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1 Introduction

Operator product expansion (OPE) plays a central role in the non-perturbative formulation

of conformal field theory. OPE is the statement that when two primary operators φi and

φj come close to each other (inside a correlation function) we can replace the product φiφj
by a sum over conformal families each of which contains a primary operator, say φk and

its descendants. In general, the OPE coefficient Ckij which multiplies the primary operator

φk, cannot be determined by conformal symmetry alone. But, once Ckij is specified, the
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coefficients of all the descendants of φk are completely fixed by conformal invariance of

the OPE. Ckij is known as the structure constant of the operator algebra. The goal of the

present paper is to study this aspect of the OPE in case of Celestial Conformal Field Theory.

Celestial CFT is conjectured to be the holographic dual of quantum gravity in asymp-

totically flat space-time [4–8]. The observables of the celestial CFT are related to Mellin

transformations of flat space scattering amplitudes [19–26]. Under Lorentz transformations,

which act on the celestial sphere as global conformal group, Mellin amplitudes transform

like correlation functions of a CFT. Now the correspondence between soft theorems [27, 28]

and Ward identities for asymptotic symmetries [29–40] show that the celestial CFT has,

in fact, a much larger symmetry known as BMS [48–50]. The BMS group1 is an exten-

sion of the usual Poincaré group and consists of superrotations [32–35], which are local

conformal transformations of the celestial sphere, and supertranslations, which are local

angle-dependent space-time translations at null-infinity. Due to the presence of the super-

translations, the properties of the celestial CFT are somewhat different from usual CFT.

For example, BMS algebra is not a direct product of holomorphic and antiholomorphic

transformations because supertranslation generators have both holomorphic and antiholo-

morphic weights. As a result, at least naively, we do not expect holomorphic factorisation

at the level of BMS representations. This is a major difference from usual CFTs.

A useful way to study various aspects of celestial CFT and representation theory of

BMS algebra is through the construction of celestial OPE. OPE of two primary operators

can be obtained by Mellin transformation of the collinear limit of flat space scattering

amplitudes [1–3]. In the collinear limit, at leading order an (n + 1) point function factor-

izes into an n point function times a universal splitting function [42, 44]. By the Mellin

transformation of the splitting function one obtains the leading term in the celestial OPE

and the structure constant of the celestial operator algebra. It is conceivable that the sub-

leading terms in the OPE can be generated by Mellin transforming the subleading terms in

the collinear expansion [45]. Now for the celestial OPE what is remarkable is that one can

obtain the structure constant by imposing a constraint coming from the subleading soft the-

orem in case of gluons and subsubleading soft theorem in case of gravitons [1]. This suggests

that owing to an unusually large amount of global symmetry, algebraic techniques [1, 9–12]

may play a crucial role in determining the structure of celestial correlation functions (or

flat-space S-matrix elements). This, in particular, will require an understanding of BMS

representation theory in the context of S-matrix theory or celestial amplitudes.

Motivated by this, in this paper we compute the first subleading correction to the

(holomorphic) collinear limit directly in the Mellin space. The subleading terms in the

collinear limit give the subleading terms in the celestial OPE. We focus on the tree level

four graviton scattering amplitude in Einstein theory and compute subleading OPE of two

positive helicity outgoing graviton primaries. Unlike in the case of 2-D CFT, the first

correction to the leading order result contains the supertranslation descendant created by

singular supertranslation of the form u → u + ε/z. We also show that the subleading

1With an abuse of notation, in this paper we call BMS group what would be appropriate to call extended

BMS group.
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OPE coefficients can be derived from the BMS algebra once we define a suitable notion

of BMS primary state. This suggests the possibility that just like in the case of ordinary

CFT, celestial OPE also organizes itself into representations of BMS algebra with the OPE

coefficients of BMS descendants determined by BMS algebra. It will be very interesting to

prove or disprove this in complete generality.

2 BMS algebra

Let us now describe BMS transformations acting on a three dimensional space with coor-

dinates (u, z, z̄) where u can be thought of as the retarded or Bondi time and (z, z̄) are the

stereographic coordinates of the celestial sphere. At the end, when we derive the subleading

OPE coefficients from the BMS algebra, we will restrict to the celestial sphere at u = 0.

BMS transformations consist of two parts, superrotation and supertranslation.

Infinitesimal superrotation is the transformation given by,

z → z + εzn+1, z̄ → z̄, u→ u+
1

2
εzn+1, n ∈ Z (2.1)

and its antiholomorphic counterpart,

z → z, z̄ → z̄ + ε̄z̄n+1, u→ u+
1

2
ε̄z̄n+1, n ∈ Z (2.2)

The corresponding generators are denoted by Ln and L̄n, respectively. They satisfy the

(centerless) Virasoro algebra [32, 33],

[Lm, Ln] = (m− n)Lm+n, [L̄m, L̄n] = (m− n)L̄m+n (2.3)

Among these, {L0, L±1, L̄0, L̄±1} are the generators of Lorentz or global conformal trans-

formations.

Supertranslations act as,

z → z, z̄ → z̄, u→ u+ εza+1z̄b+1, a, b ∈ Z (2.4)

We denote the corresponding generators by Pa,b. They satisfy the algebra [32, 33, 39],

[Pa,b, Pa′,b′ ] = 0 (2.5)

In this case, {P−1,−1, P−1,0, P0,−1, P0,0} are the generators of global space-time translations.

The commutator algebra between supertranslation and superrotation is given

by [32, 33],

[Ln, Pa,b] =

(
n− 1

2
− a
)
Pa+n,b [L̄n, Pa,b] =

(
n− 1

2
− b
)
Pa,b+n (2.6)
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2.1 The transformation of fields

Under an infinitesimal conformal transformation (2.1), the primary field φh,h̄(u, z, z̄) of

weight (h, h̄) transforms as [8],

δφh,h̄(u, z, z̄) = ε

[
zn+1∂ + (n+ 1)

(
h+

1

2
u∂u

)
zn
]
φh,h̄(u, z, z̄) (2.7)

Similarly for antiholomorphic transformation [8],

δφh,h̄(u, z, z̄) = ε

[
z̄n+1∂̄ + (n+ 1)

(
h̄+

1

2
u∂u

)
z̄n
]
φh,h̄(u, z, z̄) (2.8)

For infinitesimal supertranslation given by (2.4) the transformation of the primary

field is given by [8],

δφh,h̄(u, z, z̄) = εza+1z̄b+1∂uφh,h̄(u, z, z̄) (2.9)

At this point we would like to mention one useful point. From the transformation

laws (2.7), (2.8) and (2.9) it is easy to check that if φh,h̄(u, z, z̄) is a primary then so is

(∂/∂u)nφh,h̄(u, z, z̄), with weight (h+ n/2, h̄+ n/2).

3 Superrotation and supertranslation Ward identities

In celestial CFT correlation functions of the two dimensional primary operator φh,h̄(z, z̄)

are defined as Mellin transformation of flat space S-matrix elements [4, 5],

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉 =

n∏
i=1

∫ ∞
0

dωi ω
iλi
i A({pi(ωi, zi, z̄i), σi}) (3.1)

where εi = ±1 for outgoing and incoming particles, respectively. The null momentum

p(ω, z, z̄) is parametrised as,

p(ω, z, z̄) = ω(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) (3.2)

and σ denotes the helicity of the particle. Under (Lorentz) global conformal transformation,

the L.H.S of (3.1) transforms as the correlation function of primary operators of weight

(hi, h̄i), given by

hi =
1 + iλi + σi

2
, h̄i =

1 + iλi − σi
2

(3.3)

The action of global space-time translation on (3.1) was studied in [26].

