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Abstract
This article investigates the intersection numbers of the moduli space of p-spin curves with
the help of matrix models. The explicit integral representations that are derived for the
generating functions of these intersection numbers exhibit p Stokes domains, labelled by
a “spin”-component l taking values l = −1, 0, 1, 2, ..., p − 2. Earlier studies concerned
integer values of p, but the present formalism allows one to extend our study to half-integer
or negative values of p, which turn out to describe new types of punctures ormarked points on
the Riemann surface. They fall into two classes: Ramond (l = −1), absent for positive integer
p, and Neveu–Schwarz (l �= −1). The intersection numbers of both types are computed from
the integral representation of the n-point correlation functions in a large N scaling limit. We
also consider a supersymmetric extension of the random matrix formalism to show that it
leads naturally to an additional logarithmic potential. Open boundaries on the surface, or
admixtures of R and NS punctures, may be handled by this extension.

Keywords Random matrices · Matrix models, Intersection Numbers, Large N

1 Introduction

Although the connection between matrix models and the geometry of surfaces is by now an
old subject, originating with the work of ’t Hooft [1] for large N gauge theories, new features
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have been revealed recently involving super-Riemann surfaces with punctures or boundaries,
related to matrix models with various types of symmetries [2].

In this work we return to the use of Gaussian matrix models with an external matrix source
which, according to the nature of the source, covers a large spectrum of applications. For
instance we have considered earlier an external source which generates a gapped density of
eigenvalues, and a critical point at the closing gap situation [3]. In the course of this work
this closing gap situation corresponds to the p = 3 model defined below. As a quantum
topological field theory, we have shown earlier that it provides a generating function of the
intersection numbers in the moduli space of Riemann surface of p-spin curves [4–8]. This
p spin curve is described by an Hermitian matrix model involving the (p + 1)-th power of
matrix, with an external source tuned appropriately [8], in a large matrix-size scaling limit.
The model is thus a generalization of the Kontsevich Airy matrix model (p = 2) [9]. In this
work we have not attempted to give proofs relating the geometry of Riemann surfaces to the
generalized matrix integrals considered below. Our contribution consists simply of making
use of previous results concerning matrix models in an external matrix source appropriately
tuned to provide numerical values for intersection numbers in various new situations.

In this article, we consider the extension to half-integer spins such, p = 1
2 ,

3
2 , . . ., and to

negative integers for which new features appear [8,10,11]. Positive integer p corresponds to
a compact coset space SU (2)/U (1) with level k = p − 2 of the WZW model, and negative
p to the non-compact, hyperbolic space, SL(2, R)/U (1), as explained by Witten [12,13].

When p = −1, the intersection numbers reduce to the Euler characteristics of orbifolds
[6,14,15], and when p = −2 the model is equivalent to a unitary matrix model with aU (N )

gauge field [8,10,16–20]. (A simple proof of the equivalence between a unitary matrix model
with the p = −2 model may be found in the Appendix C of [21], where it was shown that
they share the same equations of motion).

The case of half-integer p, obtained by continuation from integer p, provides new features.
The fractional level case corresponds to a fractional level k of theWZWmodel,which is a non-
unitary conformal field theory [22–24]. It is also related to the super ghost β-γ system, within
a superconformal field theory [25]. Another supersymmetric derivation of the intersection
numbers of p-spin curves, which is different from the present article, may be found in [26–
28]. The case half-integer p is also interesting as it realizes a Chern–Simons theory coupled
to a Majorana fermion. It has been discussed earlier that the presence of fermions leads to
the shift of the level k → k − 1

2 , see for instance [29]. The spin p = 1
2 case may thus be

interpreted as p = 1 − 1
2 , where the first term p = 1 comes from a simple Gaussian case.

Similarly p = − 1
2 may be interpreted as a pure fermion contribution, i.e. p = 0− 1

2 . For both
cases, we show that the intersection numbers involve Ramond punctures. There are many
contributions related to the geometry of Riemann surfaces, see among them [30,31].

Ramond (R) and Neveu–Schwarz (NS) punctures come from the study of string theory
over super-Riemann surfaces [32,33]. Two types of nodal points can be defined on a Riemann
surface. If a line bundle at such a point is locally free (i.e. there is no orbifold structure or in
our approach no Stokes lines) it is called R-type; otherwise (non-trivial orbifold structure)
it belongs to the NS- type. In this article, we use these terminologies for the two distinct
types of punctures (or marked points). The contour integrals which describe the intersection
numbers with these punctures turn out to be different. For the NS- type, the component l of
spin p takes one of the values (0, 1, ..., p − 2), and the R-type l corresponds to the single
value l = −1 [34,35], which distinguishes the orbifold structures. We consider s punctures
on a Riemann surface, and from a dimensional counting, a selection rule (Riemann–Roch,
denoted RR) relates th genus g, the spin p and the indices ni , li (i = 1, ..., s). It is well
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known that there are no contributions of R-type for positive integer p [7,36] as it will be
shown in Eq. (19) of Sect. 2.

We have also found anR-contribution in the presence of an additional logarithmic potential
[7,21]. The R-type is related to the coefficients m of the logarithmic potential of the matrix
model, in which the power mb, represents the number of open boundaries of the Riemann
surface. One aim of this article is to discuss more systematically the appearance of R-type
punctures on the basis of the results of [7,21], in which open intersection numbers have
already been considered.

The calculations of intersection numbers of R-type reduce to computing residues from
an integral representation. When p ∈ Z + 1

2 (half-integer), the moduli space becomes a
spin moduli space, and it is related for the lowest fractions to a Dirac spin (p = 1

2 ) or a
Rarita–Schwinger operator (p = 3

2 ) [37,38].
When p = −1/2, all intersection numbers with one marked point vanish for a genus

g > 1, since all the intersection numbers of p-spin curves involve a (2p + 1)-factor. This
behavior was noticed earlier from explicit expressions previously obtained up to genus 9 [8].
We prove here that for p = −1/2 the intersection numbers vanish to all orders in the genus
(g > 1).

We have also considered the formalism of random supermatrices in an external source
introduced in a previous article [39]. There the tuning of the source in a scaling limit generates
a matrix model with and additional logarithmic potential term, a generalized Kontsevich–
Penner model. The open intersection numbers had been computed earlier [21]. In this case,
the R-type (l = −1) does appear in the intersection numbers τn,−1. (In [21], it was denoted
as τn− 1

2
). These R-type punctures are related to the odd or even character of the power ofm,

in the coefficient of the logarithmic potential. For p = ± 1
2 , an R-puncture is interpreted as

a fermion on the boundaries; an odd number of R-punctures appears with an odd number of
boundaries, and an even number of R-punctures only with even powers of m. Even powers
b for mb correspond to an even number of boundaries.

We also discuss a supersymmetric model with admixtures of positive and negative powers
p for the matrices, in addition to a logarithmic term. The negative integer p, and half-integer
p, matrix models were recently proposed in the context of irregular conformal blocks [40,41]
: we briefly mention this correspondence in Sect. 5. The super-matrix formulation may shed
light on the study of the extension of An singularities to other ADE cases [36], but such
investigations are left for a future study.

This article consists of the following sections. In Sect. 2, we briefly review the formulae
for the n-point functions in presence of an external source, and how its tuning can generate
a p-spin curve and provide the intersection numbers. In Sect. 3, we consider the one-point
function. The extension to half-integer p yields punctures of R-type. In Sect. 4, we study
the two point correlation function for positive integer spin p and half-integer p = 1

2 and
obtain the intersection numbers. In Sect. 5, we discuss super-matrix models. Within such
models, the two point correlation function is computed for p = 1

2 (Ramond) and p = 2
(Neveu–Schwarz). In Sect. 6, open intersection numbers are discussed through a logarithmic
potential. Section 7 is devoted to a summary and discussions. In an Appendix, we consider
the intersection numbers for logarithmic potentials from Virasoro equations.
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2 Intersection Numbers for p-Spin Curves

The p-spin matrix model is a generalization of Kontsevich Airy matrix model [9] defined by

Z =
∫

dBe− 1
p+1 TrB

p+1+TrB� (1)

where B is a k × k Hermitian matrix, and � a fixed k × k Hermitian matrix. The matrix
integral is well defined only for odd p. However we consider here those matrix integrals for
general p as generating functions, a bookkeeping of expectation values as for instance in
the loop equations. Furthermore exact solutions of matrix models with polynomial potentials
show that, in the limit of matrices of infinite size, the result remains analytic in domains of
instability of the potential [42]. For the p = 2model Kontsevich dealt with an i B3 theory.We
could have done the same here, but this would not change the algebraic relations discussed
below. Furthermore this would not save us for fractional p.

For the p = 2 model, Kontsevich proved that log Z , expanded in products of inverse
powers of theTr(1/�n), regarded as independent for largematrices,was a generating function
of the intersection numbers of the moduli of curves on a Riemann surface. The aim of this
article is to derive those expansions for arbitrary p, a priori a positive integer, but continued
also to fractional or negative values. The method consists of using two exact results a) an
N − k duality between k point functions of characteristic polynomials for N × N Hermitian
matrices in an external matrix source b) explicit formulae for k point functions for a Gaussian
model in an external matrix source. These two results are summarized below.

