
Okinawa Institute of Science and Technology

Graduate University

Thesis submitted for the degree

Doctor of Philosophy

E�cient and Noise-Tolerant Reinforcement Learning

Algorithms via Theoretical Analysis of

Gap-Increasing and Softmax Operators

by

Tadashi Kozuno

Supervisor: Prof. Kenji Doya

March, 2020

ii

Declaration of Original and Sole

Authorship

I, Tadashi Kozuno, declare that this thesis entitled Efficient and Noise-Tolerant Rein-

forcement Learning Algorithms via Theoretical Analysis of Gap-Increasing and Softmax

Operators and the data presented in it are original and my own work.

I confirm that:

• No part of this work has previously been submitted for a degree at this or any other

university.

• References to the work of others have been clearly acknowledged. Quotations from

the work of others have been clearly indicated, and attributed to them.

• In cases where others have contributed to part of this work, such contribution has

been clearly acknowledged and distinguished from my own work.

• None of this work has been previously published elsewhere, with the exception of

papers on ArXiv repository and the following: "Tadashi Kozuno, Eiji Uchibe and

Kenji Doya; Theoretical Analysis of Efficiency and Robustness of Softmax and Gap-

Increasing Operators in Reinforcement Learning. Proceedings of Machine Learning

Research, volume 89, Pages 2995-3003".

Date: June 2019

Signature:

ii

zino の iPad

iv Declaration of Original and Sole Authorship

Abstract

E�cient and Noise-Tolerant Reinforcement Learning Algorithms

via Theoretical Analysis of Gap-Increasing and Softmax Opera-

tors

Model-free deep Reinforcement Learning (RL) algorithms, a combination of deep learn-
ing and model-free RL algorithms, have attained remarkable successes in solving com-
plex tasks such as video games. However, theoretical analyses and recent empirical
results indicate its proneness to various types of value update errors including but
not limited to estimation error of updates due to �nite samples and function approx-
imation error. Because real-world tasks are inherently complex and stochastic, such
errors are inevitable, and thus, the development of error-tolerant RL algorithms are
of great importance for applications of RL to real problems. To this end, I propose
two error-tolerant algorithms for RL called Conservative Value Iteration (CVI) and
Gap-increasing RetrAce for Policy Evaluation (GRAPE).

CVI uni�es value-iteration-like single-stage-lookahead algorithms such as soft value
iteration, advantage learning and Ψ-learning, all of which are characterized by the use
of a gap-increasing operator and/or softmax operator in value updates. We provide
detailed theoretical analysis of CVI that not only shows CVI's advantages but also
contributes to the theory of RL in the following two points: First, it elucidates pros and
cons of gap-increasing and softmax operators. Second, it provides an actual example in
which performance of algorithms with max operator is worse than that of algorithms
with softmax operator demonstrating the limitation of traditional greedy value updates.

GRAPE is a policy evaluation algorithm extending advantage learning (AL) and
retrace, both of which have di�erent advantages: AL is noise-tolerant as shown through
our theoretical analysis of CVI, while retrace is e�cient in that it is o�-policy and allows
the control of bias-variance trade-o�. Theoretical analysis of GRAPE shows that it
enjoys the merits of both algorithms. In experiments, we demonstrate the bene�t of
GRAPE combined with a variant of trust region policy optimization and its superiority
to previous algorithms.

Through these studies, I theoretically elucidated the bene�ts of gap-increasing and
softmax operators in both policy evaluation and control settings. While some open
problems remain as explained in the �nal chapter, the results presented in this thesis
are an important step towards a deep understanding of RL algorithms.

v

vi Abstract

Acknowledgment

Firstly, I would like to thank my supervisor, Prof. Kenji Doya, who kindly accepted me
to his unit. Due to an excessive number of students who wanted to join his unit, I was
asked to consider joining another unit when I was selecting my thesis research unit. If
he had not had accepted me, I would not be working on reinforcement learning, which
is the most exciting topic for me.

Besides Prof. Doya, I am grateful to my former supervisors: Prof. Kunio Itoh at
Ryukoku University and Prof. Yuki Hayashida at Osaka University. I learned how
to enjoy science from them and decided to become a researcher. I also would like to
mention Dr. Yuka Okazaki, a former colleague at Osaka University, who had shown me
her intense passion for science and is my role model.

My sincere gratitude also goes to Prof. Evan Economo, Prof. Yoko Yazaki-Sugiyama,
Prof. Jun Tani, Prof. Sile Nic Chormaic, Dr. Rémi Munos (Google DeepMind Paris),
Prof. Takamitsu Matsubara (NAIST, Japan), and Dr. Bruno Scherrer (INRIA, France).
Prof. Economo and Prof. Yazaki-Sugiyama are my thesis committee members and have
helped me study in OIST. Prof. Tani and Dr. Munos were examiners of my thesis
proposal. Dr. Munos also o�ered me an excellent internship opportunity at Google
DeepMind Paris. Prof. Nic Chormaic chaired my thesis defense. Prof. Matsubara and
Dr. Scherrer read and examined my thesis.

I am thankful to my colleagues in Neural Computation Unit. Dr. Eiji Uchibe (now
at Advanced Telecommunications Research Institute International, Japan), Dr. Chris
Reinke (now at INRIA, France), and Paavo Parmas gave me invaluable advice on
my research. Ho Ching Chiu is a kind friend who often revised my manuscripts,
and I enjoyed chatting with him. I also enjoyed talking with Masakazu Taira about
neuroscience, which I used to study before. Dr. Hiroaki Hamada advised me of how to
survive PhD. Besides Neural Computation Unit members, I am grateful to Dongqi Han
in Cognitive Neurorobotics Research Unit for stimulating discussions, his cooperation
in numerical experiments of GRAPE algorithm, and last-ditch e�orts we made together
before manuscript deadlines. Also I thank my close friends: Shohei Takaoka, Osamu
Horiguchi, and Wataru Ohata. Wataru started to take me to OIST gym, and now
workout is one of my favorite hobby.

I am thankful to other OIST members too. Dr. Steven Aird edited my manuscripts.
It would be impossible to publish papers without him. People in IT section maintain
Sango cluster, which I extensively used throughout my PhD research. Particularly,
Dr. Jan Moren helped me a lot from the usage of Sango to optimizing codes.

Last but not the least, I would like to thank my parents Tsutomu and Shioko
Kozuno for mentally helping me throughout my life. My sisters Asako Terawaki and

vii

viii Acknowledgment

Aya Kozuno supported and entertained me too. My nieces, Hinano and Erino Terawaki,
have supported me a lot by their cheering smiles when I was devastated by this tough
PhD life.

Contents

Declaration of Original and Sole Authorship iii

Abstract v

Acknowledgment vii

Contents ix

List of Figures xi

List of Tables xiii

Introduction 1

1 Sequential Decision Making 5
1.1 Mathematical Notations and De�nitions 5
1.2 Markov Decision Processes . 12
1.3 Policies and Value Functions . 13
1.4 Optimal Policy and Its Existence . 15
1.5 Problem Description . 16
1.6 Approximate Dynamic Programming 16

1.6.1 Temporal Di�erence Learning 17
1.6.2 Value Iteration . 18
1.6.3 Policy Iteration . 19

1.7 Error Propagation Analysis of ATD(0) 20

2 Error-Tolerant Control via Entropy Regularized Value Iteration 27
2.1 Conservative Value Iteration . 28

2.1.1 Approximate Versions of CVI 30
2.1.2 Equivalence of ACVI-Q and Ψ 30

2.2 Error Propagation Analysis of ACVI 31
2.2.1 Regularization Agnostic Performance Bound 31
2.2.2 Tightness of Regularization Agnostic Performance Bounds . . . 35
2.2.3 Regularization Aware Performance Bounds 36

2.3 Related Research . 38

ix

x Contents

2.4 Conclusion . 40
2.5 Proofs . 41

2.5.1 Auxiliary Lemmas . 42
2.5.2 Proof of Theorems 2.2.1 and 2.2.2 44
2.5.3 Proof of Theorem 2.2.3 . 48
2.5.4 Proof of Proposition 2.2.4 . 52
2.5.5 Proof of Theorem 2.2.6 . 53

3 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator 57
3.1 Retrace and Approximate Retrace . 58

3.1.1 Error Propagation Analysis of Retrace 59
3.1.2 Retrace's Proneness to Noise . 59

3.2 Slow Learning Due to a Learning Rate 61
3.3 Gap-Increasing Operators for Policy Evaluation 62

3.3.1 Motivation for the Gap-Increasing Approach 63
3.4 Error Propagation Analysis of GRAPE and RGRAPE 64

3.4.1 Practical Implementation . 67
3.5 Numerical Experiments . 69

3.5.1 Policy Evaluation Performance Comparison in NChain 69
3.5.2 Control Performance Comparison in FrozenLake 71

3.6 Related Research . 73
3.7 Conclusion . 73
3.8 Proofs . 73

Conclusion 77

Bibliography 79

List of Figures

1 Mountain car task . 2

2.1 Convergence rates comparison of ACVI-Q and Ψ 34
2.2 The number of iterations to convergence of CVI-Q and Ψ 34
2.3 Error decay of ACVI-Q and Ψ . 35
2.4 A summary of Dynamic Programming (DP) algorithms generalized by

CVI . 39
2.5 A deterministic environment used to prove the asymptotic tightness of

the performance bounds (2.12) in Theorem 2.2.1 48

3.1 8× 8 FrozenLake. 60
3.2 DP experiments in FrozenLake . 61
3.3 Convergence rate comparison of RGRAPE and Retrace 66
3.4 Error decay of RGRAPE . 67
3.5 Policy evaluation performance of Gap-increasing RetrAce Policy Evalua-

tion (GRAPE) and Approximate Retrace with a learning rate in NChain
using various α and η . 71

3.6 Policy evaluation task performance of GRAPE and Retrace (R(λ)) with
a learning rate in NChain using various λ 71

3.7 Control task performance comparison of GRAPE and R(λ) with a learn-
ing rate in FrozenLake . 72

xi

xii List of Figures

List of Tables

2.1 A summary of algorithms using the entropy or KL divergence regular-
ization (or constraint) . 39

xiii

xiv List of Tables

Introduction

Many real-world decision making problems can be formulated as and solved by Rein-
forcement Learning (RL). To name a few, RL has been successfully applied to games
(Samuel, 1959, 1967; Mnih et al., 2015; Silver et al., 2016; alp, 2019), robotics (Kober
and Peters, 2014), aerobatic helicopter �ight (Abbeel et al., 2007), packet routing
(Boyan and Littman, 1994) and resource management (Mao et al., 2016). For detailed
history of RL and its applications, see an introductory textbook (Sutton and Barto,
2018).

Unfortunately most real-world problems cannot be exactly solved for the following
two reasons: (i) a decision must be made taking account of information typically ex-
pressed by a vector of real values (for example, joint angles in case of robot control),
whose number of possible values is in�nite; (ii) real-world problems are inherently
stochastic and di�cult to simulate, and thus, decisions need to be made by leverag-
ing past experiences of real interactions with a real system. Due to the reason (i),
solving real-world problems entails the use of function approximation. The reason (ii)
necessitates tolerance of algorithms to stochasticity of problems.

To elaborate those two reasons, consider a simple and classical benchmark RL task
called mountain car task (Moore, 1991; Sutton and Barto, 2018) shown in Figure 1.
In this task, a learner (called an agent) observes its horizontal position x and velocity
dx/dt. A pair (x, dx/dt) is called a state of the car. Depending on a state, the agent
needs to determine an action, i.e., to which direction and to what extent it accelerates
the car.

The sets of all possible (x, dx/dt) and d2x/dt2 values are called the state and action
spaces, respectively. In this case, both of them are subsets of R2 and R, respectively.
Therefore some form of function approximation is necessary to handle such huge state
and action spaces.

Although not depicted, a real-world version of this mountain car task would involve
various stochasticity due to, e.g., road, wind and weather conditions. Therefore heading
directly towards the goal from the bottom might be successful when the agent is lucky,
whereas it might not when the agent is hapless.

As a result, it is important to theoretically understand e�ects of function approx-
imation and tasks' stochasticity on performance of RL algorithms, which is the main
theme of the thesis. Particularly the emphasis is on development and theoretical anal-
ysis of e�cient RL algorithms with policy update regularizations/constraints (Azar
et al., 2012; Rawlik, 2013; Schulman et al., 2015; Fox et al., 2016; Haarnoja et al.,
2017, 2018; Abdolmaleki et al., 2018). Such algorithms have gained recent attention
because of their superior empirical performance. Nonetheless they are lacking theoret-

1

2 Introduction

Figure 1: Mountain car task (Moore, 1991; Sutton and Barto, 2018). In this task,
a learner (called an agent), shown as animals in the �gure, learns to drive an under-
powered car up a steep slope on the right hand side to reach the goal indicated by
the fruits. As the car is under-powered, it is impossible to directly climb up the right
slope. Instead the agent �rst needs to move away from the goal and up the opposite
slope on the left hand side. Then the agent can move up to the right slope by using
the gravity and applying full throttle.

ical foundation so far.
Mountain car task is a good example to highlight two major di�erences of RL from

supervised learning, by which theoretical analysis of RL is complicated and di�cult.
Firstly supervised learning is concerned with a one-shot task, while RL is with

sequential decision making tasks. For example, supervised learning considers questions
like "Is a dog in the given photo?". On the other, RL considers problems like learning
to control a system while monitoring its state. Accordingly a long term e�ect of an
action at each time step must be considered. In mountain car task, an agent �rst needs
to go away from the goal so that the agent can swing up to it using the gravity.1

Secondly a learner in supervised setting has a direct access to correct answers,
whereas an agent in RL does not. Concretely many pairs of input and desired output
are given in supervised learning, while only real values called rewards are given in RL
and needs to �nd a way to choose actions by which an agent can attain maximum
expected cumulative rewards.

Because of these di�erences, typical model-free RL algorithms utilize "backup" and
solve a RL problem as consecutive regression tasks wherein the backup is used to com-
pute an output target and is updated to it. As a result, errors in a backup cause errors
in subsequent backups, and thus, how "error propagates" through iterations needs to
be analyzed. Such analysis is called error propagation analysis and frequently used
(Munos, 2005, 2007; Farahmand, 2011; Scherrer et al., 2015; Scherrer, 2014). In the

1A similar situation frequently occurs in a real life too. For example, I have spent as long as �ve
years of my life at OIST because I believe that a PhD degree makes my future carrier fruitful. (Let
me see if it is truly fruitful using the rest of my life!)

3

thesis, error propagation analysis of various algorithms with policy update regulariza-
tions/constraints are carried out to understand properties of them.

4 Introduction

Contribution

The following list summarizes contributions of the thesis.

� Proposing a new single-stage lookahead o�-policy control algorithm, conserva-
tive value iteration, which uni�es previous algorithms such as soft Q-learning,
advantage learning and dynamic policy programming.

� Providing its error propagation analysis by which various properties of gap-
increasing and softmax operators are elucidated.

� Proposing a new multi-stage lookahead o�-policy policy evaluation algorithms,
GRAPE and its variant called RGRAPE, based on gap-increasing operators.

� Providing their error propagation analysis that elucidates their noise-tolerance
and faster convergence than the learning-rate based approach.

� Providing preliminary experimental results on GRAPE and RGRAPE that sup-
port our theoretical argument.

Chapter 1

Sequential Decision Making

This chapter lays out the mathematical foundation of Sequential Decision Making
(SDM) problems necessary to understand the thesis. For accessibility, the chapter
starts from basics of the set, topology and measure theories. Section 1.1 introduces
mathematical notations and de�nitions. Section 1.2 introduces Markov Decision Pro-
cesses (MDPs), which is the standard framework of SDM problems. Section 1.3 explains
the policy and its value functions. In RL, actions are selected according to a so-called
policy. The agent seeks for a policy that is optimal in the sense explained in Sec-
tion 1.4. In Section 1.5, we describe the setting of problems we consider in the thesis.
In Section 1.6, we explain a class of RL algorithms called Approximate Dynamic Pro-
gramming (ADP) for this problem setting. At the end of the chapter in Section 1.7,
we explain error propagation analysis, which will be used to analyze our algorithms.

1.1 Mathematical Notations and De�nitions

In RL we frequently use a �nite dimensional Euclidean space or its subset, both of
which have some structure, such as the topology. Based on their topology, we de�ne
their σ-algebra, without which we cannot perform our rigorous analysis.

This section introduces those mathematical notations related to the set, topology
and measure theories. Readers may skip this section if they are familiar with them.
This section is based on two books (Bertsekas and Shreve, 1996) and (Dudley, 2002).
Basic mathematical de�nitions are based on (Dudley, 2002), whereas some advanced
ones related to SDM are based on (Bertsekas and Shreve, 1996).

Set Notations

Sets are denoted by curly upper case English letters A,B, . . . ,Z. Collections of sets
are denoted by Fraktur upper case letters A,B, . . . ,Z. Functions and scalars are de-
noted by lowercase English and Greek alphabet letters with some exceptions to follow
conventions. (For example, value functions Qπ and V π explained later.) Operators
are denoted by bold face English and Greek alphabet letters, such as O. Suppose a
sequence of sets X1, . . .Xi. Their Cartesian product is denoted in two ways:

∏n
i=1Xi

and X1 × X2 × · · · × Xn. When X1 = · · · = Xn = X , the Cartesian product is sim-
ply denoted by X n. For subsets Y and Z of a set X , their set-theoretic di�erence is

5

6 Sequential Decision Making

Y − Z := {y ∈ Y|y /∈ Z}. The complement of Y is Yc := X − Y . The power set 2X is
the collection of all X 's subsets.

To follow mathematical convention, the set of real numbers, quotient numbers and
integers are denoted by special letters R, Q and Z, respectively. Non-negative part of
those sets are denoted by R+, Q+ and Z+, respectively. Positive part of those sets are
denoted by R++, Q++ and Z++, respectively. A set of integers {a, a+ 1, . . . , b− 1, b} is
denoted by {a : b}. The empty set is denoted by ∅. Closed and open intervals are de-
noted by [a, b] := {x|a ≤ x ≤ b, x ∈ R} and (a, b) := {x|a < x < b, x ∈ R}, respectively.
Half-open intervals are denoted by [a, b) or (a.b].

Function Notations

When we de�ne a function, we use 7→ to mean "maps to". For example, we may write
a real-valued function f(x) := x2 by f : x 7→ x2 or f : x ∈ R 7→ x2 ∈ R when we
clarify the domain and co-domain of f . When we want to clarify just a domain and
co-domain of a function, we use →. For example, for a function g whose domain is R,
and co-domain is R2, we write g : R→ R2.

Topology

The topology is the most fundamental structure that can be equipped to a set. Based
on the topology, important mathematical notions, such as the continuity and Borel
measurability of functions, are de�ned. The topology is de�ned as follows.

De�nition 1.1.1 (Topology). For a set X , its topology T is a collection of subsets of
X satisfying the following three conditions (Dudley, 2002, Section 2.1):

1. ∅ ∈ T and X ∈ T.

2. For any U ⊂ T, we have
⋃

U ∈ T.

3. For every X ∈ T and Y ∈ T, we have X
⋂
Y ∈ T.

The topological space is a pair of a set and its topology. An element in a topology is
called an open set, while complement of an open set is called a closed set. For brevity
we denote a topological space, say (X ,T), by X when the topology is clear.

Note that for a set, there may be multitude of topologies. For example, both {∅,X}
and 2X are eligible to be a topology. The former one is called the trivial topology, while
the latter the discrete topology.

Example 1.1.1 (Discrete Topology). While the trivial topology is (likely to be) useless,
the discrete topology is occasionally used. Indeed for a �nite set, the discrete topology
is usually used. For an example of the discrete topology, consider the set {1, 2, 3}. Its
discrete topology is given by {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Example 1.1.2 (One-Dimensional Euclidean Space). Consider the set R of real values
and a collection O consisting of sets that can be expressed as a union of open intervals.
Then the collection O satis�es the conditions of the topology. We usually equip R with
this topology, and call the topological space (R,O) as an (one-dimensional) Euclidean
space. We frequently denote it simply by R.

1.1 Mathematical Notations and De�nitions 7

Consider a function f from a topological space (X ,T) to another topological space
(Y ,U). It is said to be continuous when for any open setOY in U, its pre-image f−1(OY)
is in T. A topological space (X ,T) is said to be homeomorphic to a topological space
(Y ,U) if there exists a bijective mapping f from X to Y such that both f and its
inverse mapping f−1 are continuous. Such a mapping is called homeomorphism.

Suppose a sequence of sets (Xi)i∈I , where I is an index set, and each set Xi is
equipped with a topology Ti. Let X denote its Cartesian product

∏
iXi. The product

topology T of the product set X is its smallest topology such that each projection
function πi : (xi)i∈I ∈ X 7→ xi ∈ Xi is continuous. If the index set I is �nitely
countable, the product topology coincides with the smallest topology containing the
collection {

∏
iOi|Oi ∈ Ti}.

Example 1.1.3 (Finite Dimensional Euclidean Space). Consider N one-dimensional
Euclidean spaces R. For their Cartesian product RN , we usually equip it with a collec-
tion ON that is the smallest topology containing {

∏
iOi|Oi ∈ O, i = 1, . . . , N} with O

being the topology of R. We call the topological space
(
RN ,ON

)
as an (N-dimensional

or a �nite dimensional) Euclidean space. As is the case with an one-dimensional Eu-
clidean space, we often denote

(
RN ,ON

)
by RN .

For a subset QN of RN , its closure (the smallest closed set containing it) is again
RN . Note that QN is a countable set. Separability means this property of a topological
space that there is a countable set whose closure covers the entire set. Such a countable
set is said to be dense. The �nite dimensional Euclidean space is separable. As we
explain later, it is also complete and metrizable.

For some types of sets, there are natural topologies. A �nite set is usually equipped
with its discrete topology. For a subset Y of a set X , the collection {Y

⋂
O|O ∈ T}

with T being X 's topology can be a topology of the subset Y . Such a topology is
called the relative topology. A subset of a topological space is usually equipped with a
relative topology. A Cartesian product of sets is equipped with a product topology, as
in Example 1.1.3.

Metrics and Norms

The metric is a function that measures distance between two points. While the metric
is not frequently used in RL, we need it for stating some theoretical results. The metric
is de�ned as follows. (As in the case of the topological space, we denote the metric
space (X , d) by X when the metric is clear.)

De�nition 1.1.2 (Metric). A metric space is a pair (X , d) of a set X and a metric
d : X ×X → R+, which satis�es the following conditions (Dudley, 2002, Section 2.1):

1. For all x ∈ X and y ∈ X , d(x, y) = 0 if and only if x = y.

2. For all x ∈ X and y ∈ X , d(x, y) = d(y, x).

3. For all x, y and z in X , d(x, z) ≤ d(x, y) + d(y, z).

Given a metric d over a set X and a positive real value ε > 0, an open ball is the
set Bε(x) := {y ∈ X |d(x, y) < ε}. The collection of all open balls B := {Bε(x)|x ∈

8 Sequential Decision Making

X , ε ∈ R++} becomes a base for the topology {
⋃
A|A ⊂ B}. Such a topology is said

to be induced (or generated) by the metric d. A metric space is usually equipped with
a topology induced by its metric.

A topological space is said to be metrizable if there exists a metric such that a
topology induced by the metric is consistent with the original topology. Note that
a metrizable space is distinct from a metric space: a choice of a metric is open in
metrizable space, whereas a metric is already determined in a metric space.

Example 1.1.4 (Finite Dimensional Euclidean Space De�ned Through the Euclidean
Distance). For an N-dimensional Euclidean space RN , the Euclidean norm

‖x‖2 :=
√
x2

1 + x2
2 + · · ·+ x2

N−1 + x2
N

and the Euclidean distance d2(x, y) := ‖x−y‖2 are usually used. Recall that we de�ned
a �nite dimensional Euclidean space RN as in Example 1.1.3. While the Euclidean
space is frequently de�ned as the metric space

(
RN , d2

)
, it can be shown that both

de�nitions are consistent. In other words, the Euclidean space is metrizable by d2. For
the Euclidean space, we usually equip it with d2.

A metric space is said to be complete if any Cauchy sequence converges to a point in
the space. Many spaces in the thesis are complete. An example of a non-complete space
is Q equipped with the Euclidean distance. (Consider a Cauchy sequence (Si|i ∈ Z++)
consisting of i leading digits of

√
2 converges to

√
2, but it is not in Q.)

The norm is a function that measures the length of a vector. It is de�ned as follows.
(As usual, we denote the normed vector space (X , ‖ · ‖) by X when the norm is clear.)

De�nition 1.1.3 (Norm). Suppose a vector space X over a �eld R. The norm over
the vector space is a non-negative function ‖ · ‖ : X → R+ satisfying the following
conditions (Dudley, 2002, Section 5.1):

1. For any x ∈ X and a real value c ∈ R, ‖cx‖ = |c| ‖x‖.

2. For any x ∈ X and y ∈ X , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

3. For any x ∈ X , ‖x‖ = 0 if and only if x = 0.

If the last condition is not satis�ed, ‖·‖ is called a seminorm. A normed vector space
is the pair (X , ‖ · ‖).

