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A remarkable feature of quantum many-body systems is the orthogonality catastrophe that describes
their extensively growing sensitivity to local perturbations and plays an important role in condensed matter
physics. Here we show that the dynamics of the orthogonality catastrophe can be fully characterized by the
quantum speed limit and, more specifically, that any quenched quantum many-body system, whose
variance in ground state energy scales with the system size, exhibits the orthogonality catastrophe. Our
rigorous findings are demonstrated by two paradigmatic classes of many-body systems—the trapped Fermi
gas and the long-range interacting Lipkin-Meshkov-Glick spin model.
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Introduction.—Numerous many-body systems exhibit
properties and phases that cannot be explained in exclusively
classical terms. Famous examples include Bose-Einstein
condensation [1,2], topological states [3,4], nonclassical
dispersion relations [5,6], and many-body localization [7],
to name just a few. Whereas static properties are often
understood in great detail, understanding dynamical proper-
ties can be significantly more involved. Nevertheless, it is
the dynamical properties that are particularly interesting for
quantum technological applications, as exemplified by
quantum thermodynamic devices [8].
Mathematically, the issue is due to the fact that, to

describe the dynamics of many-body systems, the time-
dependent Schrödinger equation has to be solved for an
immense number of microscopic variables, which is practi-
cally unfeasible. One way forward is then to obtain
qualitative insights from fundamental statements of quan-
tum physics, which, in part, is why the study of the
quantum speed limit (QSL) has spurred an area of research
in its own right [9]. The QSL is a careful formulation of
Heisenberg’s uncertainty relation for energy and time [10]
and bounds the minimal time, referred to as the QSL time
τQSL, that a quantum system needs to evolve between
distinct states [11–15]. Originally formulated for undriven
Schrödinger dynamics [11,13–15], the QSL has been
generalized to controlled [16–22] and open systems
[23–31].
Interestingly, in its original inception the QSL was

formulated to bound the minimal time for the evolution
between two orthogonal states [11,14]. It is therefore
interesting to consider its relation to the discovery by
Anderson [32] that a local perturbation on a gas of N
fermions causes a change in the quantum many-body states
that is strongly dependent on N. In particular, in the limit of
large N the local perturbation forces the system to assume

an orthogonal state—an effect known as orthogonality
catastrophe (OC). The OC has been analyzed in many
different scenarios, including quantum spin models
[33,34], trapped gases [35–40], and impurity models
[41], and has also been explored in thermal states [42],
and in understanding the breakdown of quantum adiaba-
ticity [43]. However, to date, a clear connection between
the dynamics as characterized by the QSL and the ortho-
gonality catastrophe has not been made.
In this Letter, we aim at closing this gap in the

fundamental understanding of the dynamics of quantum
many-body systems. Typically the OC is characterized by
the dynamical overlap χðtÞ, which is closely related to the
Loschmidt echo [44,45] and is defined as the inner product
of the state in the absence and presence of the perturbation.
We show that the QSL, i.e., the maximal rate with which
any quantum many-body system can evolve, is also
governed by χðtÞ. With this fundamental relation at hand,
we then conclude that the OC appears in any quantum
many-body system in which the variance of the energy
scales with the number of particles Nα, where α is an
exponent determined by the specific system properties.
This conclusion is then explored and demonstrated for two
important many-body systems: the trapped Fermi gas and
the isotropic Lipkin-Meshkov-Glick model [46], which is a
paradigmatic example of strongly interacting systems
[47–55].
Anderson’s orthogonality catastrophe.—In his original

formulation, Anderson considered the effect a local per-
turbation has on a gas of N spinless fermions [32] and
showed that the overlap between the perturbed and unper-
turbed many-body states, written as

χ ¼ hΨðx1; x2;…; xNÞjΦðx1; x2;…; xNÞi; ð1Þ
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scales as χ ∝ N−α=2, where α is related to the perturbation
strength. As a consequence, even a small perturbation
causes two many-body states to become orthogonal as N
grows. Although Anderson’s treatment focused on sta-
tionary states, dynamical orthogonality after sudden
quenches can be similarly observed and is described by
a dynamical overlap