We consider in the following the average of a product of characteristic polynomials of the
Hermitian N × N matrix M with an external source A defined by

Fk(λ1, ..., λk) = 1

ZN
〈

k∏
α=1

det(λα · I − M)〉A,M

= 1

ZN

∫
dM

k∏
α=1

det(λα · I − M)e− N
2 trM

2+N trMA (2)

where one averages over the N × N matrices M ; A is a given Hermitian matrix, whose
eigenvalues are (a1, ..., aN ). I is the identity matrix and ZN is the normalization constant
of the probability measure for A = 0. The duality formula derived in [4,43] gives another
matrix integral for the same average

Fk(λ1, ..., λk) = 1

Zk

∫
dB

N∏
j=1

det(a j − i B)e− N
2 Tr(B−i�)2 (3)

where B is a k × k Hermitian matrix and � = diag(λ1, ..., λk) a source matrix; (we use
the notation ’Tr’ for traces of k × k matrices and ’tr’ for those N × N ). The normalization
constant is Zk = ∫

dBexp(− N
2 TrB

2). The proof is given in the Appendix B of [4].
Let us now show that the freedom provided by the N eigenvalues of the source A may

be used to tune the dual B model (3) to the p-spin matrix model (1). For that purpose it is
sufficient to specialize those formulae to an external matrix source A possessing (p − 1)
distinct eigenvalues A = (a1, .., a1, ...., ap−1, ...., ap−1). For simplicity we have assumed
that every distinct eigenvalue is degenerate N/(p − 1) times. Furthermore we now fix the

123



Punctures and p-Spin Curves fromMatrix Models

eigenvalues of A by the conditions

p−1∑
i=1

1

a2i
= p − 1,

p−1∑
i=1

1

ami
= 0 (m = 3, 4, ..., p)

p−1∑
i=1

1

a p+1
i

�= 0. (4)

For example consider the case p = 3.Choosing a1 = +1, a2 = −1, one has 1/a21+1/a22 = 2,
1/a31 + 1/a32 = 0, 1/a41 + 1/a42 �= 0 which satisfy the conditions (4).

Dealing with the B-side of the duality (3) we consider the expansion of
∏N

j=1 det(a j −i B)

in inverse powers of the a j :

N∏
j=1

det(1 − i B/a j ) = e− N
p−1

∑∞
l=1

1
l Tr(i B)l

∑p−1
j=1 1/a

l
j

For definiteness consider the p = 3 case; this expansion yields

N∏
j=1

det(1 − i B/a j ) = eNTr( 12 B
2− 1

4 B
4+··· ) (5)

The B2 terms in the exponential of (3) cancels with the one in (5) and one is left with

eNTr(i�B− 1
4 B

4+··· ). This is precisely the critical gap closing model studied in detail in [3].
Following Kontsevich [9] we want to expand the B-integral (more precisely the free energy
log Z ) in powers of Tr(1/�n). To this effect we take a scaling limit in which the eigenvalues
of � are of order N−3/4 and the matrix elements of B of order N−1/4 in the large N limit.
In this scaling limit all the higher terms of the form NTrBm,m > 4, in (5) are negligible.

For general p, following the conditions (4), the scaling limit is given by � ∼ N− p
p+1

and B ∼ N− 1
p+1 and the expansion of (5) stops with the highest term NTrB p+1. The two

remaining terms NTr�B and NTrB p+1 are both of order one. So in the scaling limit the
B-side of the duality (2, 3) is indeed a generalized Kontsevich model (1).

It remains to compute the intersection numbers from the expansion of Fk(λ1, . . . , λk) in
powers of the

t̄n = Tr
1

�n
. (6)

i.e. as the coefficients of Tr 1
�n1 Tr

1
�n2 · · · .

Now we appeal to the duality to compute them from the M-side of the duality(2). If
we expand

∏k
α=1 det(λα · I − M) in inverse powers of the λi ’s, one can reconstruct these

coefficients by combinatorics of the expectation values 〈trMq1 trMq2 · · · 〉, given the relation
〈 k∏
a=1

det

(
1 − M

λa

) 〉
= 〈e

∑k
a=1 tr log(1−M/λa)〉 = 〈e−∑∞

n=1
t̄n trMn

n 〉 (7)

where the bracket stands for an expectation value with the weight (2). Therefore if the loga-
rithm of the partition function (1) is expanded in terms of the t̄n1 t̄n2 · · · , the coefficients, i.e.
the intersection numbers, are given by the connected expectation values 〈trMn1 trMn2 · · · 〉c.
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If the expression of 〈trMn1 · · · trMnq 〉 as functions of the a j ’s is not simple, we know
from our previous work an exact expression for the n-point correlation functions

U (σ1, ...., σn) = 〈treσ1M · · · treσnM 〉 (8)

as function of the eigenvalues a j . These correlation functions are generating functions of
the expectation values 〈trMn1 · · · trMnq 〉. One can then reconstruct the expansion of Fk in
powers of the 1/λi ’s from the expansions of the U ’s in powers of the σ ’s.

Indeed for arbitrary eigenvalues a j of the source matrix A, we have found in [5] that

U (σ ) = 〈treσM 〉 = 1

Nσ
e

N
2 σ 2

∮
du

2iπ

N∏
j=1

(
1 − σ

a j − u

)
eNσu (9)

where the contour in the u-plane encloses the eigenvalues a j . Similarly the n-point correlation
function U (σ1, ..., σn) are given by contour integrals over n complex variables σi ,

U (σ1, ...., σn) = 〈treσ1M · · · treσnM 〉

= e
∑n

1 σ 2
i

∮ n∏
i=1

dui
2iπ

e
∑n

1 uiσi
N∏

α=1

n∏
i=1

(
1 − σi

aα − ui

)
det

1

ui − u j + σi
(10)

The contours are taken around the poles ui = aα , not around the poles which come from
the determinant.

We now specialize those formulae to the above externalmatrix sourceA possessing (p−1)
distinct eigenvalues A = (a1, .., a1, ...., ap−1, ...., ap−1) satisfying the constraints (4). Then
we expand, for reasons specified below,

N∏
j=1

(
1 − σ

a j − u

)
= e

N
p−1

∑p−1
1 log (1− σ

a j−u )

in inverse powers of the 1/a j , taking σ j and u as small and same order. For instance if p = 3,
with the conditions (4), the term eNσu in (9) cancels and, the leading term in the exponent is
eN/4[u4−(u+σ)4]. In the large N scaling range in which Nσ� ∼ N 0, i.e. σ ∼ N−1/4, we can
neglect the powers in u and σ higher than 4.

For arbitrary p, with this choice of the matrix source A, in the scaling range under con-

sideration � ∼ N− p
p+1 , σ and u of order N−1/(p+1), we obtain a generating function for the

one-point intersection numbers of p-spin curves (i.e. the coefficients of single trace operators
Tr(1/�n) from the integral (3),

U (σ ) = 1

Nσ
exp

⎡
⎣− N

p − 1
σ

⎛
⎝

p−1∑
j=1

1

a j

⎞
⎠
⎤
⎦

∫
du

2iπ
eC[u p+1−(u+σ)p+1] (11)

with C = N
p2−1

∑p−1
i=1

1
a p+1
i

. If we choose further the condition
∑ 1

a j
= 0, the exponential

factor in the front of the integral can be omitted. The asymptotic behaviour under consider-
ation depends of the integration path in the u-plane. Different paths correspond to different
asymptotic limits and we need to consider them all. So at this stage we leave the integration
path unspecified and return to it later.

With the conditions (4), the average of the characteristic polynomials for the matrix B
of (3) turns into the p-th generalized Kontsevich model (1). In this matrix model (1), we
consider the eigenvalues λ j of the source matrix � as large, and the intersection numbers are
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obtained from a 1/� expansion. In the dual formulation the large � expansion corresponds
to an expansion of U (σ ) for small σ .

In the large N limit we obtain, with this choice of the matrix source A, a generating
function for the intersection numbers of p-spin curves [5],

U (σ ) = 1

σ

∫
du

2iπ
eC[u p+1−(u+σ)p+1] (12)

or, after translation,

U (σ ) = 1

σ

∫
du

2iπ
eC[(u−σ/2)p+1−(u+σ/2)p+1] (13)

with C = N
p2−1

∑p−1
i=1

1
a p+1
i

. Since we have expanded the integrand of (9) in the scaling limit

u ∼ σ ∼ N−1/(p+1) the contours for the re-scaled ui ’s are now taken along specific paths
needed to give a meaning to those expressions. The choice of the integration paths in the
u-plane will determine the nature of the asymptotics. This will be exemplified by the p = 3
case which leads to Airy functions. For this p-spin model, the asymptotic expansion in σ

is governed by which of p Stokes regions one is considering in the complex u-plane. The
asymptotic behavior of the integrand in (13) being an exponential of σu p there are p sectors
labeled by an index from 0 to (p-1) or, in accordance with the mathematical literature, a
“spin”-index l = −1, 0, . . . , p − 2, [34,35].

