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a b s t r a c t

Recurrent neural networks (RNNs) for reinforcement learning (RL) have shown distinct advantages,
e.g., solving memory-dependent tasks and meta-learning. However, little effort has been spent on im-
proving RNN architectures and on understanding the underlying neural mechanisms for performance
gain. In this paper, we propose a novel, multiple-timescale, stochastic RNN for RL. Empirical results
show that the network can autonomously learn to abstract sub-goals and can self-develop an action
hierarchy using internal dynamics in a challenging continuous control task. Furthermore, we show
that the self-developed compositionality of the network enhances faster re-learning when adapting to a
new task that is a re-composition of previously learned sub-goals, than when starting from scratch. We
also found that improved performance can be achieved when neural activities are subject to stochastic
rather than deterministic dynamics.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 1998) with neu-
ral networks as function approximators, i.e., deep RL, has un-
dergone rapid development in recent years. State-of-the-art RL
frameworks have shown proficient performance in various kinds
of tasks, from game playing (Mnih et al., 2016; Silver et al., 2016,
2017) to continuous robot control (Haarnoja, Zhou, Abbeel, &
Levine, 2018; Lillicrap et al., 2015; Wang et al., 2017). While
most deep RL studies have employed feed-forward neural net-
works (FNNs) to solve tasks that can be well modeled by Markov
Decision Processes (MDP) (Bellman, 1957), RL with recurrent
neural networks (RNNs) has garnered increasing attention (Al-
Shedivat et al., 2018; Ha & Schmidhuber, 2018; Hausknecht &
Stone, 2015; Heess, Hunt, Lillicrap, & Silver, 2015; Jaderberg et al.,
2019; Kapturowski, Ostrovski, Dabney, Quan, & Munos, 2018;
Shibata & Sakashita, 2015; Vezhnevets et al., 2017; Wang et al.,
2018; Zhang, McCarthy, Finn, Levine, & Abbeel, 2016).

One benefit of RNNs comes from their capacity to solve a kind
of Partially Observable MDPs (POMDP) (Åström, 1965) in which
optimal decision-making requires information derived from his-
torical observations, i.e. memory-dependent tasks. While the
curse of dimensionality (Friedman, 1997) occurs if these tasks
are modeled into MDPs by including all historic information
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in the current state, a more tractable way of solving memory-
dependent tasks is to leverage the contextual capacity of RNNs as
function approximators (Schmidhuber, 1991). Heess et al. (2015),
Utsunomiya and Shibata (2008) and Wierstra, Foerster, Peters,
and Schmidhuber (2007) have shown how RNNs enable success-
ful RL in memory-dependent control tasks. Interestingly, even for
tasks that are readily solved by MDPs, such as Atari games (Mnih
et al., 2015), extraordinary performance can be achieved us-
ing relatively simple algorithms with RNNs (Kapturowski et al.,
2018).

Furthermore, RNNs advance meta-learning in RL, defined as an
effect that an agent requires statistically less time in learning to
solve new tasks, compared to previously learned tasks, provided
that the two tasks share some common elements (Frans, Ho,
Chen, Abbeel, & Schulman, 2018; Thrun & Pratt, 1998; Wang et al.,
2018). Al-Shedivat et al. (2018) showed meta-learning by robotic
agents in dynamically changing tasks using recurrent policies,
while (Wang et al., 2018) argued that the prefrontal cortex, which
contains many recurrent connections, plays an important role in
meta-learning.

Despite the success of RL with RNN in relatively simple en-
vironments, solving more sophisticated tasks often requires cog-
nitive competency in dealing with hierarchical operations, such
as for composition/decomposition of an entire task from a se-
quence of sub-goals (Bacon, Harb, & Precup, 2017; Dietterich,
2000; Sutton, Precup, & Singh, 1999). But very few studies have
been devoted to developing hierarchical control utilizing RNN
architectures. Vezhnevets et al. (2017) showed that multiple lev-
els of RNN controllers with different temporal resolutions can
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Fig. 1. The basic structure of MTSRNN is shown for the case of a 2-level
configuration, used in this work. However, additional levels can readily be
stacked onto it.

achieve dramatic performance on difficult hierarchical RL tasks.
However, their method requires one to assume a particular form
of transition model for embedding sub-goals. By contrast, our
brains are good at self-developing action hierarchies for various
tasks and also take advantage of them, which raises a question
in our mind: are there any more basic neural mechanisms for
discovering an action hierarchy?

Considering this, Yamashita and Tani (2008) introduced a
multiple timescale RNN (MTRNN) containing fast-context and
slow-context neurons, which was inspired by the ideas from
cognitive science that the multiple timescales are essential to
solve complicated cognitive tasks (Huys, Daffertshofer, & Beek,
2004; Newell, Liu, & Mayer-Kress, 2001; Smith, Ghazizadeh, &
Shadmehr, 2006). They conducted an experiment in which a
humanoid robot learned to generate different motor behavior
to operate an object, from supervised samples. Although the
explicit hierarchical structure of the task were not given, it was
shown that the slow-context neurons autonomously learned to
represent abstracted action primitives, such as touching and
shaking the object. However, animals usually do not only extract
hierarchies from supervised samples, but also can develop func-
tional action primitives through trial-and-error (Badre & Frank,
2011; Badre, Kayser, & D’Esposito, 2010), which should be mod-
eled by exploration-based RL. Moreover, we wondered how the
learned action primitives can enhance learning novel tasks com-
posed of previously learned sub-goals, which was not discussed
in Yamashita and Tani (2008).

To this end, the current paper proposes a novel multi-
timescale RNN architecture and an off-policy actor–critic algo-
rithm for learning with multiple discount factors. We refer to our
framework as Recurrent Multi-timescale Actor–critic with STochas-
tic Experience Replay (ReMASTER). We also designed a sequential
compositional task for testing the performance of the framework.
Two essential proposals in this framework are as follows.

