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Abstract

We study the sedimentation of finite-size particles in quiescent wall-bounded

Newtonian and shear-thinning fluids by interface resolved numerical simulations.

The suspended phase consists of Non-Brownian rigid spherical particles with

particle to fluid density ratio ρp/ρf = 1.5 at three different solid volume fractions

Φ = 1%, 5% and 20%. Firstly, to focus on the effect of shear-thinning on

the particle dynamics and interactions, the Archimedes number is increased

for a single particle to have the same settling speed in the Newtonian fluid as

in the shear-thinning fluid. Secondly, we consider fixed Archimedes and vary

the shear-thinning properties of the fluid. Overall, we report a twofold effect

of shear thinning. First and more important, the substantial increase of the

particle sedimentation velocity in the shear-thinning case due to the increase of

the shear rate around the particles, which reduces the local viscosity leading to

a reduced particle drag. Secondly, the shear-thinning fluid reduces the level of

particle interactions, causing a reduction of velocity fluctuations and resulting

in particles sedimenting at approximately the same speed. Moreover, the mean

settling velocities decrease with the particle concentration as a consequence of

the hindering effect. Particles tend to sediment in the middle of the channel,
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preferentially positioning in the wake of neighbouring particles or aside them,

resulting in lower levels of fluid velocity fluctuations in the gravity direction in

the shear-thinning fluid.

1. Introduction

The understanding of the settling of particles by the action of gravity through

Newtonian and non-Newtonian carrier fluids is extremely important in many

applications. Typical applications are found in environmental, biological and

industrial applications such as studies of sand storm, pollutant transport in un-

derground water, settling of micro-organisms such as plankton, as well as river

sediment transport and the motion of drilling muds in boreholes. In these ap-

plications, the general problem of sedimentation of particles is a very complex

one, due to the wide range of parameters upon which it depends. Sedimen-

tation usually includes a high number of particles settling in various kind of

environments. The fluid in which the particles are suspended may be quies-

cent or turbulent, wall-bounded or unbounded, Newtonian or non-Newtonian.

Moreover, the particles may differ in shape, size, deformability or stiffness, den-

sity and particle concentrations, as well as for the large variety of interactions

among them such as hydrodynamic, contact and interparticle forces. The in-

terplay between these various parameters results in a wide range of spatial and

temporal scales involved, substantially altering the global properties of these

suspensions from one case to another. Because of these complexities and chal-

lenges, our general understanding of the problem is still incomplete. In this

work we employ fully resolved direct numerical simulations, based on an effi-

cient immersed boundary method, to study the behavior of monodisperse rigid

spheres settling in quiescent wall-bounded Newtonian and shear-thinning fluids

for different concentrations.

The sedimentation of an isolated spherical and non-spherical particle through

Newtonian and non-Newtonian fluids has been extensively examined in the past,

see e.g. Refs. [1, 2]. The earliest investigations of the sedimentation of a sin-
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gle rigid sphere in an unbounded quiescent Newtonian fluid at zero Reynolds

number focused on the Stokes analysis, where the particle terminal velocity was

linked to the particle radius, the difference between the solid and fluid density

and the fluid viscosity. Since then, several studies extended the Stokes law by

investigating the effects of additional parameters such as non-Newtonian me-

dia, particle shapes, nonzero Reynolds number, interactions between particles,

and the effect of walls (e.g. [3, 4, 5, 6, 7, 8, 9, 10]). When the concentration

of particles is increased, the motion and the settling velocity of an individual

sedimenting object is affected by the existence of the others: this leads to a

decrease of the mean settling velocity of the suspension, due to the so-called

hindering effect [11]. The hindering effect monotonically increases as a function

of the solid volume fraction Φ, hence, the mean settling velocity is monoton-

ically decreasing with Φ. One of the first experimental results for quiescent

sedimentation under Newtonian flow conditions were those by Richardson &

Zaki [12]. These authors proposed an empirical law relating the mean particle

settling velocity of a suspension to its solid concentration and to the terminal

velocity of a single particle. This formula is believed to be accurate also for high

concentrated suspensions and has been improved by more recent experimental

and numerical investigations in order to be applied at finite Reynolds numbers

regimes [13, 14, 15].

Efficient numerical methods and sufficient computational power to extract

the average properties and the micro-structure of these particle suspensions

have become available only recently and different algorithms have been success-

fully used (e.g. [16, 17, 18, 15, 19, 20]). In particular, thanks to the immersed

boundary method, it has been possible to obtain new insight on the interactions

among the different phases and the resulting sedimenting suspension microstruc-

ture [20, 21, 22, 23]. Fornari et al. [22] simulated and studied the effect of the

Galileo number (namely the ratio between gravitational and viscous forces) and

volume fraction on the microscopic and macroscopic properties of settling rigid

oblates in a quiescent Newtonian fluid at finite Reynolds number and for differ-

ent solid volume fractions (Φ = 0.5%− 10%).
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The behaviour of many particles settling in a complex fluid is a less studied

problem [24]. Only a few experimental and numerical studies have been de-

voted to the sedimentation of finite-size particle suspensions in quiescent non-

Newtonian fluids, and the topic remains therefore poorly understood. It was

observed in experimental investigations at low Reynolds number that the set-

tling particles cluster to form columns or chains and cause the development of

non-homogeneous structures during the sedimentation in either a shear-thinning

fluid [25, 26, 27] or a viscoelastic fluid [25, 28, 26]. In particular, the aggrega-

tion of the particles has been numerically examined in a viscoelastic fluid [29]

and in a thixotropic shear-thinning fluid (an inelastic shear-thinning fluid with

memory) [30].

Here, we investigate numerically the effect of a shear-thinning fluid on the

settling behaviour of suspensions in a quiescent wall-bounded environment with

finite particle Reynolds number for three different solid volume fractions (Φ =

1%, 5%, 20%) and compare the results with those obtained in a Newtonian fluid.

In particular, we explore the mean particle settling and fluid velocities, the

standard deviation of the different velocities, wall effects and microstructure

of these complex suspensions. The present paper is organised as follows: the

governing equations, numerical method and simulations setup are introduced in

§2; the main results are discussed in §3, and the final remarks summarised in

§4.

2. Methodology

2.1. Governing equations

We study the motion of finite-size rigid spheres settling in Newtonian and

shear-thinning carrier fluids. The generalised incompressible Navier–Stokes

equation with shear-dependent viscosity and the continuity equation govern the
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motion of the fluid phase,

∂u

∂t
+ u · ∇u = − 1

ρ̂f
∇P +∇ ·

[
ν̂ (u)

(
∇u +∇uT

)]
+ f, (1a)

∇ · u = 0, (1b)

where u = (u, v, w) is the velocity vector with components in the (x, y, z) co-

ordinate directions (see figure 1). The pressure is denoted by P while the fluid

density and kinematic viscosity are indicated by ρ̂f and ν̂ = µ̂/ρ̂f (µ̂ is the

dynamic viscosity). The fluid viscosity, ν̂, is a constant for the Newtonian fluid,

whereas it varies as a function of the local shear rate, γ̇ (u), following the rheo-

logical Carreau-law defined below. Finally the body force f indicates the forcing

from the dispersed phase on the carrier fluid.