Let us first consider the case p = 3 for which (13) leads to an Airy function Ai(ζ ) (as in
[4])

U (σ ) = 1

(Nσ)4/331/3
Ai(ζ ) (14)

with ζ = −N 2/34−13−1/3σ 8/3. The Airy function Ai (x) is defined by

Ai ((3a)−
1
3 x) = (3a)1/3

π

∫ ∞

0
dt cos(at3 + xt). (15)

The standard expansion of the Airy function for small x consists of two distinct series,

U (σ ) = 1

(Nσ)4/331/3

[
Ai(0)

(
1 + 1

3!ζ
3 + 1 · 4

6! ζ 6 + 1 · 4 · 7
9! ζ 9 + · · ·

)

+Ai
′(0)

(
ζ + 2

4!ζ
4 + 2 · 5

7! ζ 7 + 2 · 5 · 8
10! ζ 10 + · · ·

)]
(16)

where the first series corresponds to the spin-index l = 1 with σm+ 2
3 , and the second series

to a spin-index l = 0 with σm+ 1
3 . The overall factors are Ai(0) = 1

2π31/3
�( 13 ) and Ai ′(0) =

− 1
2π �( 23 ).
A priori a third series with spin-index l = −1 could have been present, whichwould corre-

spond to an asymptotic expansion of the form ζ 2+3m (m=0,1,2,...), leading to σ
8
3 (2+3m)− 4

3 =
σ 4+8m , but such “Ramond” contribution is absent from the final asymptotics.

123



E. Brézin, S. Hikami

Similarly for arbitrary p, there are terms labeled by the spin index l. The asymptotic
expansion is generated by the integral

U (σ ) = 1

Nσ

∫
du

2iπ
exp[−cσu p]

×exp

[
−c

(
p(p − 1)

3!4 σ 3u p−2 + p(p − 1)(p − 2)(p − 3)

5!42 σ 5u p−4 + · · ·
)]

(17)

where the constant c is related to C in (13) : c = (p + 1)C , namely

c = N

p − 1

p−1∑
i=1

1

a p+1
i

(18)

a number proportional to N. Expanding in powers of σ the second exponential and changing
the integration variable u → (cσ)−1/pu1/p , with a phase which depends of the Stokes sector
under consideration, one obtains for the l-th sector

Ul(σ ) = 1

N

∑
n

〈τn,l〉 1

nπ
�

(
1 − 1

p
− l

p

)
c
n+(l+1)/p

p+1 p1+
pn+l+1
p+1 σ n+(l+1)/p (19)

in which the spin index l is a fixed number, taking one of the values −1 to p − 2. The
Gamma function in (19) and the power of p have been extracted to match the conventional
normalization of the intersection numbers 〈τn,l〉.

The result is presented in (19) after expansion of the second exponential in (17). However
it is interesting to return to the meaning of this expansion in terms of the 1/N expansion.
The coefficient c is proportional to N and the expansion is performed for cσ = O(1), i.e.
σ = O(N−1).Therefore collecting the powers of 1/N in the r.h.s. of (19) one finds that the
n-th term is proportional to 1/N 2g with an index g related to n by

(2g − 1)

(
1 + 1

p

)
= n + 1

p
(l + 1) (20)

So, as in ’t Hooft classical result, g is indeed the genus of the Riemann surface under
consideration. Finally we may present the result (19) in the more transparent form

Ul(σ ) =
∑
g

〈τn,l〉g 1

nπ
�

(
1 − 1

p
− l

p

)
c
2g−1
p pgσ (2g−1)(1+ 1

p ) (21)

This generalizes the asymptotic expansion discussed above for the Airy case (p=3), with
l = 1, 2. Again, like in the Airy case for p = 3, the l = −1 term which would violate (20)
with integer n and g, is missing : all intersection numbers 〈τn,l〉 are of NS-type.

It is interesting to note that (20) is consistent with the Riemann–Roch relation (RR) which,
for s-marked points (punctures), reads [12]

3g − 3 + s =
s∑

i=1

ni + (g − 1)

(
1 − 2

p

)
+ 1

p

s∑
i=1

li (22)

or equivalently,

(2g − 1)

(
1 + 1

p

)
=

s∑
i=1

(
ni + 1

p
li

)
+ (1 − s + 1

p
) (23)
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For one marked point (s = 1), this gives, as was derived in (20)

(2g − 1)

(
1 + 1

p

)
= n + 1

p
(l + 1) (24)

This shows the consistency of the matrix model results with the basic geometrical results
derived by Witten [12]. The same approach in which one considers several marked points
allows one to show that the matrix model is consistent with this RR geometrical rule. Further-
more we shall argue later that the matrix model provides a generalization of this RR relation
for half-integer values of p.

Finally let us quote the simplest results that one derives from (19)

〈τ1,0〉g=1 = p − 1

24
,

〈τn,l〉g=2 = (1 + 2p)(p − 1)(p − 3)

p · 5! · 42 · 3
�(1 − 3

p )

�(1 − 1+l
p )

〈τn,l〉g=3 = (1 + 2p)(p − 1)(p − 5)(8p2 − 13p − 13)

p2 · 7!4332
�(1 − 5

p )

�(1 − 1+l
p )

(25)

where n and l have to satisfy the condition (20) which relates n and g at fixed l; otherwise the
intersection numbers vanish. Up to genus g = 9, explicit values of the intersection numbers
had been obtained in [8]. Note the factors (p − 1) and (2p + 1) in the intersection numbers
for genus g on which we return in Sect. 3 and show that for g ≥ 2, these two factors are
always present. In conclusion the index l takes only the (p− 1) values 0, 1, ..., p− 2, which
correspond to NS-punctures. The R -punctures which could have occurred for l = −1 are
absent.

3 One Point Function for Integer and Half-Integer p

Let us first repeat what was done in the previous section in a slightly different setting, more
adapted to extensions to half-integer or negative values of p. We start as earlier from the
representation of the one-point function 〈treσM 〉 in the scaling limit, given by (13). The
integral is around a contour in the u-plane which will depend upon the asymptotic domain
under consideration:

U (σ ) = 1

σ

∫
du

2iπ
eC((u− 1

2 σ)p+1−(u+ 1
2 σ)p+1). (26)

For half integer p, the exponent has a branch cut, and the expansion in powers of σ gives an
infinite series. For half integral p, we perform the change of variable u to y

u = i

2
(y2 − y−2), du = i

(
1

y3
+ y

)
dy (27)

which will turn out to be better suited to discuss half-integer p. The one point functionU (σ )

of (26) becomes

U (σ ) = i

2

∮
dy

2iπ
(y + 1

y3
)e

C
(
iσ
4

)p+1 1
y2p+2 [(y2−i)2p+2−(y2+i)2p+2]

(28)

The power (2p + 2) in (28) is twice the (p + 1) in (26) and it makes the continuation to
half-integers p easier. (This formulation for half-integer p is related to the spin structure, in
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which the double covering for a half-integer spin is related to the spin moduli space M̃g as
shown in [37].) The integral over y may lead to both NS and R-punctures. As we will see the

NS type is described as integrals along cuts in the t-plane with u = t
1
p in (19). In addition

the pole at y = 0, provides a non-vanishing residue, which corresponds to a singularity of
R-type.

The one point correlation function is now written

U (σ ) = i

2

∫
dy

2iπ

(
1

y3
+ y

)
g(y) (29)

with

g(y) = exp

[
C(

i

2
)p+1(

σ

2
)p+1 1

y2p+2

(
(y2 − i)2p+2 − (y2 + i)2p+2

)]
(30)

Let us specify this factor for a few simple values of p.
(i) positive integer p=1,2

g(y) = exp

[
i
1

2
Cσ 2(y2 − y−2)

]
(p = 1)

g(y) = exp

[
−Cσ 3 1

16
(3y4 − 10 + 3

1

y4
)

]
(p = 2) (31)

(ii) negative integer p= − 1, − 2, − 3

g(y) = exp

[
Cσ−1 16y4

(1 + y4)

]
(p = −2)

g(y) = exp

[
−128iCσ−2 y10 − y6

(1 + y4)4

]
(p = −3) (32)

The case of p = −1 is obtained from a limit p → −1 in (30), noting that the constant c,
given by (18), c = ξ/(p + 1),

g(y) =
(
y2 + i

y2 − i

)2ξ

, (p = −1) (33)

(iii) positive half integer p = 1
2 ,

3
2

g(y) = exp

[
C(i)1/2

1

4
σ

3
2 (3y − 1

y3
)

] (
p = 1

2

)

g(y) = exp

[
C(i)3/2

1

16
σ

5
2 (5y3 − 10

y
+ 1

y5
)

] (
p = 3

2

)
(34)

(iv) negative half integer p = − 1
2 ,− 3

2

g(y) = exp

[
−C(i)

3
2
σ

1
2

y

] (
p = −1

2

)

g(y) = exp

[
4C(i)

1
2 σ− 1

2 (
y

1 + y4
)

] (
p = −3

2

)
(35)

(i) positive integer pWenow return to (29) with positive integer p to check that we recover
in this new setting the results of Sect. 2. Let us start with the pure Gaussian case (p = 1)

123



Punctures and p-Spin Curves fromMatrix Models

which reads from (31) and (29), with c = i
2C ,

U (σ ) =
∮

dy

2iπ

(
1

y3
+ y

)
ecσ

2(y2−y−2) (36)

This is just the contour integral of a total derivative and therefore it vanishes. In particular
there are no terms which are proportional to σ n in U (σ ), i.e. R-type.

