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Abstract

Multilocus genomic datasets can be used to infer a rich set of information about the evolutionary 

history of a lineage, including gene trees, species trees, and phylogenetic networks. However, 

user-friendly tools to run such integrated analyses are lacking, and workflows often require 

tedious reformatting and handling time to shepherd data through a series of individual programs. 

Here, we present a tool written in Python—TREEasy—that performs automated sequence 

alignment (with MAFFT), gene tree inference (with IQ-Tree), species inference from concatenated 

data (with IQ-Tree and RaxML-NG), species tree inference from gene trees (with ASTRAL, MP-

EST, and STELLS2), and phylogenetic network inference (with SNaQ and PhyloNet). The tool 

only requires FASTA files and nine parameters as inputs. The tool can be run as command line or 

through a Graphical User Interface (GUI). As examples, we reproduced a recent analysis of 

staghorn coral evolution, and performed a new analysis on the evolution of the “WGD clade” of 

yeast. The latter revealed novel patterns that were not identified by previous analyses. TREEasy 

represents a reliable and simple tool to accelerate research in systematic biology 

(https://github.com/MaoYafei/TREEasy).

KEYWORDS: Species tree; Phylogenetic network; Gene trees; Introgression; Phylogenetic 

inference; Pipeline/Workflow
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Introduction

The inference of evolutionary history from molecular data is a core goal of modern evolutionary 

biology (Barraclough & Nee, 2001; Soltis & Soltis, 2018). With the increasing availability of 

large-scale multilocus datasets and advances in computational power, phylogenetic methods have 

diversified in the past two decades (Delsuc, Brinkmann, & Philippe, 2005; Liu, Xi, Wu, Davis, & 

Edwards, 2015). Instead of inferring a bifurcating tree with a single locus as the focus of analysis, 

biologists regularly infer populations of trees representing the histories of different loci (Edwards, 

Liu, & Pearl, 2007; Gadagkar, Rosenberg, & Kumar, 2005). From these, species tree methods can 

be used which take into account the fact that gene trees can be discordant with species trees even 

under a bifurcating evolutionary history (Kubatko & Degnan, 2007; Lambert, Reeder, & Wiens, 

2015; Page & Charleston, 1997; Shen, Salichos, & Rokas, 2016; Tonini, Moore, Stern, 

Shcheglovitova, & Ortí, 2015). In addition, introgression is relatively common occurrence across 

the tree of life (Berner & Salzburger, 2015; Bravo et al., 2019; Morrison, 2014; Xu, 2000), thus, 

evolutionary histories are not always bifurcating (Bravo et al., 2019; Degnan & Rosenberg, 2009; 

Gadagkar et al., 2005; Page & Charleston, 1997). Phylogenetic network methods can also be used 

to infer evolutionary histories that include reticulation (Bastide, Solis-Lemus, Kriebel, William 

Sparks, & Ane, 2018; Huson & Bryant, 2005).  

In total, these methods increasingly reflect the complexity of evolution, and for each of these 

analyses types, multiple programs are available to the researcher. For example, methods allowing 

inference of species trees and phylogenetic networks include NJst (Liu & Yu, 2011), MP-EST 

(Liu, Yu, & Edwards, 2010), ASTRAL (Mirarab et al., 2014), STELLS2 (Pei & Wu, 2017), 

Guenomu (de Oliveira Martins & Posada, 2017), SNaQ (Solís-Lemus, Bastide, & Ané, 2017) and 

PhyloNet (Wen, Yu, Zhu, & Nakhleh, 2018). However, each method requires gene tree input and 

control files in different formats. In particular, ASTRAL requires an unrooted gene tree list, 

whereas MP-EST requires a rooted gene tree list. In addition, Guenomu, a Bayesian hierarchical 

model, requires posterior distributions of gene trees. SNaQ runs in Julia language, whereas 

PhyloNet runs in a command line with a special control file. Thus, idiosyncratic preliminary work 

is needed to prepare inputs to run these tools.