The motion of the rigid spherical particles is described by the Newton-Euler

equations,

ρ̂pVp
dUp

c

dt
= Fp, (2a)

Ip
dΩΩΩpc
dt

= Tp, (2b)

where Up
c and ΩΩΩpc are the translational and angular velocities of the particle p,

while ρ̂p, Vp = 4πa3/3 and Ip = 2ρ̂pVpa
2/5 are the mass density, volume and

moment-of-inertia of a sphere with radius a. Fp and Tp are the net force and

momentum resulting from the hydrodynamic stresses on the particle surface,

gravity and particle-particle interactions,

Fp =

∮
∂Sp

[
−P I + µ̂ (u)

(
∇u +∇uT

)]
· n dA+ (ρ̂p − ρ̂f )Vpg + Fc, (3a)

Tp =

∮
∂Sp

r×
{[
−P I + µ̂ (u)

(
∇u +∇uT

)]
· n
}
dA+ Tc. (3b)

In these equations ∂Sp represents the surface of the particles with outwards

normal vector n and I the identity tensor, while g denotes the gravitational ac-

celeration. The radial distance from the center to the surface of each particle is

indicated by r. The force and torque, Fc and Tc, act on the particle as a result

of particle-particle or particle-wall contacts. The no-slip and no-penetration

5



boundary conditions on the surface of the particles are imposed by forcing the

fluid velocity at each point on the surface of the particle, X, to be equal to par-

ticle velocity at that point, u(X) = Up(X) = Up
c +ΩΩΩpc×r. This condition is not

imposed directly in the Immersed Boundary Method used in the current study,

but instead included via the body force f on the right-hand side of equation (1).

2.1.1. Viscosity model

The Carreau model describes the inelastic behavior of fluids with shear de-

pendent viscosity, so called pseudoplastic (shear-thinning) fluids such as poly-

meric solutions. This model describes the viscosity well-enough for most engi-

neering calculations [31]. The model presents an isotropic viscosity proportional

to some power of the local deformation rate γ̇ [32],

µ (u) =
µ̂∞
µ̂0

+

(
1− µ̂∞

µ̂0

)[
1 + (λγ̇)

2
](n−1)/2

. (4)

In the expression above µ (γ̇) is the non-dimensional viscosity, normalized by

µ̂0, the zero shear-rate viscosity. µ̂∞ is the infinity shear rate viscosity and

the ratio µ̂∞/µ̂0 is set to 0.001 in our calculations. The second invariant of

the strain-rate tensor, γ̇, is determined by the dyadic product of the strain

tensor, γ̇ = (2G : G)
1/2

where G =
(
∇u +∇uT

)
/2 (see Re. [31]). The power-

index n indicates the non-Newtonian fluid behaviour: for n < 1 the fluid is

shear-thinning and the fluid viscosity decreases monotonically with the shear-

rate, while the viscosity becomes independent of the shear-rate (i.e. Newtonian

fluid) when n = 1 and the non-dimensional viscosity takes the value µ = 1.

The material time constant, λ, is a dimensionless time scaled by the settling

time scale and represents the degree of shear-thinning. In most of the current

work, the time constant and the power-index are fixed to λ = 10 ([33, 34]) and

n = 0.6, and only in the last section of the work we will evaluate the effect of

changing λ. For a more detailed description of the parameters appearing in the

Carreau model we refer the readers to Ref. [32].
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Figure 1: (Colour online) Instantaneous visualisation of particle sedimentation for volume

fraction Φ = 1% through a shear thinning fluid bounded by two parallel walls. The contour

plot shows the different normalized viscosity values on different wall-normal planes and the

different settling velocities of particles from a lower (white) to higher (black) value. Lx, Ly and

Lz represent the computational box size in the the x, y and z directions; particle diameters

are shown at their actual size.The particle diameter is equal to 2h/18 with h the half channel

width. The gravity is acting in the positive z direction.

2.2. Numerical method

Several approaches have been proposed in recent years to perform interface-

resolved Direct Numerical Simulations (DNS) of multiphase flows. In the present

study, the gravity-driven motion of particles in a quiescent viscous fluid is simu-

lated by means of an efficient immersed boundary method (IBM) coupled with a

fluid phase solver for the generalised Navier-Stokes equations. The original IBM

was developed by Uhlmann [35] to fully resolve finite size particle suspensions

and later on modified by Breugem [36] to ensure second-order spatial accuracy.

The fluid phase is computed by discretising the governing equations on a stag-
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gered mesh using a second order central difference scheme, where all the terms

are treated explicitly. An equispaced (∆x = ∆y = ∆z) fixed and staggered

Cartesian Eulerian mesh is used for the fluid phase whereas an uniform distri-

bution of Lagrangian points is attached on the moving surface of each particle.

The points of the Eulerian and Lagrangian grids communicate to calculate the

IBM force which models the no-slip and no-penetration boundary conditions on

the surface of the particles. The interactions between the particles or with a wall

are taken into account using a lubrication correction and a soft collision model

[37]: when the thin gap distance between two approaching particles (or between

particle and wall) becomes less than a certain threshold, lubrication correction

models based on Brenner’s asymptotic solution [38] are employed to reproduce

correctly the interaction between the particles; at smaller gaps the lubrication

correction is kept constant to account for the surface roughness and, finally, a

soft-sphere collision model is activated based on the relative velocity and the

overlap between the particle-particle or particle-wall, where both the normal

and tangential component of the contact force are taken into account. One is-

sue concerns the use of the lubrication correction as suggested in the original

IBM method of Breugem [36] for Newtonian fluids in the case of shear-thinning

fluids. To the best of our knowledge there is no good lubrication correction

available for shear-thinning fluid and thus, we decided to rely on the analyti-

cal solution in [38] anyway; to reduce its effect on the results, we limited the

maximum volume fraction to 20% and to extend this model to shear-thinning

fluids, we use in the asymptotic solution the local viscosity at the Eulerian point

closest to the midpoint of the line connecting the centers of two particles in in-

teraction, with the viscosity calculated explicitly from the local shear rate. For

more details and validitions of the IBM code, the reader is referred to previous

publications [36, 39, 40, 21, 41]. Concerning the implementation of the viscosity

model in the solver, we have tested the code for an unladen channel flow with

shear-dependent viscosity fluid, and validated by comparing the result with the

analytical solution [42, 34].
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2.3. Numerical setup

In this study the gravity-driven motion of solid spheres is examined in New-

tonian and shear-thinning fluids bounded by parallel infinite flat walls located

at y = 0 and y = 2h with y the wall-normal direction. Periodic boundary

conditions are imposed in the x and z directions, with gravity acting in the

positive z direction. A zero volume flux is considered in the simulations. The

computational box has size Lx = 4h, Ly = 2h and Lz = 8h, where h is the

half-channel width, see figure 1. The domain is discretised by a cubic mesh of

576× 288× 1152 points in the the x, y and z directions. The ratio between the

channel width, H = 2h, and the particle diameter, 2a, is fixed to h/a = 18. The

number of Eulerian grid points per particle diameter is 16 (∆x = 1/16) whereas

746 Lagrangian grid points are spread over the surface of each particle to resolve

the fluid-particle interactions. In all our simulations, the time-step is chosen to

ensure a CFL number equal to 0.75. The chosen time-step is sufficient to ensure

the independence of the results on its value; we verified this by performing a

simulation with a smaller value of the CFL number (0.2) and found that the

difference in both the mean sedimentation velocity and its standard deviation

is less than 0.2%.