We note that a norm ‖ · ‖ induces a metric d(x, y) := ‖x− y‖. Therefore the norm
and the metric are the almost same object.

σ-algebra, Measures and Measurable Functions

The measure is a real-valued function over a collection of sets. It measures the "area"
of a set and is used as the foundation of integral and probability theory. It is de�ned
as follows. (As is the case with other types of spaces, we denote the measurable (or
measure) space by X when its σ-algebra and/or measure is clear.)

1.1 Mathematical Notations and De�nitions 9

De�nition 1.1.4 (Measurable Space and Measure). A measurable space is a pair
(X ,A) of a set X and its σ-algebra A ⊂ 2X , which satis�es the following conditions
(Dudley, 2002, Section 3.1):

1. ∅ ∈ A and X ∈ A.

2. For any countable collection C of subsets in A, we have
⋃
C ∈ A.

3. For every X ∈ A and Y ∈ A, we have X − Y ∈ A.

A member of A is called a measurable set. A measure space is the triplet (X ,A, µ),
where µ : A→ R+ is a measure, which satis�es the following conditions (Dudley, 2002,
Section 3.1):

1. µ(∅) = 0.

2. For any measurable setM, we have µ(M) ≥ 0.

3. For any countable collection C = {Mi} of disjoint measurable setsMi, we have
µ(
⋃
C) =

∑
i µ(Mi).

A probability measure is a special measure satisfying µ(X) = 1. The sets of all
measures and probability measures over the measurable space (X ,A) are denoted by
M(X) and P(X), respectively.

For a topological space (X ,T), the Borel σ-algebra is a σ-algebra generated from
T, i.e., the smallest σ-algebra containing the topology T. (Concretely it is a collection
of subsets of X obtained by a countable number of union, intersection and complement
operations.) A σ-algebra of a topological space is usually assumed to be a Borel σ-
algebra. A Borel σ-algebra of a topological space is denoted by B(X ,T) or B(X) when
the topology is clear.

As noted before, a Cartesian product of �nitely many sets is usually equipped
with its product topology. Such a Cartesian product is usually equipped with a Borel
σ-algebra generated from the product topology.

A measurable function f : (X ,A) → (Y ,B) is a function such that for any mea-
surable subset B ∈ B, its pre-image f−1(B) ∈ A. To be precise, f is sometime said to
be (A,B)-measurable. When both σ-algebras are Borel σ-algebras, f is simply called
a Borel-measurable function.

Example 1.1.5 (Examples of Measurable Functions). Consider a real-valued function
f : RN → R. Note that its domain and co-domain are �nite dimensional Euclidean
spaces, and thus, their natural σ-algebras are the smallest σ-algebras containing the
topologies of RN and R, i.e., Borel σ-algebras.

If the function f is continuous, it is measurable too. (Readers might be able to
see that the measurability is indeed an extension of the continuity: the de�nition of the
measurability can be obtained by replacing the topology in the de�nition of the continuity
with the σ-algebra.)

Another class of measurable functions is semi-continuous functions. In RL, lower
semi-continuous functions sometimes appear.1 A notable property of the lower semi-
continuous function is that its partial supremization, that is, supxi f(x1, . . . , xN) over

1A function f : RN → R is lower semi-continuous if and only if
{
(f(x), x)

∣∣x ∈ RN
}
is closed.

10 Sequential Decision Making

one input variable xi, is again a lower semi-continuous function. In RL, such a partial
supremization plays an important role to prove the existence of an optimal policy.

Let (X ,A) be a measurable space. Consider two measures µ and ν on it. The
measure ν is said to be absolutely continuous with respect to the another measure µ
(written as ν ≺ µ) if µ(A) = 0 implies ν(A) = 0 for any measurable set A ∈ A. A
σ-�nite measure ρ is a measure such that there exists a sequence of subsets (Ai)i∈Z++

such that its union covers the original set X while ρ(Ai) < ∞ for each subset. If the
measure satis�es ρ(X) <∞, it is said to be �nite.

Regarding absolute continuity of measures, the following theorem from (Dudley,
2002) are important. (The de�nition of L1(X ,A, µ) will be given later.) We provide it
here, but for readability we repeatedly present it in later chapters when needed.

Theorem 1.1.1 (Radon-Nykodim Derivative). On the measurable space (X ,A) let µ
be a σ-�nite measure. Let ν be a �nite measure, absolutely continuous with respect to
µ. Then for some h ∈ L1(X ,A, µ), ν(E) =

∫
E h(x)µ(dx) for all E in A.

The function h in Theorem 1.1.1 is called the Radon-Nykodim derivative of ν with
respect to µ and denoted by ν/µ. Note that probability measures are always �nite,
and thus, the absolute continuity only matters for the existence of the Radon-Nykodim
derivative.

Example 1.1.6 (Example of Radon-Nykodim Derivative). Although the de�nition of
the Radon-Nykodim derivative looks intimidating, it can be understood as a measure-
theoretic version of the importance sampling ratio. Consider a �nite set {1 :N} and two
measures µ, ν over it. The absolute continuity, ν ≺ µ, means that µ(i) = 0⇒ ν(i) = 0

for any i. Thus for any set S of integers between 1 to N , ν(S) =
∑

j∈S,µ(j)6=0
ν(j)
µ(j)

µ(j),

and hence, ν(·)
µ(·) is the Radon-Nykodim derivative of ν with respect to µ.

Function Spaces and Norms of Functions

Suppose two real-valued functions f, g : X → R. Addition f + g of the two functions
is de�ned such that (f + g)(x) = f(x) + g(x) for any point x ∈ X . Negation −g of
the function g is de�ned such that (−g)(x) := −g(x). Addition of f and −g is simply
denoted by f − g. Multiplication of a scalar c ∈ R and the function f is denoted by
cf and de�ned by (cf)(x) = f(x).

Suppose a topological space X . The set of all continuous functions from X to R
is denoted by C(X). The set of all bounded Borel-measurable real-valued functions
is denoted by B(X). For a positive real value L ∈ R++, its subset consisting of all
functions bounded by L is denoted by B(X , L).

For a bounded measurable function f : X → R, L∞-norm is de�ned by ‖f‖∞ :=
supx |f(x)|. Suppose a measure space (X ,A, µ) and a real value p ∈ [1,∞). A set of
functions Lp(X ,A, µ) is the set of all measurable functions, say f , such that its integral
I :=

∫
X |f(x)|p µ(dx) is �nite. The space is usually equipped with Lp(X ,A, µ)-norm

de�ned by ‖f‖p,µ := I1/p, and it is called Lp(X ,A, µ) space. When the measurable

space is clear, Lp(X ,A, µ)-norm is simply denoted as Lp(µ)-norm.2

2Precisely speaking, Lp(µ)-norm is a seminorm because ‖f‖p,µ = 0 may not imply f(x) = 0. For

1.1 Mathematical Notations and De�nitions 11

Operators and Arithmetic Operations with Operators

Suppose two normed vector spaces of functions over a �eld R. An operator is a mapping
from one of the vector space to the other. An operator o is said to be linear if o(f+g) =
of + og for any functions f and g. A linear operator o from a normed function space
(X , |·|) to another normed function space (Y , ‖·‖) is continuous if and only if its operator
norm ‖o‖op := supf∈X ‖of‖ / |f | is �nite.

For an operator o from a normed vector space (X , | · |) to another normed vector
space (Y , ‖ · ‖) and a scalar c ∈ R, multiplication of c and o is de�ned as an operator
co such that co : f 7→ c (of). For an operator o from a normed vector space (X , | · |)
to itself and a positive integer n ∈ Z++, an operator on is recursively de�ned as
on : f 7→ o(on−1f), i.e., applications of the same operator for n times. Suppose two
operators o1 and o2. Their addition o1 + o2 and multiplication o1o2 are de�ned as
o1 + o2 : f 7→ o1f + o2f and o1o2 : f 7→ o1(o2f), respectively. (Their domains and
co-domains must be appropriately de�ned accordingly.)

Example 1.1.7 (Di�erentiation as an Operator). When X is the set of all in�nitely
di�erentiable functions from R to R, d

dx
is an operator from (X , | · |) to itself de�ned

by

d

dx
: f ∈ X 7→

d

dx
f ∈ X such that ∀y ∈ R,

(
d

dx
f

)
(y) =

df

dx
(y).

It can be applied in�nitely many times, and its n-th power is given by(
d

dx

)n
: f 7→

(
d

dx

)n
f such that ∀y ∈ R,

[(
d

dx

)n
f

]
(y) =

dnf

dxn
(y).

This operator is also linear.

Suppose an operator o from a normed vector space (X , | · |) to itself. The operator
o is said to be a contraction mapping with modulus L ∈ [0, 1) if for any functions f
and g in the set X , |of − og| ≤ L|f − g| holds. Banach's �xed point theorem states
that there is a unique �xed point for any operator that is a contraction mapping. If
the operator o is linear and a contraction mapping, a Neumann series (I − o)−1 of o
is well-de�ned and given by (I − o)−1 :=

∑∞
i=0 o

i. As the notation implies, it satis�es
that (I − o)−1 (I − o) = (I − o) (I − o)−1 = I.

Borel Spaces and Borel-Stochastic Kernels

A topological space X is said to be a Borel space if it is homeomorphic to a Borel subset
B ∈ B(Y) of a complete separable metric space Y (Bertsekas and Shreve, 1996). Many
spaces in the thesis are Borel spaces. For example, Rn is a complete separable metric
space homeomorphic to itself. Because compact Borel-measurable subsets of a complete

example, suppose that µ is a discrete probability measure whose support is a set Y. Then ‖f‖p,µ = 0
holds as long as f(t) = 0 for all points t in the support Y. To solve this issue, the quotient set of
Lp(µ) by equivalence f ∼ g ⇐⇒ ‖f − g‖p,µ = 0 with Lp(µ)-norm is considered instead of Lp(X ,A, µ)
space. However this subtlety is not important to the discussion of the thesis, and thus, it is ignored.

12 Sequential Decision Making

separable metric space are complete and separable by Corollary 7.6.2 of Bertsekas and
Shreve (1996), they are Borel spaces. Thus the state and action spaces X ,A (explained
later), both of which are compact subsets of �nite dimensional Euclidean spaces, are
Borel spaces. Furthermore, a Cartesian product of two Borel spaces is again a Borel
space with its product topology by Proposition 7.13 of Bertsekas and Shreve (1996).
Therefore, X ×A is a Borel space too.

Suppose two Borel spaces X and Y equipped with Borel σ-algebras. A stochastic
kernel p on Y given X is a function from X to P(Y). A probability measure obtained
by mapping x ∈ X with p is denoted by p(·|x).

Suppose a stochastic kernel p on Y given X . It is said to be Borel-measurable
if and only if for any Borel-measurable function f : X → Y , a function x ∈ X 7→∫
Z f(y)p(dy|x) is Borel-measurable for every Z ∈ B(Y). (This can be relatively easily
proven based on Proposition 7.26 of (Bertsekas and Shreve, 1996) and the de�nition
of Lebesgue integration.) In other words, it preserve Borel-measurability of functions.
This property is important to de�ne value functions in Section 1.3.

1.2 Markov Decision Processes

In this section, we introduce Markov Decesion Process (MDP), a mathematical frame-
work for SDM problems. De�nition of MDPs varies depending on a problem setting
at hand (Puterman, 1994; Bertsekas and Shreve, 1996; Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 2018). Since only the in�nite-time horizon discounted MDP is con-
sidered in the thesis, we introduce it here. We shall simply call it an MDP. We impose
several assumptions on MDPs to mainly ensure the existence of an optimal policy.
They are summarized at the end of this section.

De�nition 1.2.1 (Markov Decision Process). An MDP is a tuple (X ,A, T, ρ0, γ). X
is the state space assumed to be either a countable or compact subset of a �nite dimen-
sional Euclidean space. A is the action space assumed to be a �nite set {1, 2, . . . , |A|}.
The transition kernel T : X ×A → P(X × R) is a Borel-measurable stochastic kernel
on X × R given X × A. ρ0 is a probability measure over X de�ning an initial state
distribution. The discount factor γ ∈ [0, 1) is a positive real value used to discount
future rewards.

The components of the MDP are understood as follows: �rst, an agent is placed to
a state X0 ∈ X sampled from ρ0. The agent reacts to it by executing an action A0 ∈ A
sampled from a policy π(·|X0) (explained later). Then state transition to a subsequent
state X1 with an immediate reward R1 occurs such that the pair (X1, R0) is sampled
from T (·|X0, A0). The agent again reacts to the new state X1 by executing an action
A1 ∼ π(·|X1) followed by state transition to a new state X2 with an immediate reward
R1. This process is continued forever.3

The transition kernel T is inconvenient for theoretical analysis. Instead its marginal
called the state transition probability kernel and the expected reward function are
frequently used.

3In practice the state is reset to X ′
0 ∼ ρ0 after some time steps. More practical setting is explained

later in Section 1.5.

1.3 Policies and Value Functions 13

De�nition 1.2.2 (State Transition Probability Kernel and Expected Reward Func-
tion). From Corollary 7.27.1 of Bertsekas and Shreve (1996), T can be decomposed to
two Borel-measurable stochastic kernels R : X×A×X → P(R) and P : X×A → P(X)
such that

T (Y × B|x, a) =

∫
Y
R(B|x, a, y)P (dy|x, a)

holds for any Y ∈ B(X) and B ∈ B(R). We call R(·|x, a, y) and P (·|x, a) reward
and state transition probability kernels, respectively. The (expected) reward function is
de�ned by

r(x, a) :=

∫
Y
ρR(dρ|x, a, y)P (dy|x, a),

which is guaranteed to be Borel-measurable by Proposition 7.29 of Bertsekas and Shreve
(1996). We assume r to be bounded by a positive real value rmax ∈ R++.

Here is a list of assumptions imposed on MDPs.

Assumption 1.2.1 (Assumptions on MDPs). The following assumptions are imposed
on MDPs.

� The state space X is either a countable or compact subset of a �nite dimensional
Euclidean space.

� The action space A is a �nite set {1, 2, . . . , |A|}.

� The transition kernel T : X ×A → P(X × R) is Borel-measurable.

� The reward function r : X ×A → R is a Borel-measurable function bounded by a
positive real value rmax ∈ R++

The assumption of the action space can be relaxed: if the reward function is a
lower semi-continuous, the action space can be a compact subset of a �nite dimensional
Euclidean space. For details, see Puterman (1994).

1.3 Policies and Value Functions

An agent chooses actions according to a policy, which is a stochastic kernel on A given
X . When actions are selected according to a policy, we say that the policy is followed.
Value functions of a policy are expected cumulative discounted rewards when it is
followed, and they play important roles in de�ning the optimality of a policy as well
as learning an optimal policy. We explain them more concretely in this section.

The policy is de�ned as follows.

De�nition 1.3.1 (Policy). The policy is a Borel-measurable stochastic kernel on A
given X . Given a policy π and a state x ∈ X , an agent chooses action a ∼ π(·|x).
When an agent is selecting actions according to a policy, an agent is said to be following
the policy.

14 Sequential Decision Making

Let P be a linear operator such that (PV) (x, a) =
∫
X V (y)P (dy|x, a) for any

function V in B(X). (Recall that P is the state transition probability kernel.) For a
policy π, let π be a linear operator such that (πQ) (x) =

∫
AQ(x, a)π(da|x) for any

function Q in B(X ×A). Let P π denote an operator Pπ. The Bellman operator Bπ

for a policy π is an operator Q 7→ r + γP πQ. Note that PV , P πQ and BπQ are
Borel-measurable.

Consider two functions Q1 and Q2 in B(X ×A, L) bounded by a positive real value
L ∈ R++. It follows that BπQ1 − BπQ2 = γ (PπQ1 − PπQ2). Therefore Jensen's
inequality and de�nition of sup imply that

‖BπQ1 −BπQ2‖∞ = γ sup
(x,a)∈X×A

∣∣∣∣∫
X×A

Q1(y, b)−Q2(y, b)π(db|y)P (dy|x, a)

∣∣∣∣
≤ γ

∫
X×A

sup
(y,b)∈X×A

|Q1(y, b)−Q2(y, b)|π(db|y)P (dy|x, a)

= γ ‖Q1 −Q2‖∞ .

In other words, Bπ is a contraction mapping. Accordingly from Banach's �xed point
theorem, there exists a unique �xed point qπ obtained as a limit of Qn := BπQn−1,
where an initial function Q0 is an arbitrary function in B(X ×A, L). By induction, one
can deduce that Qn =

∑n
m=0 γ

m (P π)m r + γn+1 (P π)n+1Q. As the �xed point plays
an important role in RL, we formally de�ne it.

De�nition 1.3.2 (Value and Advantage Function). Suppose a policy π. A function
Qπ :=

∑∞
t=0 γ

t (P π)t r is called the Q-value function for the policy π. A similar function
Vπ := π

(∑∞
t=0 γ

t (P π)t r
)
is called the state-value function. They are collectively called

as value functions. The advantage function Aπ is de�ned by Aπ := Qπ − Vπ.

As the expected reward function is bounded by rmax, value functions are bounded by
Vmax := rmax/(1− γ). Note that value and advantage functions are Borel-measurable.
Indeed the Q-value function Qπ is a limit of a sequence of Borel-measurable functions,
and thus, it belongs to B(X ×A). The state value function Vπ and advantage function
Aπ also clearly belong to B(X ×A) too.

The de�nitions of value functions seem to be di�erent from the standard ones

Qπ(x, a) := Eπ
[
∞∑
t=0

γtr(Xt, At)

∣∣∣∣∣X0 = x,A0 = a

]
and Vπ(x) :=

∫
A
Qπ(x, a)π(da|x),

where the superscript π of Eπ indicates that π is followed, and Xt and At are a state
and action at time t, respectively. Those de�nitions turn out to be equivalent to ours.

We �rst see the meaning of Eπ above. Suppose a policy π and a probability measure
ρ over X × A. Proposition 7.28 of Bertsekas and Shreve (1996) states that there is a
unique probability measure ρT over (X ×A)T+1 such that

ρT (Y0,B0, . . . ,YT ,BT)

=

∫
B0

∫
Y0
· · ·
∫
BT

∫
YT
f(x0, a0, . . . , xT , aT)

T∏
t=1

π(dat|xt)P (dxt|xt−1, at−1)ρ(d(x0a0))

1.4 Optimal Policy and Its Existence 15

for any Borel-measurable function f and Borel-measurable subsets Yt ∈ B(X),Bt ∈
B(A). ρT describes the probability that a short trajectory (X0, A0, . . . , XT , AT) is in
the set Y0×B0×· · ·×YT ×BT . Proposition 7.28 of Bertsekas and Shreve (1996) indeed
states a stronger result that T can be taken to ∞ such that ρT (Y0,B0, . . . ,YT ,BT) =
ρ∞ (Y0,B0, . . . ,YT ,BT ,X ,A, . . .).

Now assume that ρ is concentrated to a state-action pair (x, a). Let ST denote
expected cumulative rewards Eπ[

∑T
t=0 γ

tr(Xt, At)|X0 = x,A0 = a] by time T . Then
we have that

ST =

∫
A×X×···A×X

T∑
t=0

γtr(Xt, At)ρT (d(x0a0 · · ·xTaT))

=

∫
A

∫
X
· · ·
∫
A

∫
X

T∑
t=0

γtr(Xt, At)
T∏
t=1

π(dat|xt)P (dxt|xt−1, at−1)

=
T∑
t=0

γt
[
(P π)tr

]
(x, a).

Note that Eπ[limT→∞
∑T

t=0 γ
tr(Xt, At)|X0 = x,A0 = a] is uniformly bounded from

below and above by ST−γT+1Vmax and ST+γT+1Vmax for any T , respectively. Therefore
by Lebesgue's dominated convergence theorem,

Eπ
[

lim
T→∞

T∑
t=0

γtr(Xt, At)|X0 = x,A0 = a

]
= lim

T→∞

T∑
t=0

γt
[
(P π)tr

]
(x, a).

1.4 Optimal Policy and Its Existence

An agent aims at �nding a policy that leads to the maximum expected cumulative
discounted rewards. Such a policy is called an optimal policy and is explained here in
more details.

The max operatorm is de�ned as an operator such that (mQ) (x) := maxa∈AQ(x, a)
for any function Q in B(X × A). The function mQ is Borel-measurable.4 The Bell-
man optimality operator B is de�ned as an operator Q 7→ r + γPmQ. The Bellman
operator is also a contraction mapping, and thus, there exists a unique �xed point Q∗.

We now con�rm that Q∗ ≥ Qπ for any policy π. To this end, note that Bf ≤ Bg
holds for any two functions f and g in B(X×A) satisfying f ≤ g. This property is called
monotonicity. By combining the monotonicity with a fact that BQπ ≥ BπQπ = Qπ,
we deduce that Q∗ = limi→∞ (B)iQπ ≥ Qπ.

Let π∗ be a greedy policy with respect to Q∗, that is,

π∗(a|x) =

{
1 if a = arg maxb∈AQ∗(x, a)

0 otherwise
.

4This is because the action space is �nite. However mQ may not be Borel-measurable when the
action space is not �nite. When the action space is continuous, we need to restrict the space of
functions we consider.

16 Sequential Decision Making

(If there are several maximizers, choose one of them by a prescribed manner.) Clearly,
a Bellman operator Bπ∗ : Q 7→ r+ γPπ∗Q for a policy π∗ has a �xed point Q∗, which
is the Q-value function of the policy π∗. Therefore the policy π∗ is optimal in the sense
that it leads to the maximum amount of expected cumulative rewards. We formally
state the de�nition.

De�nition 1.4.1 (Optimal Policy and Optimal Value Functions). The optimal policy
π∗ is de�ned as a policy for which Qπ∗ ≥ Qπ holds for any policy π. The Q-value
function of the optimal policy is called the optimal Q-value function, which is simply
denoted as Q∗. The optimal state-value function V∗ and advantage function A∗ are
similarly de�ned as the state value function and advantage function of the optimal
policy. The aim of the agent is to �nd the optimal policy π∗.

One may conjecture that it would be possible to obtain more expected cumulative
rewards than those obtained by the optimal policy by using a non-stationary policy.
However, it is not the case (Puterman, 1994; Bertsekas and Shreve, 1996). That is
the reason why almost all RL algorithms are concerned only with stationary policies,
which only depend on a current state.

1.5 Problem Description

In this section, we explain a problem setting we consider in the thesis.
In the explanation of MDPs, we stated that an agent interacts with an MDP forever.

However in practice, the interaction is divided into several blocks called episodes; at
the beginning of an episode, an agent is placed to X0 ∼ ρ0; after several time steps H
or state transition to a special state called a terminal state, the episode ends, and a
new one starts.

In recent algorithms, an agent is often equipped with a bu�er to which a tuple
(x, a, r, y, π, d) - a state, action, reward, subsequent state, probability of the action
(optional), and binary value with 1 indicating that y is a terminal state - is constantly
appended, as an agent gets new data (experience). When the bu�er is full, the oldest
tuple at the beginning is removed, and a new one is appended to the end. It returns
samples when queried. Values and/or policy updates are carried out using samples
from the bu�er.

Taking those situations into account, we consider a problem setting wherein an
agent interacts with an environment while storing data, updating value estimate, and
improving a policy as in Algorithm 1. In Section 1.6, we explain algorithms for solving
this kind of problems.

1.6 Approximate Dynamic Programming

The problem, whose setting is given in Section 1.5, can be approximately solved by
Approximate Dynamic Programming (ADP), an approximate version of DP. In this
section, we explain three classical and basic DP as well as their ADP versions because
they are highly related to our algorithms.

1.6 Approximate Dynamic Programming 17

Algorithm 1 Problem Setting

Require: A bu�er D, horizon H, total time steps T , value update frequency fv ∈ Z++,
policy update frequency fp ∈ Z++, and a sequence of behavior policies (µi)i∈Z+ ,
which may be dependent on policies πi learned through the interaction with the
environment.

1: Initialize an initial function Q0 ∈ B(X ×A), policy π0, policy update counter i← 0
and episode step counter h← 0.

2: Sample an initial state x0 ∼ ρ0.
3: for t from 0 to T do
4: Execute an action at ∼ µi(·|xt).
5: Observe a next state and reward (yt, rt) ∼ T (·|xt, at).
6: Set dt to 0 if yt is not a terminal state otherwise 1.
7: Discard the �rst data in D if it is full.
8: Append (xt, at, yt, rt, µj(at|xt), dt) to the end of the bu�er D.
9: if dt = 1 or h+ 1 ≡ 0 (mod H) then
10: Reset xt+1 ∼ ρ0 and h← 0.
11: else
12: Update xt+1 ← yt and h← h+ 1.
13: end if
14: if t+ 1 ≡ 0 (mod fv) then
15: Update Qi ← QUpdate(Qi, πi,D′) using samples D′ from D if needed.
16: end if
17: if t+ 1 ≡ 0 (mod fp) then
18: Update πi+1 ← PolicyUpdate(Qi, πi,D′) using samples D′ from D if needed.
19: i← i+ 1.
20: end if
21: end for
22: return πi.