To summarize in the trivial p = 1 case 〈τ−2,−1〉g=0 = 0. For g ≥ 1, there is no contri-
bution, thus all intersection numbers vanish 〈τn,l〉g = 0. We thus expect that the intersection
numbers should involve a factor (p−1). The presence of this factor had been already checked
for the intersection numbers up to g = 9 [8].

For integer p > 1, similarly the integral (29) over a circle vanishes. However again the
presence of the exponent u p implies different asymptotic behaviors in different regions, as
discussed at length in the previous section. In this formalism with integral (29) over y, let us
look for instance at the p = 2 case with , from (31),

g(y) = exp

[
−a

(
y4 + 1

y4

)]

with a = −6c( σ
2 )3 and thus

U (σ ) =
∫

dy(y + 1

y3
)e

−a
(
y4+ 1

y4

)
(37)

Along the line at π/4 this yields after change y4 → t
∫ ∞

0
dt

(
t−

1
2 + t−

3
2

)
e
−a

(
t+ 1

t

)
(38)

= 1

4a
1
2

e
10
3 a

[
�

(
1

2

)
+ a�

(
−1

2

)
− a2�

(
−1

2

)
− a2�

(
−3

2

)
+ O(a3)

]
(39)

This expansion contains, as seen earlier, only NS terms, and it agrees with (19).
If we could not find any R-puncture in 〈τn,−1〉 for positive integer p, it will be shown that

it exists for (ii) negative values of p and also for (iii),(iv) half-integer p. We consider half-
integer p = − 1

2 ,− 3
2 , ... as well as negative integers p = −1,−2,−3, ... in the following.

(ii) negative integer p Let us examine the consequence of the previous formulae if we extend
them to negative values of p. First the connection between n and g established in (22)

(2g − 1)

(
1 + 1

p

)
= n + 1

p
(l + 1) (40)

may be extended to negative integer p.Wehave to specify the spin-index l which characterizes
the integration sectors and takes now |p| different values,

l = 0,−1,−2,−3, ..., p + 1 (p ≤ −1). (41)

The R-type is still associated with l = −1. The choice of negative values of l in the selection
rule (40) for labelling the |p| sectors, is reasonable since l

p remains positive.
(ii-a) p = −1 case Since this case is a limit we need to return here to the initial represen-

tation (13)

U (σ ) = 1

σ

∫
du

2iπ
eC([u−σ/2)p+1−(u+σ/2)p+1] (42)
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with C = N
p2−1

∑p−1
i=1

1
a p+1
i

to obtain the limit as p goes to −1.

U (σ ) = 1

N

∫
du

2iπ

(
u − 1

2

u + 1
2

)N

(43)

Note that σ is scaled out, andU (σ ) is a constant independent of σ . This fact is consistent with

(20), where n = 1, l = 0 and p = −1, so that the σ dependence becomes σ
n+ 1

p (1+l) = σ 0.
Also note that in the limit p → −1, the integral becomes (43), sinceC involves a 1

p+1 factor.

Writing (u − 1
2 )/(u + 1

2 ) = e−z and u = (1 + e−z)/(1 − e−z), we obtain

U (σ ) = − 1

N

∫ ∞

0

dz

2π

e−z

(1 − e−z)2
e−Nz (44)

This integral diverges linearly at the origin and a regularization is needed. As argued below
this divergence is in fact linked to genus zero and after a zeta-regularization by the genus,
the divergent genus zero term is discarded. Then one finds

U (σ ) =
∫ ∞

0

dz

2π

(∑
Bn

yn−1

n!
)
e−Nz = 1 − 1

2N
+ 1

12N 2 − 1

120N 4 + · · · (45)

where the Bn are Bernoulli numbers t
1−e−t = ∑∞

0
Bn
n! t

n . For this p = −1 case, there is no
σ dependence, and instead we have considered the dependence in the size N of the matrix.
This leads to the Euler characteristics [6,14,15],

χ(M̄g,1) = ζ(1 − 2g) = − 1

2g
B2g (46)

Note that for p = −1 we have no choice other than l = 0 in the list (41), we have the unique
choice l = 0 from (40).

(ii-b) p= - 2 We are dealing with

U (σ ) =
∫

dy

(
y + 1

y3

)
e
− y4

σ(1+y4) dy = 1√
σ

∫
dx

1

x2
e
− 4x2

1+σ x2 (47)

where the equality is obtained first by noting the invariance of the integral under y → 1/y
and then y2 → √

σ x . This model is in fact equivalent to a unitary matrix model as was shown
in [19]. Then the expansion of the integral (47) provides

U (σ ) = − 1

2
√

πσ

(
1

8
σ + 32σ 2

3!27 + 32 · 52
5!29 σ 3 + 32 · 52 · 72

21 · 218 σ 4 + · · ·
)

. (48)

It reproduces the results of the unitary matrix model. For the unitary matrix model, there
are terms which come from the angular measure which yields a logarithmic potential. The
result of (47) is obtained from the unitary matrix model with the coefficientm of logarithmic
potential in the limit m → 0 [19]. We find l = 0, and the expansion provides terms of the

form σ g− 1
2 for genus g = 1, 2, 3, .... The intersection numbers are 〈τn,0〉g , which are all of

NS type. There is no R-type for the one point function. The result (48) gives the intersection
numbers,

〈τ1,0〉g=1 = −1

8
, 〈τ2,0〉g=2 = 1

27
, . . . (49)

which agrees with the general expression (25) for the intersection numbers of p spin curves.
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(ii-c) p= - 3 The possible values of l are l = −1, 0, 1. The one point function U (σ )

becomes after the scaling y = σ
1
3 x ,

U (σ ) =
∫

dx

(
σ− 2

3

x3
+ σ

2
3 x

)
e
−a x6(1−σ4/3x4)

(1+σ4/3x4)4 (50)

From the selection rule relative to p = −3, the possible intersection numbers are
〈τ1,0〉g=1, 〈τ2,−1〉g=2, 〈τ4,1〉g=3, 〈τ5,0〉g=4, ... in which only l = −1 is of R-type. We
have from (50),

U (σ ) = −1

3
σ− 2

3 + 5

18
σ

2
3 �

(
1

3

)
+ 16σ 2 + · · · (51)

and thus

〈τ0,1〉g=0 = −1

3
, 〈τ1,0〉g=1 = 5

18
, 〈τ2,−1〉g=2 = 16, . . . (52)

the last one being of R-type (l = −1) For the case of negative even integers (p = −2m),
the selection rule (40) forbids l = −1 since (2g−1)

p is a half-integer. Therefore we have no
possibility of R-puncture when p is an even negative integer, whereas it does occur for odd
negative integers with l = −1.

(iii) positive half-odd integer case p ∈ 1
2 + Z The possible values of l are now 2p instead

of p since we made the change of variables (27) which doubles the number of sectors. This
leaves the possibilities of

l = −1,−1

2
, 0,

1

2
, ...., p − 3

2
(53)

.
(iii-a) p= 1

2 For p = 1
2 , the only possible value is l = −1, which is an R-puncture. We

have from (34), the one point function,

U (σ ) = i

2

∮
dy

2iπ

(
1

y3
+ y

)
e
c′σ

3
2
(
3y− 1

y3

)
(54)

where the above integral runs over a contour around y = 0, and c′2 = i
2c

2. The possible
value of the spin component l is only l = −1 from (53). Indeed we have the selection rule
for the intersection numbers in (20) σ 3(2g−1) = σ n+2(l+1) with l = −1, which is integer
power of σ . Hence the intersection numbers 〈τn,l〉g are with n = 3+6m (m = 1, 2, ...). Non
vanishing possible intersection numbers are 〈τ3,−1〉g=1, 〈τ9,−1〉g=2, 〈τ15,−1〉g=3, .... These
values may be obtained, after a Taylor expansion of the second exponential term, and picking
up the residues at the y = 0 pole. This one point is easily computed in closed form by the
same technique,

Thus we have

U (σ ) = i

2

∞∑
j=0

c′4 j+2 32+3 j

j !(3 j + 3)! (−1) jσ 3+6 j (55)

These terms are consistent with the selection rule, since the g dependence in σ is σ 3(2g−1).
Using the expression of U (σ ) of (55), we have an explicit result in closed form for