Non-Brownian rigid spherical particles are considered with particle to fluid

density ratio ρp/ρf = 1.5. The terminal settling velocity of the particles is

not an input parameter to the simulations, as the non-dimensional parameter

governing the particles sedimenting in a still fluid is the Archimedes number

Ar (or the Galileo number Ga =
√
Ar). The Archimedes number quantifies the

ratio between gravitational and viscous forces acting on the particle, defined as

Ar =

(
ρp
ρf
− 1
)
g(2a)3

ν̂2
0

, (5)

where ν̂0 is the zero shear-rate kinematic viscosity of the fluid. In the present

work, the Archimedes number is kept constant to Ar = 36 for all shear-thinning

fluid cases. Instead, for the simulations with a Newtonian fluid the Archimedes

number is changed to Ar = 97 to reproduce almost the same terminal velocity
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n Φ(%) Np Ar Lx × Ly × Lz Nx ×Ny ×Nz

0.6 1.12× 10−5 1 36 36D × 18D × 72D 576× 288× 1152

1 891

5 4455

20 17821

1 1.12× 10−5 1 97

1 891

5 4455

20 17821

Table 1: Summary of the simulations performed. Np indicates the total number of particles,

D is the particle diameter while Nx, Ny and Nz are the number of grid cells in each direction.

The lowest volume fraction corresponds to a single particle in the computational domain.

of the single particle, Vt, calculated in the shear-thinning case (following the

procedure explained in section §3.1).

In the current study we fix the rheological parameters as mentioned above

and vary the solid volume fraction, Φ. Three different particle volume fractions,

Φ = 1%, 5% and 20%, are chosen; these correspond to 891, 4455 and 17821

particles in the simulation domain. In all cases the particles are initialized

randomly in the channel, with no overlap between each other, and with zero

linear and angular velocities. A summary of the simulated cases is given in

table 1.

We display in figure 1 a snapshot of the spheres settling in shear-thinning

fluid for Φ = 1%. The instantaneous normalised fluid viscosity values are shown

on different wall-normal plans, while the settling velocity is indicated by the

different colours used for the particles. The simulation results presented here are

collected after the sedimentation reached a statistically steady state. In figure

2 we report the time history of the particles-averaged settling velocity, 〈Vz〉p(t),

for one particular case (Φ = 5%, shear-thinning fluid). The settling velocity is

normalised by the settling velocity of a single particle Vt whereas time is scaled

by (2a)/Vt. The statistics are collected over the time interval indicated, after
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Figure 2: (Colour online) Time history of the settling velocity, 〈Vz〉p(t), for one representative

run (Φ = 5%, shear-thinning fluid). The settling velocity is normalised by the settling velocity

of a single particle Vt, whereas time is scaled by (2a)/Vt.

the initial transient phase. To ensure the results are statistically converged, we

repeat the analysis using half the number of samples and compare the statistics

with those from the entire number of samples: the difference between the two

results is less than 1% for the first and second moments. The average of Vz,p(t)

over this statistically steady state is the mean settling velocity 〈Vz〉p, indicated

by the horizontal blue line, while the fluctuations are used to calculate the

standard deviation of the settling velocity, σVz,p
. The 〈.〉p bracket denotes the

average of a quantity over the total number of particles and time.

3. Results

In this work, we investigate and compare the behavior of sedimenting rigid

particles in Newtonian (N) and shear-thinning (ST) fluids initially at rest. The

results focus on the bulk properties of the suspension as well as its local behavior,

e.g. particle settling and angular velocities, dispersions coefficients and particle

local concentrations.

3.1. Sedimentation of an isolated particle

An isolated spherical particle settling in a quiescent shear-thinning fluid

creates a local shear in the fluid surrounding it and the local viscosity seen by
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the particle decreases both around the particle and as a function of the distance

from the particle surface [43] as shown in figure 1. This leads to a reduction of

the drag on the particle [44] and a consequent increase in the particle terminal

velocity Vt, as compared to the settling in Newtonian fluid. Hence, to compare

shear-thinning effects at the same values of Vt in the different carrier fluids, we

increase the Archimedes number, Ar, in the case of Newtonian fluid.

We start by performing two simulations of isolated particles settling in the

same computational domain used for all studied cases (see table 1), in both

shear-thinning and Newtonian quiescent fluids. We determine the terminal set-

tling velocity of the isolated sphere Vt in shear-thinning fluid and estimate the

Archimedes number, Ar, that would reproduce the same value of the particle

terminal velocity Vt in the Newtonian fluid. In particular, we have simulated

the shear-thinning case with Archimedes number Ar = 36. By using the steady

state settling velocity Vt, we define the terminal Reynolds number

Ret = Vt(2a)/ν̂0, (6)

which in the present case is Ret = 3.89. This can be related by empirical

relations to the Archimedes number, Ar, of an isolated spherical particle settling

in Newtonian quiescent fluid. Yin & Koch [15], among others, used an empirical

relation for the drag coefficient of a single particle as a function of Ret when

varying Ar, from which the relation between Ar and Ret can be found [21]:

Ar =

 18Ret

[
1 + 0.1315Re0.82−0.05log10Ret

t

]
, 0.01 < Ret ≤ 20

18Ret
[
1 + 0.1935Re0.6305

t

]
, 20 < Ret < 260

(7)

The Archimedes number calculated from eq. (7) is approximately 97 for Ret =

3.89. We then perform the simulation of a single sphere setting in Newtonian

fluid with Ar = 97 to check the validity of our approach. Indeed, the terminal

Reynolds number Ret, (or Vt), obtained with our simulation at Ar = 97 dif-

fers only by approximately 2% from the prediction using eq. (7) (Ret = 3.81,

compared to the predicted value of 3.89).
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N ST N ST N ST