The first is to employ a multiple timescale property in neural
activation dynamics (Chaudhuri, Knoblauch, Gariel, Kennedy, &
Wang, 2015; Huys et al., 2004; Murray et al., 2014; Newell
et al., 2001; Runyan, Piasini, Panzeri, & Harvey, 2017; Smith
et al., 2006), as well as in the discount factors across different
levels in an RNN. Although it has been shown that introduc-
tion of multiple-timescale neural activation dynamics in RNNs
enhances development of hierarchy in supervised learning (Ya-
mashita & Tani, 2008), such a possibility in RL remains to be
investigated. In most RL algorithms, the discount factor (for an
MDP) is treated as a single hyper-parameter. However, Enomoto
et al. (2011) and Tanaka et al. (2016) have shown that dopamine
neurons in mammalian brains encode value functions with dif-
ferent region-specific discount factors. In considering motor con-
trol, it is intuitive that detailed motor skills are learned with a
faster discounting (on the order of seconds), while abstracted ac-
tions for long-term plans require longer timescales. In summary,
it is expected that more detailed information processing can

autonomously develop at lower levels by incorporating the faster
timescale constraints imposed on both neural activation dynam-
ics and the reward discounting. Meanwhile, more abstracted ac-
tion plans can develop at higher levels with slower timescale
constraints.

The second proposal is to introduce stochasticity not only
in motor outputs, but also in internal neural dynamics at all
levels of RNN for generating exploratory behaviors. This is in-
spired by the fact that cortical neurons, which play a key role
in intelligence, have highly stochastic firing behaviors, both for
irregular inter-spike intervals and for noisy firing rates (Beck
et al., 2008; Beck, Ma, Pitkow, Latham, & Pouget, 2012; Hartmann,
Lazar, Nessler, & Triesch, 2015; Softky & Koch, 1993). Chung et al.
(2015) and Fraccaro, Sønderby, Paquet, and Winther (2016) have
shown that various types of stochastic RNN models can learn
to extract probabilistic structure hidden in temporal patterns by
using variational Bayes approaches in supervised learning. It was
also shown that stochastic FNNs facilitate efficient exploration
and improved performance in RL (Florensa, Duan, & Abbeel, 2017;
Fortunato et al., 2018). Therefore, we are interested in whether
and how stochastic RNNs promote exploration and extraction of
task features.

ReMASTER integrates these two essential ideas (multiple-
timescale property and neuronal stochasticity) with an off-policy
advantage actor–critic algorithm, in a model-free manner. We
considered a kind of sequential, compositional tasks in which an
agent learns to accomplish a set of sub-goals in a specific se-
quence without being given prior knowledge about the sub-goals.
The experimental results using ReMASTER showed that composi-
tionality develops autonomously, accompanied by an emergence
of hierarchical representation of actions in the network. More
specifically, action primitives for achieving task-relevant sub-
goals were acquired in the lower level, characterized by faster
timescale dynamics, whereas representation of those sub-goals
was observed at the higher level characterized by the slower one.
As a consequence of such self-developed hierarchical action con-
trol, we can ‘‘manipulate’’ the agent to consistently pursuing an
undesired sub-goal by clamping high-level RNN states, analogous
to animal optogenetic experiments (Morandell & Huber, 2017;
Ramirez et al., 2013).

We further examined performance of ReMASTER by consid-
ering a multi-phase relearning task wherein an agent is re-
quired to adapt consecutively to new tasks that constitute a
re-composition of previous-occurred sub-goals. ReMASTER out-
performed other alternatives by showing remarkable performa-
nce in relearning cases because it was able to take advantage of
previously learned representation about the sub-goals in a com-
positional way, thanks both to multiple timescales and neuronal
stochasticity used in the model.

2. Methods

We used a multi-level stochastic RNN with level-specific
timescales, as a basic network architecture for implementing
ReMASTER. This architecture is referred to as Multiple Timescale
Stochastic Recurrent Neural Network (MTSRNN). Fig. 1 shows the
case of a 2-level MTSRNN where and γ l represents the char-
acteristic discount factor at lth level. vl as the value function
at lth level is estimated by temporal difference learning (TD-
learning) (Sutton & Barto, 1998) using the corresponding γ l.
The policy function with discount factor γ 1, indicated by π , is
estimated by the lowest level. Also, only the lowest level receives
inputs. Note that although the network has multiple timescales
of discounting, policy is improved to maximize expected return
w.r.t. the lowest discounter factor γ 1. Learning the higher-level
value function(s) vl>1 serves as an auxiliary objective, which,
nonetheless, we found critical in our experiments.
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2.1. Multiple timescale stochastic RNN

Here we describe detailed mechanisms of L-levels MTSRNN.
We use a super-script l ∈ {1, 2, . . . , L} to indicate the lth
level, where a smaller l indicates a lower level. Let u and c
denote the hidden states and the RNN outputs, respectively,1 we
have

ul(t) =(1−
1
τ l )u

l(t − 1)+
1
τ l

[
W l−1,l

cu c l−1(t)+

W l,l
cuc

l(t − 1)+W l+1,l
cu c l+1(t − 1)+ bl

u

]
, (1)

c l(t) = tanh
(
ul(t)+ ϵ lσ l(t)

)
, (2)

where c l−1(t) = s(t) when l = 1 is the current sensory input
(state) and c l+1 does not exist for l = L. The scale of neu-
ronal noise, σ l, can be either a hyper-parameter or adaptive,
and ϵl(t) is a diagonal-covariance unit-Gaussian noise, which
leads to a stochastic variable c l(t) using the reparameteriza-
tion trick (Kingma & Welling, 2013). The hyper-parameter τ l

is known as timescale of the lth level, which determines how
fast hidden states vary, for which we usually have τ l < τ l+1.
Synaptic weights and biases, denoted by W and b, respectively,
are trainable parameters of the neural network.

Value functions can be estimated via a linear connection from
each level of the MTSRNN: vl(t) = (wl

cv)
T c l(t)+ blcv. We focus on

continuous action space, so the policy function can be expressed
as diagonal Gaussian distributions π(t) ∼ N (p(t), e(t)) , where
p(t) = tanh

(
Wcac1(t)+ bca

)
is the expected action assuming

that the range of possible actions is [−1, 1], and that e(t) is the
exploration noise scale.

2.2. Off-policy advantage actor–critic

Recent deep RL studies using actor–critic algorithms with ex-
perience replay have achieved remarkable performance in many
RL environments (Haarnoja et al., 2018; Lillicrap et al., 2015;
Wang et al., 2017) by learning repetitively from previous experi-
ence. Therefore, for better sample efficiency, we use an off-policy
actor–critic algorithm (Degris, White, & Sutton, 2012), which can
deal with both continuous and discrete action spaces, although
we consider continuous control in this work.

