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ABSTRACT

A relation between the boundary curvature j and the wrinkle wavelength k of a thin suspended film under boundary confinement is
demonstrated. Experiments were performed with nanocrystalline diamond films of approximate thickness 184 nm grown on glass substrates.
By removing portions of the substrates after growth, suspended films with circular boundaries of radius 30–811lm were fabricated. Due to
residual stresses, the portions of the film bonded to the substrate are of approximate compressive prestrain 11� 10�4 and the suspended
portions of the film are azimuthally wrinkled at their boundary. Measurements show that k decreases monotonically with j, and a simple
model that is in line with this trend is proposed. The model can be applied to design devices with functional wrinkles and can be adapted to
gain insight into other systems such as plant leaves. A method for measuring residual compressive strain in thin films, which complements
standard strain characterization methods, is also described.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0006164

Wrinkling is an ubiquitous natural phenomenon and has fostered
the evolution of tissue that lowers the expenditure of energy.1,2 Recently,
wrinkling has been explored to design efficient devices with self-similar
patterns, such as vibration energy harvesters,3 solar cells,4 and light
gratings.5,6 However, wrinkling is also known to have adverse effects on
the operation of devices such as pressure sensors.7 The omnipresence of
wrinkling strongly motivates us to understand this phenomenon. Thin
films are known to wrinkle because of excess area and geometric compac-
tion,8,9 and are typically modeled using the F€oppl–von K�arm�an theory of
plates in conjunction with scaling arguments and asymptotic analysis.
The characteristic wrinkle wavelength k of a thin film is found by mini-
mizing energy and is provided by the scaling relation

k � t1=2

e1=4
; (1)

where t is the film thickness and e is a strain that induces wrin-
kling.10–12 Efforts to investigate the effect of the boundary curvature
on the wrinkling of thin films began only recently. Experiments and
simulations have shown that curvature can significantly affect the
wrinkling of cylindrical shells upon stretching.13 For spherical14,15 or
tubular16,17 bilayer systems, similar conclusions have been reached.

Here, we present experiments showing that the boundary curva-
ture of a thin suspended film has a relatively strong impact on azi-
muthal wrinkling. We provide a model that confirms this finding and
can be used to design devices with functional wrinkles. The model
hinges on the assumption that the film is composed of a mechanically
isotropic material. This assumption is often made to simplify the
deformation analysis of 2D materials, amorphous materials, and single
crystals, which suggests that the model can be widely applied. We also
present a method, which complements those recently reviewed,18 for
measuring the residual compressive strain and film area density from
the height profile of a suspended film.

The results are obtained from systematic experiments performed
with suspended nanocrystalline diamond (NCD) films of average thick-
ness t ¼ 1846 9 nm, nearly circular boundaries of radius R ranging
from 30 to 811lm, and a compressive prestrain of e0 � 11� 10�4,
which prevails at and beyond the boundaries where the film is bonded
to the substrate. A reflecting optical microscope image of such a film is
shown in Fig. 1. The films were grown on glass substrates, after which
circular portions of the substrates were removed by etching. Each film
consists of portions that are bonded to the substrate and free-standing
portions. The bonded and free-standing portions of each film are
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contiguously connected. Due to residual compressive stresses in the
bonded portions of the film and the presence of boundary confinement,
excess area is formed and geometric compaction occurs in the sus-
pended films. The compressive strain in these films is relaxed radially

by buckling and azimuthally by wrinkling. Experimental details are
provided hereinafter. In contrast to ultra-thin polymer films,20 NCD
films can be regarded to be elastic. The prestrain e0 is, therefore, time-
invariant so that the wrinkling and underlying strain of the films can be
characterized in detail. Another reason for using the suspended NCD
films supported by glass substrates is that they are promising candi-
dates for use as robust pressure sensors7,21 and for the development of
3D micro- and nanodevices.22

From the experiments described hereinafter, we find that k
monotonically decreases with boundary curvature j ¼ 1=R. To
explain this trend, we present a model involving a penetration
depth DR over which strain in the suspended film relaxes. Only
positive compressive strains are considered in the experimental
aspects of this work. The setup of our problem is depicted in Fig.
2(a), where DR and all other salient geometrical quantities entering
our formulation are described. For convenience, the symbols used
in this work, and their description, are listed in Table I. We assume
that the radial strain err is independent of the hoop strain ehh; the
shear strain erh vanishes, the film is made of a mechanically isotro-
pic material, and the portion of the film for which d � DR under-
goes pure bending (i.e., is not subject to stretching). Since wrinkling
occurs azimuthally with respect to the origin O, we infer that
e ¼ ehh. On this basis, we find that

e ¼ s
l
� 1 ¼ s

hðR� DRÞ � 1: (2)