φ = 1% φ = 1% φ = 5% φ = 5% φ = 20% φ = 20%

〈Vz〉p/Vt 0.8752 0.9644 0.6590 0.7887 0.3458 0.4677

σVz,p
/Vt 0.1586 0.1536 0.2541 0.2196 0.3336 0.3018

σVx,p
/Vt 0.0616 0.0539 0.1355 0.1055 0.1903 0.1967

σVy,p/Vt 0.0545 0.0514 0.1242 0.1018 0.1742 0.1823

SVz,p
0.2728 1.0099 0.1153 0.2004 −0.1950 −0.1343

KVz,p
3.1027 4.5124 2.9902 2.9748 3.3978 3.0211

ω̃p(2a)/Vt −0.0103 −0.0028 −0.0086 −0.0032 0.0038 0.0025

σωz,p
(2a)/Vt 0.0037 0.0038 0.0189 0.0189 0.0519 0.0709

σωx,p
(2a)/Vt 0.0610 0.0574 0.1360 0.1067 0.1937 0.2125

σωy,p(2a)/Vt 0.0605 0.0546 0.1405 0.1094 0.1934 0.2162

Table 2: Central moments of the probability density functions of Vx,y,z,p and ωx,y,x,p

normalized by the settling velocity of a single sphere Vt and Vt/(2a) respectively. σ, S and

K are the standard deviation, skewness and kurtosis of the probability density function.

Note that for the the spanwise rotation rate we compute ω̃ = 〈ωx · sign(y − h)〉p, as this

is antisymmetric with respect to the centreline and that we do not report those quantities

that should be zero across the channel by symmetry. (These attain values of the order 10−3,

assessing the convergence of the statistics).

3.2. Particle suspension: Single-point particle statistics

In this section we investigate and compare the single-point particle statistics

for the two studied cases, i.e. Newtonian and shear thinning carrier fluids, for

different solid volume fractions Φ = [0.01, 0.05, 0.20]. The single-point particle

statistics are calculated by using quantities related to each individual particle,

and taking a phase-ensemble average over time and space. In table 2 we sum-

marize the mean values extracted from these calculations. Note that for the

the spanwise rotation rate we compute 〈ωx · sign(y − h)〉p, as this is antisym-

metric with respect to the centreline and that we do not report those quantities

that should be zero across the channel by symmetry. These attain values of

the order 10−3, assessing the convergence of the statistics. In addition, we also

compute the mean and rms (linear and angular) velocities of the particles in the
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Figure 3: (Colour online) (a) Normalised mean settling velocity, 〈Vz〉p/Vt, and (b) non-

dimensional mean fluid viscosity, 〈µ〉, as a function of particle volume fraction Φ for both

Newtonian, N , and shear-thinning, ST , cases.

orthogonal directions (x, y, z) and the local particle volume fraction Φ(y), and

velocities, as a function of the wall-normal coordinate y.

Independently of the suspending fluid and the particle concentration, the

mean particle velocities in the spanwise and wall-normal directions, 〈Vx〉p and

〈Vy〉p, are zero due to symmetry. In figure 3(a) we display the mean settling

speed 〈Vz〉p as a function of the solid volume fraction Φ for the cases under

investigation. The results are normalised by the corresponding terminal settling

velocity Vt of an isolated particle in quiescent Newtonian and shear-thinning

fluids. These are computed from the simulations of single particles discussed

in the previous section §3.1. In all studied cases, the mean settling velocities

are less than Vt and decrease monotonically by increasing the concentration

of the dispersed phase as a consequence of the hindering effect [45, 15, 46].

The mean settling speed 〈Vz〉p is always larger in the shear thinning fluid than

in the Newtonian one for the different volume fractions Φ investigated here.

This is in agreement with the observations by Yu et al. [30]. The increase of

〈Vz〉p/Vt with respect to the Newtonian cases is 10.2%, 19.7% and 35.3% for

Φ = 1%, 5% and 20%, respectively. We display the mean local fluid viscosity

in the case of a quiescent shear-thinning fluid in figure 3(b); this decreases

with the solid volume fraction Φ as a consequence of the increment of the local
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Figure 4: (Colour online) Profiles of the probability density function (PDF) of the square of

the local shear rate, γ̇2local(x, y, z), for all studied cases as indicated in the legend.

shear rate around the particles when the particle concentration Φ increases. To

prove this, we consider the distribution of the local shear rate, quantified by the

second invariant of the the strain-rate tensor, γ̇local(x, y, z), for all cases under

investigation. In particular, figure 4 shows the probability density function

(PDF) of γ̇2
local(x, y, z) for all particle volume fractions Φ investigated in the

present study, in the cases of Newtonian and shear-thinning suspending fluids.

As expected, we observe that the range of shear rates increases significantly

with the bulk concentration of the particles Φ and is always larger in the shear-

thinning fluid than in the Newtonian one. In the shear-thinning fluid case, the

increase of sampled shear rates ultimately leads to the reduction of viscosity

reported in figure 3(b).

As mentioned before, the decrease of the mean viscosity of the fluid leads

to a lower drag force acting on the particles and to an increase of the mean

settling speed 〈Vz〉p with respect to the Newtonian cases. It is worth noting

that, for a single particle there is a direct relation between the reduction of the

viscosity and the increase in the terminal velocity. However, in a suspension

particle-particle interactions play a role and a sort of collective behaviour can

be observed preventing the velocity to linearly follow the change of viscosity.

We believe this is due to the tendency of particles to fall side-by-side in a shear-
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Figure 5: (Colour online) (a) Standard deviations of the particle velocities parallel to gravity,

σVz,p normalized by Vt. (b) Anisotropy of the particle velocity fluctuations, σVj,p
/σVz,p , as

a function of the particle volume fraction Φ for all cases investigated here.

thinning fluid as discussed later in section §3.6, related to the hindrance effect

when increasing particle concentration.

The particle velocity fluctuations along the z direction are depicted in figure

5a) for all particle volume fractions Φ in the cases of Newtonian and shear-

thinning fluids. The velocity fluctuations are scaled by Vt, see also table 2. As

shown in the figure, the standard deviations of the mean settling speed σVz,p

changes slightly with the type of carrier fluids. The fluctuations increase with

the volume fraction Φ and are lower in the shear-thinning fluid. The reduced

level of fluctuations in the shear-thinning fluid is also associated to larger mean

value of velocity, overall suggesting that particles feel approximately similar

lower viscosity. On the other hand, the results show that independently of

the type of suspending fluid, the particle velocity fluctuation σVz,p increases

substantially with concentration (for Φ = 20%, σVz,p
is nearly 2 times that

found for Φ = 1%, in agreement with the experimntal observations by Nico-

lai et al. [45] for a Newtonian fluid). Particles are closely packed and the

dynamics is dominated by excluded volume effects, also in a shear-thinning

fluid. This induces frequent particle-particle interactions, thus enhancing the

velocity fluctuations. The ratio between the standard deviations in the direc-

tion perpendicular, σVj,p , and parallel to the gravity, σVz,p , which characterizes
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the anisotropy of the particle velocity fluctuations, is reported in figure 5(b),