T (z) =
∫ ∞

0
U (σ )σ 4e−σ 2/zdσ = 9

4
i z4e27c

′4z3 (56)
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This equation shows the relation between p = 1
2 and the Airy distribution (p = 2) with a

logarithmic term.
(iii-b) p= 3

2 This spin p = 3
2 may correspond to a Rarita–Schwinger operator [37,38].

The possible values of l are l = −1,− 1
2 , 0. We have

U (σ ) =
∮

dy

2π i

(
1

y3
+ y

)
e
c( σ

2 )
5
2
[
5y3− 10

y + 1
y5

]
(57)

where the contour runs around y = 0. This gives terms of order σ
5
3 , σ 5, σ

25
3 , ..., which are

consistent with the selection rule for p = 3
2 . The expansion ofU (σ ) gives the series of terms

of 〈τn,l〉gσ n+ 2
3 (l+1), where the coefficients, i.e. intersection numbers, become 〈τ−2,− 1

2
〉g=0,

〈τ1,0〉g=1, 〈τ5,−1〉g=2, 〈τ8,− 1
2
〉g=3. The term l = −1 which gives an integer power of σ is

of R-type. At higher orders the R-type appears with σ 5, σ 15, σ 25, .... These terms of integer
power σ 5+10m,m = 0, 1, 2, 3, ... are obtained from the contour integral along the circle
|y| = 1 where the pole at y = 0 in (57) exists, which are evaluated as

UR(σ ) = 5

25
c2σ 5 − 7 · 54

3 · 216 c
6σ 15 + 79 · 11 · 57 · 32

10! · 224 c10σ 25 + · · · (58)

where the first term is g = 2, and the second term is a g = 5 contribution to a R-puncture.
The NS-type intersection numbers are obtained from (57) in the sector defined by the

replacement y3 = t , and with a = −c( σ
2 )5/2.

UNS(σ ) = 1

3

∫ ∞

0

dt

2π
t−

2
3 (t

1
3 + 1

t
)e−a(5t−10t−1/3+t−5/3)

= 1

3a

∫ ∞

0

dt

2π
a

2
3 t−

2
3 ((

t

a
)1/3 + a

t
)e−5t

(
1 + 10

t1/3
a4/3 + (

50

t2/3
− 1

t5/3
)a8/3 + · · ·

)

(59)

It provides a series expansion,

UNS(σ ) = 1

15a

∫ ∞

0

dx

2π

(
a1/3

( x
5

)−1/3 + a5/3(
x

5
)−5/3

)
e−x

(
1 + 10a4/3( x

5

)1/3 + · · ·
)

= 51/3

15
�

(
2

3

)(
−c

(σ

2

))− 5
3 + 55/3

15
�

(
−2

3

)(
−c

(σ

2

)) 5
3 + · · · (60)

This series gives terms with non-integer powers of σ , thus of NS type, which are consistent
with the selection rule for p = 3

2 . Indeed the series (60) shows non-vanishing intersection
numbers 〈τ−2,− 1

2
〉g=0, 〈τ1,0〉g=1, 〈τ5,−1〉g=2,...., which were expected from the selection rule

σ
(2g−1)(1+ 1

p ) = σ
n+ 1

p (l+1).
The case of p = 3

2 is particularly interesting since the level k of su(2), (k = p − 2),
becomes k = − 1

2 . The N = 2 super symmetric ŝu(2)− 1
2
WZW model is a non-unitary

conformal field theory with central charge c = 3 − 6
k+2 = −1 [22,24], and for the coset

ŝu(2)−1/2/u(1) WZW model, the central charge c = −2. The ŝu(2) means the affine super
algebra [22].

(iv) negative half-odd integer p For negative half-odd integers p, there are 2|p| allowed
values of l, namely l = −1,− 1

2 , 0,
1
2 , 1,

3
2 , ..., |p| − 3

2 .

(iv-a)p = − 1
2 case
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Since for p = − 1
2 the factor 1

p (l + 1) becomes an integer, the σ dependence does not

involve fractional powers. Thus the p = − 1
2 is interpretated as R-type punctures.

U (σ ) has here the expression

U (σ ) =
∫

dy

(
1

y3
+ y

)
ec

√
σ 1

y (61)

where the y-integral runs on a contour around y = 0. Expanding in σ the contour integral,

the only non-vanishing term is c2
2 σ . Since the intersection number 〈τn,l〉 is the coefficient

of the term σ
n+ 1

p (l+1) (= σ
(2g−1)(1+ 1

p )) in the expansion of U (σ ), this term corresponds to
n = 1, l = −1, with g = 0. This corresponds to an R-puncture (l = −1) for g = 0 with
non-zero 〈τ1,−1〉g=0.

The first term 1
y3

does not contribute to the pole at y = 0. Given the essential singularity
at the origin one has to be more careful.

Indeed if one changes y → − 1
x , the first term of the integral becomes

∫ ∞

0
dxxe−c

√
σ x = 1

c2σ
(62)

which could not be found in a σ expansion. This result corresponds to a term σ
n+ l+1

p with
p = − 1

2 , n = −1, l = −1. This leads to a non-zero intersection number 〈τ−1,−1〉g=1. The
expansion has just two terms of order σ and σ−1, and there are no more terms. This is
consistent with the factor (2p + 1) in the intersection numbers for general p (as shown in
(19) [8]), which vanishes for p = − 1

2 .
(iv-b) p= − 3

2 For p = − 3
2 , there are 2|p| allowed values for l are l = −1,− 1

2 , 0 and the
selection rule for g, n, l reads

σ
(2g−1)

(
1+ 1

p

)
= σ (2g−1) 13 = σ n− 2

3 (l+1) (63)

Therefore for g = 0, it gives the power σ− 1
3 , which leads to n = 0, l = − 1

2 , i.e. 〈τ0,− 1
2
〉g=0.

For g = 1, it becomes σ
1
3 , and we obtain n = 1, l = 0, i.e. 〈τ1,0〉g=1. For g = 2, we

σ
(2g−1)(1+ 1

p ) = σ (2g−1) 13 = σ . Thus we have n = 1, l = −1, 〈τ1,−1〉g=2, an R-type case.

For g = 3, we have σ (2g−1) 13 = σ
5
3 , then n = 2, l = − 1

2 , 〈τ2,− 1
2
〉g=3.

For g = 4, we have similarly 〈τ3,0〉g=4 with σ
7
3 . For g = 5, we have σ 3 and 〈τ3,−1〉g=5.

This is again an R-type. Thus we find R-punctures at g = 2 + 3m, (m = 0, 1, 2, ...), for
which U (σ ) yields integer powers σ 2m+1, and the intersection numbers are

〈τ2m+1,−1〉g=2+3m, (m = 0, 1, 2, ...) (64)

We can verify these results by the explicit calculation of (29).

We take c2
1
2 σ− 1

2 = σ ′− 1
2 for simplicity. The one point function is

U (σ ) =
∮

dy

(
1

y3
+ y

)
exp

(
−σ ′− 1

2
y

1 + y4

)
(65)

where the integral runs around y = 0. This integral gives an expansion in integer powers of σ ′
ifwe rescale y byσ ′1/2y. This leads toR-intersectionnumberswith aσ 2m+1 (m = 0, 1, 2, ...))
dependence.
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When we change y → σ ′− 1
6 t− 1

3 in (65), we obtain

U (σ ) = −1

3

∫
dt

(
σ ′− 1

3 t−
5
3 + σ ′ 13 t−

1
3

)
exp

(
− t

1 + σ ′ 23 t 43

)

=
(

−1

3

)[
σ ′− 1

3 �

(
−2

3

)
+ 5

2
σ ′ 13 �

(
2

3

)
+ 3σ ′ + O

(
σ ′ 53

)]
(66)

The integral of y is from 0 to ∞, and it leads to gamma function. The expansion of this

integral for small σ ′ gives terms of order σ
1
3 (2g−1), (g=0,1,2,...). This expansion is consistent

with the result of the selection rule (63). Thus we have an R-puncture l = −1, with integer
powers of σ , for g = 2 + 3m, (m = 0, 2, 3, ...). The dependence in σ for the R-type reads

σ (2g−1) 13 = σ (2m+1) with g = 2 + 3m, which is consistent with the R-calculation of the
integral (65). We also find NS-types with fractional powers of σ by (66). This analysis may
be easily extended to p = − 7

2 ,− 9
2 , ...., and we find both R (l = −1) and NS (l �= −1)

contributions.
Thus we have studied many cases provided by the representation (29) of the one point

function. We have found R and NS-punctures in those cases. The computation of the inter-
section numbers of R-punctures for p = 1

2 ,
3
2 , ... results from a contour integral around the

pole at y = 0. For negative integers and negative half-integers, the intersection numbers are
obtained by the same technique, and they yield both R and NS- punctures.