If the curvature j of the supporting edge vanishes, as depicted in Fig.
2(b), we find that

FIG. 1. Reflecting optical microscope image of a continuous nanocrystalline diamond
(NCD) film of approximate thickness t¼ 184 nm, which was grown on a glass substrate.
The suspended portion of the film has a circular boundary of radius R¼ 232 lm and
was made by etching the substrate from the backside. Due to residual stresses, the
portion of the film bonded to the substrate is of compressive prestrain e0 � 11� 10�4

and the suspended portion of the film, which remains contiguously connected to the
bonded film, is azimuthally wrinkled. The compressive strain in the suspended portion
of the film relaxes toward its center. A wrinklon, which is indicated by the circle, is the
localized transition zone in the merging of two wrinkles.19

FIG. 2. (a) From top to bottom, with respect to the figure, a bird’s-eye view, top view, and side view of a schematic of a continuous portion of film, based on Fig. 1, which assist
in describing the model presented in this work. The portion of the film that is bonded to the substrate is subject to a compressive prestrain e0, and the suspended film is contig-
uously connected to the portion of the film that is bonded to the substrate. The length of a portion of boundary is denoted by l0 and the penetration depth DR is on the order of
the length over which strain in the suspended film relaxes. At distance DR from the boundary, a curve of arc length l, which is the projection of the oscillating curve of arc
length s, exists. The projection is done from the suspended film, which is of radius R, to the plane p, which is defined by points a, O, and b. Within p, a polar coordinate sys-
tem with origin O, radial coordinate r, and azimuthal angle h is defined. The radial distance d is measured from the boundary to O. With respect to the top view schematic, the
boundary is concave and has a signed curvature j ¼ 1=R that is arbitrarily chosen to be positive. (b) and (c) are cases for which the boundary is straight, so that j¼ 0, and
convex, so that j ¼ �1=R, respectively. The effect of j on wrinkle wavelength k is illustrated by increasing k monotonically from (a) to (c).
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e ¼ s
l
� 1 ¼ s

l0
� 1 ¼ e0: (3)

For j ¼ 1=R, it can be observed from Fig. 2(a) that l < l0. This shows
that geometric compaction occurs when the curvature j of the sup-
porting edge is positive. If R� DR, we can apply the binomial theo-
rem to expand ðR� DRÞ�1 and write Eq. (2) as

e � e0 þ
s
l0

DRj: (4)

For a small wrinkle amplitude at d ¼ DR, the quotient s=l0 is practi-
cally unity and we may write Eq. (4) as

e � e0 þ DRj: (5)

With Eqs. (1) and (5), we then obtain

k � t1=2

ðe0 þ DRjÞ1=4
: (6)

For j ¼ �1=R, as depicted in Fig. 2(c), Eq. (6) is also obtained using
similar arguments as for j ¼ 1=R. Given that DR and e0 are constant,
Eq. (6) predicts that k decreases monotonically with j. As expected,
Eq. (5) reduces to Eq. (3) for j¼ 0. For our problem, Eqs. (1) and (6)
are independent of material properties.10

To fabricate our films, we first seeded 10� 10� 0:2 mm3 Lotus
NXT glass substrates with nanodiamonds.23,24 Subsequently, a closed film
was grown by plasma-assisted chemical vapor deposition in the reactor of
an SDS6500X microwave system with 1.5kW of 2.45GHz microwaves.
During film growth, the substrate temperature was maintained at about
873K and the reactor was kept at a pressure of 2kPa with 294 sccm of
hydrogen gas and 6 sccm of methane gas. The thicknesses of the NCD
films were measured using a Hamamatsu C13027 optical nano gauge.
The through holes in the glass substrates and the suspended films were
fabricated by etching the substrate locally with hydrofluoric acid using
recently described techniques.21,22 Reflecting optical microscope images
and surface profiles of the suspended films were taken using a Keyence
VK-X150 confocal laser microscope. We define a surface profile as a col-
lection of heights of a suspended film with reference to plane p. Similar
to previous work,22 film stresses were obtained by X-ray diffraction (XRD)
measurements carried out using a Bruker D8 Discover diffractometer.

