}| ≤ ˜̃C‖f‖L1(Rd).(1.7)

The estimates (1.5) and (1.6) can be obtained by some ideas in the 1956 paper
of Zygmund [50] detailing and extending some results of Marcinkiewicz, while the
estimate (1.7) is in earlier work of Calderón and Zygmund from 1952 (see Lemma
2 in [11]).

1Our interest here is more than pedagogical, as our derivation gives rise to a new representation
of the solution in the case d = 2, which was originally proved by the author and R. Garg in [17,18].
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This gives a fairly satisfying answer to Question 1.1, and in fact it is the best one
can hope for on the natural Lorentz2 scale. On the other hand, one could attempt
to strengthen the hypothesis of the theorem for p = 1 to obtain an analogous result
to the case p > 1, which can be asked as

Question 1.2. If one insists to obtain estimates on u,∇u,∇2u in the Lebesgue
spaces which scale correctly with ‖f‖L1(Rd), what are the optimal assumptions to
place on f to ensure such estimates hold?

Concretely we are here asking what should one utilize for the right-hand-side in
the inequalities

‖u‖Ld/(d−2)(Rd) ≤ ?,

‖∇u‖Ld/(d−1)(Rd) ≤ ?,

‖∇2u‖L1(Rd) ≤ ?.

Now for a replacement of (1.4) it was subsequently understood that if one assumes
f ∈ H1(Rd), the real Hardy space, then one has the estimate

‖∇2u‖L1(Rd) ≤ C ′′‖f‖H1(Rd),

and for a number of reasons this is a satisfactory answer. However, this also led to
replacements of (1.2) and (1.3) in terms of the Hardy space,

‖u‖Ld/(d−2)(Rd) ≤ C‖f‖H1(Rd)(1.8)

‖∇u‖Ld/(d−1)(Rd) ≤ C ′‖f‖H1(Rd),(1.9)

and the main new directions we are interested in here stem from the fact that these
embeddings are not optimal.

To discuss this lack of optimality let us cast the problem in a slightly more
general setting, introducing the Riesz potentials

Iαf(x) =
1

γ(α)

ˆ
Rd

f(y)

|x− y|d−α
dy,

for γ(α) (defined in Section 2) such that they satisfy the semi-group property

IαIβf = Iα+βf

for α, β ∈ (0, d) and α+β < d and f sufficiently nice. Then the solution to Poisson’s
equation in the case d ≥ 3 is simply

u = I2f,

while more generally we have a notion of integration in several dimensions which
allows one to integrate a suitably decaying function by order α ∈ (0, d). In contrast
to iterated one dimensional integration, this integration is by construction radial,
taking values of a function on spheres and giving them equal weight to the value of
the potential at the center, closer spheres being weighted more heavily.

In this framework we can write one fundamental estimate from which one can
easily obtain (1.2), (1.3), and (1.4) in the case p > 1, the following theorem about
integrals of the potential type due to S. Sobolev [38] in 1938 (see below in Section
3 for a deduction of the inequalities (1.2), (1.3), and (1.4) from this theorem).

2We discuss some of the value of the Lorentz spaces in Section 5.3 below, where we also discuss
stronger versions of the Lebesgue results presented here in the Introduction.
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Theorem 1.3. Let 0 < α < d and 1 < p < d/α. Then there exists a constant
C = C(p, α, d) > 0 such that

‖Iαf‖Lq(Rd) ≤ C‖f‖Lp(Rd)(1.10)

for all f ∈ Lp(Rd), where

1

q
=

1

p
− α

d
.

As in the case of the inequalities (1.2), (1.3), and (1.4), no such inequality can
hold in the case p = 1. The counterexample here is the same as before, and as it is
instructive for our discussion, let us here detail it. Let us suppose one had such an

inequality for all f ∈ L1(Rd), and let {fn} be a sequence such that fn
∗
⇀ δ0. One

can take, for example, fn(x) = 1
|B(0, 1n )|χB(0, 1n )(x). Then

‖Iαfn‖Lq(Rd) ≤ C‖fn‖L1(Rd) = C,

while

Iαfn → Iα ∗ δ0 =
1

γ(α)

1

|x|d−α
,

as the Dirac delta is the identity for convolution (this can also be verified to hold
almost everywhere by the Lebesgue differentiation theorem). Thus Fatou’s lemma
would imply ∥∥∥∥ 1

γ(α)

1

| · |d−α

∥∥∥∥
Lq(Rd)

≤ C,

but as q = d/(d− α), this would mean

+∞ =

(ˆ
Rd

1

|x|d
dx

)(d−α)/d

=

(ˆ
Rd

∣∣∣∣ 1

|x|d−α

∣∣∣∣d/(d−α)

dx

)(d−α)/d

≤ Cγ(α),

which is absurd.
By making a stronger assumption, an extension of Theorem 1.3 to the case p = 1

was proved by E. Stein and G. Weiss in 1960 (see [43]). In particular their result
implies the following

Theorem 1.4 (Stein-Weiss). Let α ∈ (0, d). There exists a constant C = C(α, d) >
0 such that

‖Iαf‖Ld/(d−α)(Rd) ≤ C
(
‖f‖L1(Rd) + ‖Rf‖L1(Rd;Rd)

)
(1.11)

for all f ∈ L1(Rd) such that Rf := ∇I1f ∈ L1(Rd;Rd)

Remark 1.5. The condition f ∈ L1(Rd) and its vector-valued Riesz transform Rf :=
∇I1f ∈ L1(Rd;Rd) is the original definition of the real Hardy space H1(Rd) in
several variables due to E. Stein and G. Weiss in [43]. One now has a number of
equivalent definitions, for example, in terms of maximal functions [15] or via an
atomic decomposition [12,28].