Suppose that in each episode, the agent is continuously in-
teracting with the environment. At every step t , it experiences
a state transition, which can be described by a tuple (st , at ,

st+1, rt , donet , πt ), where s, a, r , π are state (observation), action,
reward and policy function, respectively; and the Boolean donet
indicates whether the episode ends at step t + 1. The agent
stores the state transition in a replay buffer. In practice, RNNs
require initial states for computing succeeding time development
of RNN states. We set initial RNN states to zero at the beginning of
each episode. For easier access to initial states during experience
replay using RNN, we also recorded c l(t) and ul(t) of the MTSRNN
at each step and used them in experience replay.2

For estimation of the critic, we used an off-policy version of
the temporal difference (TD) learning algorithm to train value
functions of all levels (Degris et al., 2012; Sutton & Barto, 1998).
Knowing that (i) each level has a characteristic timescale τ l;

1 We collectively refer to (u, c) as RNN states.
2 The recorded RNN states can be incompatible with the current RNN as

learning goes on. However, this issue does not impact learning performance
much because very old samples are discarded due to limited memory. We took
this approach because of its simplicity (More discussion in Appendix A.3).

Algorithm 1 ReMASTER
Initialize the MTSRNN R and the replay buffer B, global step
t ← 0
repeat

Reset an episode, assign R with zero initial RNN states
while episode not terminated do

Compute 1-step forward of R to obtain (ul
t , c lt )

Sample an action at from policy πt (a|c1t ) and execute at
Obtain st+1, rt and donet from the environment
Record (st , at , st+1, rt , donet ), πt = π (at |c1t ) and (ul

t , c lt )
into B
if mod(t, train_interval) == 0 then

Sample sequential training samples to update R by
Eqs. (4) and (7)

end if
t ← t + 1

end while
until training stopped

(ii) 1/(1− γ ) indicates the eigen-timescale of discounting (Doya,
2000), it is natural to set the values of discount factors as

γ l
= 1−

K
τ l , (3)

where K is a constant to which we assigned a value of 0.16
throughout this work.

Let θ denote the synaptic weights of the network. At each up-
date, we randomly sample N state transition tuples frommemory,
and then conduct gradient descent for value functions vl with
learning rate αv ,

θ← θ + αv

1
L
1
N

L∑
l

N∑
i

[
ρiδ

l
i∇θv

l(s0:ti; θ)
]
, (4)

where we have

ρi =
π (ati |s0:ti; θ)

πti
(5)

indicating the importance sampling ratio of the ith sample, where
πti is the behavior policy obtained from the replay buffer; and

δli = rti + γ lvl(s0:ti+1; θ)− vl(s0:ti; θ) (6)

is the TD-error for the ith sample and the lth level. Note that the
value function vl and the policy function π depend on s0:ti so that
backpropagation through time (BPTT) is performed to calculate
the gradients. They can also be written as vl(c lti; θ) and π (a|c1ti; θ),
respectively, if c lti has been computed.

To update the policy function, an advantage policy gradient
algorithm was used in an off-policy manner (Degris et al., 2012),
where the advantage was estimated by 1-step TD error with
discount factor γ 1.

θ← θ + αa
1
N

N∑
i

[
ρiδ

1
i ∇θ logπ(ati |s0:ti; θ)

]
, (7)

where αa is the learning rate for the actor. Algorithm 1 shows the
overall procedure of ReMASTER. We followed algorithm 1 for all
experiments in this work.

3. Results

We applied 2-levels ReMASTER to a so-called sequential target-
reaching task. The following explains the details of task designs
and simulation results and their analysis for a basic task, fol-
lowed by those for an extended task that deals with relearning
of consecutive task wherein goal changes.
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Table 1
Hyper-parameters we used in the sequential goal reaching task and the consec-
utive relearning task for ReMASTER. The Hyper-parameters with given search
range were obtain by random search, otherwise hand-tuned.
Hyper-parameter Description Value Search Range

γ 1 Low-level discount factor 0.92
γ 2 High-level discount

factor
0.98

τ 1 Low-level RNN timescale 2
τ 2 High-level RNN

timescale
8

N1 Number of neurons in
the lower level

100 [50, 200]

N2 Number of neurons in
the higher level

50 [25, 100]

buffer_size Number of steps
recorded in memory

5e6

σ0 Initial scale of neuronal
noise

0.2 Appendix A.4

n_update Number of steps per
update

2

lr_critic Learning rate of critic 3e-4 [5e-5, 6e-4]
lr_actor Learning rate of actor 1e-4 [1.5e-5, 2e-4]
α Decay of the RMSProp

optimizers
0.99

batch_size Number of training
sequences.

16

L Sequence length for
truncated BPTT

25 [10, 40]

3.1. Implementation details

We used an MTSRNN with 2 levels for ReMASTER in all ex-
periments, where τ 1

= 2 and τ 2
= 8. The discount factors

are γ 1
= 0.92, γ 2

= 0.98, computed from γ l
= 1 − 0.16/τ l.

There are 100 neurons in the lower level and 50 in the higher
level. We directly used the observations as input to the low level
RNN. We applied truncated BPTT of length 25 for the sequential
target-reaching task, as well as the consecutive relearning task.

Two separate RMSProp optimizers with decay 0.99 were used
to minimize the losses of actor and critic respectively, where
learning rates were 0.0003 for the critic and 0.0001 for actor. We
used a replay buffer of maximum size 500,000 and performed
experience replay every 2 steps, using a mini-batch containing
16 sequences with length 25, randomly sampled from the buffer
(See Appendix A.2).

We summarized the hyper-parameters used in this study in
Table 1. Some of the hyper-parameters were obtained by random
search (see Table 1) , and the others are hand-tuned. However, a
different choice of hyper-parameters will not significantly change
our main conclusions (Appendix C.1).

3.2. Sequential target-reaching task

We propose a sensory-motor task, inspired by Utsunomiya and
Shibata (2008), referred to as a ‘‘sequential target-reaching task’’.
As illustrated in Fig. 2(a), a two-wheeled robot agent on a 2-
dimensional field is required to reach three target positions, in a
sequence, red–green–blue, without receiving any signal indicat-
ing which target to reach. The action is given by the rotation of
its left and right wheels. At the beginning of each episode, the
robot and targets are randomly placed on the field. The robot has
sensors detecting distances and angles from the three targets and
the walls (see Fig. 2(b) and Appendix A.1 for details), as well as
the current-step reward. When it reaches a target in the correct
sequence, it receives a one-step reward. The reward is given only
if the agent followed the proper sequence, and is given only once
for each target. An episode terminates if the agent completes the
task or a maximum of 128 steps are taken. To successfully solve

the task, the agent needs to develop the cognitive capability to
remember ‘‘which target has been reached’’, as well as to recog-
nize the correct sub-goal (which can be considered as approach-
ing a target in this task).