The two dimensional field φh,h̄(z, z̄) is the restriction of the three dimensional field

φh,h̄(u, z, z̄) to the u = 0 celestial sphere. Correlation function of the three dimensional

fields φh,h̄(u, z, z̄) is defined as [8],

〈
n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 =

n∏
i=1

∫ ∞
0

dωi ω
iλi
i e−iεiωiuiA({pi(ωi, zi, z̄i), σi}) (3.4)
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Under (Lorentz) global conformal transformation, the L.H.S of (3.4) transforms as,

〈
n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉=
n∏
j=1

1

(czj +d)2hj

1

(c̄z̄j + d̄)2h̄j
〈
n∏
i=1

φhi,h̄i

(
ui

|czi+d|2
,
azi+b

czi+d
,
āz̄i+ b̄

c̄z̄i+ d̄

)
〉

(3.5)

Similarly, if we do a global space-time translation under which u→ u+ a+ bz + b̄z̄ + czz̄,

with (z, z̄) remaining fixed, the correlation function (3.4) is invariant. Let us now discuss

the transformation law of the correlation functions under local BMS transformations which

are captured by BMS Ward identities.

It is well known that Cachazo-Strominger subleading soft graviton theorem [28] is

equivalent to the (superrotation) conformal Ward identity [35],

〈T (z)

n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 =

n∑
k=1

(
hk + 1

2uk∂uk
(z − zk)2

+
1

z − zk
∂

∂zk

)
〈
n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 (3.6)

where the stress tensor T (z) can be constructed as the shadow of the subleading soft

graviton. In [35] the Ward-identity was derived for the two dimensional fields φh,h̄(z, z̄), but

the same derivation can be easily repeated for the fields φh,h̄(u, z, z̄) and one obtains (3.6).

For details please see appendices A and B. It is important to note that the stress tensor T (z)

does not depend on the time coordinate u because it is constructed from a soft graviton

and in the soft limit the time coordinate decouples.

The singular terms in the OPE between the stress tensor T (z) and the primary

φh,h̄(u,w, w̄) are given by [11],

T (z)φh,h̄(u,w, w̄) ∼
h+ 1

2u∂u

(z − w)2
φh,h̄(u,w, w̄) +

1

z − w
∂

∂w
φh,h̄(u,w, w̄) (3.7)

This is consistent with the transformation law (2.7) which one can check by using the

standard 2-D CFT method. The OPE (3.7) gives the commutation relation,

[Ln, φh,h̄(u, z, z̄)] =

[
zn+1∂ + (n+ 1)

(
h+

1

2
u∂u

)
zn
]
φh,h̄(u, z, z̄) (3.8)

where the Virasoro generator Ln is defined in the usual manner as,

Ln =

∮
c0

dzzn+1T (z) (3.9)

with c0 defined as a contour around z = 0.

Similarly, Weinberg’s soft graviton theorem [27] is equivalent to the supertranslation

Ward-identity given by [29, 30, 39],

〈P (z)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 =
n∑
k=1

1

z − zk
i
∂

∂uk
〈
n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 (3.10)

Here P (z) is the supertranslation current and can be written as, P (z)=− limiλ→0 iλ∂̄G
+
∆=1+iλ,

where G+
∆ is the positive helicity graviton primary of weight ∆(= h+h̄). Again, P (z) has

no u dependence.
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The singular term in the OPE between P (z) and a matter primary φh,h̄(u, z, z̄) is

given by,

P (z)φh,h̄(u,w, w̄) ∼ 1

z − w
i
∂

∂u
φh,h̄(u,w, w̄) (3.11)

This OPE is equivalent to the commutation relation,

[Pa,−1, φh,h̄(u, z, z̄)] = za+1i∂uφh,h̄(u, z, z̄) (3.12)

where the supertranslation generator Pa,−1, defined as [29],

Pa,−1 =

∮
c0

dzza+1P (z) (3.13)

generates the holomorphic supertranslation u→ u+ εza. The commutation relation (3.12)

shows that,

[Pa,−1, φh,h̄(0)] = 0, a > −1 (3.14)

From the BMS commutation relation (2.6) one can check that the supertranslation gen-

erator Pa,−1 has weight (−a − 1
2 ,

1
2). So for a > −1 the holomorphic weight of Pa,−1 is

negative and it annihilates the primary operator φh,h̄(0).

4 BMS descendants and their correlators

4.1 Supertranslation

Let us first consider the (holomorphic) supertranslation descendants.

Let us assume that the standard CFT form for the OPE between the supertranslation

current P (z) and a matter primary φh,h̄(u, z, z̄) holds, i.e,

P (w)φh,h̄(u, z, z̄) =
(P−1,−1φh,h̄)(u, z, z̄)

w − z
+ (P−2,−1φh,h̄)(u, z, z̄)

+ (w − z)(P−3,−1φh,h̄)(u, z, z̄) + (w − z)2(P−4,−1φh,h̄)(u, z, z̄) + . . .

(4.1)

where the leading term is given by,

(P−1,−1φh,h̄)(u, z, z̄) = i
∂

∂u
φh,h̄(u, z, z̄) (4.2)

From the conformal transformation laws (2.7) and (2.8) of primary fields, we know that

i ∂∂uφh,h̄(u, z, z̄) also transforms like a primary field of weight (h+ 1/2, h̄+ 1/2). We denote

this field by

φh+1/2,h̄+1/2(u, z, z̄) = i
∂

∂u
φh,h̄(u, z, z̄) (4.3)

The nonsingular terms of the OPE (4.1) define the (holomorphic) supertranslation

descendants

{
(P−n,−1φh,h̄)(u0, z0, z̄0)

}
n≥2

which are new local fields created by singular

supertranslations of the form,

u→ u+
ε

(z − z0)n−1
(4.4)
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The descendants can be defined by the usual contour integral formula,

(P−a,−1φh,h̄)(u, z, z̄) =

∮
cz

dw
1

(w − z)a−1
P (w)φh,h̄(u, z, z̄) (4.5)

which follows from (4.1). Here cz is a contour around w = z. Later in the paper we will

explicitly verify the existence of these descendants by taking the leading conformal soft

limit of tree-level four graviton scattering amplitude in Einstein theory.

We now need to find out correlation functions with the insertion of the descendants

P−a,−1φh,h̄, i.e, correlators of the form 〈(P−a,−1φh,h̄)(u, z, z̄)
∏n
i=1 φhi,h̄i(ui, zi, z̄i)〉. This

can be computed in the standard way by using the Ward identity (3.10),

〈P (w)φh,h̄(u, z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 =
n∑
k=1

1

w − zk
i
∂

∂uk
〈φh,h̄(u, z, z̄)

n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉

+
1

w − z
i
∂

∂u
〈φh,h̄(u, z, z̄)

n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉

(4.6)

and taking the limit w → z. In this limit we can use the OPE (4.1) and obtain,

〈(P−a,−1φh,h̄)(u, z, z̄)

n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉

= −
n∑
k=1

1

(zk − z)a−1
i
∂

∂uk
〈φh,h̄(u, z, z̄)

n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉

= P−a,−1(z)〈φh,h̄(u, z, z̄)

n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉

(4.7)

where the differential operator P−a,−1(z) acting on correlation functions of primary oper-

ators is defined as,

P−a,−1(z) = −
n∑
k=1

1

(zk − z)a−1
i
∂

∂uk
(4.8)

The rest of the (holomorphic) supertranslation descendants are of the form

P−i1,−1P−i2,−1 . . . P−in,−1φh,h̄(u, z, z̄) where i1 ≥ i2 ≥ . . . ≥ in ≥ 1. The mixed super-

translation descendants of the form P−a,−bφh,h̄(u, z, z̄), where a, b > 1, will not appear in

the OPE to the first subleading order and so we leave their discussion to future work.