How can such a theorem hold in light of the failure of the inequality (1.10) for
p = 1? Well, formally one has

Rδ0 = cd
x

|x|d+1
/∈ L1

loc(Rd),
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so that both the left-hand-side and the right-hand-side of the inequality blow up
along such an approach sequence as constructed above.

The fact that the L1-norm of the Riesz transform term blows up, and not the
L1-norm of the function itself, might suggest a possible improvement to such an
inequality in the removal of the term ‖f‖L1(Rd). However one also has a more
convincing argument of this fact which comes from an inequality arising in PDEs. In
particular, let us recall that E. Gagliardo [16] and L. Nirenberg [31] had proved the
inequality (for d ≥ 2, the case d = 1 being an easy consequence of the fundamental
theorem of calculus):

‖u‖Ld/(d−1)(Rd) ≤ C‖∇u‖L1(Rd;Rd)

for all u sufficiently nice. The choice u = I1f yields

‖I1f‖Ld/(d−1)(Rd) ≤ C‖Rf‖L1(Rd;Rd),

which improves (1.11).
Thus one can improve the estimate of Stein and Weiss for I1, and so one wonders

Question 1.6. Can one make a similar improvement for α ∈ (0, d)?

The first observation in this regard is that if α ∈ [1, d), the semi-group property of
the Riesz potentials, Sobolev’s inequality (1.10), and the inequality of E. Gagliardo
[16] and L. Nirenberg [31] imply

‖Iαf‖Ld/(d−α)(Rd) = ‖Iα−1I1f‖Ld/(d−α)(Rd)

≤ C‖I1f‖Ld/(d−1)(Rd)

≤ C ′‖Rf‖L1(Rd;Rd).

Thus one has such improvements for α ∈ [1, d). Naturally this range of α contains
the values 2 and 1, which are correspond to the amount of integration being per-
formed in (1.8) and (1.9), respectively. One immediately deduces an improvement
to (1.8), while a similar improvement to (1.9) is a little more subtle. In particular
we require the boundedness of the Riesz transform

R : Lp(Rd)→ Lp(Rd;Rd) for 1 < p < +∞,

see e.g. p. 33 in [42]. This boundedness and the validity of the formula

∇u(x) = ∇I1(I1f) ≡ R(I1f)

implies

‖∇u‖Ld/(d−1)(Rd;Rd) ≤ C‖I1f‖Ld/(d−1)(Rd),

from which the result follows again from the case α = 1.
Thus we have seen that there are improvements to the inequalities (1.8) and

(1.9), and to the potential mapping properties for any α ∈ [1, d). This motivates

Question 1.7. Suppose d ≥ 2. Can one show that for α ∈ (0, 1) there exists a
constant C = C(α, d) > 0 such that

‖Iαf‖Ld/(d−α)(Rd) ≤ C‖Rf‖L1(Rd;Rd)(1.12)

for all f ∈ C∞c (Rd) such that Rf ∈ L1(Rd;Rd)?
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That we consider the case d ≥ 2 here goes beyond the fact that the classical
estimates for Poisson’s equation we have recorded have no meaning, or would have
to be suitably interpreted. While the scaling would allow for such an inequality
when α ∈ (0, 1), in one dimension the estimate has a fundamental obstruction. In
particular, in this setting the Riesz transform collapses to the Hilbert transform,
so that the inequality would read

‖Iαf‖L1/(1−α)(R) ≤ C‖Hf‖L1(R).

However, now the identity H2 = −I and the boundedness of H : Lp(R) → Lp(R)
for 1 < p < +∞ would imply

‖Iαf‖L1/(1−α)(R) ≤ C‖f‖L1(R),

which is precisely the estimate we have contradicted.
The estimate (1.12) extrapolates the overlooked estimates from Poisson’s equa-

tion, that for the more general Riesz potentials of any order α ∈ (0, d), while one
cannot show an L1 estimate, perhaps one can show these L1-type estimates. It
is perhaps no surprise to the reader at this point that the estimate (1.12) is in-
deed valid. As was discussed in the work of A. Schikorra, the author, and J. Van
Schaftingen in [34], one has a number of more classical approaches to prove the
inequality, provided one knows the estimate to look for (and we also gave an ele-
mentary proof of this fact in the spirit of E. Gagliardo and L. Nirenberg’s slicing
argument). However, as we will see in what follows, this suggests many more open
questions to be addressed. The purpose of this paper is to give an introduction
and exposition of the author’s perspective of this area and to discuss some open
problems in this regard.

The remainder of the paper is dedicated to discussing the connections of the
material presented in this section with various literature on the topic, to provide
some proofs of the inequalities in the introduction, and to prepare the reader for
the open problems in the last section. In particular, Section 2 presents a curious
formula for the logarithm which was obtained in collaboration with Rahul Garg in
the papers [17, 18] and its relation to the the recent work of J. Bourgain and H.
Brezis [4–7], as well as the more classical work of F. John and L. Nirenberg [25].
In Section 3 we give some proofs of the results which emphasizes the connections
with work of L. Hedberg [22], S. Sobolev [38] and A. Zygmund [50]. In Section 4
we discuss the case of vector-valued inequalities, where certain algebraic conditions
become relevant in the determination of whether a given differential operator can
support a Sobolev inequality. In particular, while one has a characterization of
the differential operators which yield an embedding into the Lebesgue spaces - the
elliptic and canceling operators of J. Van Schaftingen [48], whether these operators
support the improvements known in the classical setting has still not been resolved.
In Section 5 we present some results in Lorentz spaces which are the optimal known
inequalities for two settings: estimates for Riesz potentials due to the author and
estimates for elliptic and (d− 1)−canceling operators due to the author and J. Van
Schaftingen. In Section 6 we discuss the trace inequality of N. Meyers and W.P.
Ziemer and how it represents the best known Sobolev inequality in this classical first
order setting. Finally, in Section 7 we introduce and discuss some open problems
the author feels would yield some insight into this question of Sobolev inequalities.
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2. A Curious Formula for the Logarithm (Connection with the work
of J. Bourgain and H. Brezis)