The need for a researcher to figure out how to reformat files and run multiple individual programs 

is a common issue in modern phylogenomic analysis, reducing efficiency and making it less likely A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

that a broad range of methods and programs are used.  To address this, several other pipelines 

have been developed to integrate workflows for phylogenomic-related analyses. STRAW was 

developed as a Web-based server requiring a gene tree list as input to infer species tree with STAR, 

MP-EST, and NJst (Shaw, Ruan, Glenn, & Liu, 2013), but it only runs for rooted gene trees and 

cannot directly take sequences as input and cannot infer phylogenetic networks. In addition, 

PhyloToL (Cerón-Romero et al., 2019), HybPhyloMaker (Fér & Schmickl, 2018) and ezTree (Wu, 

2018) are designed to reconstruct species trees from raw reads, as well, ParGenes (Morel, Kozlov, 

& Stamatakis, 2018) and NGPhylogeny.fr (Lemoine et al., 2019) are used to infer species tree 

form aligned sequences and unaligned sequences, respectively. 

Several of the tools listed already automate various steps of the phylogenomics workflow, but 

despite their utility for many purposes, there is no single platform available to integrate sequence 

alignment, gene tree reconstruction, species tree, and phylogenetic network inferences into a 

single run.  PhyloTol (Cerón-Romero et al., 2019) in particular has an overlapping workflow to 

the one presented here, with a suite of tools for gene family assessment and gene tree estimation, 

but is limited to concatenation-based approaches for species tree inference and does not include 

phylogenetic network inference. The latter steps have been shown to be important for enhancing 

inference of evolutionary history in many groups (Edwards, Liu, & Pearl, 2007).  To address this 

gap, we present a multi-thread open-source tool, named TREEasy, to shepherd data through a 

series of programs to infer gene trees, species trees, and phylogenetic networks from molecular 

sequences. In addition to reconstructing species trees with supermatrix and multispecies 

coalescent methods, TREEasy can infer phylogenetic networks from two different programs from 

unaligned sequences. 

TREEasy architecture

TREEasy is written in Python integrating sequence alignment, gene tree reconstruction, species 

tree inference, and phylogenetic network inference. 

Component software choice and justification

Although there are sometimes many options of different software available for different 

phylogenomic analyses, when possible we generally chose popular workhorse programs given 

their wide familiarity in the field and relatively understood behavior.  We also considered A
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computational efficiency and diversity of methods and research groups in selecting among 

different options. For sequence alignment, we chose the program MAFFT (Nakamura, Yamada, 

Tomii, & Katoh, 2018). There are numerous programs available for maximum-likelihood 

reconstruction of gene trees, but we chose two of the best performing and most heavily used, IQ-

Tree (Nguyen, Schmidt, von Haeseler, & Minh, 2014) and RaxML-NG (Kozlov, Darriba, Flouri, 

Morel, & Stamatakis, 2019). Considering of the diversity of software developers and performance 

of software (Pei & Wu, 2017), for species-tree reconstruction from gene trees, we used MP-EST 

(Liu et al., 2010), ASTRAL (Mirarab et al., 2014), and STELLS2 (Pei & Wu, 2017), which have 

the same overall aim but differ in implementation. Finally, we chose PhyloNet and SNaQ, to infer 

phylogenetic networks, two reliable and the best performing programs suitable for these data 

(Solís-Lemus et al., 2017; Wen et al., 2018).

Installation and subroutines

BioPython must be installed and a few executable dependencies are needed: MAFFT (Nakamura 

et al., 2018), Translatorx (Abascal, Zardoya, & Telford, 2010), AMAS (Borowiec, 2016), IQ-

TREE (Nguyen et al., 2014), RAxML-NG (Kozlov et al., 2019), ASTRAL (Mirarab et al., 2014), 

MP-EST (Liu et al., 2010), STELLS2 (Pei & Wu, 2017), PhyloNet (Wen et al., 2018) and SNaQ 

(Solís-Lemus et al., 2017). Molecular sequences in FASTA format (SNP, microsatellites, protein-

coding sequences, etc.) are mandatory inputs. In addition, to identify multiple individuals in a 

species and identify mismatches between species names in different gene files, two text files 

including species numbers and gene names respectively are needed. There are 3 subroutines in 

TREEasy as follows (Figure 1).