The sequential target-reaching task is of particular interest
because it abstracts many real-world tasks in complicated en-
vironments, which involve decomposition of a whole task into
sub-tasks and execution of each sub-task in a specific sequence.
One example is dialing on a classic telephone, where one needs
to sequentially choose each number and perform detailed hand
movements to dial the number. Mastering this kind of task nat-
urally requires development of hierarchical control of actions.
Lower levels acquire skills for action primitives, while higher
levels learn to dispatch those action primitives in a specified
sequence.

We examined ReMASTER in the sequential target-reaching
task. Fig. 2(c) shows that ReMASTER can successfully solve this
task through self-exploration, achieving more than 95% success
rate3 on average after training. We also tested the case in which
the higher-level value function v2 is not trained. (ReMASTER-
single V in Fig. 2(c)), which achieved similar success rate in the
end but the learning is relatively slower.

However, our major aim was to examine what sorts of internal
representation the MTSRNN had developed for achieving sequen-
tial hierarchical control after abundant training using ReMASTER.
Fig. 3(a) shows three examples of how an agent behaved after
learning, where the three columns present the behavior of the
same agent, but in different episodes. Interestingly, although
target configurations and the motor actions (the last 2 rows
of Fig. 3(b)) were completely different in these episodes, high-
level neurons showed relatively similar temporal profiles of RNN
outputs c lt , as plotted in the first row of Fig. 3(a). In contrast,
this feature was less obvious in the lower level (second row of
Fig. 3(a)). Although we only show one agent here, this result is
statistically significant (Section 3.5), and more examples can be
found in Appendix Fig. C.5. This result suggests that an MTSRNN
with slower dynamics in the higher level enhanced development
of a consistent representation, accounting for a given sub-goal
structure through abstraction in the higher level, whereas the
lower level dealt with details of motor control depending on
object configuration in the field in each episode. Consistency in
representing sub-goals of the higher level can also be demon-
strated by conducting PCA on RNN outputs of the two levels
of the MTSRNN after convergence (Fig. 3(b)). We can see that
the high-level RNN outputs showed a consistent, sequence-like
representation of sub-goals accounted by its slower dynamics,
whereas the lower level showed a more divergent representation
since it needs to generate each different maneuvering trajectory.
Similarly, we applied PCA on the RNN outputs, but for visualizing
representation of low-level motor actions (Fig. 3(c)). It is shown
that while the lower-level neurons clearly represented detailed
wheel speeds, the higher-level RNN outputs were less relevant
to low-level actions. Hence, we saw an emergence of action
hierarchy using ReMASTER.

3.3. Consecutive relearning task

Since our previous analysis indicated that the low level learns
action primitives for achieving each sub-goal, relearning to solve
a new task that is a re-composition of previously learned sub-
goals in a different sequence, should be much more efficient than
starting from scratch.

3 An episode was considered successful when the agent completed the task
within 50 steps.
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Fig. 2. The sequential target-reaching task: (a) Illustration of the task. Configuration of the robot and the targets was randomly initialized in each episode. (b) Top
view of the sequential target-reaching task. The size of the square field is 15 × 15. Objects are zoomed out for visual clarity. (c) Performance curve indicated by
success rate. ReMASTER-single V is the case in which the higher-level value function was not learned. Data are Mean ± S.E.M., obtained from 20 repeats.

Fig. 3. Analysis on the sequential target-reaching task using ReMASTER. (a) Three example episodes showing the behavior of a well-trained ReMASTER agent. The
first and second rows show RNN output c lt of two levels, where the vertical, dashed lines indicate the agent’s reaching a target. For clarity, we plotted only c lt
of the first 7 neurons for both levels, with different colors indicating different neurons. The motor actions indicted by velocities of the two wheels are plotted in
the third row. The fourth row is the robot’s trajectories, where black squares indicate its starting positions and circles are target positions. (b) PCA for visualizing
temporal profiles of c lt , using data of the same agent in (a) in episodes 11000, 11100, . . . , 11900 (after convergence). Colors mean the agent is approaching to the
corresponding targets, where a deeper color means the agent is more closed to the target. Samples from the same episode are linked with black lines. (c) Similar
to (b), but the colors indicate speed of the two wheels (see the colormap). The first 3 PCs were plotted.

By considering this, we carried out another experiment, in an
extended version of the sequential target-reaching task, referred
to as an ‘‘consecutive relearning task’’ (Fig. 4(a)). In this task,
the robot agent was required to adapt consecutively to changed
task goals (or more specifically, changed reward functions and
termination conditions) by relearning. The consecutive relearning
task consisted of 3 different phases. Phase 1 corresponded to the
original red–green–blue sequential target-reaching task. Phases
2 and 3 appeared as novel re-compositions of sub-goals, where
the required sequences are green–blue–red and blue–green–red,
respectively. While phase 1 had 12,000 episodes, there were only
3000 episodes in phase 2 or 3.

We performed experiments on this task in a lifelong learning
manner (Silver, Yang, & Li, 2013; Thrun & Mitchell, 1994). We

maintained the same learning algorithm and hyper-parameters
throughout all 3 phases. Synaptic weights were continuously
updated without resetting throughout the experiment. At the
beginning of each phase, motor and neuronal noise scale were
reset and the replay buffer was cleared. We additionally com-
pared performance using ReMASTER to two alternatives, in order
to examine the importance of neuronal stochasticity and in-
trinsic timescale hierarchy. One alternative is the deterministic
version of ReMASTER in which there was only motor noise for
exploration, but no noise was applied to neurons (ReMASTER-
det. in Fig. 4(b–d)). Another alternative used the same algorithm,
but replaced the MTSRNN with a single-layer LSTM (LSTM in
Fig. 4(b-e)) using γ = 1 −

√
(1− γ 1)(1− γ 2) = 0.96, but we

got similar performance for γ = γ 1 or γ 2). The LSTM network



154 D. Han, K. Doya and J. Tani / Neural Networks 129 (2020) 149–162

Fig. 4. The consecutive relearning task: (a) Illustration of the task. (b–d) Performance curves for all phases, plotted in the same way as Fig. 2(c). ReMASTER-det. stands
for the case in which all the neurons followed deterministic dynamics, and LSTM is the alternative using the same algorithm but the network was a single-layer
LSTM. (e) Performance curve of phase 3 with the lower-level synaptic weights frozen (Phase 3 - LF).

contained 75 cells so that the number of parameters is similar to
that of the MTSRNN.