where j = (x; y) indicates the coordinate directions. First, we observe that

the fluctuations are always slightly lower in the y–direction than in the x–

direction, σVy,p
/σVz,p

< σVx,p
/σVz,p

, due to the wall confinement effects. In the

shear-thinning cases (ST) the ratio σVj,p/σVz,p gradually increases with Φ up

to Φ = 20%, while in the Newtonian case σVj,p
/σVz,p

increases sharply up to

Φ = 5% and then seems to saturate for higher volume fraction. It is also inter-

esting to notice that the anisotropy is larger in the Newtonian fluid at lower Φ,

whereas it is larger in the shear-thinning fluid at the highest volume fraction

considered. At the lower Φ, the spheres fall faster, so tend to fall straight ver-

tically with lower lateral fluctuations. However, at the highest volume fraction

under investigation, the lateral fluctuations increase faster in the shear-thinning

fluid than the deviation in the settling direction, indicating that the effect of

viscosity reduction on the standard deviation of the particle distribution is not

isotropic.

Next, we analyze the third and fourth moments of the velocity in the gravity

direction, i.e. the skewness SVz,p and kurtosis KVz,p . At low volume fractions

Φ, the probability density function (PDF) of the settling velocity is positively

skewed (SVz,p
> 0) towards larger velocities than the mean settling velocity

value. This is due to the fact that the most likely interactions (drafting-kissing-

tumbling), taking place in the direction of gravity through the particle wakes,

enhance the probability of having particles settling faster than the mean settling

velocity 〈Vz〉p (therefore increasing the skewness). At larger volume fractions Φ,

the excluded volume effects become more important than these specific particle-

pair interactions, and the skewness SVz,p reduces, eventually becoming negative

at the largest volume fraction considered here due to the hindrance effect. In-

deed, at large Φ the fluid moves in opposite direction to guarantee the balance

of zero mixture velocity [46] as will be explained later on, the probability of

finding particles settling at lower speed than the mean increases, and hence the

skewness becomes negative. In the shear-thinning cases, the skewness SVz,p
is

always larger than in Newtonian fluid: this is due to the low viscosity in the
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Figure 6: (Colour online) The mean local volume fractions φ(y) versus the wall-normal coor-

dinate y/H.

particle surroundings which makes the nearby spheres fall with similar larger

velocities, thus inducing overall larger skewness than in the Newtonian case.

The kurtosis KVz,p is approximately equal to 3 in the Newtonian case (similarly

to a similar a Gaussian distribution) for all the volume fractions. On the other

hand, the kurtosis is large (4.5) at low Φ in the shear-thinning fluid due to an

increase of the intermittency of the drafting-kissing-tumbling events in shear

thinning fluids [21]. KVz,p slightly decreases with the volume fractions in the

shear-thinning case, assuming a value approximately equal to the Newtonian

case (≈ 3) at the largest Φ considered here.

All the previous results indicate that the particle dynamics are mostly dom-

inated by collisions and particle-particle interactions and the properties of the

fluid become less important once the macroscopic effect of change in the ter-

minal velocity is suppressed. The main effect of the shear-thinning fluid in

this case appears to be a reduction of particle interactions, resulting in reduced

particle-velocity fluctuations.

3.3. Wall-normal profiles

We next analyse the particle behaviour across the channel. First, we display

in figure 6(a,b) the wall-normal profiles of the mean local particle volume frac-

tion, φ(y). The particle concentration is approximately constant in the middle of
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the channel and higher towards the walls due to the wall confinement. The peak

of φ(y) moves toward the wall and grows as the bulk particle volume fraction,

Φ, increases. At Φ = 0.01, the maximum value of the mean local concentration

is located around y/H = 0.15, a value slightly larger than 2.5 particle diameters

(H/2a = 18), while it moves to y/H = 0.035, approximately at one particle

radius from the walls for Φ = 0.2. In particular, we observe in figure 6(a) that

the distribution of φ(y) changes slightly with the carrier fluid for the two lowest

volume fractions, Φ = [0.01, 0.05], suggesting that the local solid concentration

is mainly controlled by confinement and geometry. However, panel 6(b), shows

that the viscosity effects become clearer for the highest volume fraction under

investigation (Φ = 0.2), where the mean particle concentration in the interme-

diate region of the channel is 5% larger and the peak of φ(y) close to the wall

is 18% smaller for the shear-thinning fluid. This is related to the wall-normal

distribution of the fluid velocity in the settling direction w(y), as will be shown

later.

Secondly, we report the wall-normal profiles of the normalised mean settling

velocity, Vz,p(y)/Vt, see figure 7(a). We observe that the spheres settle faster in

the center of the channel than near the side walls in both carrier fluids at low
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particle concentrations Φ = [0.01, 0.05], suggesting that convection (so-called

intrinsic convection) occurs in the channel in both the Newtonian and shear-

thinning suspending fluids [47, 46]. Interestingly, in the Newtonian case, the

mean particle settling speed close to the wall is larger than that found in the

center of the channel at the highest volume fraction under investigation (Φ =

0.2), suggesting that the intrinsic convection occurs in the opposite direction.

This inverse global convection is less evident in the ST case, and hence the

variations of the mean settling velocity across the channel are different. It is

also noteworthy to mention that, for all Φ, the settling velocities in a Newtonian

suspending fluid are always smaller than those in a shear-thinning suspending

fluid. This difference is mainly due to the local decrease of the fluid viscosity as

discussed before.

Thirdly, we present in figure 7(b) the profiles of the mean spanwise particle

angular velocities, 〈ωx · sign(y − h)〉p, normalized by the settling velocity of a

single particle and its diameter Vt/(2a). As clear from the data, the spanwise

particle rotation 〈ωx · sign(y − h)〉p is maximum close to the wall and tends to

vanish toward the centre of the channel (0.3 ≤ y/H ≤ 0.5). At the highest

volume fraction considered, the angular velocity is positive in the mid of the

channel and changes sign just close to the wall, whereas it remains positive in

the shear-thinning fluid. Moreover, for all the cases studied, 〈ωx · sign(y − h)〉p
is lower in the shear-thinning fluid than in the Newtonian fluid near the wall.

To further confirm the intrinsic convection phenomenon mentioned above,

we examine the statistics of the fluid-phase velocity. Figure 8 reports the wall-

normal variations of the mean fluid velocity in the settling direction and the root-

mean-square (r.m.s.) of the fluid velocity fluctuations in the three directions,

normalized by their mean settling velocity, 〈Vz〉p. The statistics pertaining the

fluid-phase velocity have been calculated neglecting the points located inside

the volume occupied by the solid phase in each field (phase-ensemble average).