One has a number of avenues to derive a formula for the solution of (1.1), for
example by studying an ordinary differential equation or utilizing the Fourier trans-
form. Whatever the method, if d ≥ 3 one can verify that

u(x) :=
1

(d− 2)|Sd−1|

ˆ
Rd

f(y)

|x− y|d−2
dy(2.1)

satisfies (1.1) in the sense of distributions, i.e.

−
ˆ
Rd
u∆ϕ dx =

ˆ
Rd
fϕ dx(2.2)

for all ϕ ∈ C∞c (Rd). In the case d = 2 one finds the solution to (1.1) in the
appropriate sense, i.e. (2.2) is given by the logarithmic potential

u(x) :=
1

2π

ˆ
R2

log
1

|x− y|
f(y) dy.(2.3)

However, recently in [17,18] Rahul Garg and the author gave a new representa-
tion of the solution (2.3) that does not involve the Logarithm. Our motivation for
doing so stems from the fact that one when f ∈ Lp(R2) and 1 < p ≤ 2 one expects
continuity estimates, with the case p = 2 corresponding to the almost Lipschitz
estimate of H. Brezis and S. Wainger [10]. Yet the standard approach to continuity
estimates for Riesz potentials does not apply in such a setting. This led us to the
following approach.

Let us denote by

ϕ̂(ξ) =

ˆ
Rd
ϕ(x)e−2πix·ξ dx

the Fourier transform of a function ϕ : Rd → R. Then for sufficiently nice u which
satisfies (1.1) in the sense of distributions, we must have

û(ξ) =
f̂(ξ)

(2π|ξ|)2
.(2.4)

Thus for d ≥ 3, as the Fourier transform takes convolution to multiplication and
vice versa, we conclude as usual that

u(x) = I2 ∗ f(x) = I2f(x),

which is our reason for suggestively writing (2.4), since for general α ∈ (0, d) one
has

Îαf(ξ) =
f̂(ξ)

(2π|ξ|)α
.

In fact, this determines precisely the constant

γ(α) :=
πd/22αΓ

(
α
2

)
Γ
(
d−α

2

) .

In the case d = 2 the denominator of the preceding equation (2.4) is not locally

integrable near zero. This is not a problem, as it forces one to impose f̂(0) = 0 to
correct this, which is simply

´
f = 0, and then a suitable limiting process allows one
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to obtain (2.3). However, the appearance of the logarithm was not amenable to the
estimates Rahul and the author wanted to show, which led us to the factorization

û(ξ) =
−1

4π2

iξ

|ξ|3
· iξ
|ξ|
f̂(ξ)

Now one can check that

R̂f(ξ) =
iξ

|ξ|
f̂(ξ),

while in the case d = 2 the Riesz transform has kernel x
|x|3 , up to a multiplicative

constant. In particular the scaling suggests that multiplication by the term

iξ

|ξ|3

in Fourier spaces should invert as convolution with the bounded function

x 7→ c
x

|x|
for some appropriate constant c. Indeed, this can be made precise to yield

I2f(x) =
1

2π

ˆ
R2

x− y
|x− y|

·Rf(y) dy,

which gives a new representation of the fundamental solution to Poisson’s equation
in the plane.

This idea generalizes to the logarithmic potential in any number of dimensions,
and we here recall the computation from the recent paper of the author and Itai
Shafrir [35] which works out the details. In particular we instead rely on the semi-
group property of the Riesz potentials to write

Idf = Id−1I1f =
1

γ(d− 1)

ˆ
Rd
I1f(y)

1

|x− y|
dy

=
1

(d− 1)γ(d− 1)

ˆ
RN

I1f(y) div

(
x− y
|x− y|

)
dy.

However, now performing an integration by parts we have

Idf(x) =
1

(d− 1)γ(d− 1)

ˆ
Rd
Rf(y) · x− y

|x− y|
dy.

This formula sheds some light on classical results in the theory of Hardy spaces
and BMO that we now discuss. From the theory of Hardy spaces of E. Stein and
G. Weiss, the Hardy space consists of functions f ∈ L1(Rd) such that their Riesz
transform Rf ∈ L1(Rd;Rd). Thus the duality of H1(Rd) and the John-Nirenberg
space of functions of bounded mean oscillation (BMO) obtained by C. Fefferman
[14] (see also Fefferman and Stein [15]) implies that every g ∈ BMO(Rd) can be
expressed as

g = g0 +

d∑
j=1

Rjgj

for some {gj}dj=0 ⊂ L∞(Rd) (a constructive proof of this fact was subsequently
obtained by A. Uchiyama [46]).
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The work of J. Bourgain and H. Brezis [4,5], among other results, demonstrates
an improvement to this representation for certain BMO functions, those of the
form I1f for f ∈ Ld(Rd), as they show that such functions have a representation

I1f =

d∑
j=1

Rjgj

for some {gj}dj=1 ⊂ L∞(Rd), that is, one does not need the function g0.
It is at this point that our result (1.12) enters, since it implies, by duality, that

such a representation extends to any α ∈ (0, d), i.e. for all f ∈ Ld/α(Rd) one has

Iαf =

d∑
j=1

Rjgj

for some {gj}dj=1 ⊂ L∞(Rd).
In general these functions {gj}dj=1 ⊂ L∞(Rd) are not explicit and cannot be

chosen linearly. However, the preceding calculation taken from the papers [17,18,35]
show that for the canonical example of a BMO function, log |x|, one does not need
g0 and explicitly

log |x| =
d∑
j=1

Rj
1

(d− 1)γ(d− 1)

xj
|x|
.