To estimate the magnitude of DR, we use the dimensionless
number d ¼ S=B, where S and B denote the stretching and bending
stiffness, respectively. In so doing, we assume that a portion of sus-
pended film acts as a cantilever of width w, thickness t, and length d.
Then, S ¼ Etw=d and B ¼ Et3w=4d3, where E denotes Young’s mod-
ulus, so that d ¼ 4ðd=tÞ2. For d¼ t, we see that d ¼ 4, which indi-
cates that bending and stretching stiffnesses are of the same order.
However, for a relatively small value of d, for example, 2 lm, and
t¼ 184nm, we see that d ¼ 473, which indicates that bending is
strongly favorable over stretching. On this basis, we estimate that DR
is on the order of micrometers, that R� DR, and that DR depends on
t. Because t is kept nearly constant in our experiments, the latter
dependency is not investigated.

From XRD measurements, we infer that the thermal mismatch
between the substrate and the film induces a compressive prestrain
with a value of e0 ¼ ð1162Þ � 10�4, taking into account that, from a
Raman spectroscopy study reported previously,22 intrinsic strain is
known to be negligible. However, when the material properties of a
film are unknown or when dealing with ultra-thin films or amorphous
materials, other methods are needed to obtain e0. To solve this prob-
lem, we demonstrate that e0 is estimated accurately by

f ¼
ffiffiffiffiffiffiffiffi
A

pR2

r
� 1; (7)

where A denotes the surface area of the suspended film. The relation
e0 � f holds if stretching is negligible, a criterion that is met in our
work. The area A of the suspended film is estimated by removing noise
from a surface profile with a Gauss filter, creating a surface from that
filtered profile by triangulation, calculating the area Ai of each surface
triangle Ti, and summing up all Ai that correspond to the suspended
film. We find, for our films, that e0 ¼ ð116 2Þ � 10�4. This value is
in excellent agreement with the value obtained from XRD measure-
ments and shows that our approach yields results consistent with a
standard strain characterization method. One of the surface profiles
used to obtain e0 appears in Fig. 3(a), which is for the film shown in
Fig. 1. Figure 3(b) depicts ðAi=PiÞ � 1, as obtained from the height

TABLE I. List of symbols with description.

A Surface area of a suspended film
Ai Area of a surface triangle Ti
B Bending stiffness of a cantilever
c Proportionality constant of Eq. (6)
d Radial distance measured from

the boundary of a suspended film to origin O
d Dimensional number that compares S with B
E Young’s modulus
l Arc length of the curve that is the

projection on plane p of the curve of arc length s
l0 Arc length of a portion of boundary
O Origin of the polar coordinate system in plane p
Pi Area of the projection of Ti on p

p Plane defined by points a, O, and b in Fig. 2
r Radial coordinate of the polar

coordinate system in plane p
R Radius of the boundary of a suspended film
s Arc length of the oscillating curve at d ¼ DR
S Stretching stiffness of a cantilever
t Thickness of a film
Ti Surface triangle i of a triangulated surface
w Width of a cantilever
DR Penetration depth over which

the strain in the suspended portion of film relaxes
f Approximate measure for strain
e Strain that induces wrinkling
e0 Compressive prestrain of the

portions of film bonded to the substrate
err Compressive radial strain
erh Compressive shear strain
ehh Compressive hoop strain
h Azimuthal angle of the polar

coordinate system in plane p
j Signed boundary curvature of a suspended film
k Wrinkle wavelength
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profile in Fig. 3(a), plotted with respect to p, in which Pi denotes the
area of the projection of Ti onp. The ratio Ai=Pi represents the scaled
film area density under the assumption that stretching is negligible.
From the plot, we observe that Ai=Pi is greater at the wrinkled portion
than at the remaining area of the suspended film. This shows that in
addition to providing a value for e0, our strain analysis is useful for
investigating the film area density.

To demonstrate that k decreases monotonically with j, three sur-
face profiles of the suspended NCD films taken at d � 6 lm are given
in Fig. 4(a), with a relatively small offset in height for clarity. Accurate
values of k are found by counting the number of wrinkles of a sus-
pended film and dividing the resulting number by 2pR. Counting is
most easily done with reflecting optical microscope images, of which
one appears in Fig. 1. For that image, 396 1 wrinkles were counted, as
confirmed from analyzing height profiles such as those given in Fig.
4(a). In Fig. 4(b), the obtained values of k, scaled by t1=2, are plotted vs
j. To fit the data in Fig. 4(b) with our model, using the least squares
method, Eq. (6) is written as

k

t1=2
¼ c

ðe0 þ DRjÞ1=4
; (8)

in which e0 ¼ 11� 10�4; DR is assumed to be constant, and DR and
the proportionality constant c act as fitting parameters. Since Eq. (6) is
independent of materials properties, so is Eq. (8). The fit confirms that
our wrinkling model captures the main physical ingredients that
explain our observations. For a confidence interval of 70%, we find
that c ¼ 246 1 lm1/2 and DR ¼ 0:76 0:2lm. These results support
the relation R� DR. Since Eq. (8) is free of materials properties,
changes in the material properties of NCD, which are often attributed
to the grain size,25 are assumed not to affect k.