At the lower particle concentrations, Φ = [0.01, 0.05], we see in figure 8(a)

the formation of an upward flow (negative velocity is opposite to gravity) in

the particle-depleted layer close to the wall. This tends to pull the bulk of the
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Figure 8: (Colour online) Wall-normal profiles of the mean fluid velocities in the settling

direction, w(y) and the fluctuation of the fluid velocity components in the three directions for

all the studied cases. The data are normalized by the mean settling velocity, 〈Vz〉p.

particle suspension up and hence reduces the mean particle settling velocity, as

mentioned previously when discussing figure 7(a). It is interesting to notice that

the maximum of the normalized upward mean local fluid velocity is higher in the

Newtonian fluid than in the shear-thinning fluid and its location moves towards

the wall with increasing particle concentration. At Φ = 0.01, the near wall

velocity peak reaches a value of wmax ≈ −0.2〈Vz〉p at a distance from the wall

slightly larger than one particle diameter (y/H ≈ 0.064) in the Newtonian case,

while in the case of the shear-thinning fluid, wmax decreases to approximately

−0.13〈Vz〉p. When increasing the bulk volume fraction to Φ = 0.05, wmax

grows to −0.4〈Vz〉p at y/H ≈ 0.036 = 0.65(2a) in the Newtonian fluid and to
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−0.33〈Vz〉p in the shear-thinning fluid. In the latter case, the decrease of the

drag force acting on the the settling particles, due to the reduction of the mean

local fluid viscosity seen by them, leads to a decrease of the upward mean local

fluid velocity.

In the case of particles sedimenting in a wall-bounded fluid, the fluid flow

is approximately parallel to the settling direction with zero net flow in the

horizontal directions [48, 46]. To satisfy this condition, a small inverse pressure

gradient is required to drive a return flow in the positive z direction in the middle

of the channel, as shown in figure 8(a) at the lower particle concentrations

(Φ = 0.01, 0.05). This produces fluid flow on each half of the channel with

ascending (negative z) fluid velocity near the wall and descending (positive z)

in the center; this leads to the intrinsic convection, by which the settling particles

and the fluid move together in the middle region and the particles fall faster in

the center of the channel than near the walls.

However, as the particle concentration is further increased (Φ = 0.2), due

to the high local concentration of the particle near the side walls and the

no-slip boundary condition, the spheres drag the fluid with them in the set-

tling direction. So the fluid velocity is positive with a maximum value reach-

ing wmax = 0.3〈Vz〉p at approximately one particle diameter from the wall

(y/H ≈ 0.054). The circulation is completed by an upward return flux in the

middle of the channel with a maximum speed of about −0.42〈Vz〉p, indicating a

reversal of the global intrinsic convection at Φ = 0.2. This opposite global con-

vection contributes to increase the hindrance effect and therefore, the particles

fall slower in the center than near the walls at high volume fractions, see figure

7(a).

It is also noteworthy to mention that, due to the large difference between the

mean fluid speed in the center of the channel and near the walls for high Φ, a

strong opposite flow is formed with an ascending fluid velocity in the center and

descending fluid close to the walls. This pushes more particles into the layer near

the wall and therefore promotes an increase of the local particle concentration

Φ(y) close the wall, as shown in figure 6(b) for the Newtonian case. Unlike the
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Newtonian case, the global convection is less evident for the shear-thinning case

at the same Φ, as shown by the distribution of the mean local fluid velocity

w(y) across the channel. The fluid moves upwards in two regions (nearby the

wall and in the center of the channel) with maximum velocities approximately

−0.25〈Vz〉p and −0.27〈Vz〉p, and the circulations are completed by a downward

return flow around one sphere diameter from the wall (y/H ≈ 0.055). This

suggests that, two opposite flows are forming on each channel half, which leads

to a decrease of the intrinsic convection of the suspension and hence to different

wall-normal profiles of the particle settling speeds, as revealed in figure 7(a).

As regards the r.m.s of the fluid velocity field, see figure 8(b-d), these are

approximately constant in the middle of the channel and sharply decrease near

the side walls. Nevertheless, a difference due to the shear-thinning effects is

evident, as the fluctuations are always smaller in the shear-thinning cases. Fur-

thermore, regardless of the type of carrier fluid, the fluctuations of the velocity

are approximately 50% larger in the direction parallel to gravity due to the long-

range disturbance induced by the sphere wakes. Finally, the increase of particle

concentration Φ enhances the r.m.s. of the velocity fluctuations in all directions,

suggesting that the dynamics is mainly determined by excluded volume effects

in both phases. It is worth noting that, the fluctuations in the fluid velocity are

related to the particle velocity fluctuations, hence smaller fluid velocity fluctua-

tions in the shear-thinning case are in line with the already observed (see table

2) smaller particle velocity fluctuations.

3.4. Particle velocity correlations

To further understand the effect of a shear-dependent fluid viscosity on the

sedimentation of spherical particles, we examine the two-time correlations of

the particle velocity fluctuations. In this study, the autocorrelation function is

calculated only in the x and z directions; the autocorrelation of the particle

velocity fluctuations as a function of the temporal separation, τ is defined as
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Figure 9: (Colour online) (top) Time correlation profiles and (bottom) correlation time of

the particle velocity fluctuation components for the different cases under consideration.

follows [21]:

RViVi
(τ) =

〈V ′i,p(p, t)V ′i,p(p, t+ τ)〉
σ2
Vi,p

. (8)

RViVi(τ) is often used to define an integral timescale, Ti:

Ti =

∫ ∞
0

RViVi
(τ) dτ, (9)

where i = (x, z) is the coordinate directions and V ′i,p(p, t) = Vi(p, t) − 〈Vi〉p
is the fluctuation velocity with respect to the mean velocity over the particle

ensemble and time (for more details, the reader is referred to Ref. [20]); note

that 〈Vx〉p is equal to 0. Ti gives an estimate of the time interval over which the

particle velocity fluctuation component is correlated. Figure 9 (a) and (b) show

the autocorrelations RVzVz
and RVxVx

, for both Newtonian and shear-thinning
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particle displacement along particle trajectories in the x direction for the all cases under

investigation and (right) the correspondent mean-square displacement.

fluids, as a function of the normalized time τ . For all the cases, as expected, the

particle velocity autocorrelation decreases towards zero, which confirms that the

particle velocities become uncorrelated for large τ . Moreover, as a general trend,

the decay of the correlation functions is always faster in the shear-thinning fluid

than in the Newtonian one at the same volume fractions Φ. To better highlight

these differences, we provide in panel (c), the values of the correlation times;

the correlation time strongly decreases from Φ = 1% to 5%, while for the largest

Φ it remains approximately constant for the Newtonian fluid and only slightly

decreases for the shear-thinning one. Also, the correlation time is always larger

in the Newtonian cases than in the shear-thinning cases.