1.6.1 Temporal Di�erence Learning

A crucial component of Policy Iteration (PI) and Actor-Critic (AC) is policy evaluation,
i.e., computation of Q-value or advantage functions (QUpdate in Algorithm 1).

Arguably the most famous policy evaluation algorithm is online Temporal Di�er-
ence Learning (λ) (TD(λ)) (Sutton and Barto, 2018), which is an online stochastic
approximation of an algorithm having the following abstract DP-style update rule

Qi+1 := Qi + (I − γλP π)−1 (BπQi −Qi) ,

where λ is a �xed positive real value in a closed interval [0, 1]. It can be shown that the
sequence (Qi)i∈Z+

uniformly converges to Qπ. While this algorithm is a DP-version of
online TD(λ), we also call this algorithm TD(λ). When we refer to the online one, we
call it online TD(λ).

TD(λ) is feasible only when (i) the state and action spaces are �nite and su�ciently
small so that functions Qi can be expressed by a �nite dimensional vector (often called
a table), and (ii) BπiQi can be exactly computed.

18 Sequential Decision Making

Algorithm 2 Approximate TD(0)

Require: An initial function Q0 ∈ B(X ×A), a target policy π, the number of itera-
tions i ∈ Z++, series of function classes (Fj)j∈[1:i],Fj ⊂ B(X ×A), sample distribu-
tions (µj)j∈[0:i−1], µj ∈ P(X ×A) and numbers of samples (Nj)j∈[0:i−1], Nj ∈ Z++.
for j from 0 to i− 1 do
Sample (xn, an, rn, yn)n∈[1:Nj] such that (xn, an) ∼ µj, (rn, yn) ∼ T (·, ·|xn, an).

Qj+1 ← arg min
Q∈Fj+1

Nj∑
n=1

(
rn + γ

∑
bn∈A

π(bn|yn)Qj(yn, bn)−Q(xn, an)

)2

end for
return Qi.

The conditions (i) and (ii) are too demanding. Approximate TD(λ) is literally an
approximation of TD(λ) and has the following abstract update rule

Qi+1 := Qi + (I − γλP π)−1 (BπQi −Qi) + εi, (1.1)

where an error function εi ∈ B(X ×A) abstractly expresses value update errors due to
function approximation and �nite sample estimation. Although this algorithm is called
Approximate TD(λ) (ATD(λ)), we frequently omit the quali�er "approximate" keeping
in mind that we are mainly interested in approximate versions of DP algorithm.

In Algorithm 2, an example implementation of ATD(λ) with λ = 0 is shown. The
algorithm is more abstract than Algorithm 1 because some objects, such as µj, are not
speci�ed. One can regard µj as approximate distribution of the bu�er D in Algorithm 1
at j-th value update.

1.6.2 Value Iteration

The description of an optimal policy π∗ in Section 1.4 suggests an algorithm with the
following abstract update rule:

πi ∈ G(Qi) and Qi+1 := BπiQi

where i starts from 0 with an initial function Q0 in B(X ×A), and πi ∈ G(Qi) means
that πi is chosen from the set G(Qi) of all greedy policies with respect to Qi. This
algorithm is called Value Iteration (VI).

Approximate Value Iteration (AVI) (Bertsekas and Tsitsiklis, 1996; Munos, 2005,
2007), occasionally referred to as di�erent names such as �tted Q-iteration, is an ap-
proximated version of VI. Its implementation is shown in Algorithm 3. Its update can
be abstractly described as

πi ∈ G(Qi) and Qi+1 := BπiQi + εi,

where εi ∈ B(X ×A) is an error function.
There are some theoretical results on AVI such as error propagation analysis (Bert-

sekas and Tsitsiklis, 1996; Munos, 2005, 2007; Farahmand, 2011; Scherrer et al., 2015)

1.6 Approximate Dynamic Programming 19

Algorithm 3 Approximate Value Iteration (AVI)

Require: Number of iterations i ∈ Z++, series of function classes (Fj)j∈[1:i],Fj ⊂
B(X ×A), sample distributions (µj)j∈[0:i−1], µj ∈ P(X ×A) and numbers of samples
(Nj)j∈[0:j−1], Nj ∈ Z++.
Initialize an initial function Q0 ∈ B(X ×A).
for j from 0 to i− 1 do
Update πj to a greedy policy with respect to Qj.
Sample (xn, an, rn, yn)n∈[1:Nj] such that (xn, an) ∼ µj, (rn, yn) ∼ T (·, ·|xn, an).

Qj+1 ← arg min
Q∈Fj+1

Nj∑
n=1

(
rn + γmax

bn∈A
Qj(yn, bn)−Q(xn, an)

)2

end for
Update πi to a greedy policy with respect to Qi.
return Qi, πi.

and PAC-bound like performance guarantee (Farahmand, 2011; Scherrer et al., 2015),
the latter of which is based on the former. The error propagation analysis, however,
shows that AVI is not robust to value update errors. In the following chapters, error
propagation analysis of more general algorithms (CVI) is carried out. AVI's proneness
to errors are discussed in detail by comparing AVI to the general algorithms.

1.6.3 Policy Iteration

An alternative to VI is PI (Bertsekas and Tsitsiklis, 1996). Its abstract update rule is
the following:

πi ∈ G(Qi) and Qi+1 := Qπi ,

where i starts from 0 with an initial function Q0 in B(X ×A). Note that the Q-value
function Qπi can be estimated by ATD(λ), but any policy evaluation algorithm, such
as Gap-increasing RetrAce Policy Evaluation (GRAPE) in Chapter 3, is available.

An approximated version of PI is Approximate Policy Iteration (API) whose ab-
stract update is the following:

πi ∈ G(Qi) and Qi+1 := Qπi + εi.

There are several variants of PI (Kakade and Langford, 2002; Scherrer, 2014; Schul-
man et al., 2015; Abdolmaleki et al., 2018). In the following chapters, they are discussed
in detail by contrasting di�erence between our algorithms and them. We brie�y men-
tion that PI has the almost same error bound as that of VI, and thus, PI is prone to
errors.

20 Sequential Decision Making

1.7 Error Propagation Analysis of ATD(0)

In later chapters, we carry out theoretical analysis of various algorithms using a tech-
nique called error propagation analysis. For example, due to εi in Equation (1.1),
‖Qπ −Qi‖p,ρ may not converge to zero, and it is important to analyze how ‖Qπ −Qi‖p,ρ
is related to ‖εi‖q,µi . To this end, error propagation analysis is frequently used. As it
is easy for ATD(λ) with λ = 0 while capturing its some important steps, we perform
error propagation analysis of ATD(λ) with λ = 0 in this section.

For error propagation analysis, we try to establish an upper bound of, for example,
Lp(ρ)-norm of Qπ − Qi using L

q(µj)-norm of εj. Note that di�erent probability mea-
sures are used in those norms. Allowing di�erent probability measures is important
because data distribution µj and evaluation distribution ρ are in many cases di�er-
ent. For instance, ρ is frequently an initial state-action pair distribution, whereas µj
is a distribution of data obtained by following a some exploratory policy. In order to
correct this discrepancy, concentrability coe�cients are necessary (Munos, 2005, 2007;
Farahmand, 2011; Scherrer et al., 2015).

For a policy π and a probability measure ρ over X × A, let ρPπ be a probability
measure over X ×A de�ned by

ρPπ (Y ,B) =

∫
X×A

∫
Y
π (B|x1)P (dx1|x0, a0) ρ (d(x0a0)) ,

where B and Y are Borel-measurable subsets in B(A) and B(X), respectively. In
words, ρPπ is an expected state-action probability measure at time T = 1 taking an
action A0 at an initial state X0 sampled as (X0, A0) ∼ ρ. For a sequence of policies
(πt)t∈[0:T], a probability measure ρPπ0 · · ·PπT over X ×A can be recursively de�ned as

ρPπ0 · · ·PπT :=
(
ρPπ0 · · ·PπT−1

)
PπT , (1.2)

Concentrability coe�cients are de�ned as follows.

De�nition 1.7.1 (Concentrability Coe�cients). For a sequence of policies (πt)t∈[0:T]

and probability measures ρ and µ over X×A, let ρPπ0 · · ·PπT ∈ P(X×A) be an expected
state-action probability measure at time T de�ned in Equation (1.2). A concentrability
coe�cient c(p, ρ, µ; π0, . . . , πT) is de�ned as

c(p, ρ, µ; π0, . . . , πT) :=


∥∥∥∥ρPπ0 · · ·PπTµ

∥∥∥∥
p,µ

if ρPπ0 · · ·PπT ≺ µ

∞ otherwise

, (1.3)

where p ∈ [1,∞).

As we explained in Example 1.1.6, the Radon-Nykodim derivative is the (function
of) importance sampling ratio. Accordingly the concentrability coe�cient is the norm
of the importance sampling ratio (viewed as a function over X ×A).

For later use, we de�ne an expectation functional of a probability measure.

De�nition 1.7.2 (Expectation Functional). For a probability measure ρ over X ×A,

1.7 Error Propagation Analysis of ATD(0) 21

a functional ρ : B(X ×A)→ R is de�ned by

ρQ =

∫
X×A

Q(x, a)ρ (d(xa)) . (1.4)

For a sequence of policies (πt)t∈[0:T], a functional ρP πT · · ·P π0 : B(X × A) → R is
de�ned accordingly as

ρP π0 · · ·P πTQ =

∫
X×A

Q(xT , aT)ρPπ0 · · ·PπT (d(xTaT)) . (1.5)

This functional returns E[f(XT , AT)], which is expected value of f(XT , AT) when an
action At at each time step 0 ≤ t ≤ T is selected according to πt(·|Xt), and an initial
state-action pair (X0, A0) is sampled from ρ.

Note that these notations are consistent with other operator notations. For exam-
ple, we have ρ (P π0 · · ·P πTQ) = (ρP π0 · · ·P πTQ).

We are now ready to start error propagation analysis of ATD(λ) with λ = 0. The
�rst step is relating �nal di�erence Qπ−Qi with initial one Qπ−Q0 as in the following
lemma.

Lemma 1.7.1 (A Point-Wise Error Bound for ATD(λ)). For ATD(λ) in Equation (1.1),
the following holds:

Qπ −Qi =

(
γ(1− λ)

1− γλ

)i
M i (Qπ −Q0)−

i−1∑
j=0

(
γ(1− λ)

1− γλ

)j
M jεi−j−1,

where M is the operator (1− γλ) (I − γλP π)−1P π.

Proof of Lemma 1.7.1.

Qπ −Qi = Qπ −Qi−1 − (I − γλP π)−1 (BπQi−1 −Qi−1)− εi−1

(a)
= Qπ − (I − γλP π)−1 (r + γ(1− λ)P πQi−1)− εi−1

(b)
= γ(1− λ) (I − γλP π)−1P π (Qπ −Qi−1)− εi−1,

where the deduction accords with the following:

(a) Qi−1 = (I − γλP π)−1 (I − γλP π)Qi−1 = (I − γλP π)−1 (Qi−1 − γλP πQi−1)

(b) Qπ = (I − γλP π)−1 (I − γλP π)Qπ = (I − γλP π)−1 (r + γP πQπ − γλP πQπ) .

By induction, it is clear that the claim holds.

As a corollary, an L∞-norm error bound can be immediately obtained.

22 Sequential Decision Making

Corollary 1.7.2 (An L∞-Norm Error Bound for ATD(λ)). For ATD(λ) in Equa-
tion (1.1), the following holds:

‖Qπ −Qi‖∞ ≤
i−1∑
j=0

(
γ(1− λ)

1− γλ

)j
‖εi−j−1‖∞ +

(
γ(1− λ)

1− γλ

)i
‖Qπ −Q0‖∞ . (1.6)

Proof of Corollary 1.7.2. The operator M is (1 − γλ)
∑∞

t=0(γλ)t (P π)t+1. Therefore,
it is clearly monotone. In other words, Mf ≤Mg holds for any functions f and g in
B(X ×A) satisfying f ≤ g. Furthermore, Mf = f holds for any constant function f .
Accordingly −‖εi−j−1‖∞ ≤ M

jεi−j−1 ≤ ‖εi−j−1‖∞, i.e.,
∥∥M jεi−j−1

∥∥
∞ ≤ ‖εi−j−1‖∞

holds. Combination of this fact with triangle inequality leads to

‖Qπ −Qi‖∞ ≤
i−1∑
j=0

(
γ(1− λ)

1− γλ

)j ∥∥M jεi−j−1

∥∥
∞ +

(
γ(1− λ)

1− γλ

)i ∥∥M i (Qπ −Q0)
∥∥
∞

≤
i−1∑
j=0

(
γ(1− λ)

1− γλ

)j
‖εi−j−1‖∞ +

(
γ(1− λ)

1− γλ

)i
‖Qπ −Q0‖∞ .

This concludes the proof.

This corollary shows two things: the convergence rate and how the e�ect of past
errors decays. When there are no errors, the right hand side of the inequality Equa-
tion (1.6) reduces to [γ(1− λ)/(1− γλ)]i ‖Qπ −Q0‖∞. Therefore the decay rate of the
initial error ‖Qπ −Q0‖∞ is given by [γ(1− λ)/(1− γλ)]i. When there are errors, we
can rewrite the �rst term of the right hand side as follows:

i−1∑
j=0

(
γ(1− λ)

1− γλ

)j
‖εi−j−1‖∞

= ‖εi−1‖∞ +
γ(1− λ)

1− γλ
‖εi−2‖∞ +

(
γ(1− λ)

1− γλ

)2

‖εi−3‖∞ + · · ·

This shows that the e�ect of past errors decays with the rate [γ(1− λ)/(1− γλ)]j.

Sometimes error propagation analysis may result in a loose bound. As shown in
the following proposition, the error bound (1.6) is not improvable, and thus, it is tight.

Proposition 1.7.3 (Tightness of the L∞-Norm Error Bound (1.6) for ATD(λ)). The
L∞-Norm Error Bound (1.6) for ATD(λ) is tight meaning that there exists an MDP
and a sequence (εi)i∈Z+ of error functions such that the error bound holds with equality.

Proof. Consider an MDP in which a reward function r takes a constant value 1. Assume
that an initial function Q0(x, a) takes a constant value −1/(1 − γ), and εj is −r for

1.7 Error Propagation Analysis of ATD(0) 23

any j ∈ Z+. Then we have that Qi(x, a) = −κi/(1− γ) where κ := γ(1−λ)
1−γλ . Thus

‖Qπ −Qi‖∞ =
1 + κi

1− γ
, ‖Qπ −Q0‖∞ =

2

1− γ
and

i−1∑
j=0

κj ‖εi−j−1‖∞ =
1− κi

1− γ

=⇒ κi ‖Qπ −Q0‖∞ +
i−1∑
j=0

κj ‖εi−j−1‖∞ =
1 + κi

1− γ
= ‖Qπ −Q0‖∞ .

This concludes the proof.

Remark 1.7.1. The keys of Proposition 1.7.3's proof are that (i) r(x, a) takes a con-
stant value 1, and that (ii) εj is −r. In such a case, an agent virtually perceives no
reward. Therefore a sequence of functions (Qi)i∈Z+, which consists of an estimate of
Qπ, must converge to a constant function taking 0. On the other, the true Q-value
function Qπ takes a constant value 1/(1 − γ). Any decent policy evaluation algorithm
must show the almost same behavior that limi→∞ ‖Qπ −Qi‖∞ = 1/(1−γ), without any
assumption on εj.

Once a point-wise error bound as in Lemma 1.7.1 is obtained, it is tedious but
straightforward to obtain Lp(ρ)-norm error bounds, as we will do in the proof of the
following theorem.

Theorem 1.7.4 (Lp(ρ)-Norm Error Bounds for ATD(λ)). Suppose probability measures
ρ and µj over X ×A, where j ∈ [0 : i]. For ATD(λ) in Equation (1.1) with λ = 0, the
following holds:

‖Qπ −Qi‖p,ρ ≤
i−1∑
j=0

γjc
1
p

j ‖εi−j−1‖q,µi−j−1
+ γic

1
p

i ‖Qπ −Q0‖q,µi ,

where p and q are positive real values in [0,∞) and q ∈ (p,∞), respectively, and

cj := c

(
q

q − p
, ρ, µi−j−1;

j︷ ︸︸ ︷
π, . . . , π

)
, and ci := c

(
q

q − p
, ρ, µi;

i︷ ︸︸ ︷
π, . . . , π

)

are concentrability coe�cients.

Proof of Theorem 1.7.4. For a function Q in B(X × A), let |Q| denote a function
|Q|(x, a) := |Q(x, a)|. In addition, let Qp denote a function Qp(x, a) = Q(x, a)p.

By triangle inequality, |Qπ −Qi| ≤
∑i−1

j=0 γ
j
∣∣P j

πεi−j−1

∣∣ + γi
∣∣P i

π (Qπ −Q0)
∣∣. Fur-

thermore, for a function Q in B(X ×A), we have that
∣∣P j

πQ
∣∣ ≤ P j

π |Q| from Jensen's
inequality. Thus

|Qπ −Qi| ≤
i−1∑
j=0

γjP j
π |εi−j−1|+ γiP i

π |(Qπ −Q0)| .

24 Sequential Decision Making

Taking p-th power of both sides,

|Qπ −Qi|p ≤

(
i−1∑
j=0

γjP j
π |εi−j−1|+ γiP i

π |Qπ −Q0|

)p

= Λp

(
i−1∑
j=0

γjλj
Λ
P j
π

∣∣∣∣ 1

λj
εi−j−1

∣∣∣∣+
λiγ

i

Λ
P i
π

∣∣∣∣ 1

λi
(Qπ −Q0)

∣∣∣∣
)p

≤ Λp−1

(
i−1∑
j=0

γjλ1−p
j P j

π |εi−j−1|p + λ1−p
i γiP i

π |Qπ −Q0|p
)
,

where the last line follows from Jensen's inequality5, and (λj)j∈[0:i] is a sequence of

currently unspeci�ed positive real values such that
∑i

j=0 γ
jλj = Λ.

By using the expectation functional (1.4), we deduce that

ρ |Qπ −Qi|p ≤ Λp−1

(
i−1∑
j=0

γjλ1−p
j ρP j

π |εi−j−1|p + λ1−p
i γiρP i

π |Qπ −Q0|p
)
.

When a probability measure ρP j
π := ρ

j︷ ︸︸ ︷
Pπ · · ·Pπ is absolutely continuous with respect

to µi−j−1, its Radon-Nykodim derivative ρP j
π/µi−j−1 exists, and we have

ρP j
π |εi−j−1|p =

∫
X×A

ρP j
π

µi−j−1

(x, a) |εi−j−1(x, a)|p µi−j−1(d(xa))

≤
∥∥∥∥ ρP j

π

µi−j−1

∥∥∥∥
q

q−p
,µi−j−1

‖εi−j−1‖pq,µi−j−1
,

where Hölder's inequality is used. Even if ρP j
π is not absolutely continuous with respect

to µi−j−1,

ρP j
π |εi−j−1|p ≤ cρ q

q−p
,µi−j−1

(π; j) ‖εi−j−1‖pq,µi−j−1
,

holds by De�nition 1.7.1 of concentrability coe�cients. As a result,

ρ |Qπ −Qi|p ≤ Λp−1

i−1∑
j=0

γjλ1−p
j cρ q

q−p
,µi−j−1

(π; j) ‖εi−j−1‖pq,µi−j−1

+ Λp−1λ1−p
i γicρ q

q−p
,µi

(π; i) ‖Qπ −Q0‖pq,µi .

Finally, by setting λj to c
ρ

q
q−p

,µi−j−1
(π; j)

1
p ‖εi−j−1‖q,µi−j−1

for 0 ≤ j ≤ i−1, and λi to

cρ q
q−p

,µi
(π; i)

1
p ‖Qπ −Q0‖q,µi for j = i, we deduce that ρ |Qπ −Qi|p ≤ Λp−1

∑i
j=0 γ

jλj.

5used �rstly to exchange the order of the summation and p-th power, and secondly to exchange
the order of expectation by P π and p-th power

1.7 Error Propagation Analysis of ATD(0) 25

In other words,

‖Qπ −Qi‖p,ρ

≤
i−1∑
j=0

γjcρ q
q−p

,µi−j−1
(π; j)

1
p ‖εi−j−1‖q,µi−j−1

+ γicρ q
q−p

,µi
(π; i)

1
p ‖Qπ −Q0‖q,µi .

This concludes the proof.

We again emphasize that the proof of Theorem 1.7.4 shows that obtaining Lp(ρ)-
norm error bounds are relatively straightforward when one has a point-wise error bound
as in Lemma 1.7.1. Indeed techniques used in error propagation analysis of other
algorithms are very similar to those used in the proof of Theorem 1.7.4.

26 Sequential Decision Making

Chapter 2

Error-Tolerant Control via Entropy

Regularized Value Iteration

In this chapter, we introduce and analyze a class of RL algorithms wherein policy
updates are regularized by the entropy and Kullback�Leibler (KL) divergence (also
known as the relative entropy, and thus, we call regularization using both of them as
entropy regularization). This chapter is based on our work (Kozuno et al., 2019) but
slightly extends it.

An idea to regularize policy updates of VI and PI with either KL divergence (Azar
et al., 2012; Rawlik, 2013; Abdolmaleki et al., 2018) or entropy (Fox et al., 2016;
Haarnoja et al., 2017) can be found in many research articles. In this chapter, we
consider using both regularizes as in our paper (Kozuno et al., 2019). Interestingly
the use of both entropy regularizers yield di�erent algorithms depending on which
function to store. For example, storing action preference leads to a softened version of
Advantage Learning (AL) by Baird III (1999) and Bellemare et al. (2016).

Unfortunately, however, the current theoretical understanding on e�ects of the en-
tropy regularizers is limited. Very recently, Geist et al. (2019) have provided error
propagation analysis of algorithms with policy update regularization that includes KL
divergence as a special case. However their analysis captures no bene�t of policy up-
date regularization on the contrary to works by Azar et al. (2012) and Kozuno et al.
(2019). We show that the entropy regularizers do have bene�ts.

Our analysis in this chapter is an important step towards understanding algorithms
with policy update regularization using the entropy regularizers. The following lists
our contribution in this chapter:

1. (Theorem 2.2.1) Novel performance bounds for the previous algorithms (soft Q-
learning and AL).

2. (Theorem 2.2.1) Algorithms with a gap-increasing operator are noise-tolerant. α
controls the trade-o� between noise-tolerance and convergence rate.

3. (Theorem 2.2.3) Algorithms with a hard gap-increasing operator have almost the
same error dependency as does AVI.

4. (Theorem 2.2.6) Algorithms with a softmax operator are error-tolerant, but

27

28 Error-Tolerant Control via Entropy Regularized Value Iteration

asymptotic performance may be poor. β controls the quality of asymptotic per-
formance.

5. (Theorem 2.2.6) Algorithms with a soft gap-increasing operator enjoy both noise-
tolerance and error-tolerance, while avoiding poor asymptotic performance.

Here, error-tolerance refers to the tolerance of algorithms to errors such as function
approximation error, whereas noise-tolerance refers to the tolerance of algorithms to
stochastic errors that may cancel when averaged as in Equation (3.4).

2.1 Conservative Value Iteration

In this section, we derive an algorithm that we call Conservative Value Iteration (CVI).
It is characterized by the use of two types of regularization, KL divergence and entropy.
Interestingly it is possible to implement CVI in two ways: one directly stores Q-value
augmented with KL divergence penalty and entropy bonus, while the other stores
action-preferences. The latter one has a close connection to gap-increasing algorithms
such as Dynamic Policy Programming (DPP) (Azar et al., 2012) and AL (Baird III,
1999; Bellemare et al., 2016).

Let u denote a uniform distribution u(a) := 1/|A| over A. Consider an algorithm
with the following update:

πi(·|x) := arg max
π

V π
πi−1

(x) (2.1)

Qi+1(x, a) := r(x, a) + γE
[
V πi
πi−1

(X1)
∣∣∣X0 = x,A0 = a

]
, (2.2)

where an initial function Q0 is a constant function taking 0, an initial baseline policy
πi−1(·|x) is assumed to be a uniform distribution u for each state x, and V π

πi−1
is a

function over states and de�ned as

V π
πi−1

(x) :=
∑
a∈A

π(a)Qi(x, a)− σDKL (π‖u)− τDKL (π‖πi−1(·|x))

with DKL (p‖q) denoting the KL divergence
∑

a∈A p(a) ln (p(a)/q(a)). The algorithm
can be understood as VI with a policy update regularizer −σDKL (π‖u) (KL divergence
regularizer) and −τDKL (π‖πi−1(·|x)) (entropy regularizer), both of which augment a
state value

∑
a∈A π(a)Qi(X1, a) at the next state.