4 Two Point Correlation Function U(�1,�2)

Higher correlation function, involving the intersection numbers which appear as coefficients
of several t̄n in the expansion of the free energy, can be handled by the same technique. Again
one considers in the 1/λa expansion of 〈∏K

a=1 det(1 − M
λa

)〉 the coefficients which involve
〈trMn1 trMn2 · · · 〉. A generating function for these coefficients are theU (σ1, · · · , σn). Let us
consider the two point function

U (σ1, σ2) = 〈treσ1M treσ2M 〉. (67)

It is given by the formula (10) for n = 2,

U (σ1, σ2) = e
∑n

1 σ 2
i

∮ 2∏
i=1

dui
2iπ

e
∑n

1 uiσi
N∏

α=1

2∏
i=1

(
1 − σi

aα − ui

)
det

1

ui − u j + σi
(68)

The diagonal part of the determinant gives the disconnected part 〈treσ1M 〉, 〈treσ2M 〉. The off
-diagonal term gives the connected correlator which, after the shift u1 → u1 − 1

2σ1, u2 →
u2 − 1

2σ2, deals with a product, which is conveniently replaced by an additional integration

1

u1 − u2 + 1
2 (σ1 + σ2)

1

u1 − u2 − 1
2 (σ1 + σ2)

= 2

σ1 + σ2

∫ ∞

0
dxe−x(u1−u2)sinh

x

2
(σ1 + σ2) (69)

Positive integer pWenow return to the large-N scaling [6]which led to the p-spin formulae
with σi ∼ N−1/(p+1), with the same scaling expansion of

∏N
α=1

∏2
i=1(1 − σi

aα−ui
) for the
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source specified by the conditions (4). This yields

Uc(σ1, σ2) = 2

σ1 + σ2

1

(2iπ)2

∫ ∞

0
dx

∫
du1du2 sinh

(
1

2
x(σ1 + σ2)

)
e−x(u1−u2)

×exp

[
− N

p2 − 1
c

2∑
i=1

((
ui + 1

2
σi

)p+1

−
(
ui − 1

2
σi

)p+1
)]

(70)

where the u1u2 integrals are similar to the u-integral for the one-point function. The expres-
sion (70) has the form

Uc(σ1, σ2) = 2

σ1 + σ2

1

(2iπ)2

∫ ∞

0
dx

∫
du1du2 sinh

(
1

2
x(σ1 + σ2)

)

×e−x(u1−u2)G(u1, σ1)G(u2, σ2) (71)

with

G(u, σ ) = exp

[
− N

p2 − 1
c

((
u + 1

2
σ

)p+1

−
(
u − 1

2
σ

)p+1
)]

. (72)

These expressions may all be expanded in powers of σ1 and σ2 and provide a generating
function of the two-point intersection numbers. The lowest order in σ1 is a term of order

σ
1
p
1 σ

2+ 1
p

2 ; in agreement with (22), the RR selection rule, this gives a non-zero 〈τ0,0τ2,0〉g=1

〈τ0,0τ2,0〉g=1 = p − 1

24
(73)

which is equal to 〈τ1,0〉g=1 as implied by the string equation, or lowest Virasoro constraint
for the equations of motion,

〈τ0,0τn,l〉g = 〈τn−1,l〉g (74)

When p = 2, we find

U (σ1, σ2) = 2

(σ1 + σ2)
√

σ2
e

1
24 (σ 3

1 +σ 3
2 )

∫ ∞

0
dx sinh(x

√
σ1

2
(σ1 + σ2))e

− σ1+σ2
σ2

x2

= 1

σ1 + σ2
e

1
24N ′2 (σ1+σ2)

3
∞∑

m=0

(−1)m

m!(2m + 1)

(
σ1σ2(σ1 + σ2)

8

)m √
σ1σ2

=
∑
n1,n2

〈τn1,0τn2,0〉gσ n1+ 1
2

1 σ
n2+ 1

2
2 (75)

Thuswe have obtained explicit formulae for the intersection numbers 〈τn1,oτn2,0〉g at arbitrary
genus g. The above formula for p = 2 may be expressed in a symmetric way as

Uc(σ1, σ2) = 2

(σ1 + σ2)
e

1
24 (σ 3

1 +σ 3
2 )

∫ ∞

0
dx sinh

(
x
√

σ1σ2

2
(σ1 + σ2)

)
e−(σ1+σ2)x2 (76)

This does not yield any integer power of the σi , since sinh(x) is odd : the powers of σi
(i = 1, 2) are all half-integers. Hence the two-puncture points are of NS- type, no R-puncture
for p = 2.
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For p = 3, similarly from the explicit expression for the two-point function [44], one
does not find R-punctures. Indeed for p = 3, we have [44],

Uc(σ1, σ2) = 2

(σ1 + σ2)(3σ2)1/3

∫ ∞

0
dx sinh

(
σ1 + σ2

2
(3σ1)

1/3x

)
Ai (x − 1

4 · 31/3 σ
8/3
1 )

×Ai

(
−

(
σ1

σ2

)1/3

x − 1

4 · 31/3 σ
8/3
2

)
(77)

where the Airy function Ai (x) is defined by

Ai (x) =
∫ ∞

−∞
du

2π
e

i
3 u

3+iux (78)

The above formula may be written in a symmetric way as

Uc(σ1, σ2) = 2

(σ1 + σ2)

∫ ∞

0
dx sinh

(
σ1 + σ2

2
(3σ1)

1/3(3σ2)
1/3x

)

×Ai

(
(3σ2)

1/3x − 1

4 · 31/3 σ
8/3
1

)
Ai

(
−(3σ1)

1/3x − 1

4 · 31/3 σ
8/3
2

)
(79)

Note that the Airy function Ai (x) decays exponentially for x → +∞, and oscillates when
x → −∞. Therefore the integral over x is finite. The p = 3 intersection numbers for two
points are all of Neveu–Schwarz type. More details for this p = 3 case may be found in [44].

For p = 4, we have similarly

Uc(σ1, σ2) = 2

(σ1 + σ2)(4σ2)1/4

∫ ∞

0
dx

∫ ∞

0
dv1dv2 sinh

(
σ1 + σ2

2
(4σ1)

1/4x

)

×e
− σ31

2

(
1

4σ1

)1/2
v21−

σ32
2

(
1

4σ2

)1/2
v22 e− 1

4 v41+xv1− 1
4 v42−axv2 (80)

where a = (σ1/σ2)
1/4. This may be written as

Uc(σ1, σ2) = 2

(σ1 + σ2)

∫ ∞

0
dx sinh

(
σ1 + σ2

2
(4σ1)

1/4(4σ2)
1/4x

)

×φ+(x)φ−(x) (81)

where

φ+(x) =
∫

dve− 1
4 v4− 1

4 σ
5/2
1 v2+(4σ2)1/4xv (82)

φ−(x) =
∫

dve− 1
4 v4− 1

4 σ
5/2
2 v2−(4σ1)1/4xv (83)

The two-points intersection numbersmay be obtained for larger values of p by thismethod
[44].

(ii) half-integer p Using the expression (34) of g(y), the two point correlation function
U (σ1, σ2) is given by

U (σ1, σ2) =
∮

dy1dy2
(2π i)2

(
1

y31
+ y1

)
(y2 + 1

y32
)g(y1)g(y2)

× 1(
σ1
2 u1 − σ2

2 u2
)2 − 1

4 (σ1 + σ2)2
(84)
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where ui = i
2 (y

2
i − y−2

i )and g(yi ) is given by (34) and (35). The double-integral is around
contours circling around y1 = y2 = 0.

(ii-a) p = 1
2 The p = 1

2 case presents, as we have seen for the one point function in (55),
a spin component l = −1). The two point function for p = 1

2 is given from (84) and, after

the shift yi → σ
− 1

2
i yi , c′2 = ( i2 )

p+1c2, it reads

Uc(σ1, σ2) = 4
∮

dy1dy2
(2π i)2

(
y1 + σ 2

1

y31

)(
y2 + σ 2

2

y32

)
e
c′σ1

(
3y1− σ21

y31

)
+c′σ2

(
3y2− σ22

y32

)

× 1(
y21 − σ 2

1
y21

− y22 + σ 2
2
y22

)2

+ 4(σ1 + σ2)2

(85)

The selection rule (22), 3g − 3 + s = ∑
ni + (g − 1)(1 − 2

p ) + 1
p

∑
li , becomes with

s = 2 (two-point), li = −1,

6g = n1 + n2 (86)

Thus we expect the series U (σ1, σ2) = ∑
g,n1,n2 Cg,n1,n2c

′4gσ n1
1 σ

n2
2 with integers n1 and

n2, and coefficient Cg,n1,n2 .
The two point function is expanded for small σi as

U (σ1, σ2) = 4
∮

dy1dy2
(2iπ)2

(
y1 + σ 2

1

y31

)(
y2 + σ 2

2

y32

)
1

(y21 − y22 )
2

× 1

1 − f
e
c′σ1

(
3y1− σ21

y31

)
+c′σ2

(
3y2− σ22

y32

)
(87)

where

f = 2

y21 − y22

(
σ 2
1

y21
− σ 2

2

y22

)
− 1

(y21 − y22 )
2

⎛
⎝
(

σ 2
1

y21
− σ 2

2

y22

)2

+ 4(σ1 + σ2)
2

⎞
⎠ (88)