χðtÞ ¼ hΨjeiHfte−iHitjΨi; ð2Þ

with the initial state Ψ being an eigenstate of the
Hamiltonian Hi, while Hf is the perturbed Hamiltonian
[56]. This is related to the survival probability or time-
dependent fidelity F ðtÞ ¼ jχðtÞj2, which is an important
quantifier of out-of-equilibrium dynamics [57–63]. Indeed,
one can find footprints of the dynamical OC in the spectral
function SðωÞ ¼ 2ReðR∞−∞ dtχðtÞeiωtÞ, which is broadened
by the OC and possesses a power-law tail [64]. While the
OC is well known in condensed matter physics, theoretical
studies have proposed using cold atomic systems to
observe and study it, due to the ability to create clean
many-body states with separately controllable impurity
atoms [35,42]. Recent experiments have been able to
measure the survival probability and spectral function of
a Fermi gas of 6Li after an interaction quench with 40K
impurities by using a Ramsey atom-interferometric tech-
nique heralding the OC [65,66].
“Catastrophic” quantum speed limit.—To establish a

relation between the OC and the QSL we start by inspecting
the dynamical overlap χðtÞ. Since jΨi is an eigenstate of the
unperturbed Hamiltonian HijΨi ¼ EijΨi, we can write

χðtÞ ¼ hΨjeiHftjΨie−iEit: ð3Þ

This allows us to introduce the Bures angle between the
two states jψ0i ¼ jΨi and jψ ti ¼ eiHftjΨi,

LðtÞ≡ arccos jχðtÞj ¼ arccos jhψ0jψ tij; ð4Þ

which is only implicitly dependent on the unperturbed
Hamiltonian Hi. At any time τ, the Bures angle has an
upper bound given by [24,67]

LðτÞ ≤ 1

2

Z
τ

0

dt
ffiffiffiffi
I

p
; ð5Þ

where I is the quantum Fisher information with respect to
time. For pure states and Hamiltonian dynamics, it can be
computed explicitly as [68]

I ¼ 4ðhH2
fi − hHfi2Þ ¼ 4ΔH2

f; ð6Þ

and one can therefore immediately see that the dynamics,
when described by the dynamical overlap, is fully charac-
terized by the variance of the perturbed Hamiltonian Hf.

Introducing now the well-known connection between the
QSL and the quantum Fisher information, vQSL ≡

ffiffiffiffi
I

p
=2

[9,24,30,69,70], one can see that the QSL can be written
as vQSL ¼ ΔHf. Resubstituting this into Eq. (5), and
noting that ΔHf is time independent, then gives a direct
connection between the QSL time and the dynamical
overlap as

τ ≥ τQSL ¼ arccos jχðτÞj
ΔHf

: ð7Þ

The maximal rate of quantum evolution vQSL is therefore
determined by the energy variance of the perturbed
Hamiltonian, which is a function of the number of particles
N. As a consequence, we see that τQSL → 0 when ΔHf

scales extensively with N, which means that the time a
large system needs to evolve between two orthogonal states
vanishes. We then see that the OC is a consequence of the
quantum speed limit: an extensive postquench Hamiltonian
variance drives the many-body system to evolve signifi-
cantly faster, and correspondingly, the time to reach any
orthogonal state vanishes.
Orthogonality catastrophe and other QSLs.—It is worth

noting that χðtÞ as given in Eq. (2) is closely related to the
thermodynamic workW performed in perturbing the many-
body system. Thus far, by virtue of the sudden quench
approximation, it is clear that for t ≥ 0þ the Hamiltonian is
time independent and the ensuing dynamics unitary. As
such, it is easy to convince oneself that the Mandelstam-
Tamm bound, virtually in its original form, presents a
natural choice for exploring the OC. However, this picture
does not explicitly account for the switching on of the
interaction, which necessarily requires some work to be
performed [39,55,71]. We can explore this connection in a
concrete manner by exploiting the fact that QSL times can
be derived for any given distinguishability metric [30].
Choosing Eq. (2) as our figure of merit, we can derive an
alternative expression for τQSL that carries additional
physical significance in terms of the work done in quench-
ing the system [72,73] and find

τW ¼ ℏð1 − jχτjÞ
jhWij ; ð8Þ

where hWi ¼ ∂tχðtÞjt¼0 is the average work performed due
to the quench [73–75] and exhibits similar scaling to τQSL.
It is worth noting that Eqs. (7) and (8) also demonstrate that
the formalism of the QSL provides a useful framework to
explore fundamental properties of any given dynamics. As
the QSL is inherently dependent on which distinguish-
ability metric is employed, closely related bounds could be
derived that account for other features of the system, such
as the coherence (see, e.g., Ref. [9] for an overview). By
choosing the survival probability, we have established a
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strict relationship between the emergence of the OC and the
dynamics and thermodynamics of the quench process.
Trapped Fermi gas.—As a first example, we now

explore the above connection in a harmonically trapped
Fermi gas, which is close to Anderson’s original setting
[32]. The N-body wave function can be constructed
through the Slater determinant of the respective single
particle eigenstates