Mellin transform of graviton scattering amplitudes in string theory [25] is well defined

without the time coordinate u. In this case the correlation function with the insertion of a

holomorphic supertranslation descendant is given by a simple change of (4.7),

〈(P−a,−1φh,h̄)(z, z̄; ε)
n∏
i=1

φhi,h̄i(zi, z̄i; εi)〉

= −
n∑
k=1

εkP̃k
(zk − z)a−1

〈φh,h̄(z, z̄; ε)
n∏
i=1

φhi,h̄i(zi, z̄i; εi)〉

= P−a,−1(z)〈φh,h̄(z, z̄; ε)

n∏
i=1

φhi,h̄i(zi, z̄i; εi)〉

(4.9)
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where ε = ±1 for an outgoing and incoming particle, respectively and

P̃i φhj ,h̄j (zj , z̄j ; εj) = φhj+1/2,h̄j+1/2(zj , z̄j ; εj) δij (4.10)

4.2 Superrotation or Virasoro

The discussion of superrotation or Virasoro descendants is identical to that in 2-D CFT.

The correlation function with the insertion of (L−nφh,h̄)(u, z, z̄) is given by,

〈(L−nφh,h̄(u, z, z̄))

p∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 = L−n(z)〈φh,h̄(u, z, z̄)

p∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 (4.11)

where

L−n(z) = −
p∑
i=1

(
(1− n)

hi + 1
2ui

∂
∂ui

(zi − z)n
+

1

(zi − z)n−1

∂

∂zi

)
(4.12)

This can be obtained by assuming the following OPE between the stress tensor T (z) and

the primary field φh,h̄(u, z, z̄),

T (z)φh,h̄(u,w,w̄) =
(h+ 1

2u∂u)φh,h̄(u,w,w̄)

(z−w)2
+
∂φh,h̄(u,w,w̄)

z−w
+(L−2φh,h̄)(u,w,w̄)

+(z−w)(L−3φh,h̄)(u,w,w̄)+. . .

(4.13)

In the absence of the time coordinate u, superrotation transformations act on the primaries

φh,h̄(z, z̄) exactly in the same way as local conformal transformations act on Virasoro

primaries in 2-D CFT.

5 OPE from four graviton scattering amplitude in Einstein theory

In this section and the following we denote a graviton primary operator of scaling dimension

∆(= 1 + iλ) by G±∆ where ± is the helicity. The simplified notation G±∆i
(i) means that the

primary operator is inserted at the point (ui, zi, z̄i).

For simplicity we focus on the four graviton tree-level scattering amplitude in Einstein

theory, given by2

M4(1−2−3+4+)

=
〈12〉7[12]

〈13〉〈14〉〈23〉〈24〉〈34〉2
δ4(ω1q(z1, z̄1) + ω2q(z2, z̄2)− ω3q(z3, z̄3)− ω4q(z4, z̄4))

= −4
ω2

1ω
2
2

ω3ω4

z6
12z̄34

z13z14z23z24z34
δ4(ω1q(z1, z̄1) + ω2q(z2, z̄2)− ω3q(z3, z̄3)− ω4q(z4, z̄4))

(5.1)

where (1, 2) are incoming and (3, 4) are outgoing. We have also used the relations3

〈ij〉 = −2εiεj
√
ωiωj zij , [ij] = 2

√
ωiωj z̄ij (5.2)

2An n-graviton amplitude is multiplied by a factor of ( κ
2

)n−2 where κ =
√

32πGN . To simplify the

formulas we work in units where κ = 2.
3We work in split signature and parametrize a null momentum p as p = ωq(z, z̄) = ω(1 + zz̄, z+ z̄, z− z̄,

1− zz̄).
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where εi = ±1 for an outgoing and an incoming particle, respectively. As in [1], we work

in split signature so that we can treat z and z̄ as independent real variables. It is also

important that in split signature there is a non-zero three point function which is crucial

for our purpose.

In order to facilitate the (holomorphic) OPE expansion as z3 → z4, with z̄34 held fixed,

we write the momentum-conserving delta function as,

δ4(ω1q(z1, z̄1) + ω2q(z2, z̄2)− ω3q(z3, z̄3)− ω4q(z4, z̄4))

=
1

4ω∗1ω
∗
2

1

z2
12

δ(ω1 − ω∗1)δ(ω2 − ω∗2) δ

(
z̄14 +

ω3

ω∗1

z23

z12
z̄34

)
δ

(
z̄24 −

ω3

ω∗2

z13

z12
z̄34

)
(5.3)

where

ω∗1 = −z24

z12
(ω3 + ω4) +

z34

z12
ω3 (5.4)

ω∗2 =
z14

z12
(ω3 + ω4)− z34

z12
ω3 (5.5)

Now we make a change of variable

ω = ω3 + ω4, ω3 = tω, ω4 = (1− t)ω, 0 ≤ t ≤ 1 (5.6)

In terms of these new variables the Mellin amplitude can be computed easily and is given by,

M̃4(1−2−3+4+) = 〈G−∆1
(1)G−∆2

(2)G+
∆3

(3)G+
∆4

(4)〉

= − z̄34

z34

 z2
12

z23z31
Θ

(
z42

z12

)
Θ

(
z14

z12

)(
z42

z12

)iλ1
(
z14

z12

)iλ2 Γ(2 + i
∑4

i=1 λ){
i

(
u1

z24
z12

+ u2
z41
z12

+ u4

)}2+i
∑4
i=1 λi

×
∫ 1

0
dt tiλ3−1 (1− t)iλ4−1

(
1− u12z34 − u34z12

u1z24 + u4z12 + u2z41
t

)−2−i
∑4
i=1 λi

×
(

1− z34

z24
t

)1+iλ1

δ

(
z̄14 − t

(
1− z34

z24
t

)−1

z̄34 + t

(
1− z34

z24
t

)−1 1

z24
z34z̄34

)

×
(

1− z34

z14
t

)1+iλ2

δ

(
z̄24 − t

(
1− z34

z14
t

)−1

z̄34 + t

(
1− z34

z14
t

)−1 1

z14
z34z̄34

) (5.7)

In writing down this integral we have assumed the OPE limit, i.e, |z34|� |z13|, |z23|, |z14|, |z24|.
The details of the derivation are given in appendices A and B.

5.1 Leading term of the OPE

We can see from (5.7) that the expression inside the bracket multiplying the term z̄34
z34

is

finite in the limit z34, z̄34, u34 → 0 and so we can Taylor expand around z34 = z̄34 = u34 = 0.
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The leading term in the expansion is given by,

M̃4(1−2−3+4+)

= − z̄34

z34

 z2
12

z24z41
Θ

(
z42

z12

)
Θ

(
z14

z12

)(
z42

z12

)iλ1
(
z14

z12

)iλ2 Γ(2 + i
∑4

i=1 λi){
i

(
u1

z24
z12

+ u2
z41
z12

+ u4

)}2+i
∑4
i=1 λi

× δ(z̄14)δ(z̄24)

∫ 1

0
dt tiλ3−1 (1− t)iλ4−1

+ . . . (5.8)

Now the three graviton amplitude in Mellin space, when there are two negative helicity

incoming gravitons at 1 and 2 with weights ∆1(= 1+iλ1) and ∆2(= 1+iλ2) and one positive

helicity outgoing graviton at 4 with weight ∆3 + ∆4 − 1(= 1 + iλ3 + iλ4), is given by,

M̃3(1−2−4+) = 〈G−∆1
(1)G−∆2

(2)G+
∆3+∆4−1(4)〉

= Θ

(
z42

z12

)
Θ

(
z14

z12

)
δ(z̄14)δ(z̄24)

z2
12

z24z41

(
z42

z12

)iλ1
(
z14

z12

)iλ2 Γ(1+i
∑4

i=1λi){
i

(
u1

z24
z12

+u2
z41
z12

+u4

)}1+i
∑4
i=1λi

(5.9)

Using (5.9) we can write the leading term (5.8) in the four point function as,

M̃4(1−2−3+4+) = −B(iλ3, iλ4)
z̄34

z34
i
∂

∂u4
M̃3(1−2−4+) + . . . (5.10)

where B(p, q) is the Euler beta function. This leading term corresponds to the leading

term in the OPE given by,

G+
∆3

(3)G+
∆4

(4) = −B(∆3 − 1,∆4 − 1)
z̄34

z34
i
∂

∂u4
G+

∆3+∆4−1(4) + . . .