3.5. Particle dispersions or hydrodynamic self-diffusion

To further focus on the particle dynamics, we study the single-particle dis-

persion, i.e., the mean square displacement, for both type of fluids at various

volume fractions. The long time uncorrelated particle velocity fluctuations in-

duce a chaotic transport of the settling particles across the channel. This overall

stochastic motion is generally called hydrodynamic self-diffusion or particle dis-

persion. The particle dispersion dynamics are most conveniently captured by

studying the particle lateral displacement, which results from hydrodynamic
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and particle-particle interactions. The dispersion is measured by the variance

of the displacement of the particle as function of the temporal separation, τ .

We examine only the single-point mean-square displacement of particles in the

x direction, i.e., 〈∆x2
p〉. Here, the mean square displacement of the particle

trajectories is defined by

〈∆x2
p(τ)〉 = 〈[xp(t+ τ)− xp(t)]2〉p,t, (10)

where xp is the vector containing the x position of the particle centres, τ is the

time interval and 〈.〉p,t denotes averaging over all times, t, and particles, p. The

particle diffusion coefficients in the x direction, Dxx can then be computed by

calculating the half of the slope of the linear part (for large values of τ) of the

single-point mean-square displacement,

Dxx =
〈∆x2

p(τ)〉
2τ

. (11)

For more details about this topic we refer the readers to previous works, see

e.g. Refs. [49, 50, 51, 41].

Figure 10(a) shows the particle mean square displacement, 〈∆x2
p〉, as a func-

tion of the normalised time, τVt/(2a) while the diffusion coefficient, Dxx, is

reported in panel (b) of the same figure versus the particle concentrations Φ.

Note that the mean square displacement, 〈∆x2
p〉, is normalised by (2a)2 whereas

the diffusion coefficient, Dxx, is expressed in units of Vt(2a). For all the cases,

as expected, the particle trajectories are initially highly correlated at small

intervals and the mean-square dispersion profiles varies quadratically in time,

〈∆x2
p(τ)〉 ∝ τ2. Later on, after τ ∼ 10(2a)/Vt, the classical diffusive behaviour

takes over: the particle trajectories decorrelate due to the particle-particle and

hydrodynamic interactions and the mean square displacement varies linearly

with time, 〈∆x2
p(τ)〉 ∼ 2Dxxτ .

The behaviour of the two fluids is quite similar, so to better highlight the

differences we provide in figure 10(b), the normalised value of the particle self-

diffusion coefficient, Dxx, computed as half the slope of the linear growth rate of

the particle mean-square displacement 〈∆x2
p〉. Clearly, the results show that, the
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Figure 11: Definitions of the polar angle ψ and the azimuthal angle θ in Cartesian coordinates.

particle diffusion coefficient Dxx is strongly dependent on the particle volume

fraction Φ; in particular, Dxx increases monotonically with Φ as a consequence

of the increasing hydrodynamic and particle-particle interactions. Furthermore,

we observe that in the shear-thinning fluid, the diffusion coefficient is always

smaller than in the Newtonian case by abound 50%, which we can relate to the

reduced velocity fluctuations previously observed in the shear-thinning fluid.

3.6. Particle-pair statistics

In this last section, we consider particle-pair statistics as a function of the

distance between the centres of the particle pairs, r, to investigate the mi-

crostructure of the entire suspension. In particular, we study the pair proba-

bility distribution function, P (r), which is used to describe how, on average,

the spheres are radially packed around each other and to measure the level

of anisotropy in the particle suspensions [52, 53]. Mathematically, following

Refs. [53, 22], the pair distribution function in a spherical coordinate system is

defined by

P (r) = P (r, θ, ψ) =
N(r, ψ, θ)

tsn0∆Qs
, (12)
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where ψ is the polar angle (measured from the positive z axis), θ is the azimuthal

angle (measured from the positive x axis) as shown in figure 11 , ts is the total

number of sampling points, N(r, ψ, θ) is the histogram of particle pairs that

lie within a sampling bin shell element with a nominal radius r and a radial

width ∆r, ∆Qs = r2∆r sinψ∆θ∆ψ is the volume of the sampling bin shell

and n0 = 0.5Np(Np − 1)/Q is the averaged particle pairs density in the total

volume Q, with Np the total number of particles. In our configuration, the

flow is asymmetric in the gravity direction. Nevertheless, the pair distribution

function is symmetric in the gravity direction. This observable measures the

relative position of particle pairs, so one particle below the reference particle

would correspond to one above when this becomes the reference in the statistics.

We thus report P (r) as a function of two variables: the center-to-center distance

r (normalized by the diameter 2a), and the polar angle ψ, averaging over the

angle θ.

Figure 11(a-d) shows the pair distribution function P (r) for the lowest (a,b)

and highest (c,d) volume fractions Φ in the cases of Newtonian (a,c) and shear-

thinning (b,d) fluids. Exploiting the symmetry discussed above, the function is

displayed only in the range ψ in[0, π/2]. In the Newtonian case (left column),

we observe that, at low volume fraction, the particles tend to be far apart, with

a local peak of P (r) for ψ = 0 and r ≈ 6a. As the volume fraction increases,

the particles mean distance reduces and its distribution becomes more uniform

in the polar direction ψ. In the shear-thinning case, the situation is similar

at high volume fraction, where the effect of the packing is dominant, whereas

differences are evident in the more dilute regimes. In particular, we note that

particles tend to be on average close than in the Newtonian case, with strong

peaks of P (r) both along ψ = 0 and π/2. This indicates that particles tend

to form aggregates in a shear-thinning fluid, preferentially positioning in the

wake of neighboring particles or beside them, thus resulting in lower levels of

fluctuation in the gravity direction than in the Newtonian fluid as discussed

above. This also suggests that in quiescent Newtonian fluid, particles have

a mean horizontal spacing of 6 radii. Now it is interesting to note that in
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Figure 12: (Colour online) Pair-distribution function P (r, ψ) for the lowest and highest volume

fractions considered, Φ = 0.01 and 0.2, respectively. The left and right columns are used for

the Newtonian and shear-thinning fluids.

shear thinning fluids, the pair distribution function increases not only in the

gravity direction. Generally above the reference particle, we see a clear increase

of P (r) above the reference particle. The extent of clustering increases due

to shear thinning in the particle surrounding that leads to stronger drafting-

kissing-tumbling effects/interactions, with the kissing phase lasting longer. At

the same time, the smaller viscosity around the reference particle induces a small

scale lateral migration of neighboring particles which approach the reference one;

indeed, the peak values of P (r) for ψ = π/2 move from 6a in the Newtonian

fluid to around 4.5a in the shear-thinning one. In addition, the effect is strong
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n λ Φ(%) Np Ar Lx × Ly × Lz Nx ×Ny ×Nz

0.6 10, 20, 40 1 891 36 36D × 18D × 72D 576× 288× 1152

1 0 1 891 36

Table 3: Summary of the simulations performed at the same Archimedes number.
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Figure 13: (Colour online) (a) Normalised mean settling velocity, 〈Vz〉p/〈Vz〉p(N), and (b)

probability density function (PDF) of the local shear rate, γ̇2local(x, y, z), as a function of the

shear-thinning time scale λ at the same volume fraction Φ = 1% and Archimedes number

Ar = 36.

and the maximum value of P (r) at this location increases with respect to the

Newtonian case. It is therefore highly probable to find particles falling side-by-

side, at a distance of around 4− 5a.