In fact, returning to the seminal paper [25], F. John and L. Nirenberg had given a
family of examples of functions of bounded mean oscillation in a bounded domain
Ω ⊂ Rd,

u(x) =

ˆ
Ω

log |x− y|f(y) dy.

In particular, one follows the above result to see that all of these functions are
special functions in BMO which can be expressed as

g =

d∑
j=1

Rjgj ,

with explicit {gj}dj=1 ⊂ L∞(Rd) given by

gj(x) :=
1

(d− 1)γ(d− 1)

ˆ
Ω

xj − yj
|x− y|

f(y) dy.

3. A Few Proofs (A Unified Approach to S. Sobolev and A.
Zygmund’s theorems)

It was observed by L. Hedberg in [22] that one can give a proof of S. Sobolev’s
theorem for the Riesz potentials (here recorded as Theorem 1.3) by a simple point-
wise estimate. We first show here how this pointwise estimate yields S. Sobolev’s
theorem and A. Zygmund’s weak-type estimate for the Riesz potentials before re-
turning to prove some estimates for Poisson’s equation.

Let us therefore recall the pointwise inequality of L. Hedberg [22]: If 1 ≤ p < d/α,
then

|Iαf(x)| ≤ CM(f)(x)1−αp/d‖f‖αp/d
Lp(Rd)

(3.1)
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for all f ∈ Lp(Rd). Here we utilize the notation M(f) to denote the Hardy-
Littlewood maximal function of a function f by

M(f)(x) := sup
r>0

1

|B(x, r)|

ˆ
B(x,r)

|f(y)| dy,

for which we require the inequalities

sup
t>0

t|{|Mf(x) > t}| ≤ C‖f‖L1(Rd)

‖Mf‖Lp(Rd) ≤ C ′‖f‖Lp(Rd) 1 < p ≤ +∞.

These estimates are standard, see e.g. [42].
Note that from this one obtains immediately

‖Iαf‖Lq(Rd) ≤ C‖M(f)1−αp/d‖f‖αp/d
Lp(Rd)

‖Lq(Rd)

= C‖M(f)‖1−αp/d
Lp(Rd)

‖f‖αp/d
Lp(Rd)

≤ C ′‖f‖Lp(Rd)

by the boundedness of the maximal function and combining like terms, which is
Theorem 1.3. However, the same proof using the weak-(1, 1) estimate for the max-
imal function implies

Theorem 3.1. Let α ∈ (0, d). Then there exists a constant C = C(α, d) > 0 such
that

sup
t>0

t|{|Iαf(x)| > t}|
d−α
d ≤ C‖f‖L1(Rd)

for all f ∈ L1(Rd).

We provide the details for the convenience of the reader.

Proof.

{|Iαf(x)| > t} ⊂ {CMf(x)1−α/d‖f‖α/d
L1(Rd)

> t},

which yields for every t > 0 the estimate

t|{|Iαf(x)| > t}|
d−α
d ≤ t|{CMf(x)1−α/d‖f‖α/d

L1(Rd)
> t}|

d−α
d .

We let

s =

 t

C‖f‖α/d
L1(Rd)

d/(d−α)

and find

t|{|Iαf(x)| > t}|
d−α
d ≤ t|{CMf(x)1−α/d‖f‖α/d

L1(Rd)
> t}|

d−α
d

= s(d−α)/dC‖f‖α/d
L1(Rd)

|{Mf(x) > s}|
d−α
d

≤ C‖f‖α/d
L1(Rd)

(
C ′‖f‖L1(Rd)

)(d−α)/d

= C ′′‖f‖L1(Rd),

by utilizing the weak-type estimate for M and combining like terms. The desired
conclusion follows by taking the supremum in t > 0. �
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In particular, if d ≥ 3, one immediately deduces the inequalities (1.2) and (1.5),
while (1.3) and (1.6) can be argued as follows. We have

∇u(x) = ∇I1I1f(x) ≡ R(I1f)(x),

and so

‖∇u‖Lq(Rd) = ‖R(I1f)‖Lq(Rd)

≤ C‖I1f‖Lq(Rd)

≤ C ′‖f‖Lp(Rd)

by the boundedness of the Riesz transforms

Ri : Lp(Rd)→ Lp(Rd) for 1 < p < +∞

and Theorem 1.3 (see [42] or [21]). The same argument applies to obtain (1.6),
since the fact that the Riesz transforms are bounded on Lp(Rd) for 1 < p < +∞
implies they are bounded on Lp,∞(Rd) for the same values of p (see [21]).