= −B(∆3 − 1,∆4 − 1)
z̄34

z34
G+

∆3+∆4
(4) + . . .

(5.11)

where ∆i = 1 + iλi. In writing the last line of (5.11) we have used the fact that

i ∂
∂u4

G+
∆3+∆4−1(4) is a primary with weight (∆3 + ∆4). The leading answer (5.11) matches

with [1].
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6 Leading conformal soft limit and holomorphic supertranslation

descendants

In the leading conformal soft limit iλ3 → 0 [13–18, 24] the amplitude (5.7) simplifies and

is given by,

lim
iλ3→0

iλ3M̃4(1−2−3+4+)

= − z̄34

z34

z2
12

z23z31
Θ

(
z42

z12

)
Θ

(
z14

z12

)(
z42

z12

)iλ1
(
z14

z12

)iλ2

δ(z̄14)δ(z̄24)

× Γ(2 + i(λ1 + λ2 + λ4)){
i

(
u1

z24
z12

+ u2
z41
z12

+ u4

)}2+i(λ1+λ2+λ4)

(6.1)

This can be rewritten as,

lim
iλ3→0

iλ3M̃4(1−2−3+4+) = − z̄34

z34

(
1− z34

z24

)−1(
1− z34

z14

)−1

i
∂

∂u4
M̃3(1−2−4+) (6.2)

where the three point function M̃3(1−2−4+) is now given by,

M̃3(1−2−4+) = 〈G−∆1
(1)G−∆2

(2)G+
∆4

(4)〉 (6.3)

Now we expand the R.H.S of (6.2) in powers of z34,(
1− z34

z24

)−1(
1− z34

z14

)−1

=

∞∑
n=0

zn34

(
1

zn24

+
1

zn−1
24 z14

+ . . .+
1

z24z
n−1
14

+
1

zn14

)
=

∞∑
n=0

zn34

z12

zn+1
14 − zn+1

24

zn14z
n
24

=

∞∑
n=0

zn34

(
1

zn24

z14

z12
− 1

zn14

z24

z12

) (6.4)

So,

lim
iλ3→0

iλ3M̃4(1−2−3+4+) = − z̄34

z34

∞∑
n=0

zn34

(
1

zn24

z14

z12
− 1

zn14

z24

z12

)
i
∂

∂u4
M̃3(1−2−4+) (6.5)

Now we have the following relations,

i
∂

∂u1
M̃3(1−2−4+) =

z24

z12
i
∂

∂u4
M̃3(1−2−4+) (6.6)

i
∂

∂u2
M̃3(1−2−4+) = −z14

z12
i
∂

∂u4
M̃3(1−2−4+) (6.7)

Using them we can write,

lim
iλ3→0

iλ3M̃4(1−2−3+4+) = lim
iλ3→0

〈G−∆1
(1)G−∆2

(2)G+
∆3

(3)G+
∆4

(4)〉

= −z̄34

∞∑
n=0

zn−1
34

{
−
(

1

zn24

i
∂

∂u2
+

1

zn14

i
∂

∂u1

)}
M̃3(1−2−4+)

= −z̄34

∞∑
n=0

zn−1
34

{
−
(

1

zn24

i
∂

∂u2
+

1

zn14

i
∂

∂u1

)}
〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉

(6.8)
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This can be written in a more suggestive form as,

lim
iλ3→0

〈G−∆1
(1)G−∆2

(2)
(
− iλ3∂̄3G

+
∆3

(3)
)
G+

∆4
(4)〉 = 〈G−∆1

(1)G−∆2
(2)P (z3)G+

∆4
(4)〉

=

∞∑
n=0

zn−1
34

{
−
(

1

zn24

i
∂

∂u2
+

1

zn14

i
∂

∂u1

)}
〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉

=

∞∑
n=0

zn−1
34 P−n−1,−1〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉

=
∞∑
n=0

zn−1
34 〈G

−
∆1

(1)G−∆2
(2)(P−n−1,−1G

+
∆4

)(4)〉

(6.9)

where we have used (4.7) and the definition of the supertranslation current4

P (z3) = − lim
iλ3→0

iλ3∂̄3G
+
∆3=1+iλ3

(3) (6.10)

We would like to emphasize that this equation is true only in the OPE limit z3 → z4. (6.9)

is essentially the OPE (4.1) between the supertranslation current P (z) and the graviton

primary G+
∆4

(4),

P (z3)G+
∆4

(4) =
∞∑
n=0

zn−1
34 (P−n−1,−1G

+
∆4

)(4)

=
(P−1,−1G

+
∆4

)(4)

z3 − z4
+ (P−2,−1G

+
∆4

)(4) + (z3 − z4)(P−3,−1G
+
∆4

)(4)

+ (z3 − z4)2(P−4,−1G
+
∆4

)(4) + . . .

(6.11)

7 Subleading terms in the OPE

The terms of O(z34, z̄34, u34) in the expansion of the Mellin amplitude (5.7) are given by,

M̃4(1−2−3+4+) = 〈G−∆1
(1)G−∆2

(2)G+
∆3

(3)G+
∆4

(4)〉 z3→z4−−−−→ ⊃

−B(iλ3, iλ4)
z̄34

z34

×

{
iλ4−iλ3

iλ4+iλ3

(
z34

z24
+
z34

z14

)
+

iλ3

iλ3+iλ4

(
(1−iλ1)

z34

z24
+(1−iλ2)

z34

z14
+

(2+i
∑4

i=1λi)u12z34

u1z24+u4z12+u2z41

)

+
iλ3

iλ3+iλ4
z̄34

∂

∂z̄4
− iλ3

iλ3+iλ4

(2+i
∑4

i=1λi)u34z12

u1z24+u4z12+u2z41

}
i
∂

∂u4
M̃3(1−2−4+) (7.1)

where the three point function M̃3(1−2−4+) = 〈G−∆1
(1)G−∆2

(2)G+
∆3+∆4−1(4)〉 is defined

in (5.9). In the above expression we have obtained the O(z̄34) term by expanding the Dirac

delta function appearing in the integrand in (5.7). We will now identify each term in the

expansion as contribution coming from some descendant of the operator G+
∆3+∆4−1(4):

4Since we are working in units with κ =
√

32πGN = 2, the multiplicative factor 2
κ

= 1.
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(1) The first term can be written as,

iλ4 − iλ3

iλ4 + iλ3

(
z34

z24
+
z34

z14

)
i
∂

∂u4
M̃3(1−2−4+) =

iλ4 − iλ3

iλ4 + iλ3
z34 〈G−∆1

(1)G−∆2
(2)(P−2,−1G

+
∆3+∆4−1)(4)〉

(7.2)

(2) The second term can be written as,

iλ3

iλ3+iλ4

(
(1−iλ1)

z34

z24
+(1−iλ2)

z34

z14
+

(2+i
∑4

i=1λi)u12z34

u1z24+u4z12+u2z41

)
i
∂

∂u4
M̃3(1−2−4+)

=
iλ3

iλ3+iλ4
z34

∂

∂z4
〈G−∆1

(1)G−∆2
(2)(P−1,−1G

+
∆3+∆4−1)(4)〉

=
iλ3

iλ3+iλ4
z34 〈G−∆1

(1)G−∆2
(2)(L−1P−1,−1G

+
∆3+∆4−1)(4)〉

(7.3)

Now we would like to stress one important point. The expression for the three point

function M̃3(1−2−4+) contains the kinematic theta function Θ(z42/z12)Θ(z14/z12) and so,

when ∂/∂z4 acts on it, it produces terms proportional to the delta functions δ(z42/z12)

and δ(z42/z12). Now, as long as z12 is finite, the delta function term is nonzero only if z4

coincides with either z1 or z2. But this is ruled out in the OPE limit and so we should

set the (contact) terms, obtained by differentiating the theta functions, to zero. We have

taken this fact into account in coming from the first line to the second line in (7.3).