Results are illustrated in Fig. 4(b–d), which shows task perfor-
mance in terms of success rate in three different phases. Several
conclusions can be drawn from these results.4

First, for ReMASTER and ReMASTER-single V, the relearning
cases of phases 2, 3 (Fig. 4(c,d)) starting with previously trained
synaptic weights achieved much better sample efficiency than
the case of phase 1 which was done from scratch (Note that
there were only 3000 episodes in phases 2,3, whereas there
were 12,000 episodes in phase 1. Rigorous comparison is left to
Appendix C.2.). We consider that this resulted from composi-
tionality during action hierarchy development, which enabled a
flexible re-composition of sub-goals, so that the agents could
rapidly adapt to relearning tasks.

Second, ReMASTER significantly and consistently outper-
formed ReMASTER-det. in all the three phases (Fig. 4(b–d)). One
possible reason is that stochastic neurons could prevent the
network from over-fitting, thereby enhancing network flexibility.
Another is that neuronal noise can lead to larger exploration
in the hidden state space (Fortunato et al., 2018; Shibata &
Sakashita, 2015), which results in a greater likelihood of finding
adequate neural representation in the higher level, which fits
with newly appeared re-composition tasks. We also examined
the cases in which neuronal noise was applied only on the
higher level or the lower level, and the results are deferred to
Appendix C.3.

Third, ReMASTER also addressed consistent performance ad-
vantage over ReMASTER-single V. (Fig. 4(b–d)). Recall that policy
is learned to optimize the expected return with discount factor
γ 1. Our results suggested it could be beneficial to learn value

4 Although we used tuned hyperparameters for better performance, these
conclusions indeed hold for different choice of hyperparameters (Appendix C.1).

functions with multiple discounting, which agrees with the find-
ings that mammalian brains are doing the same thing (Enomoto
et al., 2011; Tanaka et al., 2016).

Finally, ReMASTER and ReMASTER-single V showed a perfor-
mance advantage over the LSTM alternative in phases 2, 3, al-
though LSTM achieved great performance in phase 1 (Fig. 4(b–d)).
We consider the performance degradation of LSTM in phases 2,3
is because of the mixed representation of sub-goal sequencing
and detailed motor skills in one level. This created difficulty
in relearning sub-goal sequencing while reusing low-level skills.
In contrast, ReMASTER provided flexible compositionality that
enables these two levels of control to be better segregated in
different levels in MTSRNN. Although biological plausibility of our
approach is arguable, this result may underlie a potential reason
of why we have many separated, timescale-distinct brain regions
working for multiple levels of functions (Murray et al., 2014;
Runyan et al., 2017; Wang et al., 2018).

3.4. Learning to solve new tasks with low-level weights frozen

The previous results (Fig. 4(b–d)) were obtained when both
the higher and the lower level synaptic weights were continually
trained throughout the task. However, if the lower level had
acquired necessary motor skills for achieving the sub-goals, it
should be possible for the agent to learn to solve new tasks by
updating only the higher level.

Therefore, we conducted another simulation on the consecu-
tive relearning task using ReMASTER, in which low-level synaptic
weights (purple connections in Fig. 1) were frozen in phase 3, as
inherited at the end of phase 2. The ReMASTER and ReMASTER-
single V agents showed remarkable learning effectiveness in
phase 3 (Fig. 4(e)), whereas the ReMASTER-det. agents could
improve their policy but the learning was less efficient. This
finding further supports our speculation that hierarchical action
control had developed in phases 1 and 2, wherein motor skills for
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Table 2
Consistency of RNN outputs in representing sub-goals among the last 1000
episodes in each phase. Data are Mean ± STD.
Network Phase 1 Phase 2 Phase 3

ReMASTER (high level) 0.95± 0.02 0.94± 0.03 0.95± 0.02
ReMASTER (low level) 0.81± 0.04 0.80± 0.05 0.80± 0.05
ReMASTER-single V (high level) 0.88± 0.06 0.86± 0.06 0.86± 0.06
ReMASTER-single V (low level) 0.77± 0.06 0.80± 0.04 0.82± 0.04
ReMASTER-det. (high level) 0.88± 0.04 0.79± 0.06 0.85± 0.04
ReMASTER-det. (low level) 0.75± 0.05 0.64± 0.07 0.71± 0.04
LSTM 0.85± 0.20 0.78± 0.20 0.54± 0.29

achieving sub-goals had developed in the low-level and memory
for sequencing sub-goals had developed in the high-level, and this
was facilitated by neuronal noise.

3.5. Consistency in representing sub-goals

To understand the underlying neural mechanisms for ReMAS-
TER’s promising performance in relearning phases (Fig. 4(c,d)),
we analyzed neural data by looking at how consistent the RNN
outputs of different RNN architectures could represent sub-goals
in each phase.

We measured consistency in representing sub-goals by cosine
similarity of temporal profile of the RNN outputs c l across the last
1000 episodes of each phase (see Appendix B.1 for details), for
both of the higher level and the lower one (Table 2). It can be seen
that higher consistency mostly corresponds to higher success rate
for the three models in the consecutive relearning task (Fig. 4(b–
d)), where ReMASTER agents always showed great consistency
in representing sub-goals in the higher level, in contrast to the
alternatives, the performance and consistency of which decreased
significantly in later phases. We do not show here the comparison
across different phases because the RNN outputs corresponding
to the sub-goals could be different when an agent adapts to a
new phase (see Appendix C.4 for more discussion). However, it is
rather important that higher flexibility for re-organizing sub-goal
representation was shown using ReMASTER agents.

3.6. Manipulating agent behaviors by clamping high-level neural
states

For animals, different brain regions often serve at different
levels in action generation. For instance, premotor areas of rodent
motor cortex are thought to be important in action choices, while
primary motor cortex is considered responsible for details in
action execution (Morandell & Huber, 2017). More interestingly,
experimental studies have demonstrated that action primitives
of animals can be altered by electrophysiological stimulation or
optogenetic inactivation to certain upstream neurons (Morandell
& Huber, 2017; Vu, Mazurek, & Kuo, 1994).

Here, we consider analogous experiments on artifacts with Re-
MASTER agents. We first randomly picked an agent after finishing
the consecutive relearning task and then computed the average
of c2 and u2 over the last 500 episodes of phase 3, at the middle
step of (i) from initial position to the blue target; (ii) from the blue
target to the green one; (iii) from the green target to the red one.
By clamping high-level RNN states (c2, u2) to those of (i), (ii), or
(iii), we could ‘‘manipulate’’ a trained agent to consistently follow
an action primitive pursuing the corresponding sub-goal (Fig. 5).
In contrast, fixing low-level RNN states only results in a constant
(noisy) action, which is directly determined by c1. Therefore, the
high-level RNN states act as a label for the action primitives. The
continuous property of the RNN states enables representation
of an arbitrary number of sub-goals, where in our case we can
readily find 3 meaningful action primitives corresponding to the
3 targets.