It turns out that the update rules (2.1) and (2.2) can be rewritten as more explicit
update rules. For notational simplicity, let us rewrite πi(·|x), πi−1(·|x) and Qi(x, a) as
p, q and Q(a), respectively. Then to get explicit expression of πi and V

πi
πi−1

in updates
(2.1) and (2.2), we need to solve the following optimization problem:

max
p

∑
a∈A

p(a)Q(a)− σDKL (p‖u)− τDKL (p‖q) subject to
∑
a∈A

p(a) = 1.

(Other inequality constraints will turn out to be unnecessary.) The standard argument

2.1 Conservative Value Iteration 29

of convex optimization tells us that the following must be satis�ed at the solution p◦:

0 = Q(a)− σ
(

ln
p◦(a)

u(a)
+ 1

)
− τ ln p◦(a) + λ.

Therefore we deduce that

p◦(a) =
q(a)α exp (βQ(a))∑
b∈A q(b)

α exp (βQ(b))
,

where we de�ned two positive real values α := τ/(σ + τ) and β := 1/(σ + τ).

Plugging p◦ into the original objective, we deduce that∑
a∈A

p◦(a)Q(a)− σDKL (p◦‖u)− τDKL (p◦‖q) =
1

β
ln
∑
a∈A

q(a)α exp (βQ(a))

|A|1−α
.

Thus the algorithm (2.1) and (2.2) has the following simpler update:

πi(a|x) :=
πi−1(a|x)α exp (βQi(x, a))∑
b∈A πi−1(b|x)α exp (βQi(x, b))

(2.3)

Qi+1 := Bα,β
πi−1

Qi := r + γPmα,β
πi−1

Qi, (2.4)

where we de�ned an operator mα,β
π : B(X ×A)→ B(X) such that

mα,β
π Q(x) :=

1

β
ln
∑
a∈A

π(a|x)α exp (βQ(x, a))

|A|1−α

We recall that the initial function Q0 is assumed to be a constant function taking 0,
and an initial baseline policy πi−1(·|x) is assumed to be a uniform distribution u for
each state x. We call this algorithm CVI-Q.

From this derivation, only �nite β is allowed. However we allow in�nite β. In this
case, policy updates are greedy policy updates.

Interestingly another implementation of updates (2.1) and (2.2) is possible. Let
Ψi(x, a) be Qi(x, a) + αβ−1 lnπi−1(a|x) + αβ−1 ln |A|. Then the policy πi at the i-th
iteration satis�es πi(a|x) ∝ exp (βΨi(x, a)). Furthermore we have that

mα,β
πi−1

Qi(x) =
1

β
ln
∑
a∈A

exp

(
β

[
Qi(x, a) +

α

β
lnπi−1(a|x)

])
|A|1−α

:= mβΨi(x),

where mβ : B(X ×A)→ B(X) is an operator de�ned as mβ := m0,β
u , which is known

as the mellowmax operator (Asadi and Littman, 2017). Accordingly we deduce that

Ψi+1(x, a) = Qi+1(x, a) +
α

β
ln πi(a|x) + const.

= r(x, a) + γPmβΨi(x, a) + α
(
Ψi(x, a)−mβΨi(x)

)
+ const.

30 Error-Tolerant Control via Entropy Regularized Value Iteration

As the constant has no e�ect on the policy πi at the i-th iteration, CVI-Q can be
equivalently implemented by

πi(a|x) :=
exp (βΨi(x, a))∑
b∈A exp (βΨi(x, b))

(2.5)

Ψi+1 := r + γPmβΨi + α
(
Ψi −mβΨi

)
, (2.6)

We call this algorithm CVI-Ψ.

2.1.1 Approximate Versions of CVI

We are interested in performance of CVI under value update errors. To theoretically
analyze it, we introduce approximate versions of CVI.

An approximate version of CVI-Q is given by

πi(a|x) :=
πi−1(a|x)α exp (βQi(x, a))∑
b∈A πi−1(b|x)α exp (βQi(x, b))

(2.7)

Qi+1 := Bα,β
πi−1

Qi + εi := r + γPmα,β
πi−1

Qi + εi, (2.8)

where εi ∈ B(X ×A) is a value update error function at i-th iteration.

An approximate version of CVI-Ψ is given by

πi(a|x) :=
exp (βΨi(x, a))∑
b∈A exp (βΨi(x, b))

(2.9)

Ψi+1 := BβΨi + α
(
Ψi −mβΨi

)
+ εi := r + γPmβΨi + α

(
Ψi −mβΨi

)
+ εi. (2.10)

Recall that εi appearing in value updates (2.8) and (2.10) may be completely di�erent;
εi is used in both updates just for notational simplicity.

2.1.2 Equivalence of ACVI-Q and Ψ

Although Approximate Conservative Value Iteration (ACVI)-Q and Ψ are seemingly
di�erent, they are equivalent as we now explain. For clarity, let εQi and εΨ

i denote εi in
(2.8) and (2.10), respectively. Furthermore let πQi and πΨ

i denote πi in (2.7) and (2.9),
respectively. The following lemma tells us the equivalence of ACVI-Q and Ψ when
εQi = εΨ

i .

Lemma 2.1.1 (The Equivalence of ACVI-Q and Ψ). Suppose that εQi = εΨ
i := εi holds

for all i. Then πQi = πΨ
i := πi holds for all i.

Proof. Recall that Q0 and Ψ0 are assumed to be constant functions taking 0. Further-
more πQ0 (·|x), πΨ

0 (·|x) and πQ−1(·|x) are assumed to be a uniform distribution over |A|
at each state x.

We are going to prove that Qi(x, a) + αβ−1 ln πi−1(a|x) = Ψi(x, a) + const. and
πQi = πΨ

i for all i. It holds for i = 0 by de�nition. Suppose that it holds for all

2.2 Error Propagation Analysis of ACVI 31

j ∈ [0 : i]. Then

Qi+1 = Bα,β
πi−1

Qi + εi = r + γPmα,β
πi−1

Qi + εi.

From

mα,β
πi−1

Qi(x) =
1

β
ln
∑
a∈A

exp

(
β

[
Qi(x, a) +

α

β
lnπi−1(a|x)

])
|A|1−α

= mβΨi(x) + const.,

we deduce that Qi+1 = r + γPmβΨi + εi + const. As β−1 ln πi(a|x) = Ψi(x, a) −
mβΨi(x) + const., we deduce that Qi+1(x, a) + αβ−1 lnπi(a|x) = Ψi+1(x, a) + const.
This concludes the proof.

Thanks to this lemma, error propagation analysis of ACVI-Q can be done by just
replacing εΨ

i appearing in performance bound of ACVI-Ψ with εQi .

2.2 Error Propagation Analysis of ACVI

In this section, we perform error propagation analysis of ACVI-Q and Ψ. For readabil-
ity, we defer all proofs to Section 2.5.

We begin with some de�nitions. We de�ne a sequence of policies (µi)i∈Z+ such that

µiΨi := mβΨi. (2.11)

Such policies always exist (Asadi and Littman, 2017). We also de�ne

Ei :=
i∑

j=0

αjεi−j

for all i. Furthermore we use a shorthand notation

αj:i :=

{∑i
k=j α

k if i ≥ j

0 otherwise

for two integers i, j ∈ Z.

2.2.1 Regularization Agnostic Performance Bound

In this Section 2.2.1, we derive performance bounds for ACVI-Q and Ψ that are not
fully capturing e�ects of policy update regularization. Indeed the performance bounds
here imply that ACVI with β =∞ would work best. (In other words, they are agnostic
of e�ects of policy update regularization.) However Azar et al. (2012), Fox et al. (2016)
and Haarnoja et al. (2017) have noted that �nite β actually works best. Nonetheless
they provide rates of convergence and allow us to see noise-tolerance of ACVI.

We have the following theorem that provides L∞-norm performance bound.

32 Error-Tolerant Control via Entropy Regularized Value Iteration

Theorem 2.2.1 (Regularization Agnostic L∞-Norm Performance Bound for ACVI-Q
and Ψ). Suppose sequences of policies (πi)i∈Z+ in the update (2.9), (µi)i∈Z+ in (2.11)
and functions (qi)i∈Z+ de�ned in Lemma 2.5.4. The following point-wise upper bound
for Q∗ −Qπi holds for any non-negative integer i:

‖Q∗ −Qπi‖∞

≤ 2γ

1− γ

i−1∑
j=0

γj

α0:i

‖Ei−j−1‖∞ +
2γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)

α0:iβ(1− γ)2
ln |A|. (2.12)

where
∑0

j=1Qj is a constant function taking 0 for any sequence of functions Qj. Fur-
thermore the same bound holds for (πi)i∈Z+ in the update (2.7).

Instead of L∞-norm, Lp(ρ)-norm performance bound is possible. For readability,
we provide de�nition of concentrability coe�cients (De�nition 1.7.1) here again. Sup-
pose a sequence of policies (πt)t∈[0:T] and probability measures ρ, µ ∈ P(X × A). Let
ρPπ0 · · ·PπT ∈ P(X × A) be an expected state-action probability measure at time T
(cf. Equation (1.2)). A concentrability coe�cient c(p, ρ, ν; π0, . . . , πT) is de�ned as

c(p, ρ, ν; π0, . . . , πT) :=


∥∥∥∥ρPπ0 · · ·PπTν

∥∥∥∥
p,ν

if ρPπ0 · · ·PπT ≺ ν

∞ otherwise

, (2.13)

where p ∈ [1,∞). We de�ne short-hand notations for the following concentrability
coe�cients:

c∗j := c(2, ρ, ν;

j︷ ︸︸ ︷
π∗, . . . , π∗),

cj,k := c(2, ρ, ν;

j︷ ︸︸ ︷
ρi, . . . , ρi, ρi, ρi−1, . . . , ρk).

Theorem 2.2.2 (Regularization Agnostic Lp(ρ)-Norm Performance Bound for ACVI-Q
and Ψ). Suppose sequences of policies (πi)i∈Z+ in the update (2.9), (µi)i∈Z+ in (2.11)
and functions (qi)i∈Z+ de�ned in Lemma 2.5.4. The following Lp(ρ)-norm performance
bound for ACVI-Q and Ψ hold for any non-negative integer i:

‖Q∗ −Qπi‖ρ,p ≤
2γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)

α0:iβ(1− γ)2
ln |A|+ 2γ

1− γ
Eν,2p,i, (2.14)

where

Cj :=
1− γ

2

((
c∗j+1

)1/p
+
∞∑
k=0

γk
(
c

1/p
k,j+1 + γc

1/p
k,j

))
,

Eν,2p,i := sup
πi,...,π0

i−1∑
j=0

γjCj

∥∥∥∥Ei−j−1

α0:i

∥∥∥∥
ν,2p

.

2.2 Error Propagation Analysis of ACVI 33

Remark 2.2.1. Setting α = 1 yields a performance bound for DPP. We note two
di�erences from a known performance bound for DPP by Azar et al. (2012).

First, the convergence rate

2γVmax
α0:i

i∑
j=0

γjαi−j =
2γVmax(1− γi+1)

(1− γ)(i+ 1)

is 1−γ times smaller than the corresponding term in Azar et al. (2012)'s performance
bound (Theorem 5), thanks to a new proof technique.1 As γ is typically close to 1, this
improvement is not negligible.

Second, our bound is an Lp(ρ)-norm performance bound. In general, Lp(ρ)-norm
performance bound is considered to be tighter (Farahmand, 2011). Indeed, with a slight
complication of the argument using Lebesgue's decomposition theorem (Dudley, 2002),
the Lp(ρ)-norm performance bound (2.14) can be tighten such that it never exceeds
L∞-norm.

The Lp-norm performance bound (2.14) allows us to understand several properties
of ACVI-Q and Ψ controlled by α.

Firstly the convergence rates of ACVI-Q and Ψ

2γVmax
α0:i

i∑
j=0

γjαi−j = O

(
1

α0:i

i∑
j=0

γjαi−j

)
(2.15)

are controlled by α. Note that it becomes O(γi) when α = 0, which is the convergence
rate of AVI (Munos, 2005, 2007; Farahmand, 2011; Scherrer et al., 2015). Figure 2.2
visualizes the convergence rates of ACVI-Q and Ψ. As is seen, relatively high α such
as γ ≈ 0.95 does not slow the convergence. However α almost equal to 1 noticeably
slows it. Figure 2.2 visualizes the number of iterations i at which the convergence rates
becomes smaller than 0.1. It again shows that the convergence rates of ACVI-Q and Ψ
are the almost same as that of AVI when α is less than 0.95. However they drastically
slows down when α is higher than 0.95.

Importantly the Lp-norm performance bound (2.14) of ACVI-Q and Ψ shows that
a higher α leads to a greater noise-tolerance. It states that∥∥∥∥ 1

α0:i

Ei−j−1

∥∥∥∥
ν,2p

=

∥∥∥∥∥ 1

α0:i

i−j−1∑
k=0

αkεi−j−k−1

∥∥∥∥∥
ν,2p

essentially determines the loss ‖Q∗ −Qπi‖ρ,p. Now suppose for simplicity that εj(x, a)
is sampled independently from a distribution with a mean of 0 and a standard deviation
of 1 for any j, state x and action a. Then a standard deviation of α−1

0:iEi−j−1 is given by

α−1
0:i

√
1 + α2 + · · ·+ α2(i−j). When α = 0.9, it converges to approximately 0.23, which

is four times smaller than 1. Although εj(s, a) is unlikely to satisfy the assumptions in
reality, a similar result is expected in a model-free setting where errors contain noise

1Their bound contains a mistake: ‖Ej‖∞ in their bound must be multiplied by two.

34 Error-Tolerant Control via Entropy Regularized Value Iteration

0 50 100 150 200 250 300
Iterations (i)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

f.

=0.9

0.0
0.4
0.8

0.95
0.99
0.999

0 100 200 300 400 500 600
Iterations (i)

=0.95

0 200 400 600 800 1000
Iterations (i)

=0.99

Figure 2.1: Convergence rates comparison of ACVI-Q and Ψ. The discount factor
γ is indicated on top of each panel. α is indicated by the line colors as shown in the
legend in the left panel. In each panel, the vertical axis is value of the convergence
rate (2.15) at di�erent iteration i. The horizontal axes show values of α. As shown,
the convergence becomes extremely slower when α is higher than 0.95.

0.00 0.25 0.50 0.75 1.00
0

200

400

600

800

1000

Ite

ra
tio

n
to

 C
on

v.

0 1

0.9
0.95
0.99

0.80 0.85 0.90 0.95 1.00
0

200

400

600

800

1000
0.8 1

0.9900 0.9925 0.9950 0.9975 1.0000
0

200

400

600

800

1000
0.99 1

Figure 2.2: The number of iterations to convergence of CVI-Q and Ψ. The discount
factor γ is indicated by the line colors as shown in the legend in the left panel. In
each panel, the vertical axis is the number of iterations i at which ACVI's convergence
rate (2.15) becomes less than 0.1. Note that the vertical axes are in log scale. The
horizontal axes show values of α, and di�erent panels show di�erent ranges of α for
visibility. As shown, the convergence is extremely slower when α is higher than 0.95.

stemming from the stochasticity of MDPs. The greatest robustness can be attained
when α = 1, with which, however, the convergence is much slower.

Next let us consider e�ects of errors when they do not cancel out by averaging. For
simplicity, we consider L∞-norm performance bound (2.12).

We �rst consider the net e�ect of errors. We have

2γ

1− γ

i−1∑
j=0

γj

α0:i

‖Ei−j−1‖∞ ≤
2γ

1− γ

i−1∑
j=0

γj

α0:i

i−j−1∑
k=0

αk ‖εi−j−k−1‖∞

=
2γ

1− γ

i−1∑
j=0

ci−j−1 ‖εi−j−1‖∞ ,

where we de�ned ci−j−1 :=
∑j

k=0 α
kγj−k/α0:i. Thus the net e�ects of errors can be

2.2 Error Propagation Analysis of ACVI 35

understood by

lim
i→∞

i−1∑
j=0

ci−j−1 = lim
i→∞

1

α0:i

i−1∑
j=0

αj+1 − γj+1

α− γ
=

1

α− γ

(
1− 1− α

1− γ

)
=

1

1− γ
,

in which we assumed α 6= γ. Thus the net e�ect of errors are the same regardless of α.

We next consider how e�ects of errors decay. Error decay of εi−j−1 is expressed
by ci−j−1. Figure 2.3 visualizes it illustrating enlarged and lessened e�ect of the past
(j ≈ i − 1) and recent errors (j ≈ 0) for a large α, respectively. (Note that it is
completely same as Figure 3.4.)

0 50 100 150 200
i-j-1

0.0

0.2

0.4

0.6

0.8

1.0

c i
j

1

= 0.9

= 0.0
= 0.8
= 0.99
= 0.999
= 1.0

0 50 100 150 200
i-j-1

= 0.95

0 50 100 150 200
i-j-1

= 0.99

Figure 2.3: Error decay of ACVI-Q and Ψ. Lines show the coe�cient ci−j−1 :=∑j
k=0 α

j−kγk/α0:i−1 with various α as in the legend. γ is shown on top of each panel.
The horizontal axis is i − j − 1. As clearly shown, e�ects of errors at early iterations
lingers if α is high. However if each error function has the same L∞-norm, the net
e�ect of errors is the same across di�erent α as argued in the main text.

We �nally touch on the term

γ(1− γi)
α0:iβ(1− γ)2

ln |A|,

which is an inevitable loss due to the use of softmax. It converges to γ(1 − α)(1 −
γ)−2β−1 ln |A|. Thus, unless α = 1 or β = ∞, it is not 0. However, in Section 2.2.3:
ref, we show that a small β may be preferable despite this inevitable loss.

2.2.2 Tightness of Regularization Agnostic Performance Bounds

The performance bounds in Section 2.2.1 show that error-tolerance of ACVI is the same
as that of AVI. Furthermore they imply that using in�nite β is best. The following
theorem states that the performance bounds (2.12) is essentially not improvable when
β =∞.

Theorem 2.2.3. When β = ∞, there exists an MDP and a sequence of εk satisfying

36 Error-Tolerant Control via Entropy Regularized Value Iteration

the following: for any real value δ ∈ (0,∞), there is a positive integer I such that

2γ

1− γ

i−1∑
j=0

γj

α0:i

‖Ei−j−1‖∞ +
2γVmax
α0:i

i∑
j=0

γjαi−j ≤ ‖Q∗ −Qπi‖∞ + δ (2.16)

holds for any i ≥ I.

Suppose that there is a performance bound bi that is smaller than the right hand
side of the performance bounds (2.12). Then the inequality (2.16) states that

bi <
2γ

1− γ

i−1∑
j=0

γj

α0:i

‖Ei−j−1‖∞ +
2γVmax
α0:i

i∑
j=0

γjαi−j ≤ bi + δ

for a large enough i. In other words, the di�erence between bi and our performance
bound (2.12) is within (0, δ], and our bound is arbitrarily close to bi.

2.2.3 Regularization Aware Performance Bounds

Theorem 2.2.1 states that β =∞, i.e., algorithms with a hard gap-increasing operator
are the optimal choice. However, there is experimental evidence that a �nite β leads
to better results (Azar et al. (2012); Fox et al. (2016); Haarnoja et al. (2017)). In this
subsection, we provide novel form of performance bounds for ACVI that show bene�ts
of setting β to a �nite value especially when errors are huge.

The following proposition provides a bound of KL divergence between πi and πi−1.
It is utilized in the novel form of performance bounds.

Proposition 2.2.4. Suppose sequences of policies (πi)i∈Z+ in the update (2.9). If
‖εk‖ ≤ ε holds for any integer j ∈ {1, 2, . . .}, policies in the sequence satis�es for any
i, maxsDKL(πi(·|s)|πi−1(·|s)) ≤ δi, where δi is

δi := 4β

(
1− γi

1− γ
ε+ rmax

i−1∑
j=0

αjγi−j−1

)
.

Using this bound of KL divergence, we obtain the L∞-norm performance bounds
for ACVI-Q and Ψ.

Theorem 2.2.5. Suppose a sequence of policies (πi)i∈Z+ in the update (2.9). If ‖εk‖ ≤
ε holds for any integer j ∈ {1, 2, . . .}, the following L∞-norm performance bound holds:

‖Q∗ −Qπi‖∞ ≤ 2γ
i−1∑
j=0

γj

α0:i

‖Ei−j−1‖∞ +
2γVmax
α0:i

i∑
j=0

γjαi−j (2.17)

+
γ(1− γi)
α0:iβ(1− γ)

ln |A|+
√

2γ2Vmax
1− γ

i−1∑
j=0

γjδ
1/2
i−j.

2.2 Error Propagation Analysis of ACVI 37

We next provide Lp(ρ)-norm performance bounds. To succinctly state them, we
need the following short-hand notation for concentrability coe�cients:

dk,j := c(2, ρ, ν;

k︷ ︸︸ ︷
πi, . . . , πi, πi, πi−1, . . . , πj)

With this notation, we have the following theorem.

Theorem 2.2.6. Suppose a sequence of policies (πi)i∈Z+ in the update (2.9). If ‖εk‖ ≤
ε holds for any integer j ∈ {1, 2, . . .}, the following Lp(ρ)-norm (p ∈ [1,∞)) perfor-
mance bounds hold:

‖Q∗ −Qπi‖ρ,p ≤ 2γE ′ν,2p,i +
2γVmax
α0:i

i∑
j=0

γjαi−j (2.18)

+
γ(1− γi)
α0:iβ(1− γ)

ln |A|+
√

2γ2Vmax
1− γ

i−1∑
j=0

γjδ
1/2
i−j,

where

Dj :=

(
c∗j+1

)1/p
+ d

1/p
0,j

2
,

E ′ν,2p,i := sup
πi,...,π0

i−1∑
j=0

γjDj

∥∥∥∥Ei−j−1

α0:i

∥∥∥∥
ν,2p

.

Remark 2.2.2. By taking the minimum of the bounds (2.14) and (2.18), we obtain a
bound that is clearly no worse than both bounds.

To understand di�erences, let us compare (2.12) with (2.17). Their major di�er-
ences are the following: (i) E ′ν,2p,i is multiplied by 2γ in (2.17), whereas it is multiplied

by 2γ/(1 − γ) in (2.12). (ii) There is an additional term const.
∑i−1

j=0 γ
jδ

1/2
i−j in (2.17).

(iii) in (2.17), the loss of using softmax

γ(1− γi)
α0:iβ(1− γ)

ln |A|

is smaller than the corresponding term in (2.12) by a factor of 1− γ.
The �rst di�erence indicates that algorithms using the softmax operator are error-

tolerant. As we explained, gap-increasing operators make algorithms noise-tolerant.
However, if errors are not noise, the argument is nulli�ed. In contrast, algorithms
using the softmax operator have great tolerance to any type of error. The price to pay
for this tolerance is the second di�erence, which decreases monotonically in β. Thus,
a small β leads to better performance. Note that a small β results in the increase

γ(1− γi)
α0:iβ(1− γ)

ln |A|

38 Error-Tolerant Control via Entropy Regularized Value Iteration

To compensate for it, α must be large enough. Therefore, the use of the softmax
operator alone is not su�cient.

In addition, Theorem 2.2.6 shows another bene�t of a �nite β: concentrability
coe�cients Dj is better than Cj. To see this, note that Cj contains

∑∞
k=0 γ

kc
1/p
k,j =∑∞

k=0 γ
kd

1/p
k,j , which clearly satis�es

∞∑
k=0

γkd
1/p
k,j ≥ d

1
p

0,j

As a consequence, Dj = ∞ implies Cj = ∞. Furthermore, it is possible to construct
an example in which Dj is �nite, but Cj is in�nite. In this sense, Dj in (2.18) is better
than Cj.

Finally, we note that α ∈ [0, 1) together with a �nite β forces a policy πi to be
stochastic. As a result, concentrability coe�cients of ACVI with such α and β before
taking supπi,...,π0 are expected to be smaller compared to algorithms with either α = 1
or β =∞. However, our analysis fails in capturing it.

2.3 Related Research

Before concluding this chapter, we provide a quick review of related results to clarify
our contributions compared to existing works.

There are many algorithms that regularize policy and/or value updates by either
the entropy (G-Learning (GL) (Fox et al., 2016), Soft Q-Learning (SQL) (Haarnoja
et al., 2017), Softmax Deep Q-Network (SDQN) (Song et al., 2019)) or KL divergence
(DPP (Azar et al., 2012), Ψ-learning (Rawlik, 2013), Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015), Maximum a Posteriori policy Optimization (MPO)
(Abdolmaleki et al., 2018)). These algorithms vary mainly depending on the following
three factors:

1. An algorithm is based on PI or VI scheme.

2. A constraint is used instead of a regularization.

3. In addition to policy updates, value updates are regularized or not.

Table 2.1 summarizes those algorithms, based on these factors. Figure 2.4 summarizes
algorithms generalized by CVI.