Ψðx1; x2;…; xNÞ ¼
1ffiffiffiffiffiffi
N!

p det
N

n;j¼1
½ψnðxjÞ�; ð9Þ

which are in turn defined before and after a sudden quench
by Hiψn ¼ Enψn and Hfϕn ¼ E0

nϕn, respectively. The
survival probability of the many-body state is then

F ðtÞ ¼ jhΨjeiHfte−iHitjΨij2 ð10Þ

¼j det½AðtÞ�j2; ð11Þ

where the elements of the matrix A are the overlaps of the
single particle states ψkðx; 0Þ and ψ lðx; tÞ as [32]

Ak;lðtÞ ¼
Z

∞

−∞
ψkðx; 0Þψ�

l ðx; tÞdx ð12Þ

¼
X∞
m¼1

hψkjϕmihψ ljϕmie−iðE0
m−EkÞt: ð13Þ

This significantly simplifies the calculation of χðtÞ and
allows one to consider large systems. Indeed, for a sudden
quench in the trapping frequency ω1 → ω2 such that
η ¼ ω2=ω1 > 1, the single particle overlaps are known
analytically [59,76]. The static (i.e., overlap with the
ground state) and dynamical survival probabilities can be
calculated as

F ¼ jhΨjΦij2 ¼
�
2
ffiffiffi
η

p
ηþ 1

�
N2

; ð14Þ

F ðtÞ ¼
�

2ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4η2cos2ðtÞ þ ðη2 þ 1Þ2sin2ðtÞ

p �
N2

: ð15Þ

One immediately sees that both decay with the exponentN2

and depend on the strength of the quench η. For larger
systems, the survival probability decays faster [see inset of
Fig. 1(a)], which is the manifestation of the OC.
To determine the QSL time, Eq. (7), we require ΔH for

the Fermi gas, which is given by

ΔH ¼ η2 − 1

2
ffiffiffi
2

p
N

XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − nþ 1

p
≈

N

4
ffiffiffi
2

p ½η2 − 1�; ð16Þ

where the approximate expression is valid for large particle
numbers N. The QSL time therefore exhibits an extensive

behavior with the system size [see Fig. 1(a)], which is
qualitatively similar to the survival probability. Similarly,
the average work is given by hWi ¼ ðN=4Þ½η2 − 1� and
exhibits scaling comparable to τQSL [71]. To formally relate
the QSL time and the survival probability, we calculate the
minimum time for the latter to reach a specific value, i.e.,
F ðtminÞ ¼ ϑ, and find from Eq. (15)

tmin ¼
1

π
sec−1

 
η2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ η4 þ η2ð2 − 4ϑ−2=N
2Þ

q
!
; ð17Þ

which for large N reduces to

tmin ≈
2η

πN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðϑ−2Þ

p
η2 − 1

: ð18Þ

Therefore this minimum time can be related through the
energy variance in Eq. (16) to the speed limit as

tmin ∼ τQSL
η

π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− logðϑÞ

p
; ð19Þ

which shows that the QSL bounds the minimum time to
reach F ðτQSLÞ ¼ e−π

4=η2 , as shown in Fig. 1(b). In fact, for
sudden quenches, it is not surprising that the appearance of
dynamically orthogonality depends on the QSL time, as the
variance of the nonequilibrium excitations and the evolu-
tion of the survival probability are described by the same
distribution of single particle probabilities.
We can also consider the setting first proposed by

Anderson, quenching the interaction with an impurity
embedded in the Fermi sea, which leads to a power-law
decay of the survival probability [32,35,42]. Describing the
interaction with the impurity as a delta function with a
height Nκ, the single particle Hamiltonian can be written as

FIG. 1. (a) Dots: QSL time, Eq. (7), as a function of particle
number for a trap quench of strength η ¼ 1.5. The yellow line
uses the approximate expression for ΔH in the large N limit.
Stars: QSL time for an impurity quench of strength κ ¼ 0.5.
(Inset) Survival probability vs time for N ¼ 10 (red lines) and
N ¼ 100 (black lines) for a trap quench (solid lines) and an
impurity quench (dotted lines). (b) Minimum time to reach
F ðtÞ ¼ 10−2 for the trap quench (dots) with the approximation
in Eq. (18) (yellow line), and minimum time to reach F ðtÞ ¼
0.25 for the impurity quench (stars).
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H ¼ −
ℏ2