3.7. Timescales and discountings

We have been discussing the role of multiple timescales, in-
dicated by τ l, the time constant of the lth-level RNN, and γ l,
the discount factor of the lth-level value function. In our ex-
periments using ReMASTER, the lower level had smaller τ 1(=2)
and γ 1(=0.92), corresponding to a fast dynamic, whereas the
higher level was characterized by a slower timescale (τ 2

=

8, γ 2
= 0.98). However, a computational validation of this

‘‘the-higher-the-slower’’ setting should also be conducted.
For this purpose, different settings of τ l and γ l were examined

in the consecutive relearning task. The simulation results (Fig. 6)
demonstrated a clear advantage of the setting we used, com-
pared to other cases in which ‘‘the-higher-the-slower’’ was not
followed. Exchange of values of γ 1 and γ 2 resulted in significant
performance degradation, while alternating values of τ 1 and τ 2

showed even worse performance. Also, it appeared as an unsat-
isfying choice to set medium values of τ and γ for both layers.
The results suggested that a ‘‘the-higher-the-slower’’ setting in
our model corresponds should be adopted for better performance,
which agrees with neurobiological experiments that the higher-
level brain regions have longer intrinsic timescales (Murray et al.,
2014).

4. Related work

Despite much early effort spent on hierarchical RL (Dietterich,
2000; Sutton et al., 1999) using pre-defined action hierarchies,
a number of recent studies have been focused on discovering
action primitives5 that serve for hierarchical RL. More recent
works (Bacon et al., 2017; Brunskill & Li, 2014; Fox et al., 2017;
Riemer, Liu, & Tesauro, 2018) were extensions of the option
framework (Sutton et al., 1999), which introduced a termination
variable to determined start and end of an action primitive. Their
works required a pre-defined number of options, whereas our
framework can learn to represent an arbitrary number of options
by high-level RNN states (Fig. 5). Moreover, most of these studies
focused on tasks that do not require long-term credit assignment
or memorization. In this paper, we consider a different scheme
wherein the agent needs to accomplish a series of sub-goals in
a particular sequence without observable information indicating
the current sub-goal. Such a scheme is common in real life, but
has rarely been investigated in RL.

Another track of related studies is skill sharing/reuse among
similar tasks in RL. Studies have been conducted considering
various schemes, such as meta-RL (Al-Shedivat et al., 2018; Finn,
Abbeel, & Levine, 2017; Finn, Xu, & Levine, 2018; Santoro, Bar-
tunov, Botvinick, Wierstra, & Lillicrap, 2016; Wang et al., 2018;
Yoon et al., 2018) and lifelong RL (Abel, Jinnai, Guo, Konidaris, &
Littman, 2018; Mankowitz, Mann, & Mannor, 2016; Rusu et al.,
2016; Silver et al., 2013; Tessler, Givony, Zahavy, Mankowitz, &
Mannor, 2017). In particular, some authors proposed ideas shared
with our work. Several studies (Al-Shedivat et al., 2018; Santoro
et al., 2016; Wang et al., 2018) employed RNNs for their meta-
learning competency, and the others (Brunskill & Li, 2014; Tessler
et al., 2017) suggested that reuse of action primitives can enhance
lifelong learning. However, many of these works considered a
multi-task setting where the agent repetitively interacts with a
random task sampled from a task set. In our case, the agent first
learned to solve one task (phase 1), and the self-developed action
hierarchy facilitated relearning in new tasks (phases 2 and 3) with
which the agents had never interacted.

5 ‘‘Action primitive’’ in our paper has a similar meaning as option (Sutton
et al., 1999) in some related literature (Bacon et al., 2017, 2017; Brunskill & Li,
2014; Fox, Krishnan, Stoica, & Goldberg, 2017).
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Fig. 5. Manipulating agent behaviors by clamping high-level RNN states. All trajectories were from one agent and each row used same high-level RNN states. Black
squares and colored circles indicate the agent’s initial positions and the target positions, respectively. Each column used the same random seeds for generating initial
position and target positions.

Fig. 6. Performance comparison among different settings of τ l and γ l . Each result was obtained from 10 repeats.

5. Conclusion and future work

In the current study, we focused on a type of sequential
compositional task and comprehensively investigated how they
can be solved by autonomously developing sub-goal structure
with acquiring necessary action primitives via RL. For this pur-
pose, we proposed a novel RL framework, ReMASTER, which
is characterized by two essential features. One is the multi-
ple timescale property both in neural activation dynamics and
reward discounting, which is inspired by neuroscientific find-
ings (Huys et al., 2004; Murray et al., 2014; Newell et al., 2001;

Runyan et al., 2017; Smith et al., 2006). The other is stochasticity
introduced in neural units in all layers, also inspired by the
corresponding biological facts (Beck et al., 2008, 2012; Orbán,
Berkes, Fiser, & Lengyel, 2016).

Simulation results showed that action hierarchy is emerged
by developing an adequate internal neuronal representation at
multiple levels. We presented several pieces of evidences show-
ing that compositionality developed in the network by taking
advantage of multiple timescales: abstract action control in terms
of sequencing of sub-goals developed in the higher level, while
a set of action primitives as skills for detailed sensory-motor
control for achieving each sub-goal acquired in the lower level.
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Furthermore, compositionality developed in the previous
learning enabled efficient relearning in adaptation to changed
task goals that involved re-composition of previously learned
sub-goals. This re-composition capability was further enhanced
with introduction of neuronal noise in addition to motor noise.
Such adaptation became possible because development of hier-
archical control using multiple levels allowed enough flexibility
for re-composition of previously learned control skills.

Since our experiments showed that exchange of timescales
between the higher and lower levels resulted in significant per-
formance degradation, it should be worth investigating how an
optimal timescale for each level can be determined autonomously
during task execution. One possibility is to incorporate LSTMs
cascaded in multiple levels (Vezhnevets et al., 2017) with the
expectation that the forgetting gate in LSTMs could provide the
means for adaptive timescale modulation.