Despite the proliferation of algorithms with a regularization, most of the works did
not provide theoretical explanation on why the regularization helps the learning: most
of them just provide convergence results or results that only hold when no errors are
involved. Because algorithms without the regularization works perfectly when no errors
are involved, those results are not su�cient to understand bene�ts of the regularization.

A notable exception is a work by Azar et al. (2012), which provided an error prop-
agation analysis of DPP, a special case of CVI with α = 1. Theorem 2.2.1 extends
their result to a case with α ≤ 1. Theorem 2.2.2 extends their result to Lp(ρ)-norm
performance bound. This result is obtained by leveraging proof techniques used in

2.3 Related Research 39

Table 2.1: A summary of algorithms using the entropy or KL divergence regularization
(or constraint). The symbol Xmeans "Yes", and "reg." is an abbreviation of "regu-
larization". As for DPP, it is di�cult to say that it uses value update regularization
because it does not exactly equivalent to VI with the KL divergence regularization.

GL SQL SDQN DPP Ψ-learning TRPO MPO
Using VI scheme X X X X X
Using KL reg. X X X X
Using constraint X X
Value update reg. X X X ? X

β

S
Q
L

AL

CVI D
P
P

ψ
-learning

α

Figure 2.4: A summary of DP algorithms generalized by CVI. In the �gure, VI, SQL,
AL and DPP (Ψ-learning) correspond to the top left corner, left edge, top edge, and
right edge, respectively. CVI uni�es these algorithms.

(Scherrer et al., 2015), which lead to some improvements of coe�cients in our bound
compared to one obtained in (Azar et al., 2012).

While the analysis of Azar et al. (2012) shows the bene�t of the KL regularization,
it fails to explain a bene�t of using a �nite KL regularization coe�cient (β), which is
observed and noted in (Azar et al., 2012; Fox et al., 2016; Haarnoja et al., 2017). On
the other hand, Theorems 2.2.5 and 2.2.6 sheds some light on its bene�t.

Recently Geist et al. (2019) have provided error propagation analysis of a general
algorithm. Their results and ours di�er in three points:

1. First we considered an algorithm with both entropy and KL regularizations,
and showed its equivalence to a general algorithm including a variety of previous
algorithms, namely VI, DPP, AL and SQL. On the other hand, Geist et al. (2019)
considered an algorithm with either a strongly convex regularizer or a Bregman
divergence regularization, the former of which includes the entropy regularization,
and the latter of which includes the KL divergence regularization. Therefore our
results and theirs are generalization of existing works to di�erent directions.

2. Second they bounded the regret
∑i

j=1

∥∥Q∗ −Qπj

∥∥
∞ /i, which is an average of

40 Error-Tolerant Control via Entropy Regularized Value Iteration

the losses
∥∥Q∗ −Qπj

∥∥
∞ at all iterations. We note that it is really easy to obtain

a regret bound of CVI from our bounds of the loss.

3. Third they could not show a bene�t of using a regularizer. For a strongly convex
regularization, they showed a performance bound (Corollary 1), regarding which
they noted "As this is the same bound (up to the fact that it deals with regularized
MDPs) as the one of AMPI...". (AMPI stands for approximate modi�ed policy
iteration, which is a classical ADP algorithm we did not explain in this thesis.)
For a Bregman divergence regularization, they provided a bound of the regret
(Corollary 4), which consist of sum of ‖εj‖∞ terms, and they noted "Yet, we
highlight again the fact that we bound a regret, and bounding the regret of
AMPI would provide a similar result."

From these di�erences, we believe that our results are, although somewhat limited in
sense that we only considered the entropy and KL regularizations, an important step
towards understanding the e�ect of regularizations.

2.4 Conclusion

Soft Q-learning, AL, and DPP, all of which employ value-iteration-like, single-stage
lookahead updates using the softmax operator and/or gap-increasing operator, demon-
strated their superiority to VI (Baird III (1999); Azar et al. (2012); Rawlik (2013);
Bellemare et al. (2016); Fox et al. (2016); Haarnoja et al. (2017)). However, they are
not theoretically well understood. In this chapter, we proposed and analyzed CVI that
uni�es them to explain their theoretical properties, such as performance guarantees
under non-exact update settings and roles of their hyper-parameters.

The performance bounds without KL divergence improve the existing performance
bound for DPP and comprise the �rst performance bound for soft Q-learning and
AL. They also clarify the role of a hyper-parameter α in gap-increasing operators: α
controls the trade-o� between tolerance to stochastic error and convergence rate.

We also found that performance bounds without KL divergence are essentially tight
as long as greedy value updates and a greedy policy are used. Furthermore, they
imply that as long as greedy value updates and a greedy policy are used, tolerance of
algorithms to non-stochastic errors are almost the same as that of VI.

Performance bounds with KL divergence show that the limitation by greedy value
updates and a greedy policy can be overcome when the softmax operator is used.
However, the softmax operator alone may lead to poor asymptotic performance, which
is controlled by β. Algorithms with a soft gap-increasing operator enjoy both noise-
tolerance and error-tolerance, while avoiding poor asymptotic performance.

However, there are following open questions:

� Is the sample complexity of gap-increasing algorithms minimax optimal? In this
thesis, I carried out error propagation analysis, wherein I did not consider how
using the gap-increasing operator changes the error functions. Sample complexity
analysis takes such changes into account and provides a deeper understanding of
algorithms.

2.5 Proofs 41

� Do other regularizations, such as a Bregman divergence regularization, have sim-
ilar property or any other bene�ts? While the KL divergence is a type of the
Bregman divergence, it is not clear if bene�ts of more general regularization with
Bregman divergence (or any other divergences and probability metrics) exist and
can be proven.

� Does a policy regularization have any bene�t in terms of exploration? The explo-
ration is surely a vital part of RL algorithm. However, error propagation analysis
cannot capture the aspect of exploration.

� Is the regularization agnostic L∞-norm performance bound for ACVI-Q and Ψ
(bound (2.12)) tight for arbitrary β? While I could show that it is tight when
β =∞, it is unclear if the bound is tight. A key to its proof is that in the worst
case, a set of greedy policies may contain the best and worst policy, the latter of
which is intentionally chosen to prove the tightness. When β is �nite, this fact
cannot be used.

Addressing those questions give more insights into algorithms using the softmax op-
erator and/or a gap-increasing operator as well as algorithms with various types of
regularizations.

While some open problems remain, the present chapter is an important step toward
understanding algorithms using the softmax operator and/or a gap-increasing operator.

2.5 Proofs

In this section, we provide proofs in this chapter. We begin with recalling some de�ni-
tions. We de�ne a sequence of policies (µi)i∈Z+ such that

µiΨi := mβΨi.

Such policies always exist (Asadi and Littman, 2017). We also de�ne

Ei :=
i∑

j=0

αjεi−j

for all i. Furthermore we use a shorthand notation

αj:i :=

{∑i
k=j α

k if i ≥ j

0 otherwise

for two integers i, j ∈ Z. We call the following policy a Boltzmann policy (given a
function Q ∈ B(X ×A)):

bβ(a|x;Q) :=
exp (βQ(x, a))∑
b∈A exp (βQ(x, b))

,

42 Error-Tolerant Control via Entropy Regularized Value Iteration

where β ∈ (0,∞) is the inverse temperature. A Boltzmann-softmax operator bβ is
de�ned such that (

bβQ
)

(x) :=
∑
a∈A

bβ(a|x;Q)Q(x, a)

for any state x ∈ X and function Q ∈ B(X × A). Note that the Boltzmann-softmax
operator is not linear, as it depends on input function Q. We de�nem∞ and b∞ to be
m. As we show later, mβQ ≤ bβQ and limβ→∞ b

βQ = limβ→∞m
βf = mQ hold.

2.5.1 Auxiliary Lemmas

For error propagation analysis of ACVI, we need several lemmas. The following lemma
shows a relationship between the mellowmax and Boltzmann-softmax operators.

Lemma 2.5.1. For any inverse temperature β ∈ (0,∞) and function Q ∈ B(X ×A),

1

β
ln |A| ≥ bβQ−mβQ ≥ 0. (2.19)

Proof. The entropy of bβ(·|x;Q) is

H := −
∑
a∈A

bβ(a|x;Q) ln bβ(a|x;Q).

It can be rewritten as

H = −
∑
a∈A

exp (βQ(x, a))

Z
(βQ(x, a)− lnZ)

= lnZ − β
(
bβQ

)
(x)

= β
(
mβQ

)
(x)− β

(
bβQ

)
(x) + ln |A|,

where Z :=
∑

a∈A exp (βQ(s, a)), and the last line is obtained by using

1

β
ln

Z

|A|
=
(
mβQ

)
(x)

Because 0 ≤ H ≤ ln |A|, the claim holds.

Lemma 2.5.3, which is proven by using the following lemma, states that the mel-
lowmax and Boltzmann-softmax operators are close to the max operator.

Lemma 2.5.2. For any inverse temperature β ∈ (0,∞), state x ∈ X and function
Q ∈ B(X × A),

(
mβQ

)
(x) is non-decreasing in β while

(
mβQ

)
(x) + (ln |A|) /β is

non-increasing in β.

Proof. The former claim holds since

∂

∂β

(
mβQ

)
(x) =

1

β

((
bβQ

)
(x)−

(
mβQ

)
(x)
)
≥ 0,

2.5 Proofs 43

where the inequality is due to Lemma 2.5.1.

On the other hand,

∂

∂β

((
mβQ

)
(x) +

1

β
ln |A|

)
=

1

β

((
bβQ

)
(x)−

(
mβQ

)
(x)− 1

β
ln |A|

)
≤ 0,

where the inequality is again due to Lemma 2.5.1.

Lemma 2.5.3. For any inverse temperature β ∈ (0,∞) and function Q ∈ B(X ×A),

mQ− bβQ ≤mQ−mβQ ≤ 1

β
ln |A|.

Proof. From Lemma 2.5.2,
(
mβQ

)
(x) + (ln |A|) /β is non-increasing in β. Therefore,

for any x ∈ X , (
mβQ

)
(x) +

1

β
ln |A| ≥ lim

β→∞

(
mβQ

)
(x) = (mQ) (x),

where the last equality is proven in (Asadi and Littman, 2017). From Lemma 2.5.1,
mβf ≤ bβf , and thus, the claim holds.

The following lemma not only makes our theoretical analysis simpler, but also shows
that the behavior of CVI-Ψ is determined by a series of functions whose update rule is
simpler.

Lemma 2.5.4. Suppose sequences of policies (µi)i∈Z+ in (2.11) and functions (Ψi)i∈Z+

obtained by the update (2.10). For any positive integer i ≥ 1,

Ψi = α0:i−1qi − α1:i−1µi−1qi−1 (2.20)

holds, where qi is recursively de�ned by q0 := Φ0 and

α0:iqi+1 := α0:ir + α0:i−1γP µiqi + Ei. (2.21)

Proof. We prove the claim by induction. For i = 1, Ψ1 = Bµ0Ψ0 + ε0 = α0:0q1 + E0.
Therefore the claim holds for i = 1.

Suppose that up to i (i > 1), the claim holds. Then, we deduce that

BµiΨi = Bµi

(
α0:i−1qi − α1:i−1µi−1qi−1

)
= (α0:i − α1:i) r + α0:i−1γP µiqi − α1:i−1γP µi−1

qi−1

= α0:ir + α0:i−1γP µiqi − α
(
α0:i−1r + α0:i−2γP µi−1

qi−1

)
= α0:iqi+1 − α1:iqi − Ei + αEi−1

= α0:iqi+1 − α1:iqi − εi.

44 Error-Tolerant Control via Entropy Regularized Value Iteration

Furthermore we deduce that Ψi−µiΨi = α0:i−1qi−α0:i−1µiqi. Combining these results

Ψi+1 = BµiΨi + α (Ψi − µiΨi) + εi

= α0:iqi+1 − α1:iqi + α1:iqi − α1:iµiqi

= α0:iqi+1 − α1:iµiqi.

This concludes the proof.

The following corollary shows that µi is almost greedy.

Corollary 2.5.5. Suppose sequences of policies (µi)i∈Z+ in (2.11) and functions (qi)i∈Z+

de�ned in Lemma 2.5.4. Then for any non-negative integer i ≥ 0

µi

(
α0:i−1

α0:i

qi

)
≥m

(
α0:i−1

α0:i

qi

)
− ln |A|
α0:iβ

holds.

Proof. From Lemma 2.5.4, we have µi (α0:i−1qi) = mβ (α0:i−1qi). As a result,

µi (α0:i−1qi) = mβ (α0:i−1qi) = mα0:iβ

(
α0:i−1

α0:i

qi

)
≥m

(
α0:i−1

α0:i

qi

)
− ln |A|
α0:iβ

,

where the inequality follows from Lemma 2.5.3.

2.5.2 Proof of Theorems 2.2.1 and 2.2.2

We decompose Q∗ − Qπi to Q∗ − Q and − (Qπi −Q), where Q ∈ B(X × A) is some
function. Then we prove an upper bound of Q∗ −Q and a lower bound of Qπi −Q to
establish a point-wise upper bound of Q∗ −Qπi .

Lemma 2.5.6. Suppose sequences of policies (µi)i∈Z+ in (2.11) and functions (qi)i∈Z+

de�ned in Lemma 2.5.4. The following upper bound for Q∗ − qi+1 holds for any non-
negative integer i ≥ 0:

Q∗ − qi+1 ≤ −
1

α0:i

i∑
j=0

γj (P ∗)j Ei−j +
γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)
α0:iβ(1− γ)

ln |A|. (2.22)

Proof of Lemma 2.5.6. We prove the claim by induction. From (2.21) and Lemma 2.5.3,

qi+1 = r + γP µi

(
α0:i−1

α0:i

qi

)
+

Ei
α0:i

≥ r + γP ∗

(
α0:i−1

α0:i

qi

)
+

Ei
α0:i

− γ ln |A|
α0:iβ

.

Accordingly, for i = 0,

Q∗ − q1 = γP ∗Q∗ − γP µ0q0 −
E0

α0:0

= γP ∗Q∗ −
E0

α0:0

≤ γVmax
α0:0

− E0

α0:0

,

where the �rst equality follows because q0 is a constant function taking 0, and the last
inequality is due to Q∗ ≤ Vmax. Therefore, the claim holds for i = 0.

2.5 Proofs 45

Suppose that the claim holds up to i. Then we deduce that

Q∗ − qi+1 ≤
γα0:i−1

α0:i

P ∗ (Q∗ − qi) +
γαi

α0:i

P ∗Q∗ −
Ei
α0:i

+
γ ln |A|
α0:iβ

≤ γα0:i−1

α0:i

P ∗ (Q∗ − qi) +
γαi

α0:i

Vmax −
Ei
α0:i

+
γ ln |A|
α0:iβ

,

where the inequalities are obtained similarly to the case in which i = 0. By the
assumption of the induction,

Q∗ − qi+1 ≤
γα0:i−1

α0:i

P ∗ (Q∗ − qi) +
γαi

α0:i

P ∗Q∗ −
Ei
α0:i

+
γ ln |A|
α0:iβ

≤ − γ

α0:i

i−1∑
j=0

γj (P ∗)j Ei−j−1 +
γ2Vmax
α0:i

i−1∑
j=0

γjαi−j−1 +
γ2(1− γi−1)

α0:iβ(1− γ)
ln |A|

+
γαi

α0:i

Vmax −
Ei
α0:i

+
γ ln |A|
α0:iβ

= − 1

α0:i

i∑
j=0

γj (P ∗)j Ei−j +
γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)
α0:iβ(1− γ)

ln |A|.

Therefore, the claim holds.

Lemma 2.5.7. Suppose sequences of policies (πi)i∈Z+ in the update (2.9), (µi)i∈Z+ in
(2.11) and functions (qi)i∈Z+ de�ned in Lemma 2.5.4. The following upper bound for
Qπi − qi+1 holds for any non-negative integer i ≥ 0:

Qπi − qi+1 ≥ −
1

α0:i

i∑
j=0

γjQi,i−jEi−j −
γVmax
α0:i

i∑
j=0

γjαi−j − γ2(1− γi)
α0:iβ(1− γ)2

ln |A|,

(2.23)

where

Qi,i−j :=

{
I for j = 0

(I − γP πi)
−1P πi · · ·P πi−j+1

(I − γP πi−j
) for 1 ≤ j ≤ i

.

Proof of Lemma 2.5.7. We �rst note that for any non-negative integer i,

µi

(
α0:i−1

α0:i

qi

)
≤ πi

(
α0:i−1

α0:i

qi

)
(2.24)

holds. This is clear from Lemma 2.5.4.

46 Error-Tolerant Control via Entropy Regularized Value Iteration

For any non-negative integer i, we deduce that

(I − γP πi) (Qπi − qi+1)

= γP πi

(
Bµi

(
α0:i−1

α0:i

qi

)
+

Ei
α0:i

)
− γP µi

(
α0:i−1

α0:i

qi

)
− Ei
α0:i

≥ γP πi

(
Bµi

(
α0:i−1

α0:i

qi

)
+

Ei
α0:i

)
− γP πi

(
α0:i−1

α0:i

qi

)
− Ei
α0:i

= γP πi

(
Bµi

(
α0:i−1

α0:i

qi

))
− γP πi

(
α0:i−1

α0:i

qi

)
− 1

α0:i

(I − γP πi)Ei,

where the inequality (2.24) is used. Accordingly from Lemma 2.5.3,

(I − γP πi) (Qπi − qi+1)

≥ γP πi

(
Bµi

(
α0:i−1

α0:i

qi

)
− α0:i−1

α0:i

qi

)
− 1

α0:i

(I − γP πi)Ei

≥ γP πi

(
Bπi−1

(
α0:i−1

α0:i

qi

)
− α0:i−1

α0:i

qi

)
− 1

α0:i

(I − γP πi)Ei −
γ2 ln |A|
α0:iβ

= γP πi

(
I − γP πi−1

)(
Qπi−1

− α0:i−1

α0:i

qi

)
− 1

α0:i

(I − γP πi)Ei −
γ2 ln |A|
α0:iβ

=
γα0:i−1

α0:i

P πi

[(
I − γP πi−1

) (
Qπi−1

− qi
)

+ αir
]
− 1

α0:i

(I − γP πi)Ei −
γ2 ln |A|
α0:iβ

≥ γα0:i−1

α0:i

P πi

(
I − γP πi−1

) (
Qπi−1

− qi
)
− γαirmax −

1

α0:i

(I − γP πi)Ei −
γ2 ln |A|
α0:iβ

.

By continuing the same argument, we deduce that

(I − γP πi) (Qπi − qi+1)

≥ γi

α0:i

P πi · · ·P π1 (I − γP π0) (Qπ0 − q1)− γrmax
α0:i

i−1∑
j=0

αi−jγj

− 1

α0:i

i−1∑
j=0

γj (I − γP πi)Qi,i−jEi−j −
γ2(1− γi) ln |A|
α0:iβ(1− γ)

.

Since

(I − γP π0) (Qπ0 − q1) = Bπ0q1 − q1

= γP π0 (r + E0)− E0

≥ −γrmax − (I − γP π0)E0

2.5 Proofs 47

we �nally obtain

(I − γP πi) (Qπi − qi+1)

≥ − γi

α0:i

P πi · · ·P π1 (I − γP π0)E0 −
1

α0:i

i−1∑
j=0

γj (I − γP πi)Qi,i−jEi−j

− γi+1rmax
α0:i

Vmax −
γrmax
α0:i

i−1∑
j=0

αi−jγj − γ2(1− γi) ln |A|
α0:iβ(1− γ)

= − 1

α0:i

i∑
j=0

γj (I − γP πi)Qi,i−jEi−j −
γrmax
α0:i

i∑
j=0

αi−jγj − γ2(1− γi) ln |A|
α0:iβ(1− γ)

.

Recall that (I − γP πi)
−1 is monotone and linear. Therefore by applying it to both

sides of the inequality, it is con�rmed that the claim holds.

By combining Lemmas 2.5.6 and 2.5.7, the following proposition is obtained. (Note
that the �rst summation in the inequality (2.25) is from j = 1 to i because Qj,j =

(P ∗)
0 = I for j = 0.)

Proposition 2.5.8 (Point-wise Performance Bound for ACVI-Q and Ψ). Suppose se-
quences of policies (πi)i∈Z+ in the update (2.9), (µi)i∈Z+ in (2.11) and functions (qi)i∈Z+

de�ned in Lemma 2.5.4. The following point-wise upper bound for Q∗ −Qπi holds for
any non-negative integer i:

Q∗ −Qπi (2.25)

≤
i∑

j=1

γj

α0:i

(
Qi,i−jEi−j − (P ∗)j Ei−j

)
+

2γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)

α0:iβ(1− γ)2
ln |A|,

where
∑0

j=1 Qj is a constant function taking 0 for any sequence of functions Qj. Fur-
thermore the same bound holds for (πi)i∈Z+ in the update (2.7).

As a corollary of Proposition 2.5.8, l∞-norm performance bound for ACVI-Q and
Ψ can be obtained.

Proof of Theorem 2.2.1. From Proposition 2.5.8 and |Q∗(s, a)−Qπi(s, a)| = Q∗(s, a)−
Qπi(s, a),

‖Q∗ −Qπi‖∞
= max

s,a
(Q∗ −Qπi) (s, a)

= max
s,a

(Q∗ − qi+1 − (Qπi − qi+1)) (s, a)

≤
i∑

j=1

γj

α0:i

(∥∥Qi,i−jEi−j
∥∥
∞ + ‖Ei−j‖∞

)
+

2γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)

α0:iβ(1− γ)2
ln |A|.

48 Error-Tolerant Control via Entropy Regularized Value Iteration

Because
∥∥Qi,i−jQ

∥∥
∞ ≤ (1 + γ) ‖Q‖∞ /(1− γ) for any Q ∈ B(X ×A),

‖Q∗ −Qπi‖∞

≤ 2

1− γ

i∑
j=1

γj

α0:i

‖Ei−j‖∞ +
2γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)

α0:iβ(1− γ)2
ln |A|

=
2γ

1− γ

i−1∑
j=0

γj

α0:i

‖Ei−j−1‖∞ +
2γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)

α0:iβ(1− γ)2
ln |A|.

This concludes the proof.

A proof of Lp-norm performance bound for ACVI-Q and Ψ is similar to that for
ATD(λ) (Theorem 1.7.4). However we omit it because it is notationally very cluttered.

2.5.3 Proof of Theorem 2.2.3

Figure 2.5: A deterministic environment used to prove the asymptotic tightness of the
performance bounds (2.12) in Theorem 2.2.1. This environment is taken from Bertsekas
and Tsitsiklis (1996) and Scherrer and Lesner (2012) in which existing performance
bounds for AVI and API are proven to be tight. There are two actions: s (stay) and
m (move). Except for state 0, staying costs an agent −r(k, s) = 2

∑k−1
l=0 γ

lε, where
ε ∈ (0,∞) is a �xed positive real value, and l is an index of a state. At state 0, no cost
is incurred. Therefore, an optimal action is m (move) at all states.

We are going to prove Theorem 2.2.3. Since the proof is lengthy, we �rst provide a
sketch of the proof.

Proof Sketch

Consider a deterministic environment depicted in Figure 2.5. Expected immediate
reward of staying at state k is given as r(k, s) = −2

∑k−1
l=0 γ

lε, where ε ∈ (0,∞) is a
prescribed positive real value. We assume that

� For any state k and action a, Ψ0(k, a) = 0.

� For any state k and action a, Ej(k, a) = 0 except state k = j + 1 and k = j + 2
where

Ej(j + 1, s) = α0:jε, Ek(k + 1,m) = −α0:jε− αkγ
1− γk

1− γ
ε,

Ek(k + 2, s) = 0, Ek(k + 2,m) = α0:jε+ αk+1 1− γk+1

1− γ
ε.

2.5 Proofs 49

Under these assumptions, we prove that for any positive integer i ≥ 1, (i) qi(i, s) =
qi(i,m) and (ii) qi(i + l, s) < qi(i + l,m) for any positive integer l ∈ Z++. Thus, from
Lemma 2.5.4, one of greedy policies with respect to qi chooses action s (stay) at state
i resulting in cumulative rewards of −2

∑∞
t=0 γ

t
∑i−1

j=0 γ
jε. We set πi to that greedy

policy. As a result,

‖Q∗ −Qπi‖∞ = Q∗(i, s)−Qπi(i, s) =
2γ(1− γi)
(1− γ)2

ε

since Q∗(i, s) = −2
∑i−1

j=0 γ
jε is cumulative rewards when s is taken once at state i and

m is repeatedly taken afterwards.

On the other hand, it is obvious that either

‖Ej‖∞ = |Ej(j + 1,m)| or ‖Ej‖∞ = |Ej(j + 2,m)|

holds. In any case, we have

‖Ej‖∞ = α0:jε+O(αj).

Thus, the right hand side of the performance bounds (2.12) become

r.h.s. =
2γε

1− γ

i−1∑
j=0

γi−j−1α0:j

α0:i

+ o(1)

=
2γε

1− γ

i−1∑
j=0

γi−j−1

(
1− αjα0:i−j+1

α0:i

)
+ o(1)

=
2γ(1− γi)
(1− γ)2

ε− 2ε

(1− γ)α0:i

i−1∑
j=0

γjαi−jα0:j + o(1).