2m
∇2 þ 1

2
mω2x2 þ ΘðtÞNκδðxÞ; ð20Þ

where ΘðtÞ is the Heaviside step function that suddenly
switches on the interaction for t > 0. Similar to the trap
quench, the QSL time and tmin exhibit an extensive
dependence on N (see Fig. 1), reaffirming the previous
analysis.
Orthogonality catastrophe in interacting systems.—We

next consider a more complex setting where an impurity
is immersed in an interacting bath. In particular, we choose
the model of a single spin interacting with a critical
isotropic Lipkin-Meshkov-Glick (LMG) environment
[47,48]. The total Hamiltonian is given by H ¼ HLMG þ
Hint with

HLMG ¼ −
λ

N

XN
i<j

ðσixσjx þ σiyσ
j
yÞ −

XN
i¼1

σiz;

Hint ¼
γ

N

XN
i

ðσixσsx þ σiyσ
s
yÞ − σsz: ð21Þ

Here Hint accounts for the impurity-bath interaction term
with strength γ and the free Hamiltonian of the impurity
system s. The LMG model is an example of a critical spin
system that exhibits a quantum phase transition at λ ¼ 1
[46,49–55]. It is convenient to work in the angular
momentum basis in terms of collective spin operators,
Sα ¼

P
N
i σiα. In this picture, the Hamiltonian becomes

H ¼ −
λ

N
ðSþS− þ S−Sþ − N1NÞ

− 2Sz − 2
γ

N
ðsþS− þ s−SþÞ − 2sz; ð22Þ

where we have also used the spin operators for the impurity.
In line with the original framework of Anderson, where the
impurity corresponded to a small perturbation, and follow-
ing the previous analysis, we will fix γ ¼ λ

ffiffiffiffi
N

p
such that

the impurity interacts comparatively weakly with the bath.
We first examine the behavior of F for the whole system

when the interaction γ is suddenly switched on at t ¼ 0. We
initialize both in their respective ground states; i.e., for the
impurity, this simply means that it is always initialized in
jψ si ¼ j0is, while the ground state of the LMG bath will be
dependent on the value of λ chosen. For λ < 1 the field
dominates and the spins tend to all align, while for λ > 1
the ground state is in the critical phase [47].
Quenching on the interaction, γ ¼ λ

ffiffiffiffi
N

p
drives the

system out of equilibrium. In Fig. 2 we examine the
survival probability for moderate N ¼ 200 (solid) and
large N ¼ 1000 (dashed) sized environments for λ ¼ 0.9
and λ ¼ 1.1, Figs. 2(a) and 2(b), respectively, which are
representative values for their phases (see Supplemental
Material [73]). Clearly, for λ ¼ 0.9, F never reaches zero

and, furthermore, its behavior is unaffected by the size of
the environment. Therefore, when the LMGmodel is in this
phase, we never witness the OC. In contrast, we clearly see
that, for an environment initialized with λ > 1, the overall
system periodically evolves to almost orthogonal states for
moderate sized environments. As we increase the environ-
mental size, the minimum value of F ðtÞ → 0. Thus, for
increasing N the evolved state approaches a fully orthogo-
nal state and the time to reach this state is strongly
dependent on the size of the bath, as clearly evidenced
in Fig. 2(b). These features combined indicate that for
λ > 1 the system displays the OC.
In Fig. 3(a) we examine the minimum value of the

survival probability Fmin as a function of inverse environ-
ment size, 1=N for λ > 1. Each curve from top to bottom
corresponds to an increasingly large value of λ ∈ ð1.2; 2.0Þ.
We find a simple linear relationship and it is clear that, as
N → ∞, F → 0 and thus we are witnessing the OC. In
contrast, when the spin bath is initialized in the aligned
phase, the minimal value of the survival probability is
insensitive to the bath size, cf. Fig. 2(a). Figure 3(b) shows
the relationship between Fmin and the corresponding time
when this minimum occurs, tmin. We clearly see that both
Fmin and tmin → 0 as N → ∞. Thus, Fig. 3 indicates that
when the OC manifests it corresponds to a vanishing
orthogonality time as the size of the bath is increased,
while if the composite system does not reach orthogonality,
we find its properties are largely independent of N.
We now would like to connect the above features with

the QSL time, Eq. (7) and, in particular, shed light onto why
despite being a many-body system we do not witness the
OC for λ < 1. In general, the energy spectrum of the
isotropic LMG model is characterized by a cascade of
energy level crossings [73] and we find ΔH reads