The last remaining items to discuss in this section are the inequalities (1.4) and
(1.7). The former is straightforward, as

−∆u ≡ − ∂2u

∂xi∂xj
= − ∂2

∂xi∂xj
I2f = −RiRjf

for Ri, Rj the ith and jth components of the vector valued Riesz transform R,
respectively and so the result follows again by boundedness of Ri, Rj on Lp(Rd).
However, for the weak-type estimate one requires the fact that not only are Ri and
Rj Calderón-Zygmund operators, but even their composition

Tf := RiRjf

is such an operator. Then Lemma 2 of [11] implies the desired weak-type bound.
Finally it remains to handle the case d = 2. Here the estimates (1.3) and (1.4)

can be argued in a similar manner, and so we are left to discuss the estimates
(1.2) and (1.5). But here one has only the case p = 1 and so we are reduced to
proving some type of replacement for (1.5) (since d − 2 = 0). Yet the analysis in
the preceding section shows

u(x) =
1

γ(1)

2∑
i=1

Ri

ˆ
R2

xi − yi
|x− y|

f(y) dy,

which shows u ∈ BMO(Rd).
It is interesting to note that, as in the introduction, we replace ‖f‖L1(R2) with

‖Rf‖L1(R2;R2) we obtain the inequality

‖I2f‖L∞(R2) ≤ C‖Rf‖L1(R2;R2),

and what is more, we also have

‖I2Rf‖L∞(Rd) ≤ C‖I1f‖L2,1(R2) ≤ C ′‖Rf‖L1(R2;R2).

Here we have utilized a Lorentz space extension of potential embeddings, see Section
5 for a further excursion into this area. That is, if Rf ∈ L1(R2;R2), then both I2f
and its Riesz transform RI2f are bounded functions. The same is true for Idf ,
RIdf if we assume Rf ∈ L1(Rd;Rd).
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4. Vector Inequalities (Connection with the work of J. Van
Schaftingen)

A vector analogue of the classical inequality of E. Gagliardo [16] and L. Niren-
berg [31] follows easily from the same argument, yet such an inequality is not
optimal, as one does not need the full gradient in order to obtain an embedding
into Ld/(d−1)(Rd). For example, one has the 1973 result of M.J. Strauss [44], which
asserts that one only needs the symmetric part of the gradient when u : Rd → Rd.
In particular if one defines the linearized deformation tensor

Eu :=
1

2

(
∇u+ (∇u)T

)
,

then M.J. Strauss proves the inequality

‖u‖Ld/(d−1)(Rd;Rd) ≤ C‖Eu‖L1(Rd,Rd×d)(4.1)

for all sufficiently nice u. More generally, J. Van Schaftingen has shown that the
vector differential inequality

‖u‖Ld/(d−1)(Rd;V ) ≤ C‖A(D)u‖L1(Rd,E)(4.2)

holds for every vector field u ∈ C∞c (Rd, V ) if and only if the homogeneous first-order
linear vector differential operator with constant coefficients A(D) is elliptic and
canceling [48, Theorem 1.3]. Here we recall the definition of a canceling operator.

Definition 4.1. Let ` ∈ {0, . . . , d}. A homogeneous differential operator with
constant coefficients A(D) is `–canceling whenever⋂

W⊆Rd
dimW=`

span
{
A(ξ)[v] : ξ ∈W and v ∈ V

}
= {0}.

The term canceling is precisely 1–canceling as defined in [48, Definition 1.2].
One then wonders whether in the vector-valued setting the Riesz potentials admit

similar improvements. Indeed this is the case, as from the work of Van Schaftingen
in [48], with the argument of [34], one obtains

Theorem 4.2. Let α ∈ (0, d), V,E be finite dimensional Banach spaces, and sup-
pose the homogeneous first-order linear differential operator with constant coeffi-
cients A : C∞c (Rd;V ) → C∞c (Rd;E) is elliptic and canceling. Then there exists a
constant C > 0 such that

‖Iαf‖Ld/(d−α)(Rd;V ) ≤ C‖A(D)I1f‖L1(Rd;E)

for all f ∈ C∞c (Rd;V ).

In particular one can apply Theorem 8.3 in [48] to obtain such a result by rec-
ognizing that the Triebel-Lizorkin spaces coincide with the above space of Riesz
potentials of Ld/(d−α) functions. A similar statement would also seem to hold in
the case of higher order homogeneous linear differential operator with constant co-
efficients. Thus, this gives the complete picture for the mapping properties of Riesz
potentials into Lebesgue spaces in the vector-valued setting.
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5. Some Optimal Lorentz Space Estimates

In this section we discuss improvements to the preceding embeddings on the
Lorentz scale. The Lorentz spaces arise naturally in the study of PDE and are
of interest for a number of reasons: They appear immediately in approximation
theory and the interpolation of Banach spaces when one only begins with an interest
in the classical Lebesgue spaces; they are a scale of spaces which incorporate the
natural weak-type spaces in harmonic analysis; the extension of Hölder and Young’s
inequality to this scale imply Theorem 1.3 (see Theorem 5.3 below); they can
be used to establish existence of solutions to the wave and Schrödinger equation
(see, e.g. Keel and Tao [26]), and can be used to deduce continuity and Lipschitz
continuity in the context of Harmonic maps to manifolds (see Hélein [23]). The
value of such spaces has been known to experts for some time - the author was
aware of many results from L. Tartar’s article [45] from 1998, while in the lecture
of this material at Rutgers, H. Brezis referred him to his article on the subject [9]
from 1982. Let us also mention two further references which may be of interest to
the reader, the classical papers of R. Hunt [24] and R. O’Neil [32].

In the literature there are a number of possible definitions of the Lorentz spaces
Lp,q(Rd). We find it most useful for the unacquainted reader to see these spaces
as a refinement of the Lebesgue spaces which can be simply understood in the
following manner. By Cavalieri’s principle, one begins by expressing the Lp-norm
as integration of the superlevel sets

‖f‖p
Lp(Rd)

= p

ˆ ∞
0

tp|{|f | > t}| dt
t
.(5.1)

This shows that belonging to Lp requires specific decay such that the function

t 7→ (t|{|f | > t}|
1
p )p

is integrable near both t = 0 and t = +∞ with respect to the measure dt
t , which

requires that it tends to zero at both endpoints. Therefore, any power of this map
must tend to zero, though is not necessarily integrable. Varying the exponent here
as a second parameter r and imposing integrability, one obtains the Lorentz spaces
Lp,r(Rd), with quasi-norm for 1 < p < +∞ and 1 ≤ r < +∞

‖f‖rLp,r(Rd) := p

ˆ ∞
0

(t|{|f | > t}|
1
p )r

dt

t
(5.2)

and 1 ≤ p < +∞ and r = +∞

‖f‖Lp,∞(Rd) := sup
t>0

t|{|f | > t}|
1
p .