 (1) Gene tree reconstruction

Molecular sequences are aligned using MAFFT with localpair model and then gene trees are 

reconstructed with Maximum likelihood (ML) method in IQ-TREE with model selection. This 

process runs as parallel processing with the threading module in python. 

(2) Species tree inference

Firstly, alignments of multi-loci are concatenated to build a concatenated species tree using IQ-

TREE and RAxML-NG. Then, the tool selects gene trees of which each node’s bootstrap value is 

greater than B (B is a preset parameter from 0 to 100) in order to avoid uncertainty of gene tree 

reconstruction. Next, un-rooted selected gene trees generated by IQ-TREE are put together as 

input to infer a species tree using ASTRAL. Meanwhile, the un-rooted gene trees are rooted with a A
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preset parameter R (species name(s)) and then the rooted gene trees are used to infer species trees 

using STELLS2 and MP-EST.

(3) Phylogenetic network inference

A species tree generated by ASTRAL and the un-rooted gene trees are used to infer a phylogenetic 

network using SNaQ. Then, the rooted gene trees are used to infer a phylogenetic network using 

PhyloNet.  

The tool can be run as command line or through Graphical User Interface (GUI) for users. The 

GUI interface can be seen in Figure 2. 

Datasets and analyses 

Evaluation with simulated data 

We used simulated data from the published study (Solís-Lemus et al., 2017) to evaluate following 

aspects of TREEasy (Figure 3): running time and memory usage with (1) different processors 

(Figure 1A); (2) with different gene numbers (Figure 1B); (3) with different taxon numbers 

(Figure 1C). 

First, with 6 taxa and 300 genes, we found that the running time decreased with the increase of 

processor number and the speed with 12 processors was 6.5 times faster compared to with 1 

processor (Figure 1A). Yet, the maximum memory usage did not show a significant change. 

Second, with 6 taxa and 4 processors, we found that the running time and maximum memory 

usage increased with increase of gene number (Figure 1B). Third, with 300 genes and 12 

processors, we found that the running time excluding the run of PhyloNet increased from 6 taxa to 

15 taxa, but the maximum memory usage was increased dramatically from 10 taxa to 15 taxa 

(Figure 1C). It is worth noting that PhyloNet running was extremely slow with > 10 taxa (> 7 days) 

and thus we excluded the running of PhyloNet in this analysis. 

Empirical data validation

As a second test, we used TREEasy to reproduce a previous analysis of Acropora genome 

evolution that inferred reticulation events among five coral species (Mao, Economo, & Satoh, 

2018). The Acropora data included 4,945 single-copy orthologs among five Acropora species. The 

whole process took ~13 hours with maximum memory usage: 3,992 Mb, running on 8 processors. A
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We found that the concatenated species tree has the same topology as the other species trees 

inferred from gene trees with ASTRAL, MP-EST, and STELLS2. Then, the inferred phylogenetic 

network topologies with SNaQ and PhyloNet are identical (Figure 4). Both of these results are 

coincident with our previous study (Mao et al., 2018). 

Inferring species trees and phylogenetic networks of the “WGD clade” of yeast

As a third test, we applied TREEasy to data from a recent study that did not perform all the 

analyses presented here. The previous study investigated the evolutionary relationships of 

subphylum Saccharomycotina based on hundreds of yeast genomes (Shen et al., 2018). In 

particular, there is a clade (“WGD clade”) including common and important yeasts such as the 

baker’s yeast (Gonçalves et al., 2016; Ludlow et al., 2016), and there are two “non-robust 

internodes” in this clade. In addition, introgression has been reported in yeast (Leducq et al., 2016; 

Marcet-Houben & Gabaldón, 2015). Therefore, in order to conduct a preliminary investigation 

into whether the “non-robust internodes” were caused by introgression, we first retained sequences 

for 40 species from the “WGD clade” and an outgroup species (Neurospora crassa) with no 

missing data from two datasets (2408OG dataset and 1292BUSCO dataset). All horizontal gene 

transfer (HGT) genes were removed in these two datasets. 320 genes and 777 genes were 

extracted from the 1292BUSCO and the 2408OG datasets respectively and we applied TREEasy 

on these two datasets. Then, we found that the species trees inferred from different methods or 

datasets were not identical. Moreover, most of incongruences between the inferred species trees 

were located on the “non-robust internodes” (Figure 5). 