ΔH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þ jÞðN − jÞγ2

N2

s
; ð23Þ

where 0 ≤ j ≤ N indicates how many energy level cross-
ings have occurred. We find a starkly different behavior
depending on which phase the LMG spin bath is initialized
in. For 0 < λ < 1, no energy level crossings occur [73], and

(a) (b)

FIG. 2. Survival probability F of the impurity þ environment
state when the LMG bath is initialized with (a) λ ¼ 0.9 and
(b) λ ¼ 1.1 for different values of total number of environmental
spins, N ¼ 200 (solid, red) and N ¼ 1000 (dashed, blue).
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we have j ¼ 0 and ΔH ¼ 2γ=
ffiffiffiffi
N

p
. Therefore, since

γ ¼ λ
ffiffiffiffi
N

p
, it is clear that the variance is independent of

the size of the bath in this phase. The fact that we do not see
the OC emerging then naturally follows, since regardless of
how large the total system is, the QSL time, Eq. (7), is
always the same. We find a very different picture emerging
for λ > 1, where the energy changes as a function of λ due
to a cascade of crossings (see Supplemental Material [73]).
In particular, as N is increased, the number of energy level
crossings occurring becomes increasingly dense. Thus, we
find Eq. (23) scales extensively as the environmental size
grows. Correspondingly, we have that τQSL → 0 as N
grows, and hence the orthogonality catastrophe follows
as a consequence of the vanishing QSL time.
Concluding remarks.—In the present analysis, we

achieved several important results. First and foremost,
we related the dynamical occurrence of the orthogonality
catastrophe with the quantum speed limit. From a remark-
ably simple relation, we concluded that any quantummany-
body system whose energy variance scales like Nα exhibits
the exponential sensitivity to local perturbations. This
insight was demonstrated and validated for the trapped
Fermi gas, which closely resembles the situation originally
studied by Anderson [32]. As a second example, we
analyzed the isotropic LMGmodel interacting with a single
qubit impurity, showing that emergence of the orthogon-
ality catastrophe is dependent on the phase the environment
is initialized in. Finally, we also proposed a new QSL that
relates the work necessarily performed by the local per-
turbation for the orthogonality catastrophe to appear. In
particular, the last two results may justify further study and
encourage the development of a comprehensive thermo-
dynamic framework for quantum many-body systems.

T. F. acknowledges support under JSPS KAKENHI-
18K13507. S. D. acknowledges support from the U.S.
NSF under Grant No. CHE-1648973. This research was
supported by Grant No. FQXi-RFP-1808 from the
Foundational Questions Institute and Fetzer Franklin

Fund, a donor advised fund of Silicon Valley
Community Foundation (S. D.). T. F. and T. B. are sup-
ported by the Okinawa Institute of Science and Technology
Graduate University. S. C. gratefully acknowledges the
Science Foundation Ireland Starting Investigator
Research Grant “SpeedDemon” (No. 18/SIRG/5508) for
financial support.

*thomas.fogarty@oist.jp
†deffner@umbc.edu
‡thomas.busch@oist.jp
§steve.campbell@ucd.ie

[1] E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-
Einstein condensation in a dilute gas, the first 70 years and
some recent experiments, Rev. Mod. Phys. 74, 875 (2002).

[2] W. Ketterle, Nobel lecture: When atoms behave as waves:
Bose-Einstein condensation and the atom laser, Rev. Mod.
Phys. 74, 1131 (2002).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[4] A. Bansil, H. Lin, and T. Das, Colloquium: Topological
band theory, Rev. Mod. Phys. 88, 021004 (2016).

[5] N. M. R. Peres, Colloquium: The transport properties of
graphene: An introduction, Rev. Mod. Phys. 82, 2673
(2010).

[6] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and
Dirac semimetals in three-dimensional solids, Rev. Mod.
Phys. 90, 015001 (2018).

[7] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn,
Colloquium: Many-body localization, thermalization, and
entanglement, Rev. Mod. Phys. 91, 021001 (2019).

[8] S. Deffner and S. Campbell, Quantum Thermodynamics
(Morgan & Claypool Publishers, San Rafael, 2019).