3.7. The effect of the shear-thinning fluid on suspensions at the same Archimedes

number.

Finally, in this last section we study the effect of the shear-thinning time

scale λ. The volume fraction of the particles Φ is now fixed to 0.01 to better

highlight the effect of the shear-thinning fluid and reduce that of the particle

packing. Furthermore, we fix the Archimedes number, which results different

terminal velocities, in order to evaluate the total effect of the shear-thinning

fluid on the suspensions. The studied cases are reported in table 3.

First, figure 13a reports the normalised mean settling velocity 〈Vz〉p as a

function of the shear-thinning time scale λ. We observe that the terminal veloc-
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Figure 14: (Colour online) Pair-distribution function P (r, ψ) for different values of λ at a fixed

volume fraction Φ = 1% and Archimedes number Ar = 36.

ity monotonically increases with λ and is thus always larger in the shear-thinning

fluid than in the Newtonian one. This is consistent with what previously ob-

served in the case of isolated particles [44]. The increase of sedimentation veloc-

ity is due to the modification of the local viscosity around the particles; indeed,

as reported in figure 13b, the local shear rate increases with the level of shear-

thinning λ, resulting in a reduced particle drag due to smaller values of local

viscosity.

Next, we report in figure 14 the pair-distribution function P (r, ψ) for differ-

ent values of λ. Although the overall behaviour is similar to what previously

discussed, we now clearly observe that as the shear-thinning effect increases the
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peak of P located at around r ≈ 4a progressively reduces, indicating a more

uniform distribution of particles for large values of λ.

The results presented in this section and those previously reported are com-

plementary: in the previous sections we were considering cases with the same

terminal velocity in the single particle case and different Archimedes numbers,

while now cases with the same Archimedes number and different terminal ve-

locities in the single particle case. These two results together indicate that the

shear-thinning effect on the particle sedimentation is indeed twofold: first, it

modifies the particle sedimentation velocity due to changes in the fluid viscos-

ity; secondly, it modifies the level of particle interactions.

4. Conclusion and remarks

We performed a series of simulations to study the settling behavior of finite-

size heavy particles at finite terminal Reynolds number Ret in shear-thinning

and Newtonian quiescent fluids in a vertical channel. The problem is stud-

ied through direct numerical simulations based on an efficient direct-forcing

immersed boundary method to capture the fluid-structure interactions. The

Carreau model is employed to describe the rheological behavior of the shear-

thinning carrier fluid, where the fluid viscosity varies instantaneously with the

local fluid shear rate, γ̇. We consider a suspension of monodisperse rigid spheres

with fixed ratio between the particle diameter and channel width equal to 1/18

and vary the total volume fraction of the solid phase in the range 1 ≤ Φ ≤ 20%.

In the first set of simulations, the Archimedes number is set to Ar = 36 for

the shear-thinning fluid while it is increased to Ar = 97 for the Newtonian case

to obtain almost the same value for the settling velocity of an isolated parti-

cle (same Ret) as in the shear-thinning case. By doing so, we aim to remove

the first-order effect of the difference between the two fluids (a different mean

viscosity) and maintain only those due to particle-particle interactions and vis-

cosity fluctuations. In this way, we find that, when the macroscopic effect of

the change in sedimentation velocity is suppressed, the effect of shear-thinning
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is rather limited.

We show that the mean settling velocity of a suspension decreases with the

volume fraction and increase in the shear-thinning fluid. This is the result

of the competition between two opposite effects, related to different physical

mechanisms: i) the hindrance effect, which reduces the mean settling velocity

and monotonically increases with Φ; ii) the shear-thinning effect, which also

increases with Φ as a consequence of the reduction of the local shear rate and, as

a consequence, of the fluid viscosity around the particles and leads to an increase

of the mean settling velocity. The velocity fluctuations in the gravity direction

increase substantially with the solid volume fraction in both fluids but is lower

in the shear-thinning fluid than in the Newtonian one. From the probability

density function of the settling velocity, we find a high probability of particles

settling faster than the mean settling velocity at low concentrations, while the

opposite trend is observed at high volume fractions. This effect is present in

both fluids, but it is strengthened in the shear-thinning fluid. We also find a

large value of the fourth-order moment in the shear-thinning fluid, indicating a

highly intermittent behavior at low volume fractions, which eventually vanishes

for higher concentrations.

The local profile of the solid volume fractions revealed the formation of par-

ticle layers close to the walls for all cases. The distribution of particles settling

across the channel is mainly controlled by geometry and confinement effects,

with a weaker dependency on the type of suspending fluid. We find that in-

trinsic convection occurs through the channel in both carrier fluids at low Φ,

which induces an increase of the particles settling velocity in the channel cen-

ter. On the contrary, this convection is reversed at the highest volume fraction

investigated, especially in the Newtonian fluid. The particle lateral dispersion

strongly depends on the concentration of the particles and it is always lower in

a shear-thinning fluid than in a Newtonian one.

We computed the pair distribution functions to study the microstructure

of the suspensions, and demonstrated that in both fluids an almost uniform

distribution is present at high volume fraction Φ due to the reduction of the
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particles mean distance and the high packing. On the other hand, the pair

distribution functions clearly shows the tendency to form aggregates in a shear-

thinning fluid, with particles preferentially positioning in the wake or beside

each other, which overall results in lower levels of velocity fluctuations in the

gravity direction than in a Newtonian fluid.

Finally, we studied the effect of the shear-thinning time scale λ on the par-

ticle sedimentation. In this case we fix the Archimedes number Ar and let the

terminal velocity vary freely. As expected, we find that the terminal velocity

strongly increases with the level of shear-thinning, up to a factor 4 in the range

of parameters investigated. The progressive raise in terminal velocity with λ is

related to the reduction in the viscosity caused by increasing shear rates with

λ.

Overall, we find a twofold effect of shear thinning on the particle sedimen-

tation. First, the macroscopic effect of the shear-thinning carrier fluid is the

substantial modification of the particle sedimentation velocity, which is always

larger in the shear-thinning case than in the Newtonian one. This is mainly due

to increase of shear rates around the particles accompanied by changes in the

local viscosity leading to a reduced particle drag. Secondly, the shear-thinning

fluid reduces the level of particle interactions, causing a reduction of velocity

fluctuations resulting in particles sedimenting together at approximately the

same speed.

With this study we have evaluated the role of shear thinning on the sedi-

mentation of a suspension of inertial particles. Future works should extend the

analysis to more complex non-Newtonian fluids, taking into account for example

elasticity and yield stress.
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