(3) The third term can be written as,

iλ3

iλ3 + iλ4
z̄34

∂

∂z̄4
i
∂

∂u4
M̃3(1−2−4+) =

iλ3

iλ3 + iλ4
z̄34 〈G−∆1

(1)G−∆2
(2)(L̄−1P−1,−1G

+
∆3+∆4−1)(4)〉

(7.4)

(4) The fourth term can be written as,

− iλ3

iλ3 + iλ4

(2 + i
∑4

i=1 λi)u34z12

u1z24 + u4z12 + u2z41
i
∂

∂u4
M̃3(1−2−4+)

= −i iλ3

iλ3 + iλ4
u34 〈G−∆1

(1)G−∆2
(2)(P 2

−1,−1G
+
∆3+∆4−1)(4)〉

(7.5)

Therefore at the level of 4-point function we get the following OPE,

G+
∆3

(3)G+
∆4

(4)⊃−B(iλ3, iλ4)
z̄34

z34

(
P−1,−1+

iλ4−iλ3

iλ4+iλ3
z34 P−2,−1 +

iλ3

iλ3+iλ4
z34 L−1P−1,−1

+z̄34
iλ3

iλ3+iλ4
L̄−1P−1,−1−iu34

iλ3

iλ3+iλ4
P 2
−1,−1+O(z2

34, z̄
2
34,z34z̄34)

)
G+

∆3+∆4−1(4)

(7.6)

We have boxed the descendant P−2,−1G
+
∆3+∆4−1(4) just to emphasize the fact that it is not

a Poincaré descendant. In the above equation we have not written an equality sign because

some extra terms may be there which are not visible at the level of 4-point function. In

the following section we will see that this is not the case, according to BMS representation

theory.
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8 OPE coefficients from BMS algebra

Let us start with the commutation relation between the supertranslation and (superrota-

tion) Virasoro generators,

[Ln, Pa,b] =

(
n− 1

2
− a
)
Pa+n,b [L̄n, Pa,b] =

(
n− 1

2
− b
)
Pa,b+n (8.1)

In particular for n = 0 this reduces to,

[L0, Pa,b] = −
(

1

2
+ a

)
Pa,b [L̄0, Pa,b] = −

(
1

2
+ b

)
Pa,b (8.2)

We can see that the supertranslation generator Pa,b has negative holomorphic or anti-

holomorphic scaling dimension for a > −1 or b > −1 or both. So, if φh,h̄ is a primary

operator then the dimension of the operator [Pa,b, φh,h̄(0)] can be made arbitrarily negative

by choosing a or b to be a large positive integer. This motivates us to set

[Pa,b , φh,h̄(0)] = 0, a > −1 or b > −1 or both a, b > −1 (8.3)

for a BMS primary operator φh,h̄. Now, for generators Pa,b with a > −1, b ≥ −1 or

a ≥ −1, b > −1, the condition (8.3) follows simply from the transformation law (2.4). But

there are generators P−a,b with a > 1, b > −1 or Pa,−b with a > −1, b > 1, for which

the condition (8.3) does not follow from the transformation law (2.4). They generate

singular supertranslation on the holomorphic side and non-singular supertranslation on

the antiholomorphic side (and vice-versa). At this stage, except for the heuristic argument

given below, the only justification for (8.3) for generators of this mixed type is that it gives

the correct OPE coefficients, as we will see.

The definition (8.3) of the BMS primary can be motivated by the following heuris-

tic argument. Suppose the primary operator φh,h̄(0) and (a subset of) its descen-

dants5 [Pa,b, φh,h̄(0)], appear in the OPE of two primaries φh1,h̄1
(u, z, z̄) and φh2,h̄2

(0).

The operator [Pa,b, φh,h̄(0)] appears in the OPE with a prefactor proportional to

zh−h1−h2−( 1
2

+a)z̄h̄−h̄1−h̄2−( 1
2

+b).6

Now, symmetry requires all descendants to be present in the OPE and this implies

that the order of the pole in z or z̄ cannot be bounded from above because a, b can be

arbitrarily large positive integers. But, this is practically impossible because in the present

situation the leading pole can be obtained by Mellin transforming the splitting function in

the collinear limit [1–3]. So it seems reasonable to assume that the order of the pole in z

or z̄ will be bounded from above and therefore, we should impose the condition (8.3) on

the primary φh,h̄.

For the Virasoro generators we have the standard conditions that,

[Ln, φh,h̄(0)] = 0, [L̄n, φh,h̄(0)] = 0, n > 0 (8.4)

5For a > −1 or b > −1 we should call the operators [Pa,b, φh,h̄(0)] “ascendants”. But, for simplicity, we

continue to call them descendants.
6In general there will be powers of u also, as can be seen from (5.7) or (7.6), but we omit them for

simplicity. It is obvious that the argument remains unchanged even if we include powers of u.

– 14 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
0

and

[L0, φh,h̄(0)] = h φh,h̄(0), [L̄0, φh,h̄(0)] = h̄ φh,h̄(0) (8.5)

Therefore we can now consider the descendants generated by the raising operators only.

8.1 A Hilbert space picture

In the following discussion it will be convenient to assume a Hilbert space picture and

define a vacuum |0〉 by the condition,

P−1,−1 |0〉 = 0 (8.6)

Pa,b |0〉 = 0, a > −1 or b > −1 or both a, b > −1 (8.7)

Ln |0〉 = L̄n |0〉 = 0, n ≥ −1 (8.8)

We also define the state
∣∣h, h̄〉 as, ∣∣h, h̄〉 = φh,h̄(0) |0〉 (8.9)

using the above definitions the BMS-primary state condition can be written as,

Pa,b
∣∣h, h̄〉 = 0, a > −1 or b > −1 or both a, b > −1 (8.10)

Ln
∣∣h, h̄〉 = L̄n

∣∣h, h̄〉 = 0, n ≥ 1 (8.11)

L0

∣∣h, h̄〉 = h
∣∣h, h̄〉 , L̄0

∣∣h, h̄〉 = h̄
∣∣h, h̄〉 (8.12)

For the restricted class of supertranslation generators Pa,b with both (a, b) > −1, condi-

tion (8.7) was also proposed in [41].

With this definition of the primary state the BMS descendants are given by,

L−n1L−n2 . . . L−npP−a1,−b1P−a2,−b2 . . . P−aq ,−bq
∣∣h, h̄〉 (8.13)

where n1 ≥ n2 ≥ . . . np > 0 and ai > 0, bi > 0. We do not put any order on the {ai} and

{bi} because the supertranslation generators commute among themselves.

8.2 Primary descendants

Suppose
∣∣h, h̄〉 is a BMS-primary state. Then it is easy to check using the commutation

relations that the state (P−1,−1)n
∣∣h, h̄〉, with n ≥ 1, is also a BMS-primary with weight

(h+ n/2, h̄+ n/2). We denote this state by,

(P−1,−1)n
∣∣h, h̄〉 =

∣∣h+ n/2, h̄+ n/2
〉

(8.14)

8.3 Graviton-graviton OPE

From now on our discussion will be confined to the OPE of two positive helicity gravitons

denoted by G+
∆(u, z, z̄). In our case, ∆ = 1 + iλ and so,

h =
3 + iλ

2
, h̄ =

−1 + iλ

2
, λ ∈ R (8.15)
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At this point let us note that although the Mellin amplitudes in Einstein gravity are UV

divergent, the OPE (7.6) has no singularity as u34 → 0 and we can safely restrict the

OPE to the celestial sphere at constant u, if we wish. From this point of view, the time

coordinate u acts as a covariant regulator in the celestial CFT, which can be set to zero at

the end of the calculation. For simplicity, we will do so.