[9] S. Deffner and S. Campbell, Quantum speed limits: From
Heisenberg’s uncertainty principle to optimal quantum
control, J. Phys. A 50, 453001 (2017).

[10] W. Heisenberg, Über den anschaulichen Inhalt der quan-
tentheoretischen Kinematik und Mechanik, Z. Phys. 43, 172
(1927).

[11] L. Mandelstam and I. Tamm, The uncertainty relation
between energy and time in nonrelativistic quantum me-
chanics, J. Phys. 9, 249 (1945).

[12] K. Bhattacharyya, Quantum decay and the Mandelstam-
Tamm-energy inequality, J. Phys. A 16, 2993 (1983).

[13] J. Uffink, The rate of evolution of a quantum state, Am. J.
Phys. 61, 935 (1993).

[14] N. Margolus and L. B. Levitin, The maximum speed of
dynamical evolution, Physica (Amsterdam) 120D, 188
(1998).

[15] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum limits
to dynamical evolution, Phys. Rev. A 67, 052109 (2003).

[16] P. Pfeifer, How Fast Can a Quantum State Change With
Time?, Phys. Rev. Lett. 70, 3365 (1993).

[17] P. M. Poggi, F. C. Lombardo, and D. A. Wisniacki, Quan-
tum speed limit and optimal evolution time in a two-level
system, Europhys. Lett. 104, 40005 (2013).

[18] S. Deffner and E. Lutz, Energy-time uncertainty relation for
driven quantum systems, J. Phys. A 46, 335302 (2013).

(a) (b)

FIG. 3. (a) Fmin as a function of N. Each line, from top- to
bottommost, corresponds to an increasing value of λ ∈ ð1.2; 2.0Þ
in steps of 0.2. (b) Minimum value of F vs corresponding
required evolution time tmin for different values of λ ¼ 1.2
(circles), 1.4 (squares), 1.6 (diamonds), 1.8 (up triangles), 2.0
(down triangles). Each consecutive data point approaching the
origin corresponds to an increasing value of N ∈ ð200; 1000Þ in
steps of 200.

PHYSICAL REVIEW LETTERS 124, 110601 (2020)

110601-5

https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.82.2673
https://doi.org/10.1103/RevModPhys.82.2673
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/978-3-642-74626-0_8
https://doi.org/10.1088/0305-4470/16/13/021
https://doi.org/10.1119/1.17368
https://doi.org/10.1119/1.17368
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1103/PhysRevA.67.052109
https://doi.org/10.1103/PhysRevLett.70.3365
https://doi.org/10.1209/0295-5075/104/40005
https://doi.org/10.1088/1751-8113/46/33/335302


[19] G. C. Hegerfeldt, Driving at the Quantum Speed Limit:
Optimal Control of a Two-Level System, Phys. Rev. Lett.
111, 260501 (2013).

[20] E. Barnes, Analytically solvable two-level quantum systems
and Landau-Zener interferometry, Phys. Rev. A 88, 013818
(2013).

[21] M. Bukov, D. Sels, and A. Polkovnikov, Geometric Speed
Limit of Accessible Many-Body State Preparation, Phys.
Rev. X 9, 011034 (2019).

[22] N. Il’in and O. Lychkovskiy, Quantum speed limits for
adiabatic evolution, Loschmidt echo and beyond, arXiv:
1805.04083.

[23] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F.
Huelga, Quantum Speed Limits in Open System Dynamics,
Phys. Rev. Lett. 110, 050403 (2013).

[24] M.M. Taddei, B. M. Escher, L. Davidovich, and R. L. de
Matos Filho, Quantum Speed Limit for Physical Processes,
Phys. Rev. Lett. 110, 050402 (2013).

[25] S. Deffner and E. Lutz, Quantum Speed Limit for
Non-Markovian Dynamics, Phys. Rev. Lett. 111, 010402
(2013).

[26] S. Deffner, Optimal control of a qubit in an optical cavity,
J. Phys. B 47, 145502 (2014).

[27] A. D. Cimmarusti, Z. Yan, B. D. Patterson, L. P. Corcos,
L. A. Orozco, and S. Deffner, Environment-Assisted Speed-
Up of the Field Evolution in Cavity Quantum Electrody-
namics, Phys. Rev. Lett. 114, 233602 (2015).

[28] I. Marvian and D. A. Lidar, Quantum Speed Limits for
Leakage and Decoherence, Phys. Rev. Lett. 115, 210402
(2015).

[29] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and
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