The factor 1
1− f is expanded as

∑∞
m=0 f m . The two point function U (σ1, σ2) is expanded in

the power of σ1, σ2 and c′, which becomes a series of c′4gσ n1
1 σ

n2
2 with n1 + n2 = 6g (g is

genus). Thus we first perform Taylor expansions of c′, σ1 and σ2 for each fixed genus g. The
contour integral around y1 = 0 and y2 = 0 depends on the order of yi (i=1,2). For instance,
genus one case of n1 = 2, n2 = 4, the integral of y2 is firstly done, and secondly y1 integral
is evaluated, for a non vanishing result. Opposite order gives a null result. Thus the contour
integral of yi is non-commutative. There are poles at y1 = ±y2 in the contour integral for
c′4σ 2

1 σ 4
2 term. Their contributions are cancelled, however. After taking all residues, we have

U (σ1, σ2) = 4

(
33

4
c′4(σ 2

1 σ 4
2 + σ 4

1 σ 2
2 ) − 35

40
c′8σ 6

1 σ 6
2 + 35

160
c′8(σ 2

1 σ 10
2 + σ 10

1 σ 2
2 )

+O(c′16)
)

, (89)

where the residues of the term of c′8σ 4
1 σ 8

2 for y1 = 0 and y2 = 0 have opposite signs when
the order of evaluation of yi is changed, then sum of two terms is cancelled. The term of
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c′8σ 2
1 σ 10

2 has a non-vanishing value by the order of the first y2 = 0 residue, and the second
y1 = 0 residue. Opposite order of residue gives vanishing residue.

From the selection rule (86), the term of order of c′4 corresponds to genus one, and the
term of order of c′8 to genus two. This confirms that the two-point function is described
by R-punctures (l1 = l2 = −1) and satisfies the selection rule (86). The values of n1 and
n2 are even integers, and there is no contribution from odd integer ni in two point function
U (σ1, σ2).

(ii-b) p = 3
2 The selection rule becomes from (22) for p = 3

2 ,

10

3
g = n1 + n2 (90)

when l1 = l2 = −1 (R type). The genus g is an integer, which leads to g = 3m (m =
1, 2, 3, ...). The factor of the exponent of (85) becomes for p = 3

2 (i = 1, 2),

g(σ
− 1

2
i yi ) = e

∑
i c

′σi
(
5y3i − 10σ2i

yi
+ σ4i

y5i

)
(91)

and the other terms are the sameas in the expression (85). From the residues of y1 = 0, y2 = 0,
the two-point function for the R type (l1 = l2 = −1) is expanded in the series of c′4g/3σ n1

1 σ
n2
2

with g = 3m, n1 + n2 = 10m (m=1,2,...),

UR(σ1, σ2) = 4

(
−53

4
c′4(σ 2

1 σ 8
2 + σ 8

1 σ 2
2 ) − 53(σ 3

1 σ 7
2 + σ 7

1 σ 3
2 )

−53 · 3
2

(σ 4
1 σ 6

2 + σ 6
1 σ 4

2 ) + O(c′8)
)

, (p = 3

2
) (92)

The term of c′4σ 5
1 σ 5

2 has vanishing residue at y1 = y2 = 0 and y1 = ±y2. This expansion
is consistent with the selection rule for g = 3m, (m = 1, 2, 3, ...) and 10

3 g = n1 + n2 with
c′4g/3.

(ii-c) p = − 1
2 For p = − 1

2 , we have

g(σ− 1
2 y) = ec

′σ 1
y (93)

Using the same integral for U (σ1, σ2) in terms of the g(y), we find from the residues at
y1 = 0 and y2 = 0

U (σ1, σ2) = 0 (94)

In this case, we note that the selection rule is somewhat strange. Indeed the equality 3g −
3 + s = ∑

ni + (g − 1)(1 − 2
p ) + ∑

li , becomes for p = − 1
2 , s = 2,

− 2g + 4 = n1 + n2 − 2(l1 + l2) (95)

The σ dependence is σ (2g−1)(1+ 1
2 ) = σ−(2g−1). The expansion in powers of σ assumed that

the power −(2g− 1) was positive which is not satisfied for positive g. This strange situation
occurs only for p = − 1

2 . The vanishing result (94) for the two-point correlation function
U (σ1, σ2) may correspond to this strange selection rule. For the other cases, the two-point
function is computed as in the case of the R-puncture for p = 1

2 , and the selection rule is
satisfied.
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5 Random Supermatrices and Duality

We first briefly summarize the results of our previous study of random supermatrices, since
it is needed for the present discussion. We refer for more details to [39].

A supermatrix M is of the form

M =
(
a α

ᾱ b

)
(96)

where a and b are n × n and m × m Hermitian matrices, respectively. The rectangular
matrices α and ᾱ are n × m and m × n respectively, and their elements are Grassmannian
(i.e. anticommuting) variables.

The average of characteristic polynomials of the random supermatrix M , in the presence
of an external source A, is defined by

Fk(λ1, ..., λk) = 1

ZN
〈

k∏
α=1

1

sdet(λα · I − M)
〉A,M

= 1

ZN

∫
dM

k∏
α=1

1

sdet(λα · I − M)
e

i
2 strM

2+istrMA (97)

where M and A are supermatrices of the type (96), I is the identity matrix and ZN is the
normalization constant of the probability measure for A = 0; the notations str and sdet stand
for supertrace and superdeterminant [39]. We have to deal with a complex weight to make
meaning of the integrals since

strM2 = tr(a2) − tr(b2) + 2tr() (98)

There is again a duality formula for (97) [39] which gives the same Fk of (97) by another
average

Fk(λ1, ..., λk) = ei
∑k

1 λ2a/2
∫

dBe
i
2 trB

2+i
∑k

a=1 λa Baa

∏m
j=1 det(B − ρ j )∏n
i=1 det(B − ri )

(99)

where the external source A is given by A = diag(r1, ..., rn, ρ1, ..., ρm) and B is a Hermitian
k × k matrix.

This is again an N -k duality, which exchanges the roles of the size N = n + m of the
matrices and of k the number of points, between (97) and (99). The large N scaling limit for
the expectation values of the super-characteristic polynomials may then be approached from
the dual representation (99) after tuning of the external source matrix A.

Note that if the “lower” eigenvalues ρ j = 0(j = 1, ...,m) of the external source vanish,
we obtain a simple determinant from (99)

Fk(λ1, ..., λk) = ei
∑k

1 λ2a/2
∫

dB(detB)me
i
2 TrB

2+i
∑k

a=1 λa Baa−∑n
1 Trlog(B−ri ) (100)

Following the same strategy we expand log(B − ri ) in powers of 1/ri :

n∑
i=1

log(1 − B/ri ) = −
n∑

i=1

1

ri
B −

n∑
i=1

1

2r2i
B2 −

n∑
i=1

1

3r3i
B3 − · · · (101)
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Restricting now to sources fulfilling the conditions

n∑
i=1

1

ri
= 0, quad

n∑
i=1

1

r2i
= in,

n∑
i=1

1

r3i
= in (102)

we obtain from (100) the Kontsevich–Penner [43] model:

Fk(λ1, ..., λk) = 1

Zk

∫
dBei

n
3 TrB

3+mTrlogB+iTrB� (103)

where B is a k × k Hermitian matrix, and � = diag(λ1, ..., λk). Indeed after the rescaling
B → B/n1/3 the powers Bl with l > 3 vanish in the large n scaling limit. Thus we have
obtained the Kontsevich–Penner model from the supermatrix duality of (97) and (99). The
supermatrix formulation provides a natural derivation of the logarithmic term of the Penner
model. Note that the Kontsevich–Penner model (103) had been obtained earlier from a two-
matrix model (or equivalently to a time dependent matrix model) [6].

As discussed in a previous article [6], by adjusting the constraints (102), we may obtain
a generalized Airy matrix model with a logarithmic potential

Fk(λ1, ..., λk) = 1

Zk

∫
dBe

c
p+1 TrB

p+1+mTrlogB+iTrB� (104)

where c is a constant given by the constraints on the source matrix.
If now, instead of letting all the ρ j eigenvalues of the source vanish, we perform also an

expansion of the numerator
∏m

j=1 det(B − ρ j ) in the integrand of (99), we obtain

(detB)mexp

⎡
⎣ m∑

j=1

Trlog
(
1 − ρ j

B

)⎤⎦

= (detB)mexp

⎛
⎝−Tr[ 1

B

m∑
j=1

ρ j + 1

2B2

m∑
j=1

ρ2
j + 1

3B3

m∑
j=1

ρ3
j + · · · ]

⎞
⎠ (105)

This yields a generalized Kontsevich–Penner model with positive and negative powers of B,

Fk(λ1, ..., λk) = 1

Zk

∫
dB exp

[
c

p + 1
TrB p+1 +

∑
l

clTr
1

Bl
+ mTrlogB + iTrB�

]

(106)

where the scaling limit is here a large-m limit, with c a constant, and cl = 1
l

∑
ρl
j .

We now consider the s-point function defined as

U (t1, ..., ts) = 〈streit1M · · · streits M 〉 (107)

where ti = −iσi (i = 1, 2, ..., s) are real parameters, str is the supertrace, and M the super-
matrix defined in (97). This correlation function is a generating function for the intersection
numbers when the external source is chosen at prescribed critical values.