Once we set u = 0, modulo the singular prefactor, the OPE expansion becomes a Taylor

series in z and z̄ around the origin (z = 0, z̄ = 0) and we can write the following (7.6),

G+
∆1

(z, z̄)G+
∆2

(0) = −B(iλ1, iλ2)
z̄

z

(
P−1,−1 +O(z, z̄)

)
G+

∆1+∆2−1(0) (8.16)

where G+
∆1

(z, z̄) = G+
∆1

(u = 0, z, z̄). Let us now enumerate the possible subleading terms

in the OPE at O(z) and O(z̄). For this we remind ourselves that P−1,−1 is a (1/2, 1/2)

operator. Taking this into account we get,

(1) O(z) operators:

L−1P−1,−1 → (3/2, 1/2), P−2,−1 → (3/2, 1/2) (8.17)

(2) O(z̄) operators:

L̄−1P−1,−1 → (1/2, 3/2), P−1,−2 → (1/2, 3/2) (8.18)

If we keep powers of u then there will be an additional operator at O(u) given by

(P−1,−1)2, which follows from the fact that u has scaling dimension (−1/2,−1/2).

Now generically, at every order, there can be descendants and also new primaries. But

here we focus on the contribution arising from a specific primary G+
∆1+∆2−1(0).

So let us write the first subleading order in the OPE as,

G+
∆1

(z, z̄)G+
∆2

(0) = −B(iλ1, iλ2)
z̄

z

(
P−1,−1 + c1zL−1P−1,−1 + c2zP−2,−1

+ c̄1z̄L̄−1P−1,−1 + c̄2z̄P−1,−2 +O(z2, z̄2, zz̄)

)
G+

∆1+∆2−1(0)

(8.19)

Here c̄i is not the complex conjugate of ci. Also, for simplicity of notation, we have kept the

dependence of the OPE coefficients (ci, c̄i) on the scaling dimensions of primary operators

implicit.

We will now compute the coefficients (ci, c̄i) from the fact that both sides of the OPE

must transform in the same way under BMS transformation. In order to do this it is more

convenient to write the OPE as,

Gh1,h̄1
(z, z̄)

∣∣h2, h̄2

〉
= −B(iλ1, iλ2)

z̄

z

(
P−1,−1 + c1zL−1P−1,−1 + c2zP−2,−1

+ c̄1z̄L̄−1P−1,−1 + c̄2z̄P−1,−2 +O(z2, z̄2, zz̄)

) ∣∣h3, h̄3

〉 (8.20)
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where,

h1,2,3 =
3 + iλ1,2,3

2
, h̄1,2,3 =

−1 + iλ1,2,3

2
, λ3 = λ1 + λ2 (8.21)

The BMS generators act on the operators as,

[Ln, φh,h̄(z, z̄)] =

[
zn+1∂ + (n+ 1)hzn

]
φh,h̄(z, z̄) (8.22)

[L̄n, φh,h̄(z, z̄)] =

[
z̄n+1∂̄ + (n+ 1)h̄z̄n

]
φh,h̄(z, z̄) (8.23)

[Pa,b, φh,h̄(z, z̄)] = za+1z̄b+1φh+1/2,h̄+1/2(z, z̄) = za+1z̄b+1(P−1,−1φh,h̄)(z, z̄) (8.24)

The first two relations are obtained by setting u = 0 in commutation relations (3.8). The

last commutator is obtained from,

[Pa,b, φh,h̄(u, z, z̄)] = za+1z̄b+1i∂uφh,h̄(u, z, z̄) (8.25)

by setting u = 0 and recognizing that i∂uφh,h̄(u, z, z̄) is the BMS-primary (descendant)

(P−1,−1φh,h̄)(u, z, z̄) with dimension (h+ 1/2, h̄+ 1/2).

With this information one can readily compute the OPE coefficients, in the standard

way, by applying the lowering operators to both sides of (8.20). Let us now state the

equations for the OPE coefficients obtained in this way,

(1) Applying P0,−1 we get,

c1B(iλ1, iλ2) = B(iλ1 + 1, iλ2) =⇒ c1 =
iλ1

iλ1 + iλ2
(8.26)

(2) Applying P−1,0 we get,

c̄1B(iλ1, iλ2) = B(iλ1 + 1, iλ2) =⇒ c̄1 =
iλ1

iλ1 + iλ2
(8.27)

(3) Applying L1 we get,

(2h3 + 1)c1 + 2c2 = 2h1 − 1 =⇒ c2 =
iλ2 − iλ1

iλ2 + iλ1
(8.28)

(4) Applying L̄1 we get,

(2h̄3 + 1)c̄1 + 2c̄2 = 2h̄1 + 1 =⇒ c̄2 = 0 (8.29)

This matches exactly with the OPE coefficients (7.6), obtained from graviton scattering

amplitude, with the replacement λ3 → λ1 and λ4 → λ2. We would like to point out that

since the descendants P−2,−1

∣∣h3, h̄3

〉
and P−1,−2

∣∣h3, h̄3

〉
appear in the OPE (8.20), the

above equations for the OPE coefficients probe the BMS algebra beyond the Poincaré

subalgebra.

Before we conclude, we would like to point out that to arrive at the equations for the

OPE coefficients we need commutators of the form [L̄1, P−2,−1]
∣∣h3, h̄3

〉
= P−2,0

∣∣h3, h̄3

〉
,
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which by the definition (8.10) of a primary state is equal to zero. The generator P−2,0

generates supertranslation of the mixed type, u→ u+ε z̄z . So we can see that the condition

that generators of the mixed type should also annihilate a primary state is necessary to

obtain the correct OPE coefficients starting from the BMS algebra, at least to the order

we are working.

8.4 Virasoro representations

Since Virasoro algebra is a subalgebra of the BMS algebra, one should be able to decompose

a BMS representation into irreducible Virasoro representations. This is useful because in

this way one can use the known results from the (highest-weight) Virasoro representation

theory to compute some of the OPE coefficients. At the first subleading order this can be

done in the following way.

Let us write the OPE at the first subleading order as,

Gh1,h̄1
(z, z̄)

∣∣h2, h̄2

〉
= −B(iλ1, iλ2)

z̄

z

(
P−1,−1 + c1zL−1P−1,−1 + c2zP−2,−1

+ c̄1z̄L̄−1P−1,−1 +O(z2, z̄2, zz̄)

) ∣∣h3, h̄3

〉 (8.30)

where we have set c̄2 = 0 following (8.29).

Among these states, the state L̄−1P−1,−1

∣∣h3, h̄3

〉
is the antiholomorphic Virasoro

descendant of the BMS primary P−1,−1

∣∣h3, h̄3

〉
. We have two more states, given by

L−1P−1,−1

∣∣h3, h̄3

〉
and P−2,−1

∣∣h3, h̄3

〉
, one of which is a Virasoro descendant and the other

one is a supertranslation descendant. So let us consider the state,

|ψ〉 =

(
P−2,−1 −

2

2h3 + 1
L−1P−1,−1

) ∣∣h3, h̄3

〉
(8.31)

The corresponding field can be written as,

ψ(z, z̄) = (P−2,−1Gh3,h̄3
)(z, z̄)− 2

2h3 + 1
(L−1P−1,−1Gh3,h̄3

)(z, z̄) (8.32)

where the correlation function with the insertion of (P−2,−1Gh3,h̄3
)(z, z̄) is given by (4.9).

Now one can check using the BMS algebra and the definition of the BMS primary state∣∣h3, h̄3

〉
that |ψ〉 is a Virasoro primary but, not a BMS primary. For example, one can

check that

P0,−1 |ψ〉 ∝ P 2
−1,−1

∣∣h3, h̄3

〉
6= 0 (8.33)

and so on. Now using the Virasoro primary |ψ〉 we can rewrite the OPE (8.30) as,

Gh1,h̄1
(z, z̄)

∣∣h2, h̄2

〉
=−B(iλ1, iλ2)

z̄

z

(
P−1,−1+c′1zL−1P−1,−1+c̄1z̄L̄−1P−1,−1+. . .

)∣∣h3, h̄3

〉
−B(iλ1, iλ2)z̄c2 |ψ〉+. . .

=−B(iλ1, iλ2)
z̄

z

(
1+c′1zL−1+c̄1z̄L̄−1+. . .