Finally, ReMASTER is flexible in adopting any gradient-based
actor–critic algorithms. Performance can be further improved
by employing well-designed model-free algorithms such as
(Haarnoja et al., 2018; Wang et al., 2017). Also, Recent model-
based RL methods have addressed promising performance using
probabilistic state transition models (Deisenroth & Rasmussen,
2011; Ha & Schmidhuber, 2018; Kaiser et al., 2019). In this
respect, it should be interesting to combine ReMASTER with
probabilistic inference of state transitions, using, e.g., a multiple
timescale Bayesian RNN (Ahmadi & Tani, 2019; Chung et al.,
2015). Such trials will be attempted in future studies.
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Appendix A. Task settings

A.1. Sequential target-reaching task

The setting for a sequential target-reaching task is similar to
that in Utsunomiya and Shibata (2008). A two-wheel robot is
required to approach three targets in a sequence, on a
2-dimensional field, as showed in Fig. 2(b). The 2-D field is a
15× 15 square area, restrained by walls. The robot agent has two
wheels of radius 0.25, connected by an axle. It receives sensory
signals to detect distances and angles to the target as well as
the walls, as shown in Fig. 2(b). At each step, the action is given
as the rotations of two wheels, which are continuous in range
[−180◦, 180◦]. Length of the axle is 1, so that the robot can turn
90◦ at most in one step. There are three targets, indicated by red,
green and blue, each of which is a circular area of radius 0.4.
At the beginning of each episode, positions of three targets are
randomly set inside the center 8 × 8 area. The distance between
two targets are ensured to be larger than 2. The observation is a
12-D real number vector: (e−dred/5, e−dgreen/5, e−dblue/5, e−dfrontwall/5,
e−dbackwall/5, r , sin θred, cos θred, sin θgreen, cos θgreen, sin θblue, cos θblue),

where r is the immediate reward at current time step, and other
quantities are shown in Fig. 2(b).

The robot must reach the three targets in the sequence red–
green–blue to maximize rewards. The reward function is given
as:

If dred(τ ) > 0.4∀ τ < t and dred(t) ≤ 0.4, then

r(t) = 0.8/(1+ dred(t)). (8)

If ∃ τ < t that dred(τ ) ≤ 0.4, and dgreen(τ ) > 0.4∀ τ < t ,
dgreen(t) ≤ 0.4, then

r(t) = 2.0/(1+ dgreen(t)). (9)

If ∃ τ < t that dred(τ ) ≤ 0.4, and ∃ τ < t that dgreen(τ ) ≤ 0.4,
and dblue(t) ≤ 0.4, then

r(t) = 5.0/(1+ dgreen(t)) (task done). (10)

If the robot hits the walls, a negative reward −0.1 is given.
Otherwise the reward is zero.

A.2. Replay buffer for dispersed replay

To enable experience replay, we stored state transitions
(st , st+1, at , rt , donet ) and RNN states (c t , µt ) in a replay buffer.
We also recorded behavior policy πt in it to compute the im-
portance sampling ratio. We did not separate episodes in the
replay buffer. Instead, we consecutively recorded every step, and
padded L − 1 steps at which gradients were not calculated,
when an episode terminated. Then, we could randomly sample
n sequences of length-l as a minibatch for truncated BPTT, with
sampling bias.

A.3. Initial RNN states for experience replay

Different from feedforward neural networks, RNNs for off-
policy RL have some practical problems. One major problem
is how to decide initial states when training a sequence sam-
pled from the replay buffer. When dealing with finite horizon
(episodic) RL tasks, applicable approaches can be summarized
as:

• Recording the RNN states at each step. RNN states can
be treated as hidden observations used in training, which
need to be recorded in the replay buffer. Despite the sim-
plicity of this approach, it is unclear what algorithmic is-
sues will be introduced by difference between old internal
representations and new ones.
• Using an entire episode as a sequence. This was used,

e.g., in Mnih et al. (2016), providing zero initial states for
all the episodes. However, this implementation is compu-
tationally inefficient when the length of some episodes is
large.
• Using random sequences with zero initial states. Sample

sequences are randomly sampled from the entire mem-
ory, given all-zero initial states. This approach was used
in Hausknecht and Stone (2015) for experiments in Atari
Games. Unfortunately, this implementation prevents learn-
ing long-term dependence because of the mismatch of initial
states, as argued in Kapturowski et al. (2018).
• Replaying the sequences. Starting with zero initial states

at each episode, RNN states for off-policy updates can be
obtained by unrolling new RNNs on old trajectories. A mod-
ified version of this approach is offered in Kapturowski et al.
(2018), where the authors assume that computing the for-
ward dynamic of RNNs can help them find better RNN states
from zero or recorded RNN states, starting e.g., 20 steps
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Fig. A.1. Final performances of ReMASTER for different scales of neuronal noise obtained from last 1000 episodes of each phase.

before the start of a sampled sequence. Although Kaptur-
owski et al. (2018) demonstrated remarkable performance
on many RL tasks using this approach, their assumption has
not been systematically discussed.

For simplicity, we employ the first approach. Our experimental
results show that it is practical. However, how to choose better
initial states still remains a challenge for RL with experience
replay using RNNs.

A.4. Noise scale

For continuous sensory-motor tasks, the range of state space
can be very large. To enhance efficiency of motor exploration,
we used motor noise generated by the Ornstern–Uhlenbeck pro-
cess (Uhlenbeck & Ornstein, 1930) (OU-process), like that used in
Lillicrap et al. (2015). The OU-process generates temporally auto-
correlated noise; thus, the exploration range can be increased
with the ‘‘inertia" of the noise. However, it is not necessary to ap-
ply temporally correlated noise to hidden states of the MTSRNN,
since recurrent connections in an RNN autonomously generate it.

For exploration in all the tasks, we applied auto-correlated
Gaussian noises to the robot’s actions, which were generated by
independent OU-processes. Each action noise xt can be computed
by

xt = −θaxt−1 + e
√
2θaϵt , (11)

where θa = 0.3 for all of our experiments, and ϵt is a unit of
Gaussian white noise. e indicates the scale of action noise, which
was annealed exponentially w.r.t. episodes, with a minimum
value of 0.1:

e = 180◦ ×
[
0.75× exp(−

1
3000

× episode)+ 0.1
]

. (12)

Meanwhile, neuronal stochasticity is given by Gaussian white
noise with scale

σ = σ0 exp(−
1

3000
× episode). (13)

We performed experiments to determine the proper value of σ0,
and found that σ0 = 0.2 gave rise to better performance (Fig. A.1).
Thus we used σ0 = 0.2.