Next, we extracted the two sub-clades including “non-robust internodes” (“Saccharomyces” clade 

and “Kazachstania” clade) with two species as outgroups (Yueomyces sinensis and Tetrapisispora 

blattae) and run these two clades on TREEasy. After filtering the gene trees with bootstrap values 

smaller than 30 (B parameter), in the 1292BUSCO dataset, we found 279 gene trees and 115 gene 

trees in “Saccharomyces” clade and “Kazachstania” clade, respectively. In the 2408BUSCO 

dataset, we found 654 gene trees and 351 gene trees in “Saccharomyces” clade and “Kazachstania” 

clade, respectively. 

In order to reduce bias of species tree and phylogenetic network inferences from small gene tree 

numbers, we only reported the phylogenetic networks for “Saccharomyces” (Figure 6A) and A
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“Kazachstania” clades (Figure 6B) for the 2408BUSCO dataset here. We found a signal of 

introgression in the 2408BUSCO dataset and some reticulate events occurred in the “non-robust 

internodes” of “Saccharomyces” genus and “Kazachstania” clades. In addition, introgression was 

detected for some lineages even when their internode supports were robust across different 

analyses.  

Discussion

The era of big data and massive computing resources has allowed us to better understand species 

and population relationships (Allen et al., 2019; Bravo et al., 2019; Delsuc et al., 2005; Liu, Wu, 

& Yu, 2015). It is now possible to infer species trees and phylogenetic networks from hundreds of 

gene trees rather than concatenating a few loci to reconstruct a phylogeny. We developed a 

reliable and efficient tool called TREEasy to infer species trees and networks from molecular 

sequences directly. TREEasy is written in Python and can be run with multi-processors 

(https://github.com/MaoYafei/TREEasy).

First, the multiple threading module improved the running time in TREEasy. The running time 

improved 6.5 times with 12 processors compared to with 1 processor. One of possible reasons is 

that parallelization by the threading module in python is applied to sequence alignment and gene 

tree reconstruction in TREEasy. Meanwhile, with gene or taxon number increasing, both running 

time and maximum memory usage increased as expected. Interestingly, the increase of taxon 

number has a greater effect on running time compared to the increase of gene number while the 

increase of gene number has more effects on memory usage compared to the increase of taxon 

number. One possible reason is that searching tree space results in increases of running time, while 

heavy computation on gene tree reconstruction during parallelization leads to more memory 

requirements. Increasing taxon number quickly expands the tree search space of phylogenetic 

networks by order of magnitudes (Solís-Lemus et al., 2017; Wen et al., 2018).

Second, our pipeline provides an easy and robust way to infer species trees and phylogenetic 

networks. The empirical validation of five species of Acropora generated the same result as our 

previous study (Mao et al., 2018), and thus, this result suggests TREEasy is a reliable tool for 

species tree and network inferences. Next, in order to evaluate TREEasy with more taxa, we 

applied TREEasy to a newly-sequenced yeast genomic data (Shen et al., 2018). Our results both A
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confirm previous results. First, the incongruence between the inferred species trees showed on two 

clades (“Saccharomyces” clade and “Kazachstania” clade) identical to the previous study. 

Moreover, the inferred yeast phylogenetic networks suggest introgression occurred in the two 

clades of yeasts and introgression is a possible reason to cause the incongruence between the 

inferred species trees. Interestingly, we also found some reticulate events occurred in the yeast 

lineages which had the same topology from different species tree inferences. These results show 

that TREEasy would be easily applied to a genomic study (as long as there is no missing data) on 

species relationships. Notably, we analyzed yeast evolution as a test case to show how novel 

patterns can be revealed from the workflow, however any conclusions about yeast evolution 

should be treated in a dedicated study by experts in those groups.