One then observes that Lp,p(Rd) ≡ Lp(Rd), while more generally one obtains a
scale of spaces which is nested with respect to the second parameter, i.e.

Lp,1(Rd) ⊂ Lp,p(Rd) = Lp(Rd) ⊂ Lp,∞(Rd).

For these spaces, one has the analogue of Hölder’s inequality (Theorem 3.4 in [32]):

Theorem 5.1. Let f ∈ Lq1,r1(Rd) and g ∈ Lq2,r2(Rd), where

1

q1
+

1

q2
=

1

q
< 1

1

r1
+

1

r2
≥ 1

r
,
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for some r ≥ 1. Then

‖fg‖Lq,r(Rd) ≤ q′‖f‖Lq1,r1 (Rd)‖g‖Lq2,r2 (Rd)

One also has Young’s inequality (Theorem 3.1 in [32]):

Theorem 5.2. Let f ∈ Lq1,r1(Rd) and g ∈ Lq2,r2(Rd), and suppose 1 < q < +∞
and 1 ≤ r ≤ +∞ satisfy

1

q1
+

1

q2
− 1 =

1

q
1

r1
+

1

r2
≥ 1

r
.

Then

‖f ∗ g‖Lq,r(Rd) ≤ 3q‖f‖Lq1,r1 (Rd)‖g‖Lq2,r2 (Rd).

Now Iα /∈ Lr(Rd) for 1 ≤ r ≤ +∞, while it is an exercise to show that
Iα ∈ Ld/(d−α),∞(Rd). Thus this inequality implies the following improvement to
Theorem 1.3.

Theorem 5.3. Let 0 < α < d and 1 < p < d/α. Then there exists a constant
C = C(p, α, d) > 0 such that

‖Iαf‖Lq,p(Rd) ≤ C‖f‖Lp(Rd)(5.3)

for all f ∈ Lp(Rd), where

1

q
=

1

p
− α

d
.

The model inequality in this setting of Lorentz spaces is the result of A. Alvino
[2] who proved the inequality

‖u‖Ld/(d−1),1(Rd) ≤ C ′‖∇u‖L1(Rd,Rd)(5.4)

holds for all functions u ∈ W 1,1(Rd). Here we observe that this improves the
inequality of E. Gagliardo [16] and L. Nirenberg [31], and so it is natural to ask
whether similar improvements can be made for the Riesz potentials.

Indeed, recently in [39] the author proved the optimal Lorentz inequality for the
Riesz potentials, the following

Theorem 5.4. Let d ≥ 2 and α ∈ (0, d). There exists a constant C = C(α, d) > 0
such that

‖Iαf‖Ld/(d−α),1(Rd) ≤ C‖Rf‖L1(Rd;Rd)(5.5)

for all f ∈ C∞c (Rd) such that Rf ∈ L1(Rd;Rd).

The key idea of the proof was that one has an equivalent formulation of this
inequality as the inequality

‖Iα∇u‖Ld/(d−α),1(Rd;Rd) ≤ C‖∇u‖L1(Rd;Rd),(5.6)

which can argued by using the fact that Rf = ∇I1u is a gradient along with the
boundedness of the Riesz transforms on Lp,r(Rd) for all 1 < p < +∞, 1 ≤ r ≤ +∞.
In such a formulation, the idea of V. Maz’ya [29] reduces the question to that of
proving an isoperimetric inequality, and this is the main work of the paper [39].
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This prompts one to wonder whether similar improvements can be made for first-
order elliptic and canceling operators. The complete answer to the former question
is only known in the plane where (d − 1)–canceling is precisely canceling, as the
author and J. Van Schaftingen have shown in [41] the following

Theorem 5.5. Let V and E be finite-dimensional spaces and suppose that the
homogeneous first-order linear differential operator with constant coefficients A(D) :
C∞c (Rd, V ) → C∞c (Rd, E) is elliptic and (d − 1)–canceling. Then there exists a
constant C > 0 such that

‖u‖Ld/(d−1),1(Rd;V ) ≤ C‖A(D)u‖L1(Rd,E)

for every u ∈ C∞c (Rd, V ).

Note that one example of a (d− 1)–canceling operator in any number of dimen-
sions is the deformation operator, and so this result contains the optimal Lorentz
inequality

‖u‖Ld/(d−1),1(Rd;Rd) ≤ C‖Eu‖L1(Rd,Rd×d).

This leads to further open problems which we discuss in Section 7.

6. Trace Inequalities (Connection with the work of N. Meyers and
W.P. Ziemer)

A 1977 result of Meyers and Ziemer [30] asserts the existence of a constant C > 0
such that one has the inequalityˆ

Rd
|u| dµ ≤ C

ˆ
Rd
|∇u| dx(6.1)

for every u ∈ W 1,1(Rd) and every non-negative Radon measure µ satisfying the
ball growth condition

µ(B(x, r)) ≤ C ′rd−1

for all x ∈ Rd, r > 0, and some C ′ > 0.
This inequality represents the state of the art when compared with all of the

inequalities discussed so far, which we now show before giving a sketch of its proof.
In particular, let us show how this trace inequality implies3 the Sobolev inequality
of E. Gagliardo [16] and L. Nirenberg [31], its Lorentz improvement [2], and even
Hardy’s inequality. To this end, let g ∈ Ld,∞(Rd) be non-negative and define, for
A ⊂ Rd measurable, the non-negative measure

µ(A) :=

ˆ
A

g(y) dy.