)∣∣h3+1/2, h̄3+1/2
〉

−B(iλ1, iλ2)c2 z̄ |ψ〉+. . . (8.34)
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where,

c′1 = c1 +
2

2h3 + 1
c2 (8.35)

The OPE (8.34) now has the familiar structure of OPE in 2-D CFT. The first line consists

of the Virasoro primary
∣∣h3 + 1/2, h̄3 + 1/2

〉
and its level 1 descendants. In the second line

we have a new Virasoro primary |ψ〉 with the (Virasoro) structure constant B(iλ1, iλ2)c2.

The Virasoro structure constant B(iλ2, iλ2)c2 cannot be determined by Virasoro algebra

alone but, the coefficients c′1 and c̄1 are determined by Virasoro algebra. They are given

by the known formulas,

c′1 =
h′3 + h1 − h2

2h′3
, h′3 = h3 +

1

2
(8.36)

c̄1 =
h̄′3 + h̄1 − h̄2

2h̄′3
, h̄′3 = h̄3 +

1

2
(8.37)

Using the values (8.21) for the scaling dimensions we get, from (8.36) and (8.37), that

c′1 =
2 + iλ1

4 + i(λ1 + λ2)
(8.38)

and

c̄1 =
iλ1

iλ1 + iλ2
(8.39)

We can see that the value of c̄1 obtained in this way using Virasoro algebra matches with

the value (8.27) obtained using translational invariance of the OPE. Similarly, the value

of c′1 also matches with (8.35) once we substitute the values (8.26) and (8.28) of c1 and c2,

obtained using BMS algebra. This matching is a check of the overall consistency of the

procedure.

9 Future directions

The problem of extracting the celestial OPE from flat space scattering amplitudes consists

of two parts. The first part is the (holomorphic or antiholomorphic) collinear expansion

including subleading terms and the second part is the determination of the celestial correla-

tion functions with the insertion of BMS descendants. The correlation functions involving

superrotation or Virasoro descendants are well known from the work of Belavin-Polyakov-

Zamolodchikov on two dimensional CFTs. The new objects are the supertranslation de-

scendants. Among these, the simplest ones are the descendants {P−a,−1φ , a > 1} created

by singular (anti) holomorphic supertranslations. These are captured in a straightforward

manner by supertranslation Ward-identity (3.10) following from Weinberg’s soft graviton

theorem. The correlation functions with the insertion of (anti) holomorphic supertransla-

tion descendants follow from this Ward-identity and is given by (4.7) or (4.9). But, there

are also descendants of the form {P−a,−bφ, a > 1, b > 1} created by supertranslations,

which are neither purely holomorphic nor antiholomorphic. For example, if we want to

go to higher order in the OPE expansion (8.19), then at O(zz̄) we encounter the descen-

dant P−2,−2G
+
∆1+∆2−1(0). Unless we know the Mellin amplitude with the insertion of this
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descendant, it will not be possible to extract the OPE at higher order. Although the Ward-

identity (3.10) captures all the supertranslation descendants [29] — not just holomorphic

— it may require a more involved procedure to determine the correlation function of a

general supertranslation descendant.

Another important point is that the BMS algebra may have (field-dependent) central

extension [46, 47]. In this paper the central extension does not play any role because in the

first subleading order the Virasoro descendants {L−nφ, n > 1} do not appear, although they

appear in the higher order of the OPE. The values of the OPE coefficients should depend

on the central charge and perhaps one can determine the central charge by demanding

that the OPE coefficients determined from the BMS algebra match with those obtained

from the subleading terms in the collinear expansion of the Mellin amplitude. We hope to

return to these problems in future.
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A Mellin transform of four graviton amplitude and holomorphic

collinear expansion

In this appendix we discuss the Mellin transform of the tree-level four graviton scattering

amplitude in Einstein theory in detail. The four graviton amplitude in momentum space

is given by,

M4(1−2−3+4+)

=
〈12〉7[12]

〈13〉〈14〉〈23〉〈24〉〈34〉2
δ4(ω1q(z1, z̄1) + ω2q(z2, z̄2)− ω3q(z3, z̄3)− ω4q(z4, z̄4))

= −4
ω2

1ω
2
2

ω3ω4

z6
12z̄34

z13z14z23z24z34
δ4(ω1q(z1, z̄1) + ω2q(z2, z̄2)− ω3q(z3, z̄3)− ω4q(z4, z̄4))

(A.1)

where we have taken (1, 2) to be incoming and (3, 4) to be outgoing. We work in split

signature so that we can treat z and z̄ as independent real variables. The OPE limit, we

are interested in, is z3 → z4 with z̄34 held fixed.
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The corresponding Mellin amplitude is given by,

M̃4(1−2−3+4+)

=

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ ∞
0

dω3

∫ ∞
0

dω4 ω
iλ1
1 ωiλ2

2 ωiλ3
3 ωiλ4

4 e−i
∑4
i=1 εiωiuiM4(1−2−3+4+)

(A.2)

where εi = ±1 for outgoing and incoming particles, respectively. Here we take (1, 2) to be

incoming and (3, 4) to be outgoing and so, ε1 = ε2 = −1 and ε3 = ε4 = 1.

Now, using the momentum conserving delta function we solve for ω1, ω2, z̄14 and z̄24

and write,

δ4(ω1q(z1, z̄1) + ω2q(z2, z̄2)− ω3q(z3, z̄3)− ω4q(z4, z̄4))

=
1

4ω∗1ω
∗
2

1

z2
12

δ(ω1 − ω∗1)δ(ω2 − ω∗2) δ

(
z̄14 +

ω3

ω∗1

z23

z12
z̄34

)
δ

(
z̄24 −

ω3

ω∗2

z13

z12
z̄34

)
(A.3)

where

ω∗1 = −z24

z12
(ω3 + ω4) +

z34

z12
ω3 (A.4)

ω∗2 =
z14

z12
(ω3 + ω4)− z34

z12
ω3 (A.5)

Now we make a change of variable

ω = ω3 + ω4, ω3 = tω, ω4 = (1− t)ω, 0 ≤ t ≤ 1 (A.6)

In terms of ω and t,

ω∗1 = ω

(
− z24

z12
+ t

z34

z12

)
(A.7)

ω∗2 = ω

(
z14

z12
− tz34

z12

)
(A.8)

Now since ω1 and ω2 are positive, ω∗1 and ω∗2 must also be positive. In the OPE limit this

is indeed true. To see this, let us first note that ω∗1 and ω∗2 are zero when,

ω∗1 = 0 =⇒ t∗1 =
z24

z34
(A.9)

and

ω∗2 = 0 =⇒ t∗2 =
z14

z34
(A.10)

In the OPE limit, |z34| � |z13|, |z23|, |z14|, |z24| and so |t∗1|, |t∗2| � 1, which is outside the

range of t. Therefore ω∗1 and ω∗2 do not change sign as t runs from 0 to 1.

Now the integrals over ω1 and ω2 gives rise to the following theta functions∫ ∞
0

ωdω

∫ 1

0
dt Θ(ω∗1)Θ(ω∗2) . . . (A.11)
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Since ω∗1 and ω∗2 do not change sign in the interval 0 ≤ t ≤ 1, the theta functions are

constant and we take them outside the integral and evaluate at t = 0. This gives us

Θ

(
z42

z12

)
Θ

(
z14

z12

)∫ ∞
0

ωdω

∫ 1

0
dt . . . (A.12)

where we have also used the fact that ω > 0. Now, the theta functions appearing in (A.12)

are precisely the ones appearing in the three point function 〈1−2−4+〉 where 1, 2 are in-

coming and 4 is outgoing. The rest of the integrals is straightforward and give rise to the

Mellin transform (5.7) in the OPE limit.