The second term converges to 0. Indeed, when 0 ≤ α < 1 and α 6= γ,

0 ≤ 1

α0:i

i−1∑
j=0

γjαi−jα0:j ≤ αi
i−1∑
j=0

(γ
α

)j
=
αi − γi

α− γ
.

(When α = γ, the right hand side is iαi and converges to 0.) When α = 1,

0 ≤ 1

α0:i

i−1∑
j=0

γjαi−jα0:j =
1

i+ 1

i−1∑
j=0

γj(j + 1) =
1− γi

(1− γ)2(i+ 1)
− γii

(1− γ)(i+ 1)
,

50 Error-Tolerant Control via Entropy Regularized Value Iteration

where the second equality is obtained as follows: let Si denote
∑i−1

j=0 γ
j(j+1). Because

Si − γSi =
i−1∑
j=0

γj(j + 1)−
i−1∑
j=0

γj+1(j + 1)

=
i−1∑
j=0

γj(j + 1)−
i∑

j=1

γjj

=
i−1∑
j=0

γj − γii,

it follows that Si =
1− γi

(1− γ)2
− γii

1− γ
. As a result,

lim
i→∞

r.h.s. =
2γε

(1− γ)2
= lim

i→∞
‖Q∗ −Qπi‖∞ .

Full Proof

By induction, we prove that for any positive integer i ≥ 1

qi(i, s) = qi(i,m) = −1− γi

1− γ
ε, (2.26)

qi(i+ 1,m) =
α0:i

α0:i−1

1− γi

1− γ
ε, (2.27)

qi(i+ l, s) < qi(i+ l,m), (2.28)

where l ∈ {1, 2, . . .}.

Recall that the update rule of qj is

qj = r + γ
α0:j−2

α0:j−1

Pmqk−1 +
1

α0:j−1

Ek−1,

as we assume that q0 = Ψ0 = 0. For i = 1, as q0 = Ψ0 = 0,

q1(1, s) = r(1, s) + E0(1, s) = −1− γ1

1− γ
ε = r(1,m) + E0(1,m) = q1(1,m)

q1(2,m) = r(2,m) + E0(2,m) = ε+ αε =
α0:1

α

1− γ1

1− γ
ε

q1(1 + l, s) = r(1 + l, s) + E0(1 + l, s) < 0 ≤ r(1 + l,m) + E0(1 + l,m) = q1(1 + l,m).

Therefore, (2.26), (2.27) and (2.28) hold for i = 1.

2.5 Proofs 51

Suppose that (2.26), (2.27) and (2.28) hold up to i− 1 (i > 1). First, note that

qi(i,m) = γ
α0:i−2

α0:i−1

max{qi−1(i− 1, s), qi−1(i− 1,m)}+
1

α0:i−1

Ei−1(i,m)

= −γα0:i−2

α0:i−1

1− γi−1

1− γ
ε− ε− αi−1

α0:i−1

γ
1− γi−1

1− γ
ε

= −ε− 1

α0:i−1

(
α0:i−2 + αi−1

)
γ

1− γi−1

1− γ
ε,

= −1− γi

1− γ
ε,

where we used max{qi−1(i − 1, s), qi−1(i − 1,m)} = qi−1(i − 1, s) = qi−1(i − 1,m) and
α0:i−2 + αi−1 = α0:i−1. Next, note that

qi(i, s) = r(i, s) + γ
α0:i−2

α0:i−1

max{qi−1(i, s), qi−1(i,m)}+
1

α0:i−1

Ei−1(i, s)

= −2
1− γi

1− γ
ε+ γ

1− γi−1

1− γ
ε+ ε

= −1− γi

1− γ
ε,

where we used qi−1(i, s) < qi−1(i,m) to obtain max{qi−1(i, s), qi−1(i,m)} = qi−1(i,m).
Therefore, (2.26) holds. Furthermore,

qi(i+ 1,m) = γ
α0:i−2

α0:i−1

max{qi−1(i, s), qi−1(i,m)}+
1

α0:i−1

Ei−1(i+ 1,m)

= γ
1− γi−1

1− γ
ε+ ε+

αi

α0:i−1

1− γi

1− γ
ε

=

(
1 +

αi

α0:i−1

)
1− γi

1− γ
ε

=
Ai+1

α0:i−1

1− γi

1− γ
ε,

where we again used qi−1(i, s) < qi−1(i,m) to obtain max{qi−1(i, s), qi−1(i,m)} =

52 Error-Tolerant Control via Entropy Regularized Value Iteration

qi−1(i,m). Thus, (2.27) holds. Finally, noting that qi−1(i+ l−1, s) < qi−1(i+ l−1,m),

qi(i+ l,m) = γ
α0:i−2

α0:i−1

max{qi−1(i+ l − 1, s), qi−1(i+ l − 1,m)}+
1

α0:i−1

Ei−1(i+ l,m)

= γ
α0:i−2

α0:i−1

qi−1(i+ l − 1,m) +
1

α0:i−1

Ei−1(i+ l,m)

= γ2 Ai−2

α0:i−1

qi−2(i+ l − 2,m) +
1

α0:i−1

(Ei−1(i+ l,m) + γEi−2(i+ l − 1,m))

...

=
1

α0:i−1

(
Ei−1(i+ l,m) + γEi−2(i+ l − 1,m) + · · ·+ γi−1E0(l + 1,m)

)
.

Because l ≥ 1, Ei−1−i(i+ l − i,m) ≥ 0, and thus, qi(l,m) ≥ 0. On the other hand,

qi(i+ l, s) = r(i+ l, s) + γ
α0:i−2

α0:i−1

max{qi−1(i+ l, s), qi−1(i+ l,m)}+
1

α0:i−1

Ei−1(i+ l, s)

= r(i+ l, s) + γ
α0:i−2

α0:i−1

qi−1(i+ l,m)

= r(i+ l, s) +
1

α0:i−1

(
γEi−2(i+ l,m) + · · ·+ γi−1E0(l + 2,m)

)
.

Because l ≥ 1, Ei−2−i(i+l−i,m) = 0, and thus, qi(i+l,m) = r(i+l, s) < 0. Therefore,
(2.28) holds. Given those results,

lim
i→∞

r.h.s. =
2γε

(1− γ)2
= lim

i→∞
‖Q∗ −Qρi‖∞

can be shown by following the proof sketch we have provided.

2.5.4 Proof of Proposition 2.2.4

Since

ln
πi(a|x)

πi−1(a|x)
= β [α0:i−1qi(x, a)− α0:i−2qi−1(x, a)]

− β [mβ (α0:i−1qi) (x)−mβ (α0:i−2qi−1) (x)] ,

we have (note that the mellowmax is a non-expansion)∥∥∥∥∥∑
a

πi(a|·) ln
πi(a|·)
πi−1(a|·)

∥∥∥∥∥
∞

≤ 2β ‖α0:i−1qi − α0:i−2qi−1‖∞ .

2.5 Proofs 53

By de�nition, α0:i−1qi = α0:i−1r + γPmβ (α0:i−2qi−1) + Ei−1. Therefore,

‖α0:i−1qi − α0:i−2qi−1‖∞
=
∥∥αi−1r + γPmβ (α0:i−2qi−1)− γPmβ (Ai−2qi−2) + εi−1 − (1− α)Ei−2

∥∥
∞

≤ αi−1rmax + γ ‖α0:i−2qi−1 − α0:i−3qi−2‖∞ + 2ε.

By induction, it is easy to see that

‖α0:i−1qi − α0:i−2qi−1‖∞
≤ γi−1 ‖q1‖∞ + 2(1 + γ + · · ·+ γi−2)ε+ (αi−1 + αi−2γ + · · ·+ αγi−2)rmax

≤ 2
1− γi

1− γ
ε+ rmax

i−1∑
j=0

αjγi−j−1.

As a result,

∥∥∥∥∑a πi(a|·) ln
πi(a|·)
πi−1(a|·)

∥∥∥∥
∞
≤ 4β

(
1− γi

1− γ
ε+ rmax

i−1∑
j=0

αjγi−j−1

)
.

2.5.5 Proof of Theorem 2.2.6

We prove Theorem 2.2.6. A basic strategy we take is almost same as the one we used
in the proof of 2.2.2.

First, we show an upper bound of di�erence between Q-value functions of two
policies.

Lemma 2.5.9. For any pair of policies π and µ, the maximum di�erence between their
Q-value functions is bounded by

√
2γVmaxδ

1/2/(1−γ), where δ = maxsDKL (π(·|s)|µ(·|s)).

Proof. We have

Qπ −Qµ = γP πQπ − γP µQµ = γP (πQπ − µQπ) + γP µ (Qπ −Qµ)

= γ (I − γP µ)−1P (πQπ − µQπ) .

Therefore,

‖Qπ −Qµ‖∞ ≤
γ

1− γ
‖πQπ − µQπ‖∞ ≤

γ

1− γ
max
x∈X

∑
a∈A

|(π(a|x)− µ(a|x))Qπ(x, a)|

≤ γ

1− γ
Vmax max

x∈X

∑
a∈A

|π(a|x)− µ(a|x)| ,

where the last inequality follows from Hölder's inequality and ‖Qπ‖∞ ≤ Vmax. By
Pinsker's inequality, maxs

∑
a |π(a|s)− µ(a|s)| ≤

√
2δ1/2. In the consequence

‖Qπ −Qµ‖∞ =
√

2γωVmaxδ
1/2

The following lemma gives us a di�erent upper bound for Qπi − ψK+1.

54 Error-Tolerant Control via Entropy Regularized Value Iteration

Lemma 2.5.10. Suppose sequences of policies (πi)i∈Z+ in the update (2.9), (µi)i∈Z+

in (2.11) and functions (qi)i∈Z+ de�ned in Lemma 2.5.4. Let δi be an upper bound of
maxxDKL(πi(·|x)|πi−1(·|x)). The following lower bound for Qπi − qi+1 holds for any
non-negative integer i:

Qπi − qi+1 (2.29)

≥ − 1

α0:i

i∑
j=0

γjP i,i−j+1Ei−j −
γVmax
α0:i

i∑
j=0

γjαi−j −
√

2γ2Vmax
1− γ

i−1∑
j=0

γj
α0:i−j−1

α0:i

δ
1/2
i−j,

where
∑0

j=1Qj means a constant function whose value is 0 for any sequence of functions
Qj, and

P i,i−j+1 :=

{
I for j = 0

P πiP πi−1
· · ·P πi−j+2

P πi−j+1
for 1 ≤ j ≤ i

Proof. For any non-negative integer i ≥ 0,

Qπi − qi+1 = γP πiQπi − γP µi

(
α0:i−1

α0:i

qi +
αi

α0:i

q0

)
− Ei
α0:i

≥ γ
α0:i−1

α0:i

P πi (Qπi−1 − qi)−
Ei
α0:i

− γVmax
α0:i

αi + γ
α0:i−1

α0:i

P πi (Qπi −Qπi−1)

≥ γ
α0:i−1

α0:i

P πi (Qπi−1 − qi)−
Ei
α0:i

− γVmax
α0:i

αi −
√

2γ2Vmax
1− γ

α0:i−1

α0:i

δ
1/2
i .

(The �rst and last term disappear if i = 0.) It is clear that the claim holds for i = 0. It
is not di�cult to prove the claim by induction with the aid of the above inequality.

By combining Lemmas 2.5.6 and 2.5.10, the following proposition is obtained.

Proposition 2.5.11. Suppose sequences of policies (πi)i∈Z+ in the update (2.9), (µi)i∈Z+

in (2.11) and functions (qi)i∈Z+ de�ned in Lemma 2.5.4. Let δi denote an upper bound
of maxxDKL(πi(·|x)|πi−1(·|x)). The following point-wise upper bound for Q∗ − Qπi

holds for any non-negative integer K:

Q∗ −Qπi ≤
1

α0:i

i∑
j=1

γj
(
P i,i−j+1Ei−j − (P ∗)

j Ei−j

)
+

2γVmax
α0:i

i∑
j=0

γjαi−j

+
γ(1− γi)
α0:iβ(1− γ)

ln |A|+
√

2γ2

1− γ
Vmax

i−1∑
j=0

γj
α0:i−j−1

α0:i

δ
1/2
K−k, (2.30)

where P i,i−j+1 are de�ned in Lemma 2.5.10, and
∑0

j=1Qj means a constant function
whose value is 0 for any sequence of functions Qj.

Now we prove Theorem 2.2.5. From Proposition 2.5.11 and by noting that |Q∗(x, a)−

2.5 Proofs 55

Qπi(x, a)| = Q∗(x, a)−Qπi(x, a),

‖Q∗ −Qπi‖∞
= max

x,a
(Q∗ −Qπi) (x, a)

= max
x,a

(Q∗ − qi+1 − (Qπi − qi+1)) (x, a)

≤ max
x,a∈X×A

i∑
j=1

γj

α0:i

(
P i,i−j+1Ei−j − (P ∗)

j Ei−j

)
(x, a)

+
2γVmax
α0:i

i∑
j=0

γjαi−j +
γ(1− γi)
α0:iβ(1− γ)

ln |A|+
√

2γ2Vmax
1− γ

i−1∑
j=0

γj
α0:i−j−1

α0:i

δ
1/2
i−j.

Because ‖P i,i−j+1Q‖∞ ≤ ‖Q‖∞ for any Q ∈ Q,

‖Q∗ −Qπi‖∞ ≤ 2γ
i∑

j=1

γj
∥∥∥∥Ei−jα0:i

∥∥∥∥
∞

+
2γVmax
α0:i

i∑
j=0

γjαi−j

+
γ(1− γi)
α0:iβ(1− γ)

ln |A|+
√

2γ2Vmax
1− γ

i−1∑
j=0

γj
α0:i−j−1

α0:i

δ
1/2
i−j−1.

Loosening it by replacing α0:i−j−1/α0:i with 1, we conclude the proof of Theorem 2.2.5.
A proof of Lp-norm performance bounds for ACVI-Q and Ψ is similar to that for

ATD(λ) (Theorem 1.7.4). However we omit it because it is notationally very cluttered.

56 Error-Tolerant Control via Entropy Regularized Value Iteration

Chapter 3

Noise-Tolerant Policy Evaluation via

Gap-Increasing Operator

As explained in Section 1.6, policy evaluation is a key problem in RL because two
of the most fundamental algorithms called AC and PI require a value function for
policy improvement (Sutton and Barto, 2018). As examples, recent popular deep
RL algorithms called deep deterministic policy gradient (DDPG), Actor-Critic with
Experience Replay (ACER), Asynchronous Advantage Actor-Critic (A3C) are based
on AC (Lillicrap et al., 2016; Wang et al., 2016; Mnih et al., 2016). However, current
policy evaluation algorithms are unsatisfactory since they are either ine�cient or prone
to noise originating from stochastic rewards and state transition.

For example, a multi-stage lookahead algorithm called R(λ) is e�cient in that it is
o�-policy, uses low-variance updates thanks to truncated importance sampling ratios,
and allows control of bias-variance trade-o� (Munos et al., 2016). It has achieved state-
of-the-art performance on di�erent kinds of RL tasks (Wang et al., 2016). However,
R(λ) is prone to noise, as shown later by error propagation analysis (Section 3.1.1) and
experiments (Section 3.1.2).

A simple approach to handle noise is to use partial updates using a learning rate
(Sutton and Barto, 2018). We call such an approach Learning-Rate-based (LR-based).
As we argue in Section 3.2, its learning is unsatisfactorily slow.

To maintain both noise-tolerance and learning e�ciency, we propose a new pol-
icy evaluation algorithm, called GRAPE, combining R(λ) and gap-increasing operator
(explained later). Theoretical analysis shows that GRAPE is noise-tolerant without
signi�cantly sacri�cing learning speed and e�ciency of R(λ). The theoretical analysis
also includes a comparison of GRAPE to R(λ) with a learning rate, which emphasizes
GRAPE's capacity to learn faster than R(λ) with a learning rate. Finally, we demon-
strate experimentally that our algorithm outperforms R(λ) in noisy environments.

The following is a list contributions of the present chapter.

� Proposing a new multi-stage lookahead o�-policy policy evaluation algorithms,
GRAPE and its variant called RGRAPE, based on gap-increasing operators.

� Providing error propagation analysis of the new algorithms that elucidates their
noise-tolerance and faster convergence than the LR-based approach.

57

58 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

� Providing preliminary experimental results on the new algorithms that support
our theoretical argument.

This chapter is organized as follows: in Section 3.1, we explain R(λ). Furthermore
we provide error propagation analysis of R(λ) in Section 3.1.1, which implies R(λ)'s
proneness to noise. We con�rm the theoretical argument by a simple experiment in
Section 3.1.2. Section 3.2 explains that a simple approach to noise by partial value
updates with a learning rate causes unsatisfactorily slow learning. To overcome this
issue, we propose GRAPE in Section 3.3 and motivate it by a intuitive argument Sec-
tion 3.3.1. In Section 3.1.1, we provide error propagation analysis of GRAPE justifying
the intuition on GRAPE. In Section 3.4.1, we explain a practical implementation of
GRAPE. In Section 3.5, we provide experimental results on GRAPE. In Section 3.5.1,
policy evaluation performance of GRAPE is compared to that of R(λ). In Section 3.5.2,
performance of GRAPE combined with a variant of TRPO is compared to that of R(λ).

3.1 Retrace and Approximate Retrace

In addition to TD(λ), many policy evaluation algorithms have been proposed (Sutton
and Barto, 2018). Retrace (R(λ)) algorithm described below provides a uni�ed view
of them (Munos et al., 2016).

Suppose a target policy π, the Q-value function of which we want to estimate, and
behavior policy µ, with which data are collected. Let ρ(x, a) denote the importance
sampling ratio π(a|x)/µ(a|x), which is assumed to be well-de�ned. An operator P µd :
B(X ×A)→ B(X ×A) is de�ned such that

(P µdQ)(x, a) := Eµ[d(X1, A1)Q(X1, A1)|X0 = x,A0 = a],

where d is a real-valued Borel-measurable function from X × A to [0, ρ(x, a)]. Munos
et al. (2016) has shown that an operator Rλ

µd shown below is a contraction around Qπ:

Qi+1 := Rλ
µdQi := Qi + (I − γλP µd)

−1 (BπQi −Qi) , (3.1)

where λ ∈ [0, 1], and (I − γλP µd)
−1 :=

∑∞
t=0 λ

tγt (P µd)
t. Thus Qi uniformly converges

to Qπ by Banach's �xed point theorem.1

Depending on the function d, various algorithms are reconstructed. For example,
tree-backup is obtained when d(x, a) = π(a|x), while TD(λ) with importance sampling
is obtained when d(x, a) = ρ(x, a) (Precup et al., 2000). Particularly, Munos et al.
(2016) proposed d(x, a) = min{1, ρ(x, a)} and called the resultant algorithm R(λ).
When we mean this choice of d, we use c to di�erentiate from other choices.

We are more interested in analyzing approximate version of R(λ)

Qi+1 := Rλ
µcQi := Qi + (I − γλP µc)

−1 (BπQi −Qi) + εi, (3.2)

1The following generalization of R(λ) works too as ‖Qπ −Qi+1‖∞ ≤ γ ‖Qπ −Qi‖∞ holds: Qi+1 :=∑J
j=1 pjR

λ
µjcQi, where µj is j-th behavior policy, and pj ∈ [0, 1],

∑
j pj = 1. This generalization �ts

better to a case wherein data is collected with multiple policies.

3.1 Retrace and Approximate Retrace 59

where εi ∈ B(X ×A). We call this algorithm Approximate Retrace (AR(λ)). As is the
case with other ADP algorithms, we frequently omit the quali�er "approximate".

3.1.1 Error Propagation Analysis of Retrace

Munos et al. (2016) has proven the convergence of exact R(λ). We aim at proving the
following theorem that generalizes their result.

Theorem 3.1.1 (An L∞-Norm Error Bound for AR(λ)). For AR(λ) in Equation (3.2),
the following holds:

‖Qπ −Qi‖∞ ≤ γi ‖Qπ −Q0‖∞ +
∑i−1

j=0γ
j ‖εi−j−1‖∞ . (3.3)

Remark 3.1.1. As argued in Remark 1 of (Munos et al., 2016), a contraction modulus
(γ in Theorem 3.1.1) of R(λ) is smaller when π and µ are close. In other words, γ is
the worst-case modulus.

Remark 3.1.2. It is possble to exchanging ‖Qπ −Qi‖∞ on the left hand side with
‖Vπ − πQi‖∞ or ‖Aπ − (Qi − πQi)‖∞. In the former case, use that ‖Vπ − πQi‖∞ =
‖π (Qπ −Qi)‖∞ ≤ ‖Qπ −Qi‖∞. In the latter case, use that ‖Aπ − (Qi − πQi)‖∞ ≤
‖Vπ − πQi‖∞ + ‖Qπ −Qi‖∞ ≤ 2 ‖Qπ −Qi‖∞.

The lemma below can be proven in a way similar to Lemma 1.7.1. Combining
this lemma and the fact that ‖NQ‖∞ ≤ ‖Q‖∞ proven by Munos et al. (2016), Theo-
rem 3.1.1 is proven in a way similar to Corollary 1.7.2.

Lemma 3.1.2 (A Point-Wise Error Bound for AR(λ)). For AR(λ) in Equation (3.2),
the following holds:

Qπ −Qi = γiN i (Qπ −Q0)−
∑i−1

j=0γ
jN jεi−j−1,

where N is an operator from B(X ×A) to itself de�ned by (I − γλP µc)
−1 (P π−λP µc).

As shown in the following proposition, the error bound (3.3) is not improvable. It
can be proven by setting π and µ such that they have disjoint supports.

Proposition 3.1.3 (Tightness of the L∞-Norm Error Bound (3.3) for AR(λ)). The
L∞-Norm Error Bound (3.3) for AR(λ) is tight meaning that there exists an MDP, a
pair of policies µ, π and a sequence (εi)i∈Z+ of error functions such that the error bound
holds with equality.

The error bound (3.3) implies AR(λ)'s proneness to noise. Indeed the right hand
side is a sum of L∞-norm of error functions. A simple experiment in Section 3.1.2
con�rms the theoretical analysis.

3.1.2 Retrace's Proneness to Noise

The error bound (3.3) shows that ‖Qπ −Qi‖∞ is governed by a discounted sum of L∞-
norm of error functions. Therefore the e�ect of errors accumulates. Given this result,

60 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

a natural question is whether we can do better if error functions satisfy a certain
condition.

We are interested in a model-free case, in whichRλ
µcQi is estimated based on samples

obtained through interactions with the environment. In model-free case, it is expected
that error functions εj ∈ B(X ×A) satisfy

1∑k
j=0 α

i−k

∣∣∣∣∣
i∑

j=0

αi−jεj(x, a)

∣∣∣∣∣ ≈ 0 (3.4)

for su�ciently large α ∈ (0, 1] and i ∈ Z+. We call such error functions as noisy error
functions (or simply noises). The error bound (3.3) shows that R(λ) is unfortunately
not able to handle noises.

In order to con�rm whether R(λ) indeed su�ers from noises, we have carried out
a simple experiment with DP updates in a environment called 8 × 8 FrozenLake (see
Figure 3.1) as explained in Experiment 3.1.1. In Section 3.5, we present experimental
results in more realistic model-free case.

Figure 3.1: 8 × 8 FrozenLake. Blue grids are slippery but safe
states, while black grids are terminal states with no reward. An
agent obtains a reward 1 when it reaches to a goal, G, (bottom
right) from a start state S (top left). At a slippery state, an action
to go one direction (e.g., left) results in, with equal probability,
going to one of directions except its opposite (e.g., right).

Experiment 3.1.1 (DP experiment in 8×8 FrozenLake). This experiment for AR(λ)
is done as follows: �rst, µ and π are sampled from a Dirichlet distribution with con-
centration parameters all set to 1. From those policies, matrices P µc and P π are
constructed. Using P µc, P π and an expected reward function r, a function Qi+1 is
computed as a sum of Rλ

µcQi and Gaussian noise εi(x, a) ∼ N(0, σ). The discount
factor γ and λ are set to 0.99 and λ = 0.8, respectively. Similar results are obtained
regardless of their values. The standard deviation σ ∈ {0.0, 0.2, 0.4, 0.6, 0.8} is varied to
investigate the e�ect of noise intensity. An initial function is Q0(x, a) ∼ N(0, 1). The
experiment for AR(λ) with a learning rate (explained in Section 3.2) is done similarly
except that Qi+1 is computed as ηRλ

µcQi + (1− η)Qi + ηεi.