Then Hölder’s inequality in the Lorentz spaces implies, for every B(x, r) ⊂ Rd,

µ(B(x, r)) =

ˆ
B(x,r)

g(y) dy ≤ ‖g‖Ld,∞(Rd)‖χB(x,r)‖Ld/(d−1),1(Rd)

= ‖g‖Ld,∞(Rd)|B(x, r)|1−1/d

= ‖g‖Ld,∞(Rd)|B(0, 1)|1−1/drd−1.

3These connections have been discussed by A. Ponce and the author in [33].
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Thus, the trace inequality impliesˆ
Rd
|u(x)|g(x) dx ≤ C‖g‖Ld,∞(Rd)

ˆ
Rd
|∇u(x)| dx,

and as the norm in Ld/(d−1),1(Rd) can be realized via duality, i.e.

‖u‖Ld/(d−1),1(Rd) = sup
g∈Ld,∞(Rd)

ˆ
Rd
|u(x)| g(x)

‖g‖Ld,∞(Rd)

dx,

the Lorentz estimate of A. Alvino [2] follows. This same argument can be applied
in the case

µ(A) :=

ˆ
A

1

|y|
dy.

to obtain Hardy’s inequality as a corollary, and

µ(A) :=

ˆ
A

g(y) dy

for g ∈ Ld(Rd) to obtain the inequality of E. Gagliardo [16] and L. Nirenberg [31].
For the convenience of the reader we recall the proof of the inequality (6.1).

First, one begins with the Poincaré inequality 
B(x,r)

|u(y)−
 
B(x,r)

u| dy ≤ Cr
 
B(x,r)

|∇u(y)| dy,

which can be obtained by the fundamental theorem of calculus (see, e.g. p. 142
in [13], which extends to functions of bounded variation by density). Then one
takes u = χE for a set E ⊂ Rd such that DχE is a Radon measure. The preceding
inequality is written for smooth functions, but extends to BVloc(Rd). Thus 

B(x,r)

 
B(x,r)

|χE(y)− χE(z)| dydz ≤ 2Cr1−d|DχE |(B(x, r)).

But this says

|E ∩B(x, r)| × |Ec ∩B(x, r)|
|B(x, r)| × |B(x, r)|

=
1

2

 
B(x,r)

 
B(x,r)

|χE(y)− χE(z)| dydz

≤ Cr1−d|DχE |(B(x, r)).

Now, for E ⊂ Rd open, bounded, and of finite perimeter and x ∈ E, the map

x 7→ |E ∩B(x, r)|
|B(x, r)|

is continuous, equal to one for small r and tends to zero as r → ∞. Thus the
intermediate value theorem guarantees an r = rx such that

|E ∩B(x, rx)|
|B(x, rx)|

=
1

2
.

However, for this same value rx, by finite additivity of the Lebesgue measure, we
also have

|Ec ∩B(x, rx)|
|B(x, rx)|

=
1

2
.

Therefore we have found an rx such that

rd−1
x ≤ 4C|DχE |(B(x, r)).(6.2)
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We are now prepared to estimate ˆ
Rd
|u| dµ,

and we suppose here that u ∈ C∞c (Rd). The result for more general u can be argued
by using maximal function bounds with respect to these Choquet integrals, cf. [1].
In particular we recall the definition ofˆ

Rd
|u| dµ =

ˆ ∞
0

µ(Et) dt,

where Et := {x : |u| > t}.
We now apply the preceding argument to the set Et to find for each x ∈ Et an

rx such that (6.2) holds (and note that x and in turn rx depend implicitly on t).
By Vitali’s covering theorem (see, for example, Theorem 1 on p. 27 of [13]) we can
find a countable family {xi} ⊂ Et and {ri} such that

Et ⊂
∞⋃
i=1

B(xi, 5ri),

B(xi, ri) ∩B(xj , rj) = ∅ if i 6= j and (6.2) holds. Therefore

µ(Et) ≤ µ

( ∞⋃
i=1

B(xi, 5ri)

)

≤
∞∑
i=1

C(5ri)
d−1

≤ 5d−1C

∞∑
i=1

|DχEt |(B(xi, ri))

≤ 5d−1C|DχEt |(Rd).
However, now combining this with the preceding equality we findˆ

Rd
|u| dµ =

ˆ ∞
0

µ(Et) dt

≤ 5d−1C

ˆ ∞
0

|DχEt |(Rd) dt

= 5d−1C

ˆ
Rd
|∇u| dx,

where the last equality follows from the coarea formula.

7. Open Problems

We are now ready to discuss some open problems in this area, and let us be-
gin with the scalar setting. In the introduction we saw how the inequality of E.
Gagliardo [16] and L. Nirenberg [31]

‖u‖Ld/(d−1)(Rd) ≤ C‖∇u‖L1(Rd;Rd),

leads one to predict the potential estimate observed by A. Schikorra, the author,
and J. Van Schaftingen:

‖Iαf‖Ld/(d−α)(Rd) ≤ C‖Rf‖L1(Rd;Rd).
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Similarly in Section 5 we saw how the refinement of A. Alvino [2] on the Lorentz
scale,

‖u‖Ld/(d−1),1(Rd) ≤ C‖∇u‖L1(Rd;Rd),

leads one to predict refinement obtained by the author in [39]:

‖Iαf‖Ld/(d−α),1(Rd) ≤ C(α)‖Rf‖L1(Rd;Rd).