Under the assumption that stretching is negligible for d � DR,
the arc length of the curves in Fig. 4(a) should be similar, in which
case the wrinkle amplitude decreases with k. This is verified by com-
paring the height axis of the surface profiles in Fig. 4(a). Further analy-
sis of the wrinkle amplitude vs d may be done within the formalism
based on wrinklons,19 which we leave for future work. A wrinklon is
the localized transition zone in the merging of two wrinkles. Such a
zone is indicated in Fig. 1.

FIG. 3. (a) Surface profile of the suspended film depicted in Fig. 1. From the profile,
it is clear that radially the film buckles out of plane p and azimuthally the film wrin-
kles. This is one of the profiles used to obtain e0 ¼ ð116 2Þ � 10�4 with
e0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A=pR2

p
� 1. Here, A denotes the surface area of the suspended film, as

found by removing noise from a surface profile, creating a surface from that smooth
surface profile by triangulation, calculating the area Ai of each triangle Ti, and sum-
ming up all Ai that correspond to the suspended film. (b) ðAi=PiÞ � 1 obtained
from (a) plotted with respect to p. Here, Pi denotes the area of the projection of Ti
on p. Given that stretching is negligible, Ai=Pi is the scaled film area density. This
ratio is the greatest at the wrinkled portion of the suspended film.

FIG. 4. (a) Surface profiles of the suspended NCD films measured at approximately
6 lm from their boundaries, with respect to p, and plotted vs l0. A relatively small
offset in height is applied for clarity. From these data, we deduce that the wrinkle
wavelength k and wrinkle amplitude decrease monotonically with j. (b) Wrinkle
wavelength k divided by t1=2 vs j. Eq. (8) is fitted to the data with e0 ¼ 11� 10�4

and fitting parameters c and DR, with c denoting a proportionality constant. This
result supports the assertion that our wrinkling model captures the main physical
ingredients that explain our observations.
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For a leaf that is supported by a stem of radius R, Xu and co-
workers26 suggest that residual growth strain induces wrinkling of the
leaf. Interestingly, they predict that the associated wrinkle wavelength
k decreases monotonically with R. By modeling such a leaf as a thin
suspended film supported by a rigid stem of curvature j ¼ �1=R, as
depicted in Fig. 2(c), and attributing e0 to growth, our model provides
a similar prediction, given that DR and e0 are approximately constant.
Experimentally, the case j ¼ �1=R may be verified by fabricating
micro-disk like structures.27,28

To finalize our discussion, we underline that due to the presence
of the curvature in our experiments, the wrinkle density is practically
doubled. It is, therefore, evident that, apart from dynamic wrinkling,29

the boundary curvature also needs to be taken into account when
designing devices with functional wrinkles.

We conclude that boundary curvature can strongly influence the
wrinkling of thin suspended films. Experimentally, we showed this by
growing nanocrystalline diamond films of approximate thickness
184nm on glass substrates. Due to residual stresses, a compressive
strain in the films was introduced. By removing portions of the sub-
strate, suspended, azimuthally wrinkled films with circular boundaries
of radius 30–811 lm were fabricated. We found that the wavelength
of these wrinkles decreases monotonically with the boundary curva-
ture, leading to a doubling of the wrinkle density. A model that is in
line with our experiments is provided. This model can be used to
design devices with functional wrinkles, is adapted to explain how the
radius of a plant stem affects the wrinkling of the leaf that it supports,
and may also be adapted to afford insight into other similar systems.
Additionally, taking advantage of the fact that for relatively thin sus-
pended films deformation is dominated by bending, meaning that
stretching is negligible, we established a method for measuring residual
compressive strain and film area density from height profiles. The
method complements standard strain characterization methods.

We gratefully acknowledge the support from the Okinawa
Institute of Science and Technology Graduate University with
subsidy funding from the Cabinet Office, Government of Japan.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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