To measure the performance of AR(λ), we used Normalized Mean Squared Error
(NMSE). Let ei be

ei :=
1

|X × A|
∑

(x,a)∈X×A

(Aπ(x, a)− Ai(x, a))2 , (3.5)

where Ai(x, a) := Qi(x, a) −
∑

a∈A π(a|x)Qi(x, a). NMSE is de�ned by ei/e0. The
division by e0 is to simply remove e�ects of initialization. The reason why we use Aπ
and Ai is as follows: �rst note that adding a state-dependent function to Qi makes no
di�erence on Aπ −Ai, whereas it of course does on Qπ −Qi; given that policy updates

3.2 Slow Learning Due to a Learning Rate 61

are insensitive to the addition of a state-dependent function, this performance measure
is more appropriate than the one computed based on Qπ −Qi.

0.0 0.2 0.4 0.6 0.8
Noise Intensity ()

0.0

0.2

0.4

0.6

0.8

1.0

NM
SE

 vs NMSE

0.05
0.1
0.2
0.4

0.6
0.8
1.0

0 5 10 15 20 25
Iterations (i)

i vs NMSE (= 0.0)

0 5 10 15 20 25
Iterations (i)

i vs NMSE (= 0.8)

Figure 3.2: DP experiment results in 8 × 8 FrozenLake. Experimental results with
R(λ) (left panel) and R(λ) with a learning rate (right panel) using DP updates. For
details, see Experiment 3.1.1. Lines indicate the median of NMSE (lower is better)
over 100 experiments, and the shaded area shows the 95 percentile. Colors indicate
noise intensity σ. Note that the vertical axis is in log-scale.

The left panel of Figure 3.2 visualizes asymptotic performance (after 2, 000 iter-
ations) of AR(λ) measured by NMSE with varying noise intensity. AR(λ)'s result
corresponds to the pink line, i.e., the one indicated by the legend as 1.0. (Other lines
correspond to results of AR(λ) with a learning rate explained later.) The middle and
right panels show learning curves when σ is 0.0 and 0.8, respectively. In the middle
panel NMSE quickly decreases to 0 after 1 or 2 iterations, whereas in the right panel
NMSE gradually increases after a small quick decrease. These results show that as the
noise intensity σ increases, AR(λ)'s performance quickly degrades. In other words, it
indeed su�ers from noises.

3.2 Slow Learning Due to a Learning Rate

As we have discussed now, AR(λ) is prone to noises. A simple approach to handle
noise is to use a learning-rate. We call such an approach LR-based. For example, the
update rule of TD(λ) with λ = 0 and a learning rate is given by

Qi+1 := ηi �BπQi + (1− ηi)�Qi, (3.6)

where ηi : X ×A → [0, 1] is a learning rate, and � is element-wise multiplication, i.e.,
((1− ηi)�Qi)(x, a) = (1− ηi(x, a))Qi(x, a). This generalized notion of a learning rate
is frequently used in theoretical analysis (Bertsekas and Tsitsiklis, 1996; Singh et al.,
2000; Even-Dar and Mansour, 2004). It includes various algorithms such as the online
TD(0) when k = t, and ηi(x, a) 6= 0 i� x and a is visited at time t.

The LR-based approach attains, as expected, noise-tolerance. For simplicity, let
us assume that Q0(x, a) = 0 and ηi(x, a) = η ∈ (0, 1] for all k and state-action pairs

62 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

(x, a) ∈ X ×A. Let us suppose that due to noise, the update (3.6) becomes

Qi+1 := η (BπQi + εi) + (1− η)Qi = η
i∑

j=0

(1− η)j (BπQi−j + εi−j) . (3.7)

Because Qπ = η
∑i

j=0(1− η)jQπ + (1− η)i+1Qπ,

‖Qπ −Qi+1‖∞ ≤ ηγ

i∑
j=0

(1− η)j ‖Qπ −Qi−j‖∞ + ‖ηEi‖∞ + (1− η)i+1Vmax,

where Ei :=
∑i

j=0(1 − η)jεi−j. By induction, it is easy to show that an upper bound
of the right hand side consists of ‖ηEj‖ , j ∈ [0 : i] and some constant. As ηEj(s, a) is
an exponentially weighted average of noises εi−j(s, a), it is expected that ηEj ≈ 0 for
a su�ciently small learning rate η.

Note that the update rule (3.7) can be rewritten as Qi+1 = η
∑i

j=0 Γ
jr, where

Γ := (1− η) I + ηγP π. Using it, we can derive the convergence rate of LR-based
approach. As Qπ = η

∑i
j=0 Γ

jr + Γi+1Qπ, we can deduce that

‖Qπ −Qi+1‖ ≤ (1− η(1− γ))i+1 Vmax. (3.8)

Because this upper bound holds with equality when P π is an identity operator I, it is
not improvable. (For example, P π = I when an environment has only one state and
action). Therefore, the convergence rate is O((1−η(1−γ))K). Considering that γ ≈ 1
and η ≈ 0 in many cases, 1−η(1−γ) is close to 1. Thus, the LR-based is noise-tolerant
at the sacri�ce of learning e�ciency.

To con�rm this argument, we conducted a simple experiment using DP updates
of AR(λ) with a learning rate. (In Section 3.5, we present experimental results in
more realistic model-free case.) The left panel of Figure 3.2 visualizes asymptotic
performance (after 2, 000 iterations) with varying noise intensity. Learning rates used
are indicated by di�erent colors as in the legend. The middle and right panel show
learning curves when σ is 0.0 and 0.8, respectively. In those panels, as the learning
rate decreases, the decay of NMSE slows, while the �nal result becomes better. These
results illustrate the tolerance of the LR-based to noise as well as its unsatisfactorily
slow learning.

3.3 Gap-Increasing Operators for Policy Evaluation

In Section 3.2 we discussed noise-tolerance of the LR-based at the sacri�ce of learning
e�ciency. Is it possible to tame noise while maintaining e�ciency? In this section, we
a�rmatively answer the question with a gap-increasing policy evaluation algorithm,
called Gap-increasing RetrAce Policy Evaluation (GRAPE), inspired by single-stage
lookahead control algorithms called AL and DPP (Baird III, 1999; Azar et al., 2012;
Rawlik, 2013; Bellemare et al., 2016), which are shown to be noise-tolerant (Azar et al.,
2012; Kozuno et al., 2019).

3.3 Gap-Increasing Operators for Policy Evaluation 63

Approximate AL has the following update rule (Bellemare et al., 2016):

Qi+1 := BQi + α (Qi −mQi) + εi, (3.9)

where an initial function Q0 is an element of B(X ×A), and α ∈ [0, 1] is a coe�cient of
the advantage term Qi −mQi. As we prove later in Chapter 2, the sequence (Qi)i∈Z+

uniformly converges to V∗ + 1
1−αA∗ in exact case. As A∗ = Q∗ − V∗ is value di�erences

of actions, we call it action-gaps. The coe�cient α of the advantage term controls
"gap-increasingness" of the operator Q→ BQ+ α (Qi −mQi).

We have shown in (Kozuno et al., 2019) that not only AL but also other control
algorithms using gap-increasing operators are noise-tolerant. Thus it is expected that
policy evaluation algorithms using gap-increasing operators have noise-tolerance too.

Being inspired by gap-increasing operators, we propose RGRAPE. Suppose target
and behavior policies π, µ and two positive real numbers α, λ ∈ [0, 1]. RGRAPE's
update rule is the following:

Qi+1 := BπQi + γλ (I − γλP µc)
−1P µc (BπQi −Qi + αAi−1) + αAi + εi, (3.10)

where Ai is de�ned as Qi − πQi for i /∈ {−1, 0} and a constant function taking 0
otherwise. Note that Ai−1 is used in γλ (I − γλP µc)

−1P µc (BπQi −Qi + αAi−1), while
Ai is used at the second to the last term. This non-trivial subtlety, which is di�cult
to predict from the update rule of AL, seems to be essential for theoretically proving
noise-tolerance.

A slightly di�erent form of RGRAPE with the following update is also possible:

Qi+1 := BπQi + γλ (I − γλP µc)
−1P π (BπQi −Qi) + αAi + εi, (3.11)

We call this variant as GRAPE. Note that P π is used in γλ (I − γλP µc)
−1P π rather

than P µc. As a result, Ai−1 disappears.

The price to pay for the implementation simplicity of GRAPE is the use of an im-
portance sampling ratio in P π instead of truncated importance sampling ratio c(x, a) =
min{1, π(a|x)/µ(a|x)}. Because an importance sampling ratio is used only at one time
step, we expect no signi�cant di�erence between GRAPE and RGRAPE. Accordingly
we have carried out experiments with only GRAPE and presented results in Section 3.5.

3.3.1 Motivation for the Gap-Increasing Approach

In Section 3.4, we provide error propagation analysis of GRAPE and RGRAPE. Before
that, we intuitively explain why the gap-increasing approach may work well.

The update rule (3.7) reveals that the basic idea of the LR-based approach is
mitigating the e�ect of noises by taking exponentially weighted sum of BπQi−j + εi−j.
If BπQi−j were equal to Bi−j

π Q0 (ignoring errors), such approach would yield a fast
but noise-tolerant algorithm.

Concretely the following algorithm will have a faster convergence while keeping

64 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

noise-tolerance similar to that of the LR-based approach:

κ′i+1 := Bπκ
′
i + εi =

i∑
j=0

γjP j
π (r + εi−j) + γi+1P i+1

π κ′0 (3.12)

κi+1 =
1∑i

k=0 α
k

i∑
j=0

αjκ′i−j+1 =
1∑i

k=0 α
k

i∑
j=0

αj
(
Bπκ

′
i−j + εi

)
, (3.13)

where κi+1 is actually used an estimate of Qπ, and α ∈ [0, 1]. However it is cumbersome
to store both κ′i and κi. It turns out that GRAPE and RGRAPE are almost equivalent
to this algorithm while storing only Qi.

Suppose that λ = 0 in the update rules of RGRAPE (3.10) and GRAPE (3.11)
for simplicity. To see the equivalence, note that the advantage term Ai−1 in BπQi =
Bπ(BπQi−1 + εi−1 + αAi−1) will disappear. Thus we deduce that

BπQi + εi =
i∑

j=0

γjP j
π (r + εi−j) + γi+1P i+1

π Q0,

which is in the same form as that of κ′i+1. Furthermore the update rules (3.10) and
(3.11) can be rewritten as

Qi+1 := BπQi + αAi + εi =
i∑

j=0

αj (BπQi−j + εi−j) + αi+1Q0 − π
i∑

j=0

αj+1Qi−j.

Because π
∑i

j=0 α
j+1Qi−j is not important for policy improvement, we may ignore it.

As a result we can see that Qi+1/
∑i

j=0 α
j is essentially κi+1.

From this result, we can understand that GRAPE and RGRAPE are almost equiva-
lent to the algorithm with the update rules (3.12) and (3.13), and hence, we can expect
that the gap-increasing approach works better than the LR-based approach.

3.4 Error Propagation Analysis of GRAPE and RGRAPE

In this Section 3.4, we carry out error propagation analysis of RGRAPE. As analysis of
RGRAPE is notationally simpler but almost same as that of GRAPE, we omit analysis
of GRAPE. However note that similar results hold for GRAPE too. For readability,
all proofs are deferred to Section 3.8.

We begin with some shorthand notations. First we de�ne

Ei :=
i∑

j=0

αjεi−j (3.14)

3.4 Error Propagation Analysis of GRAPE and RGRAPE 65

for all i. Furthermore we use a shorthand notation

αj:i :=

{∑i
k=j α

k if i ≥ j

0 otherwise
(3.15)

for two integers i, j ∈ Z. We also recall that N is an operator from B(X ×A) to itself
de�ned by (I − γλP µc)

−1 (P π − λP µc) (see Lemma 3.1.2).
As for the convergence of GRAPE and RGRAPE, the following theorem holds.

Theorem 3.4.1 (Uniform Convergence of Exact GRAPE and RGRAPE). When there
are no errors, the following holds for GRAPE and RGRAPE:

lim
i→∞

1

α0:i−1

Ai = Aπ and lim
i→∞

1

α0:i−1

Qi = Aπ + (1− α)V π,

where the convergence is uniform. Moreover, the convergence rates of GRAPE and
RGRAPE are by O(

∑i
j=0 δ

i−jαj/α0:i) and O(
∑i

j=0 γ
i−jαj/α0:i), respectively, where δ =

γ (1− λ (1− γ)).

Interestingly, while a �xed point of previous policy evaluation algorithms is Qπ,
GRAPE's �xed point is Vπ(x) + Aπ(x, a)/(1 − α) when α 6= 1. Thus in GRAPE, Aπ
is enhanced by a factor of 1/(1 − α). This is the reason why we call GRAPE as gap-
increasing Retrace; Q-value di�erences, or action-gaps, are increased. In case of AL,
its �xed point is V∗(x) + A∗(x, a)/(1 − α), which is indicative of the point to which
GRAPE converges.

This gap-increasing property might be bene�cial when RL is applied to a system
operating at a �ne time scale, as argued in (Baird III, 1999; Bellemare et al., 2016).
Brie�y, in such a situation, changes of states caused by an action at one time step are
small. Consequently, so are action-gaps. Hence, a function approximator combined
with a previous policy evaluation algorithm mainly approximates Vπ rather than Aπ
(because it tries to minimize error between Qπ = Vπ + Aπ and an estimated Q-value
function). However, Aπ is the one truly required to improve a policy.

When updates are not exact, the following L∞-norm error bounds for GRAPE and
RGRAPE hold.

Theorem 3.4.2 (An L∞-Norm Error Bound for RGRAPE). Recall δ de�ned in The-
orem 3.4.1. For GRAPE, the following holds:∥∥∥∥Aπ − 1

α0:i−1

Ai

∥∥∥∥
∞
≤ 2∆i ‖Qπ −Q0‖∞ + 2

i−1∑
j=0

δj
∥∥∥∥ 1

α0:i−1

Ei−j−1

∥∥∥∥
∞
,

where ∆i :=
1

α0:i−1

i−1∑
j=0

δi−jαj. For RGRAPE, the following holds:

∥∥∥∥Aπ − 1

α0:i−1

Ai

∥∥∥∥
∞
≤ 2Γi ‖Qπ −Q0‖∞ + 2

i−1∑
j=0

γj
∥∥∥∥ 1

α0:i−1

Ei−j−1

∥∥∥∥
∞
,

66 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

where Γi :=
1

α0:i−1

∑i−1
j=0 γ

i−jαj.

Let us discuss RGRAPE's noise-tolerance. It can be seen from ‖Ei−1/α0:i−1‖∞
in Theorem 3.4.2. As Ei−1/α0:i−1 =

∑i−1
j=0 α

jεi−j−1/α0:i−1, RGRAPE shows noise-
tolerance similar to the LR-based approach. Furthermore the noise-tolerance of LR-
based and RGRAPE is expected to approximately coincide when α = 1 − η. In
numerical experiments, we indeed observed the coincidence.

We also argue the ine�ectiveness of increasing the number of samples in each update.
Suppose that εj(x, a), i ∈ [0 : i] are i.i.d. random variables whose mean and variance are
0 and 1, respectively. Then Ei−1(x, a)/α0:i−1 has a variance (1 +α2 + · · ·+α2i)/α2

0:i−1.
It converges to approximately 0.025 when α = 0.95, while it is 1 when α = 0. Thus a
higher α leads to a signi�cantly smaller variance. Although εj(x, a), i ∈ [0 : i] are not
i.i.d. in practice, a similar result is expected to hold in model-free setting, in which
updates are estimated from samples. To attain a variance of εj as small as 0.025,
around forty times more samples are required (1/0.025 ≈ 40).

0.0 0.5 1.0
 or 1

101

102

103

Ite

ra
tio

n
to

 C
on

v. = 0.9

RGRAPE
LR-Based

0.8 0.9 1.0
 or 1

101

102

103

= 0.9 (Zoom Up)

0.0 0.5 1.0
 or 1

102

103

104
= 0.99

0.8 0.9 1.0
 or 1

102

103

104
= 0.99 (Zoom Up)

Figure 3.3: Convergence rate comparison of RGRAPE and R(λ). The red lines show
results with RGRAPE, while the blue lines show results with R(λ) with a learning rate.
In each panel, the vertical axis is the number of iterations i at which Γi for RGRAPE
or (1 − η(1 − γ))i+1 for R(λ) with a learning rate becomes less than 0.1. Note that
vertical axes are in log scale. The horizontal axis is α for RGRAPE or 1− η for R(λ)
with a learning rate. As explained in the main text, noise-tolerance of RGRAPE and
R(λ) are approximately equal when α = 1− η. γ is shown on top of each panel.

Maximum noise-tolerance is obtained when α = 1. However the convergence
RGRAPE with α = 1 is extremely slower than that with α smaller than 0.95. In
Figure 3.3, we have visualized the number of iterations i by which

∑i−1
j=0 γ

i−jαj/α0:i−1

becomes less than 0.01 (red lines). As is seen, the number of iterations starts to quickly
increase around α = 0.975. Yet RGRAPE show several times faster convergence than
that of R(λ) with a learning rate.

Finally we argue what happens if εk(s, a) are not noise, and averaging has no e�ect.
Then using the triangle inequality, we have

‖Aπ − Ai‖ ≤ o (1) +
2

α0:i−1

i−1∑
j=0

γj
i−j−1∑
k=0

αk ‖εi−j−k−1‖∞ ∝
i−1∑
j=0

ci−j−1 ‖εi−j−1‖∞ ,

3.4 Error Propagation Analysis of GRAPE and RGRAPE 67

where we ignored o(1) term in the right hand side and de�ned

ci−j−1 :=
1

α0:i−1

j∑
k=0

αj−kγk. (3.16)

This coe�cient determines how quickly e�ects of past errors decay. Note that ci−j−1

is the coe�cient of ‖εi−j−1‖∞. Figure 3.4 visualizes the coe�cient clearly illustrating
enlarged and lessened e�ect of the past (j ≈ i− 1) and recent errors (j ≈ 0) for a large
α, respectively.

0 50 100 150 200
i-j-1

0.0

0.2

0.4

0.6

0.8

1.0

c i
j

1

= 0.9

= 0.0
= 0.8
= 0.99
= 0.999
= 1.0

0 50 100 150 200
i-j-1

= 0.95

0 50 100 150 200
i-j-1

= 0.99

Figure 3.4: Error decay of RGRAPE. Lines show the coe�cient (3.16) with various
α as in the legend. γ is shown on top of each panel. The horizontal axis is i − j − 1,
where i = 200. Therefore the value at i − j − 1 = 200 shows strength of ε200's e�ect
on Aπ − Ai. As clearly shown, e�ects of errors at early iterations lingers if α is high.
However if each error function has the same L∞-norm, the net e�ect of errors is the
same across di�erent α as argued in the main text.

From Figure 3.4 one may wonder whether the net e�ect of errors might be large in
RGRAPE. To see that this is not the case, let us suppose for simplicity that ‖εj‖ = ε,
and that α = 1, which must show a drastic di�erence from a case with α = 0. Then

lim
i→∞
‖Aπ − Ai/α0:i−1‖ ≤

2ε

1− γ
.

The same asymptotic bound is obtained when α = 0, i.e., when AR(λ) is used; thus,
the net e�ect of errors is unchanged.

3.4.1 Practical Implementation

We explain how to e�ciently implement GRAPE and RGRAPE in model-free setting.

68 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

Update Estimation Based on Samples

We �rst discuss how to estimate update targets of GRAPE and RGRAPE in model-free
setting. Sample estimate of RGRAPE's update can be straightforwardly given by

r0 + γπQi(x1) +
∞∑
t=0

γt+1λt+1

t+1∏
u=1

c(xu, au)δt+1 + αAi(x0, a0), (3.17)

where δ′t := rt + γπQi(xt+1)−Qi(xt, at) + αAi−1(xt, at), and at ∼ µ(·|xt).
GRAPE needs some tricks to reduce variances of update target estimates. First it is

a bad idea to estimate
∑

a∈A π(a|x)Qi(x, a) byQi(x, a), a ∼ π(·|x) or ρ(x, a)Qi(x, a), a ∼
µ(·|x), where ρ is a importance sampling ratio ρ(x, a) := π(a|x)/µ(a|x). The reason is
that the variances of such estimators tend to be high. Indeed from Lemma 3.8.1, we
have Qi+1 = α0:iqi+1 − α1:iπqi. Furthermore the last paragraph before Theorem 3.4.1
explains that qi ≈ Qπ holds. Accordingly we can expect that Qi ≈ α0:iQπ − α1:iVπ.
Suppose that it holds with equality. Then, the variance of Qi(x, a), a ∼ π(·|x), for
example, is given by

VQi(x, ·) =
∑
a∈A

π(a|x)

(Qi(x, a)−
∑
b∈A

π(b|x)Qi(x, b)

)2


= α2
0:i

∑
a∈A

π(a|x)Aπ(x, a)2.

Thus it is proportional to α2
0:i, which is extremely large when α ≈ 1. For example, it

is i2 when α = 1.

Next let us consider the variance of ρ(xt, at) (rt + γπQi(xt+1)−Qi(xt, at)) given xt.
For simplicity, assume that Qi = α0:iQπ − α1:iVπ. Then we have∑

at∈A

µ(at|xt)E [ρ(xt, at) (Rt + γπQi(Xt+1)−Qi(xt, at))|xt, at] = 0.

Letting κ(xt, at) denote a control variate such that
∑

at∈A µ(at|xt)ρ(xt, at)κ(xt, at) = 0,∑
at∈A

µ(at|xt)E
[
ρ(xt, at)

2 (Rt + γπQi(Xt+1)−Qi(xt, at)− κ(xt, at))
2
∣∣xt, at]

∝
∑
at∈A

µ(at|xt)
(
2α1:iρ(xt, at)

2κ(xt, at)Aπ(xt, at) + ρ(xt, at)
2κ(xt, at)

2
)
.

The last line is minimized when −κ(xt, at) = α1:iAπ(xt, at) ≈ αAi(xt, at). Accord-
ingly, given a trajectory (x0, a0, r0, x1, a1, r1, . . .) wherein at ∼ µ(·|xt), one of the most
straightforward and reasonable estimator is

r0 + γπQi(x1) +
∞∑
t=0

γt+1λt+1

t∏
u=1

c(xu, au)ρ(xt+1, at+1)δt+1 + αAi(x0, a0), (3.18)

3.5 Numerical Experiments 69

where δt := rt + γπQi(xt+1)−Qi(xt, at) + αAi(xt, at), and
∏0

u=1 c(xu, au) = 1.

Policy Improvement

For policy improvement, we have used a simple variant of TRPO by Schulman et al.
(2015). Its policy updates are given by

πk+1(a|x) =
πk(a|x) exp (βAπk(x, a))∑
b∈A πk(b|x) exp (βAπk(x, b))

, (3.19)

with π0(a|x) = 1/|A|, where β ∈ (0,∞). In real implementation, Aπk is estimated
by each algorithm. While writing the thesis, we found that this algorithm is MPO
(Abdolmaleki et al., 2018) using KL divergence regularization rather than constraint.
Therefore we omit its derivation.

E�cient Target Computation

To reduce the number of computations, it is recommended to compute the update
targets (3.17) and (3.18) backwards. Algorithms 4 and 5 explain how to do it. It is an
approximation in a sense that the sum

∑T
t=0 γ

t+1λt+1
∏t+1

u=1 c(xu, au)δt+1 is used (i.e.,
the sum is from t = 0 to T).

Algorithm 4 Compute RGRAPE Target

Require: Contiguous samples (xt, at, rt, xt+1, µt, dt)t∈[0 :T], iteration index i, current
and old value functions Qi, Qi−1, and a target policy π.

1: bT+1 ← 0.
2: for t from T to 0 do
3: ρ← π(at|st)/µt, c← min{1, ρ}.
4: BπQi ← rt + γ(1− dt)

∑
b∈A π(b|xt+1)Qi(xt+1, b).

5: Ai−1 ← Qi−1(xt, at)−
∑

b∈A π(b|x)Qi−1(xt, b) if i 6= 0 or i 6= 1 otherwise 0.
6: Ai ← Qi(xt, at)−

∑
b∈A π(b|x)Qi(xt, b) if i 6= 0 otherwise 0.

7: Q′t ← BπQi + αAi + γλbt+1.
8: bt ← c (BπQi −Qi(st, at) + αAi−1) + γλcbt+1 if dt 6= 0 otherwise 0.
9: end for
10: return Targets (Q′0, . . . , Q

′
T).

3.5 Numerical Experiments

In order to con�rm theoretical results, we have carried out experiments in several
environments. We provide experimental results in this Section 3.5.

3.5.1 Policy Evaluation Performance Comparison in NChain

The �rst experiment is conducted to compare policy evaluation performance of GRAPE
and R(λ). We carried out it in an environment called NChain as explained in Experi-

70 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

Algorithm 5 Compute GRAPE Target

Require: Contiguous samples (xt, at, rt, xt+1, µt, dt)t∈[0 :T], iteration index i, current
value function Qi, and a target policy π.

1: bT+1 ← 0.
2: for t from T to 0 do
3: ρ← π(at|st)/µt, c← min{1, ρ}.
4: BπQi ← rt + γ(1− dt)

∑
b∈A π(b|xt+1)Qi(xt+1, b).