Yet in the first order setting, we saw that the strongest possible inequality is the
trace inequality ˆ

Rd
|u| dµ ≤ C

ˆ
Rd
|∇u(x)| dx

for all sufficiently nice u and all non-negative Radon measures µ satisfying the ball
growth condition µ(B(x, r)) ≤ C ′rd−1 for all B(x, r) ⊂ Rd.

This would seem to motivate

Question 7.1. Let α ∈ (0, 1). Does one have the existence of a constant C =
C(α, d) > 0 such that ˆ

Rd
|Iαf | dµ ≤ C

ˆ
Rd
|Rf(x)| dx

for all sufficiently nice f and all non-negative Radon measures µ satisfying the ball
growth condition µ(B(x, r)) ≤ C ′rd−α for all B(x, r) ⊂ Rd?

However, one has a fundamental obstruction to such an inequality, which has
been discussed in a recent work of the author [40]. In particular we there show
the impossibility of such an inequality, establishing a crucial difference between the
case α = 1 and α ∈ (0, 1).

While there is no possibility to obtain a trace inequality for the Riesz potentials
for α ∈ (0, 1), one wonders

Open Problem 7.2. Can one show the inequalityˆ
Rd
|u| dµ ≤ C

ˆ
Rd
|∇u(x)| dx

for all sufficiently nice u and all non-negative Radon measures µ satisfying the ball
growth condition µ(B(x, r)) ≤ C ′rd−1 for all B(x, r) ⊂ Rd without using the coarea
formula?

In particular such a result may also be of use in the vector setting, which we
now discuss. The work of J. Van Schaftingen shows that the inequality

‖u‖Ld/(d−1)(Rd;V ) ≤ C‖A(D)u‖L1(Rd;E)

holds whenever A(D) is elliptic and canceling. A Lorentz improvement for this
inequality been shown by the author and J. Van Schaftingen in [41]:

‖u‖Ld/(d−1),1(Rd;V ) ≤ C‖A(D)u‖L1(Rd;E),

whenever A(D) is elliptic and (d− 1)−canceling. This gives a complete resolution
to the question in two dimensions, though prompts one to ask
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Open Problem 7.3. Let d ≥ 3 and let V and E be finite-dimensional spaces. Further
suppose that the first-order homogeneous linear differential operator with constant
coefficients A(D) : C∞c (Rd, V ) → C∞c (Rd, E) is elliptic and canceling. Can one
show the existence of a constant C > 0 such that the inequality

‖u‖Ld/(d−1),1(Rd;V ) ≤ C‖A(D)u‖L1(Rd;E),

holds for every u ∈ C∞c (Rd, V )?

This is Question 1.1 in [41], see also [7, Open problem 1; 47, Open problem 2;
48, Open problem 8.3; 49, Open problem 2]. A positive answer to this question
would give a model inequality for potential estimates in the vector setting and
would then lead one to attack the more difficult

Open Problem 7.4. Let d ≥ 2 and suppose that the first-order homogeneous linear
differential operator with constant coefficients A(D) : C∞c (Rd, V )→ C∞c (Rd, E) is
elliptic and canceling. Can one show the existence of a constant C > 0 such that
the inequality

‖Iαf‖Ld/(d−α),1(Rd;V ) ≤ C‖A(D)I1f‖L1(Rd;E),

holds for every f ∈ C∞c (Rd, V )?

If one is able to establish Lorentz inequalities for vector differential operators,
independent of whether the analogous inequality can be established for potentials,
a natural question is whether one has the analogue of N. Meyers and W.P. Ziemer’s
inequality for such operators, perhaps under more restrictive conditions. The need
to make further assumptions on the operator A(D) has been shown in the forth-
coming work of F. Gmeineder, B. Rait, ǎ, and J. Van Schaftingen (see Theorem 1.3
in [20]), where they show that the trace inequalityˆ

Σ

|u| dHd−1 ≤ C‖A(D)u‖L1(Rd;E)

on any hyperplane Σ ⊂ Rd is equivalent to the C-ellipticity of A(D) (see also on
the earlier work of D. Breit, L. Diening, and F. Gmeineder in [8] on the equivalence
of C-ellipticity and boundary trace inequalities). Here we recall that for a first-
order homogeneous linear differential operator with constant coefficients A(D) :
C∞c (Rd,RN )→ C∞c (Rd,RK), A(D) is elliptic (R-elliptic) if

A(ξ) : RN 7→ RK

is injective for all ξ ∈ Rd \ {0}, while A(D) is C-elliptic4 if

A(ξ) : CN 7→ CK

is injective for all ξ ∈ Cd \ {0}. Let us remark that C-ellipticity implies canceling
(see Lemma 3.2 in [19]).

This leads us to ask

4It has been pointed out to us by Bogdan Rait,ǎ that the terminology of C-ellipticity is due to
D. Breit, L. Diening, and F. Gmeineder in [8], while the condition appears at least as early as the

references of Smith [36,37] and is inspired by Aronszajn [3].
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Open Problem 7.5. Let d ≥ 2 and suppose that the first-order homogeneous linear
differential operator with constant coefficients A(D) : C∞c (Rd, V )→ C∞c (Rd, E) is
C-elliptic. Can one show the existence of a constant C > 0 such that the inequalityˆ

Rd
|u| dµ ≤ C‖A(D)u‖L1(Rd;E),

holds for every u ∈ C∞c (Rd, V ) and every non-negative Radon measure µ such that
µ(B(x, r)) ≤ C ′rd−1 for all B(x, r) ⊂ Rd?

A partial answer in the case of hyperplanes is among the results of the paper
[20], while at the present the preceding question seems to us a difficult problem.
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