For the consecutive relearning task, at the beginning of phases
2 and 3, we cleared the memory buffer and reset the noise scale,
annealed as

e = 180◦ ×
[
0.75× exp(−

1
750
× episode)+ 0.1

]
, (14)

and

σ = σ0 exp(−
1

750
× episode). (15)

Appendix B. Data analysis

B.1. Consistency in representing sub-goals

This section describes how we computed consistency in rep-
resenting sub-goals (Section 3.5) by cosine similarity of the RNN
outputs c across different episodes. Because there are usually dif-
ferent numbers of time steps in each episode, we first normalized
the number of time steps to 30 for all successful episodes. The
normalized time step tnorm = 1 when the agent starts an episode,
and tnorm = 10, 20 and 30 when the agent reaches the first,
second, and third target, respectively. Then c ltnorm can be obtained
w.r.t. the normalized time steps by linear interpolation. Therefore,
if the higher-level RNN outputs can consistently represent the
correct sub-goals, their temporal profiles w.r.t. normalized time
steps c2tnorm should be similar among different episodes e after
convergence.

Then cosine similarity of c ltnorm was then computed for each
agent by

Consistencyl = Meanei ̸=ej,tnorm,k

[
CosSim

(
c lei,k,tnorm , c lej,k,tnorm

)]
,

(16)

where c le,k,tnorm indicates the temporal profile (using the normal-
ized time step tnorm) of the RNN output of the kth neuron of the
lth level in the eth episode. ei and ej are successful episodes in
the last 1000 episodes of each phase.

Appendix C. Supplementary results

C.1. Effect of hyperparameters

Many RL algorithms suffer from a proper choice of hyper-
parameters (such as learning rate, number of neurons in the
network) in terms of a satisfying performance. It is also important
for us to make sure that the our main results are robust to
hyperparameters. For this purpose, we did a random search for
hyperparameters (Fig. C.1). More specifically, the sequence length
for BPTT was sampled log-uniformly in [10, 40]. The learning
rate for the actor and for the critic was sampled log-uniformly
in [0.00015, 0.0006] and [0.00005, 0.0002], respectively. For the
MTSRNN, the number of neurons was log-uniformly in [25, 100]
in the lower level, and [50, 200] in the higher-level. The number
of LSTM cells was in [40, 160], also log-uniformly sampled.

As shown in Fig. C.1, although the overall performance was a
little worse than that using tuned hyperparameters, our conclu-
sions in Section 3.3 did not vary. The LSTM alternative performed
better in phase 1, but became worse in the latter phases. Also,
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Fig. C.1. Performance in the consecutive relearning task, using a range of hyperparameters.

Fig. C.2. Performance comparison among phases 2, 3 and the control case.

ReMASTER always outperformed ReMASTER-det. and ReMASTER-
single V.

C.2. Performance gain with inherited weights

We prepared a control task that is equal to phase 3 (also
equivalent to phase 2 because of symmetry of the three targets)
except a random initialization of synaptic weights at the begin-
ning (Fig. C.2, Bottom). It can be seen that agents with inherited
weights largely outperformed agents in the control case that start
from scratch, showing meta-learning competency of RNNs (Wang
et al., 2018).

C.3. Neuronal noise ablation study

We further conducted experiments to investigate the role of
neuronal noise in either the higher level and the lower level. The
results (Fig. C.3) show that, lack of neuronal noise in the higher
level leads to slightly worse performance in relearning phases.
When the lower-level neuronal followed deterministic dynamics,
although it learned slightly faster in phase 1, significant perfor-
mance degradation was observed in phases 2 and 3. Also, lack of
the higher-level stochasticity lead to slightly worse performance
in all 3 phases.
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Fig. C.3. Success rate in all 3 phases. ReMASTER is compared to ReMASTER-high-det. and ReMASTER-low-det., in which the higher-level or the lower-level neurons
are deterministic.

Fig. C.4. Development of internal representation for sub-goals. Left: The first two PCs of internal representations of an ReMASTER agent, after performing PCA for
each phase separately, plotted in the same way as Fig. 3(b). Right: Profiles of RNN outputs of the higher level (Top) and the lower level (Bottom), plotted in the
same way as Fig. 3(a).

C.4. Development of internal representations

To see how internal representation of ReMASTER agents devel-
ops throughout learning, we performed PCA for the RNN outputs
in different periods of learning and visualized the first 2 PCs6 of a
randomly selected ReMASTER agent (Fig. C.4, Left). The agent was
trained to learn the consecutive relearning tasks with 3 phases.
In addition, we let the agent consecutively adapt to the fourth
phase wherein the task goal was the same as in phase 1 (‘‘Return
to Phase 1’’ in Fig. C.4) to see how the representation varies for
the same task goal but at different learning stages.

In consistency with the result that learning was faster in later
phases (Fig. 4(b,c)), internal representation also converged faster

6 Note that PCA was conducted for each phase separately. This is because
sub-goals representations were re-organized when adapting to a new phase, and
thus we failed to obtain clear visualization of sub-goal representations across
phases.

in relearning phases (Fig. C.4, Left). In particular, when the agent
returned to phase 1, it only took less than 1000 episodes to
achieve a converged representation of sub-goals (The first 2 PCs
after episode 1000 are almost invariant).

Also, it can be seen that the internal representation in phase 1
after convergence is different from that when the agent returns
to phase 1 (Fig. C.4, Right). This can also be demonstrated using
the similarity measure (Appendix B.1) between the RNN outputs
in these two phases (averaged from last 1000 episode in each
phase), which is 0.37 ± 0.07 for the lower level and 0.33 ± 0.09
for the higher level, on 20 trials.

However, the first 2 PCs interestingly show that the rep-
resentations at the end of phase 1 and phase 4 have similar
structure, despite that the basis vectors are different (Fig. C.4,
Left). To demonstrate this, we performed linear transformation
(stretching, rotation and reflection) to the first 2 PCs to maximize
their similarity between the two phases (again, averaged from
last 1000 episode in each phase). The result showed a similarity
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Fig. C.5. Example episodes showing the behavior of two well-trained ReMASTER agents, in all 3 phases. Plotted in the same way as Fig. 3(a) in the main paper. For
clarity, the first 7 neurons are plotted for both levels, with different colors indicating different neurons.

of 0.93 ± 0.07 for the lower level and 0.97 ± 0.03 for the
higher level on 20 trials, which is much higher than that of RNN
outputs. This suggests that a robust sub-goal encoding scheme
was achieved in the proposed model either by sufficient amount
of learning from scratch (phase 1) or by relearning, in which the
internal representation was acquired much more quickly.
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