5: Ai ← Qi(xt, at)−
∑

b∈A π(b|x)Qi(xt, b) if i 6= 0 otherwise 0.
6: Q′t ← BπQi + αAi + γλbt+1.
7: bt ← ρ (BπQi −Qi(st, at) + αAi) + γλcbt+1 if dt 6= 0 otherwise 0.
8: end for
9: return Targets (Q′0, . . . , Q

′
T).

ment 3.5.1.

Experiment 3.5.1 (Model-Free Policy Evaluation Experiment in NChain). NChain
is a larger, stochastic version of an environment in Example 6.2 Random Walk of
(Sutton and Barto, 2018). The environment is a horizontally aligned linear chain of
twenty states in which an agent can move left or right at each time step. However, with
a small probability called slip prob (≤ 0.5), the agent moves to an opposite direction.
The agent can get a small positive reward when it reaches the right end of the chain.
The left and right ends of the chain are terminal states. This environment is suitable
for investigating noise-tolerance of algorithms as it allows the control of stochasticity
by slip prob.

The experiments in NChain are conducted as follows: one trial consists of 200, 000
interactions, i.e. time steps, of an agent with an environment. At each time step, the
agent takes an action a ∼ µ(·|x) given a current state x. Then, it observes a subsequent
state y with an immediate reward r. If the state transition is to a terminal state, an
episode ends, and the agent starts again from a random initial state. The interactions
are divided into multiple blocks. One block consists of N = 250 time steps. After each
block, the agent update its value function using N samples of the state transition data
(x, a, r, y, µ(a|x), d) in the block, where d = 1 if the transition is to a terminal state
otherwise 0. After each block, the agent is reset to the start state. Ψ0 is initialized
to Ψ0(x, a). π(·|x) and µ(·|x) are sampled from |A|-dimensional Dirichlet distribution
with all concentration parameters set to 1. The discount factor is 0.99, and λ is varied.

Figure 3.5 visually compares GRAPE and R(λ) with a learning rate. λ is set
to 0. In all panels, there is a clear tendency that increasing either α or η leads to
decreased NMSE, except η = 0.01. Asymptotic NMSE of GRAPE and R(λ) closely
match when α = 1 − η. We note that GRAPE with α = 0.99 shows strong noise-
tolerance with reasonably fast learning. Because the number of samples in one update
is �xed, this result shows signi�cantly more e�cient learning by GRAPE. Due to page
limitations, we omit experimental results in which the number of samples in one update
is N = 2000. However, we note that GRAPE with a frequent update with N = 250
worked better in terms of the number of samples, in accordance with our theory.

3.5 Numerical Experiments 71

0.0

0.2

0.4

0.6

0.8

1.0

NM
SE

 (S
lip

 P
ro

b=
0.

0)

GRAPE (= 0.0)

= 0.0
= 0.5

= 0.75
= 0.99

retrace (= 0.0)

= 1.0
= 0.5

= 0.25
= 0.01

0 200 400 600 800
Number of Value Updates

0.0

0.5

1.0

1.5

2.0

NM
SE

 (S
lip

 P
ro

b=
0.

2)

0 200 400 600 800
Number of Value Updates

Figure 3.5: Policy evaluation
performance of GRAPE and R(λ)
with a learning rate in NChain.
The horizontal axes show the num-
ber of value updates. The vertical
axes show NMSE (lower is better).
Lines show mean performance over
twenty-four trials. For visibility,
we omit error bars. The �rst row
shows results of GRAPE and R(λ)
when slip prob is 0.0. α and η are
indicated by the legends. λ is �xed
to 0.0. The second row is the same
except that slip prob is increased
to 0.2.

0.0

0.2

0.4

0.6

0.8

1.0

NM
SE

 (S
lip

 P
ro

b=
0.

0)

GRAPE (= 0.99)

= 0.0
= 0.25

= 0.5
= 0.75

retrace (= 0.01)

= 0.0
= 0.25

= 0.5
= 0.75

0 200 400 600 800
Number of Value Updates

0.0

0.5

1.0

1.5

2.0

NM
SE

 (S
lip

 P
ro

b=
0.

2)

0 200 400 600 800
Number of Value Updates

Figure 3.6: Policy evaluation
performance of GRAPE and R(λ)
with a learning rate in NChain us-
ing various λ. The �gure is same
as Figure 3.5 except that α of
GRAPE and η of R(λ) are �xed to
0.99 and 0.01, respectively. These
values are chosen so that the e�ect
of λ is most visible.

Figure 3.6 illustrates the e�ect of changing λ. In GRAPE, there is a slight im-
provement by increasing λ, whereas in R(λ), there is a clear tendency that increasing
λ improves learning. A possible reason implied by our theory is that δ is much smaller
than α = 0.99; thus, the convergence rate is almost determined by α.

3.5.2 Control Performance Comparison in FrozenLake

Next we have carried out model-free control experiments in 8 × 8 FrozenLake as ex-
plained in Experiment 3.5.2 to investigate the usefulness of GRAPE.

72 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

0 10 20 30 40 50
Number of Policy Updates

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 R
ea

ch
in

g
Pr

ob
ab

ilit
y

N = 250, = 0.0

= 0.0
= 0.25
= 0.5

= 0.75
= 0.999

0 10 20 30 40 50
Number of Policy Updates

N = 250, = 0.0

= 0.01
= 0.25
= 0.5

= 0.75
= 1.0

0 10 20 30 40 50
Number of Policy Updates

N = 250, = 0.999

= 0.0
= 0.25

= 0.5
= 0.75

0 10 20 30 40 50
Number of Policy Updates

N = 2000, = 0.5

= 0.0
= 0.25
= 0.5

= 0.75
= 0.75

Figure 3.7: Control Task Performance comparison of GRAPE and R(λ) with a learn-
ing rate in FrozenLake. The horizontal axes show the number of policy updates. The
vertical axes show goal-reaching probability (higher is better) computed by DP. An
optimal α is almost 1. The number of samples N used for updating value functions
is indicated on top of each panel. Lines show mean performance over six trials. Error
bars show standard error. The �rst and second (from left to right) panels show e�ects
of α in GRAPE and η in R(λ) with a learning rate, respectively. N and λ are �xed to
250 and 0, respectively, as shown on top of those panels. The third panel shows the
e�ect of λ in GRAPE with α = 0.999. The last panel shows the e�ect of λ in R(λ)
with a learning rate η = 0.5 when N = 2, 000. (η = 0.5 has performed best when
N = 2, 000 in contrast to a case N = 250.)

Experiment 3.5.2 (Model-Free Control Experiment in 8 × 8 FrozenLake). The ex-
periments in FrozenLake are done as follows: one trial consists of 5, 000, 000 interac-
tions. At each time step, the agent takes an action a ∼ πk(·|x), which is repeatedly
updated through the trial, given a current state x. Then, it observes a subsequent
state y with an immediate reward r. If the state transition is to a terminal state, an
episode ends, and the agent starts again from the start state. The state transition data
(x, a, r, y, πk(a|x), d) are stored in a bu�er D, of size 500, 000. Every N = {250, 2000}
(�xed through the trial) time steps, the agent updates its value function using N con-
tiguous samples from the bu�er D. Every 100, 000 time steps, the agent updates its
policy according to a rule explained below. β ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100} are
tried for each parameter set (α, λ,N) (or (η, λ,N) when R(λ) with a learning rate is
used), and we selected one that yielded the highest asymptotic performance. Q0 is ini-
tialized to Q0(x, a). π0 and µ0 are initialized to π0(a|x) = µ0(a|x) = 1/|A|. For policy
improvement, the variant of TRPO (3.19) is used.

Figure 3.7 shows the result. The �rst and second (from left to right) panels show
e�ects of α and η, respectively. It is possible to see a clear tendency of performance
increase by increased α. Particularly, GRAPE with α = 0.999 outperforms R(λ) with
any learning rate. The third panel shows the e�ect of λ in GRAPE with α = 0.999. A
slightly better asymptotic performance is seen for λ = 0.75. However, its e�ect is not
clear. The last panel shows the e�ect of λ in R(λ) with a learning rate η = 0.5 when
N = 2, 000. (η = 0.5 performed best when N = 2, 000 in contrast to a case N = 250.)
In this case, when λ is either 0 or 0.25, R(λ)'s asymptotic performance matches that
of GRAPE with α = 0.999. However, note that eight times more data are used in one
update. Moreover, the learning of R(λ) with a learning rate is unstable compared to
that of GRAPE with α = 0.999.

3.6 Related Research 73

3.6 Related Research

Before concluding this chapter, we provide a quick review of related results to clarify
our contributions compared to existing works.

For policy evaluation, there are many algorithms. Arguably TD(λ) is the most well-
known policy evaluation algorithm (Sutton and Barto, 2018). Interestingly Konidaris
et al. (2011) showed that TD(λ) can be derived, under several assumptions, from a
perspective of maximum likelihood estimation. Based on this result, they proposed a
variance reduced version of TD(λ) called TDγ, which also removes the tuning of λ.
However TDγ assumes that n-step return and n + 1-th step return are independent,
which is clearly false. Ω-return algorithm is introduced by Thomas et al. (2015) as a
further improved version of TD(λ). These improvements are orthogonal to the idea of
GRAPE and can be combined with it.

As for an o�-policy version of TD(λ), Precup et al. (2000) proposed an algorithm
called Tree-Backup, which uses only a numerator of the importance sampling ratio.
Later Munos et al. (2016) proposed R(λ), which uni�es a variety of o�-policy policy
evaluation algorithms.

As we explained, GRAPE is obtained by combining R(λ) and AL (Baird III, 1999;
Bellemare et al., 2016). To the best of our knowledge, this is a novel idea. Furthermore
we provided an error bound of GRAPE using techniques of error propagation analysis
(Munos, 2005, 2007; Farahmand, 2011; Scherrer et al., 2015), and showed the noise-
tolerance of GRAPE with a faster convergence than the learning rate based algorithm.
This result is also novel and makes clear the bene�t of gap-increasing policy evaluation
algorithms.

3.7 Conclusion

In this Chapter 3, we proposed a new policy evaluation algorithm called GRAPE.
GRAPE is shown to be e�cient and noise-tolerant by both theoretical analysis and
experimental evidence. GRAPE has been compared to a state-of-the-art policy eval-
uation algorithm called R(λ). GRAPE demonstrated signi�cant gains in performance
and stability.

Though our theoretical analysis is valid even for continuous action space, we only
tested GRAPE in environments with a �nite action space. Extending GRAPE to a
continuous action space is an important research direction. Also, we did not carry out
sample complexity analysis. In order to further understand the algorithm, we need it.

3.8 Proofs

As analysis of RGRAPE is notationally simpler but almost same as that of GRAPE, we
omit analysis of GRAPE. However note that the almost same results hold for GRAPE
too.

We �rst prove the following lemma.

74 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

Lemma 3.8.1. Let q0 be a constant function taking 0, and

α0:iqi+1 :=
i∑

j=0

αj
(
Rλ
µc

)i+1−j
Q0 +

i∑
j=0

γjN jEi−j.

For RGRAPE in Equation (3.11), Qi+1 = α0:iqi+1 − α1:iπqi holds.

Proof of Lemma 3.8.1. We prove that

Qi+1 =
(
Rλ
µc

)i+1
Q0 +

i∑
j=0

γjN jεi−j + αAi (3.20)

by induction. For i = 0, it clearly holds. Now assume that it holds up to i. Then

Qi+1 = Qi − αAi−1 + (I − γλP µc)
−1 (BπQi −Qi + αAi−1) + αAi + εi

(a)
= Rλ

µc

((
Rλ
µc

)i
Q0 +

i−1∑
j=0

γjN jεi−j−1

)
+ αAi + εi

(b)
=
(
Rλ
µc

)i+1
Q0 +

i−1∑
j=0

γj+1N j+1εi−j−1 + αAi + εi,

where we used Qi =
(
Rλ
µc

)i
Q0 +

∑i−1
j=0 γ

jN jεi−j−1 + αAi−1 at (a), and

Rλ
µc (f + g) = f + g + (I − γλP µc)

−1 (Bπ (f + g)− f − g)

= Rλ
µcf + γ (I − γλP µc)

−1 (P π − λP µc) g

= Rλ
µcf + γNg

at (b). As
∑i−1

j=0 γ
j+1N j+1εi−j−1 + εi =

∑i
j=0 γ

jN jεi−j holds, Equation (3.20) holds.

Next note that

Ai = (I − π)

((
Rλ
µc

)i
Q0 +

i−1∑
j=0

γjN jεi−j−1

)
+ αAi−1

= (I − π)
i−1∑
j=0

αj

((
Rλ
µc

)i−j
Q0 +

i−j−1∑
k=0

γkN kεi−j−k−1

)
+ αiA0

= (I − π)

(
i−1∑
j=0

αj
(
Rλ
µc

)i−j
Q0 +

i−1∑
j=0

γjN jEi−j−1

)
.

3.8 Proofs 75

As

i∑
j=0

γjN jεi−j + α

i−1∑
j=0

γjN jEi−j−1 =
i∑

j=0

γjN jεi−j +
i−1∑
j=0

γjN j

i−j∑
k=1

αkεi−j−k

=
i∑

j=0

γjN j

i−j∑
k=0

αkεi−j−k,

we deduce that Qi+1 =
(
Rλ
µc

)i+1
Q0 +

∑i
j=0 γ

jN jεi−j + αAi = α0:iqi+1 − α1:iπqi.

Remark 3.8.1. The key step of the proof is showing that Qi+1 can be rewritten as(
Rλ
µc

)i+1
Q0 +

∑i
j=0 γ

jN jεi−j + αAi. Because πAi = 0 holds, the almost same result
holds for GRAPE as noted before.

By using Lemma 3.8.1, Theorem 3.4.1 can be immediately obtained. Indeed, from
the de�nition of qi+1 in Lemma 3.8.1, it is immediately deduced that

‖Qπ − qi‖∞ =

∥∥∥∥∥ 1

α0:i−1

i−1∑
j=0

αj
(
Qπ −

(
Rλ
µc

)i−j
Q0

)
− 1

α0:i−1

i−1∑
j=0

γjN jEi−j−1

∥∥∥∥∥
∞

≤ 1

α0:i−1

i−1∑
j=0

γi−jαj ‖Qπ −Q0‖∞ +
i−1∑
j=0

γj
∥∥∥∥ 1

α0:i−1

Ei−j−1

∥∥∥∥
∞
.

Thus we obtain Theorem 3.4.1.
Theorem 3.4.2 can be proven by using Lemma 3.8.1 and the inequality above.

76 Noise-Tolerant Policy Evaluation via Gap-Increasing Operator

Conclusion

RL is an important research �eld because many real-world decision making problems
can be formulated as and solved by it. For a long time, RL �eld had focused on
online algorithms with a linear model with �xed basis functions because RL algorithms
combined with a non-linear function approximator may not converge (Tsitsiklis and Van
Roy, 1997). However, after the successful application of AVI combined with a deep
neural network to a set of complex video games (Mnih et al., 2015), many researchers
started the development of e�cient RL algorithms with deep neural networks. Such
algorithms are now called deep RL algorithms. Despite many deep RL algorithms'
success, it poses several challenges: how to reduce the amount of data required, how
to stabilize the learning, how to train a neural network for multiple tasks without
catastrophic forgetting, and so on.

In this thesis, I mainly focused on how to stabilize the learning while making it
more e�cient via theoretical analysis of gap-increasing algorithms. In particular, I
formulated CVI and showed its equivalence to VI with the entropy and KL divergence
regularization, on the contrary to previous works that consider only one of them (Azar
et al., 2012; Schulman et al., 2015; Fox et al., 2016; Haarnoja et al., 2018, 2017; Song
et al., 2019; Abdolmaleki et al., 2018). In contrast to most of those previous works, my
analysis shows clear bene�ts of having regularizations, deepening the understanding
of the regularization in RL. Leveraging the idea of CVI, I proposed GRAPE, a policy
evaluation version of gap-increasing algorithms. I proved that GRAPE is tolerant of
noise, similarly to CVI, and con�rmed the theory with experiments.

While I proved some bene�ts of VI with the entropy and KL divergence regulariza-
tions, there are some open problems as listed below:

� Is the sample complexity of gap-increasing algorithms minimax optimal? In this
thesis, I carried out error propagation analysis, wherein I did not consider how
using the gap-increasing operator changes the error functions. Sample complexity
analysis takes such changes into account and provides a deeper understanding of
algorithms.

� Do other regularizations, such as a Bregman divergence regularization, have sim-
ilar property or any other bene�ts? While the KL divergence is a type of the
Bregman divergence, it is not clear if bene�ts of more general regularization with
Bregman divergence (or any other divergences and probability metrics) exist and
can be proven.

� Does a policy regularization have any bene�t in terms of exploration? The explo-
ration is surely a vital part of RL algorithm. However, error propagation analysis

77

78 Conclusion

cannot capture the aspect of exploration.

� Is the regularization agnostic L∞-norm performance bound for ACVI-Q and Ψ
(bound (2.12)) tight for arbitrary β? While I could show that it is tight when
β =∞, it is unclear if the bound is tight. A key to its proof is that in the worst
case, a set of greedy policies may contain the best and worst policy, the latter of
which is intentionally chosen to prove the tightness. When β is �nite, this fact
cannot be used.

To conclude, in this thesis, I proposed and theoretically analyzed new algorithms
based on gap-increasing and softmax operators. Although some open problems re-
main, I believe that the results in this thesis are an important step towards a deep
understanding of RL algorithms.

Bibliography

AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.
com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/,
2019.

P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement
learning to aerobatic helicopter �ight. In Advances in Neural Information Processing
Systems 19, pages 1�8. 2007.

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller.
Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018.

K. Asadi and M. L. Littman. An alternative softmax operator for reinforcement learn-
ing. In Proceedings of the Thirty-Fourth International Conference on Machine Learn-
ing, pages 243�252, 2017.

M. G. Azar, V. Gómez, and H. J. Kappen. Dynamic policy programming. Journal of
Machine Learning Research, 13(1):3207�3245, 2012.

L. C. Baird III. Reinforcement Learning Through Gradient Descent. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, US, May 1999.

M. G. Bellemare, G. Ostrovski, A. Guez, P. S. Thomas, and R. Munos. Increasing the
action gap: New operators for reinforcement learning. In Proceedings of the Thirtieth
AAAI Conference on Arti�cial Intelligence, 2016.

D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete-Time
Case. Athena Scienti�c, 1996.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scienti�c,
Nashua, NH, USA, 1st edition, 1996.

J. A. Boyan and M. L. Littman. Packet routing in dynamically changing networks:
A reinforcement learning approach. In Advances in Neural Information Processing
Systems 6, pages 671�678. 1994.

R. M. Dudley. Real Analysis and Probability. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 2nd edition, 2002.

E. Even-Dar and Y. Mansour. Learning rates for q-learning. Journal of Machine
Learning Research, 5:1�25, Dec 2004.

79

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

80 Bibliography

A.-m. Farahmand. Regularization in reinforcement learning. PhD thesis, University of
Alberta, 2011.

R. Fox, A. Pakman, and N. Tishby. Taming the noise in reinforcement learning via soft
updates. In Proceedings of the Thirty-Second Conference on Uncertainty in Arti�cial
Intelligence, pages 202�211, 2016.

M. Geist, B. Scherrer, and O. Pietquin. A theory of regularized markov decision
processes. CoRR, abs/1901.11275, 2019.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep
energy-based policies. In Proceedings of the Thirty-Fourth International Conference
on Machine Learning, pages 1352�1361, 2017.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: O�-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In Proceedings of
the Thirty-Fourth International Conference on Machine Learning, pages 1856�1865,
2018.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learn-
ing. In Proceedings of the Nineteenth International Conference on Machine Learning,
pages 267�274, 2002.

J. Kober and J. Peters. Reinforcement Learning in Robotics: A Survey, pages 9�67.
Springer International Publishing, 2014.

G. Konidaris, S. Niekum, and P. S. Thomas. TDγ: Re-evaluating complex backups in
temporal di�erence learning. In Advances in Neural Information Processing Systems
24, pages 2402�2410. 2011.

T. Kozuno, E. Uchibe, and K. Doya. Theoretical analysis of e�ciency and robustness
of softmax and gap-increasing operators in reinforcement learning. In Proceedings of
Machine Learning Research, volume 89, 2019.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. In International
Conference on Learning Representations, 2016.

H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management with deep
reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics in
Networks, HotNets '16, pages 50�56, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529�533, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous Methods for Deep Reinforcement Learning. In Pro-
ceedings of The Thirty-Third International Conference on Machine Learning, pages
1928�1937, 2016.

81

A. Moore. E�cient Memory-based Learning for Robot Control. PhD thesis, Carnegie
Mellon University, 1991.

R. Munos. Error bounds for approximate value iteration. In Proceedings of the Twenty-
Second AAAI Conference on Arti�cial Intelligence, pages 1006�1011, 2005.

R. Munos. Performance Bounds in Lp norm for Approximate Value Iteration. SIAM
Journal on Control and Optimization, 2007.

R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare. Safe and E�cient O�-
Policy Reinforcement Learning. In Proceedings of Twenty-Ninth Advances in Neural
Information Processing Systems, pages 1054�1062, 2016.

D. Precup, R. S. Sutton, and S. P. Singh. Eligibility traces for o�-policy policy evalua-
tion. In Proceedings of the Seventeenth International Conference on Machine Learn-
ing, pages 759�766, 2000.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

K. C. Rawlik. On probabilistic inference approaches to stochastic optimal control. PhD
thesis, The University of Edinburgh, 2013.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):210�229, 1959.

A. L. Samuel. Some studies in machine learning using the game of checkers. ii�recent
progress. IBM Journal of Research and Development, 11(6):601�617, 1967.

B. Scherrer. Approximate policy iteration schemes: A comparison. In Proceedings of
the Thirty-First International Conference on Machine Learning, pages 1314�1322,
2014.

B. Scherrer and B. Lesner. On the use of non-stationary policies for stationary in�nite-
horizon markov decision processes. In Advances in Neural Information Processing
Systems 25, pages 1826�1834, 2012.

B. Scherrer, M. Ghavamzadeh, V. Gabillon, B. Lesner, and M. Geist. Approximate
modi�ed policy iteration and its application to the game of Tetris. Journal of Ma-
chine Learning Research, 16:1629�1676, 2015.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy opti-
mization. In Proceedings of the 32nd International Conference on Machine Learning,
pages 1889�1897, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484�489, 2016.

82 Bibliography

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári. Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine Learning, 38(3):
287�308, Mar 2000.

Z. Song, R. Parr, and L. Carin. Revisiting the softmax Bellman operator: New bene�ts
and new perspective. In Proceedings of the 36th International Conference on Machine
Learning, pages 5916�5925, 2019.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, Cambridge, MA, USA, second edition, 2018.

P. S. Thomas, S. Niekum, G. Theocharous, and G. Konidaris. Policy evaluation using
the Ω-return. In Advances in Neural Information Processing Systems 28, pages 334�
342. 2015.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-di�erence learning with
function approximation. IEEE Transactions on Automatic Control, 42(5):674�690,
1997.

Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas.
Sample E�cient Actor-Critic with Experience Replay. In International Conference
on Learning Representations, 2016.

	Declaration of Original and Sole Authorship
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Introduction
	Sequential Decision Making
	Mathematical Notations and Definitions
	Markov Decision Processes
	Policies and Value Functions
	Optimal Policy and Its Existence
	Problem Description
	Approximate Dynamic Programming
	Temporal Difference Learning
	Value Iteration
	Policy Iteration

	Error Propagation Analysis of ATD(0)

	Error-Tolerant Control via Entropy Regularized Value Iteration
	Conservative Value Iteration
	Approximate Versions of CVI
	Equivalence of ACVI-Q and

	Error Propagation Analysis of ACVI
	Regularization Agnostic Performance Bound
	Tightness of Regularization Agnostic Performance Bounds
	Regularization Aware Performance Bounds

	Related Research
	Conclusion
	Proofs
	Auxiliary Lemmas
	Proof of thm:lp bnd wo KL-chap:ent reg algos,thm:linf bnd wo KL-chap:ent reg algos
	Proof of thm:tightness of a performance bound with infinite beta-chap:ent reg algos
	Proof of prop:acvipoliciesareclose-chap:ent reg algos
	Proof of thm:lp bnd w KL-chap:ent reg algos

	Noise-Tolerant Policy Evaluation via Gap-Increasing Operator
	Retrace and Approximate Retrace
	Error Propagation Analysis of Retrace
	Retrace's Proneness to Noise

	Slow Learning Due to a Learning Rate
	Gap-Increasing Operators for Policy Evaluation
	Motivation for the Gap-Increasing Approach

	Error Propagation Analysis of GRAPE and RGRAPE
	Practical Implementation

	Numerical Experiments
	Policy Evaluation Performance Comparison in NChain
	Control Performance Comparison in FrozenLake

	Related Research
	Conclusion
	Proofs

	Conclusion
	Bibliography