There are currently some limitations we need to mention, mostly due to constraints inherited from 

the underlying programs.  First, the pipeline does not accept missing data due to limitations of the 

phylogenetic network inference programs (SNaQ and PhyloNet) (Solís-Lemus et al., 2017; Wen et 

al., 2018). In addition, the pipeline is better suited for analyses with a relatively small number of 

taxa, datasets including hundreds of taxa is not suitable to phylogenetic network inference. 

Moreover, to date, we did not implement gene tree concordance analysis in the tool, if users are 

interested in this we recommended users to use IQ-Tree (V2) to perform related analysis 

(http://www.iqtree.org/doc/Concordance-Factor). 

Finally, we want to emphasize that while the intention of this pipeline is to make it easier to run 

workflows encompassing a variety of phylogenomic analyses, users still need to familiarize 

themselves with the constituent programs and their settings.  In other words, the program should 

not be treated as a “black box”.  The main value of a pipeline program like TREEasy is to handle 

time-consuming and not scientifically-pertinent formatting and scripting tasks, but does not 

remove the need for expert knowledge of the included programs and their assumptions, settings, 

and limitations. To facilitate checking at different steps, TREEasy keeps all important 

intermediate results such as gene trees and log files, they can be inspected after for quality control. 

We would like to remind users that independent runs for the same dataset are necessary to reach 

conclusive results, as well as to cite all constituent programs if using the pipeline, not only 

TREEasy. A
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In all, this study presents a reliable and user-friendly tool to infer species trees and networks from 

molecular sequences directly, has the potential to be used widely in population genetic/genomic, 

phylogenomic and phylogeographic studies. We hope that this will lower barriers to analyses of 

evolutionary history and accelerate research in systematic biology.
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Figure legends

Figure 1. Workflow in TREEasy. The orange oval represents inputs. Blue boxes represent 

subroutines and red boxes represent outputs. 

Figure 2. GUI windows of TREEasy. (A) The start window. (B) The window shows the 

simulated data example. (C) The window shows a successful run of the simulated data example. 

Figure 3. Estimation of TREEasy on simulated data. (A) Running time and maximum memory 

usage versus processor number (6 taxa and 300 genes). (B) Running time and maximum memory 

usage versus gene number (6 taxa and 4 processors). (C) Running time and maximum memory 

usage versus taxon number (300 genes and 12 processors).

Figure 4. Validation of TREEasy on empirical data. TREEasy running on 4, 945 single-copy 

orthologs of Acropora generated species trees by (A) concatenated method, (B) ASTRAL, (C) 

MP-EST, and (D) STELLS2; and phylogenetic networks by (E) SNaQ and (F) PhyloNet.

Figure 5. A case study of TREEasy on “WGD clade” of yeast genomic data. (A) The topology 

of “WGD clade” of yeast in the previous study. TREEasy running on two datasets generated 

species trees by (B, C) concatenated method, (D, E) ASTRAL, (F, G) MP-EST, and (H, I) 

STELLS2. The results (B, D, F, H) were generated by 1292BUSCO dataset and the results (C, E, 

G, I) were generated by 2408OG dataset. The blue shadows in (A) represents the “non-robust 

internodes” and the orange and yellow shadows represent two sub-clades: “Saccharomyces” clade 

and “Kazachstania” clade, for phylogenetic network analysis. The red branches represent the 

incongruences among phylogenetic trees.

Figure 6. Phylogenetic network inferences for two sub-clades of yeast genomic data. 

Phylogenetic networks inferred by SNaQ on “Saccharomyces” clade (A) and “Kazachstania” 

clade (B) from the 2408OG dataset. The orange shades represent reticulate events occurred in 

“non-robust internodes”. The blue shades represent reticulate events occurred in lineages which 

had the same topology from different species tree inference methods. 
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