B Virasoro Ward identity in modified Mellin basis

This section of the appendix is based on results from [51]. The existence of a Virasoro sym-

metry for 3+1 quantum gravity in asymptotically flat spacetime is based on the subleading

soft graviton theorem. This was first shown in [34, 35] for four dimensions at semiclassical

level and later generalized to loop level [36]. We want here to establish analogous results

in the modified Mellin basis, which will confirm the structure of the conformal transfor-

mations we assumed in the paper. The modified Mellin transform of the creation (resp.

annihilation) operator a(p(ω, z, z̄), σ) (resp. a†(p(ω, z, z̄), σ)) is given by [8],

A(u, z, z̄, λ, σ) = N

∫ ∞
0

dω ω−iλe−iωua(p(ω, z, z̄), σ) (B.1)

A†(u, z, z̄, λ, σ) = N

∫ ∞
0

dω ωiλeiωua†(p(ω, z, z̄), σ) (B.2)

where N is a normalization constant which we will take to be 1√
8π2

. If we do a formal

Laurent expansion of a(p(ω, z, z̄), σ) in ω we will have

a(ω, z, z̄, σ) =
∑
n

S1−n(z, z̄, σ)

ωn
(B.3)

One can easily check using the Lorentz transformation property of a(ω, z, z̄, σ) that the

coefficients are “soft operators” which transform as primary of weight n and spin σ under

the conformal group SL(2,C). Let us now substitute the expansion (B.3) into (B.2). Doing

the integral we get

A(u, z, z̄, λ, σ) = N
∑
n

Γ(2−∆− n)

(iu)2−∆−n S1−n(z, z̄, σ) (B.4)

where u = u − iδ and δ → 0+. Let us notice that this integral is ill-defined for any n 6= 1

if the exponential factor e−iωu is not there. For the time being let us assume that n ≤ 1.

Now as λ → 0 the singularity comes only from the n = 1 term and it is a pole of the Γ

function. Around the pole we can write

A(u, z, z̄, λ, σ) = −N 1

iλ
S0(z, z̄, σ) + finite terms (B.5)
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Therefore the residue at the pole is the leading soft operator S0(z, z̄, σ), up to a sign. So

we can write

S0(z, z̄, σ) = − lim
∆→1

(∆− 1)

[
(iu)∆−1 1

N
A(u, z, z̄, λ, σ)

]
(B.6)

When inserted in an S-matrix element this leads to the leading conformal soft theorem. We

would like to stress that this construction is valid only when all the operators are inserted

in an S-matrix element and then we can meaningfully talk about analytic continuation in

λ. In the same fashion we can talk about subleading (n = 0) conformal soft limit which is

obtained in the limit λ→ i: we have

S1(z, z̄, σ) = lim
∆→0

∆

(
1− u ∂

∂u

)[
(iu)∆ 1

N
A(u, z, z̄, λ, σ)

]
(B.7)

The insertion of such an operator will lead to the subleading conformal soft theorem without

the contamination from the leading soft theorem. It is worth noticing that the appearance

of a single power of u is determined by dimensional analysis because u transforms like a

primary of dimension −1 and spin 0. Similarly we can write for p ≥ 1

Sp+1(z, z̄, σ) = lim
∆→−p

(−1)p
∆ + p

(1 + p)!

p∏
n=0

(
1− n− u ∂

∂u

)[
(iu)∆+p 1

N
A(u, z, z̄, λ, σ)

]
(B.8)

We can see that in the absence of n > 1 terms in the soft expansion (B.3) the poles in the

upper-half λ plane correspond to the IR behaviour of the scattering amplitude.

We’re ready now to show how the Virasoro Ward identity arises from the subleading

soft theorem. Let An+1({pi}i∈{1,...,n}, q) be the n + 1 scattering amplitude involving n

massless particles and one graviton of momentum qµ and polarization ε
(±)
µν (q). The soft

limit for the graviton of momentum q → 0 gives [27, 28]

An+1({pi}i∈{1,...,n}, q)→
[
S

(±)
0 + S

(±)
1 +O(q)

]
An({pi}i∈{1,...,n}) (B.9)

where An({pi}i∈{1,...,n}) is the amplitude without the soft graviton and7

S
(±)
0 =

n∑
j=1

εj
pµj p

ν
j ε

(±)
µν (q)

pj · q
(B.10)

S
(±)
1 = −i

n∑
j=1

εj
ε
(±)
µν (q)pµj
pj · q

qλJ
λν,(±)
j (B.11)

where J
λν,(±)
j is the sum of the spin and angular momentum of the j-th particle. Let’s

focus, without loss of generality, on the minus helicity case. In the coordinates (ω, z, z̄) the

subleading soft factor becomes

S
(−)
1 =

n∑
j=1

εj

[
(z − zj)2

(z̄ − z̄j)

(
2ĥj

(z − zj)
− ∂zj

)]
(B.12)

7We are using here the convention κ =
√

32πG = 2 as done in the main text of the paper.
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where ĥj = 1
2(σj − ωj∂ωj ). As we have already explained the insertion of the operator S1

defined in (B.6) in the scattering amplitudes will extract the subleading soft behaviour.

Now supposing that we have n1 incoming and n2 outgoing hard particles (n1 +n2 = n) we

can define the subleading soft graviton contribution to a (n+1)-point scattering amplitude

in the modified Mellin basis as follows

〈0|S1(z, z̄,−)

 n2∏
j2=1

Aout(uj2 ,zj2 , z̄j2 ,λj2 ,σj2)

 n1∏
j1=1

A†in(uj1 ,zj1 , z̄j1 ,λj1 ,σj1)

 |0〉 (B.13)

so that

lim
∆→0

∆

(
1−u ∂

∂u

)
(iu)∆

 n2∏
j2=1

∫ ∞
0

dωj2(ωj2)−iλj2e−iωj2uj2

 n1∏
j1=1

∫ ∞
0

dωj1(ωj1)iλj1eiωj1uj1

×
× 1

N
〈0|Aout(u,z, z̄,λ,−)

n2∏
j2=1

aout(pj2(uj2 ,zj2 , z̄j2),σj2)

n1∏
j1=1

a†in(pj1(uj1 ,zj1 , z̄j1),σj1) |0〉=

=

 n2∏
j2=1

∫ +∞

0
dωj2(ωj2)−iλj2e−iωj2uj2

 n1∏
j1=1

∫ +∞

0
dωj1(ωj1)iλj1eiωj1uj1

S(−)
1 An({pi})

(B.14)

as expected. At this point it is worth considering the following operator [35]

T (z) =
1

2π

∫
d2w

1

z − w
∂3
wS1(w, w̄,−) (B.15)

If we identify the correlators of the dual theory with S-matrix elements transformed to the

modified Mellin basis as follows

〈
n∏
i=1

φ∆i,σi(zi, z̄i, ui)〉 =

n∏
i=1

∫ ∞
0

dωi ω
∆i−1
i e−iεiωiuiA(p(ωi, zi, z̄i), σ) (B.16)

then the insertion of such an operator T (z) will give, after some algebra,8

〈T (z)φh1h̄1
(u1, z1, z̄1) . . . φhnh̄n(un, zn, z̄n)〉 =

=

n∑
i=1

[
hi + 1

2ui∂ui
(z − zi)2

+
1

z − zi
∂zi

]
〈φh1h̄1

(u1, z1, z̄1) . . . φhnh̄n(un, zn, z̄n)〉 (B.17)

where hi = ∆i+σi
2 . A similar calculation can be done for the positive helicity graviton using

the following operator

T (z̄) =
1

2π

∫
d2w

1

z̄ − w̄
∂3
w̄S1(w, w̄,+) (B.18)

and after similar steps we end up with

〈T (z̄)φh1h̄1
(u1, z1, z̄1) . . . φhnh̄n(un, zn, z̄n)〉 =

=
n∑
i=1

[
h̄i + 1

2ui∂ui
(z̄ − z̄i)2

+
1

z̄ − z̄i
∂z̄i

]
〈φh1h̄1

(u1, z1, z̄1) . . . φhnh̄n(un, zn, z̄n)〉 (B.19)

where h̄i = ∆i−σi
2 .

8We have used the following identity ∂w̄
1

z−w = 2πδ2(z − w).
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