This correlation function U (t1, ..., ts) may be related to (97). Indeed replacing

k∏
α=1

1

sdet(λα · I − M)
= e−str

∑
α log(λα ·I−M). (108)
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and taking all the λα = λ equal, we have for one marked point,

U (σ ) = lim
k→0

1

k

∫
dλeσλ ∂

∂λ
〈ekstrlog(λ−M)〉

=
∫

dλeσλ〈str 1

λ − M
〉 =

∫
dλeσλ〈strδ(λ − M)〉

= 〈streσM 〉 (109)

This one-point function is the Fourier transform of the resolvent. In [39] we have established
explicit expressions for the correlation functions (107) as contour integrals. For the one point
function ii reads

U (σ ) = 1

σ

∮
du

2iπ
e−iσu

n∏
i=1

u − ri + σ/2

u − ri − σ/2

m∏
j=1

u − ρ j − σ/2

u − ρ j + σ/2
(110)

For m = 0, it reduces to the ordinary non-supersymmetric expression with external source
ri . The integration in the u-plane encircles all the poles of the integrand (see [39]).

Similarly the connected part of the two point functionUc(σ1, σ2) for the supersymmetric
case is,

Uc(σ1, σ2) =
∮

du1
2iπ

du2
2iπ

e−iσ1u1−iσ2u2
n∏
1

(u1 − ri + σ1/2)(u2 − ri + σ2/2)

(u1 − ri − σ1/2)(u2 − ri − σ2/2)

×
m∏
1

(u1 − ρ j − σ1/2)(u2 − ρi − σ2/2)

(u1 − ρ j + σ1/2)(u2 − ρ j + σ2/2)

× 1

(u1 − u2 − σ1/2 − σ2/2)(u1 − u2 + σ1/2 + σ2/2)
(111)

It generalizes the non supersymmetric case by the inclusion of ri and ρ j in the external
source which provides an additional freedom. To discuss the Airy matrix model with a
logarithmic potential (Kontsevich–Penner model), we have chosen the simplest external
sources ri = 1 and ρ j = 0.

An interesting application of the above formulae concerns the admixture of R and NS-
punctures in the two-point function U (σ1, σ2). One can mix the case of p = 2 (Kontsevich
model) with a p = 1

2 spin-curve in (111). As seen earlier the p = 1
2 , is of R-type (fermionic

vertex insertion) where as p = 2 corresponds to an NS-puncture (bosonic vertex insertion).
The scattering amplitudes for superstring theory is related to the super Riemann surfaces

with R and NS-punctures. Our present approach with super random matrices in an external
source, provides the intersection numbers for punctures of both types at arbitrary genus. For
two different spins p and p′, the n-point function, with a source choice similar to (4) for ri
and ρ j , reads

U (σ1, ...., σn) = 〈treσ1M · · · treσnM 〉

=
∮ n∏

i=1

dui
2iπ

e
c1

∑n
i=1

[(
ui+ σi

2

)p+1−(
ui− σi

2

)p+1
]
e
c2

∑n
i=1

[(
ui+ σi

2

)p′+1−(
ui− σi

2

)p′+1
]

×det
1

ui − u j + 1
2 (σi + σ j )

(112)

with c1 = n
p2−1

∑p−1
i=1

1
r p+1
i

, and c2 = m
p′2−1

∑p′−1
i=1

1

ρ
p′+1
i

.
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The parameters c1 and c2 are associated with the spin p and p′, and they are useful for
distinguishing the two different types, for instance for the case when p is of NS- type and
p′ of R-type. An example is p = 2 and p′ = 1

2 , since they belong to NS and R-types,
respectively, as we have seen in Sect. 3.

We investigate the admixture of NS and R-punctures with p = 2 and p′ = 1
2 .

Uc(σ1, σ2) = 〈treσ1M treσ2M 〉c

= −
∮ 2∏

i=1

dui
2iπ

e
c1

∑2
i=1

[(
ui+ σi

2

)p+1−(
ui− σi

2

)p+1
]
e
c2

∑2
i=1

[(
ui+ σi

2

)p′+1−(
ui− σi

2

)p′+1
]

× 1(
u1 − u2 + 1

2 (σi + σ j )
) (
u2 − u1 + 1

2 (σi + σ j )
) (113)

The selection rule is,

3g − 3 + s = n1 + n2 + (g − 1)

(
1 − 2

p̃

)
+ 1

p̃
(l1 + l2) (114)

in which p̃ means either p or p′ and here s = 2.
For p = 2, we take l = 0 as NS-puncture, and for p′ = 1

2 , the puncture is of R-type with
l = −1. We take l1 = 0, and l2 = −1. For p = 2, the factor (g − 1)(1− 2

p ) vanishes, while

for p′ = 1
2 , it is equal to −3(g − 1). Therefore, the above selection rule reads

6g − 6 + s = n1 + n2 − 2 (115)

with Uc(σ1, σ2) ∼ ∑
σ
n1+ 1

2
1 σ

n2
2 , with punctures of NS-type (σ1) and R (σ2), respectively.

We have discussed negative values of p for the matrix model of Sect. 3. Matrix models
with a logarithmic potential and negative powers of the matrices have been discussed in
connection with superconformal gauge fields in the irregular conformal limit [40,41].

6 Open Intersection Numbers

As we have discussed in the previous section, an Airy matrix model with a logarithmic
potential (Kontsevich–Pennermodel)may be derived from (103) and its intersection numbers
are deduced from the generating functions U (σ1, ..., σn) by an appropriate tuning of the
external matrix source.

For p = 2 the one point function U (σ ) with a boundary reads

U (σ ) = 1

σ

∮
du

2iπ
e
− c

3

[
(u+ σ

2 )
3−(u− σ

2 )
3
]
+mlog(u+ σ

2 )−mlog(u− σ
2 )

= 1

σ
e− c

12 σ 3
∮

du

2iπ
e−cσu2+mlog(u+ 1

2 σ)−mlog(u− 1
2 σ) (116)

The constant c is related to the normalization of the eigenvalues of the external source as in
(106). Let us denote

σ = 1

λ
, tn = 1

λn+ 1
2

. (117)
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For m = 0, we have

U (σ ) =
√

π

c

∞∑
g=1

(−c)g

(12)gg! t3g−2 (118)

From the above expression, we deduce the intersection number 〈τ3g−2〉,

〈τn〉 = 1

(24)gg! (119)

where n is given by Riemann–Roch formula (which will be discussed below in (128)), as
n = 3g − 2.

We note here the low orders for the intersection numbers for m �= 0, computed from the
integral (116),

〈τ1〉 = 1 + 12m2

24
, 〈τ 5

2
〉 = m + m3

12
, 〈τ4〉 = 1 + 56m2 + 16m4

1152

〈τ 11
2
〉 = 12m + 25m3 + 3m5

2880
, ... (120)

These numbers have been obtained earlier from the Virasoro equations, within the replica
method in [21], and the results of both methods agree.The above results coincide also with
those of [45], if we replace m by their parameter N, which is the size of the matrices. The
indices n of τn in (120) are integers or half-integers. If n is a half-integer, the marked point
is considered to be located on the boundaries.

The one point intersection numbers (120) are easily obtained fromU (σ ) form �= 0. After
rescaling of u, one has

U (σ ) = e− c
12 σ 3

2σ 3/2

∮
du

2iπ
e
− c

4 u
2+mlog

(
u+σ3/2

u−σ3/2

)
(121)

The logarithmic term is expanded in powers of σ 3/2

log

(
u + σ 3/2

u − σ 3/2

)
= 2

u
σ 3/2 + 2

3u3
σ 9/2 + 2

5u5
σ 15/2 + · · · (122)

For odd powers of u in the integrand of (121), i.e. u−(2 j+1), the integral is just a contour
integral around u = 0.

∮
du

2iπ

e−au2

u2k+1 = (−a)k

k! (123)

For even powers of u, i.e. u−2 j in the integrand, the integration becomes non-local. The
following integral I leads to �- functions,

I =
∫ ∞

−∞
due−au2 1

u2k
=

∫ ∞

0
dtt t−

1
2−ke−at

= ak−
1
2 �

(
1

2
− k

)
= (−1)k

2k
√

π

(2k − 1)!!a
k− 1

2 (124)

in which a continuation from positive to negative k has been used.
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For instance, for even powers of m, we have up to order m2σ 3,

U (σ ) = e− cσ3
12

1

2σ 3/2

∫
e− c

4 u
2
(1 + 2m2σ 3 1

u2
)

= 1

2π

√
π

c
e− cσ3

12
1

σ 3/2 (1 − cm2σ 3) (125)

which indeed reproduces the result (120),

〈τ1〉 = 1

24
(1 + 12m2) (126)

Using the formula of (123) and (124), we have derived the one-point intersection numbers
to all orders in the genus, and they agree with the results derived by other methods [21,45].

In the Appendix we recall how to use the Virasoro constraints for a matrix model with
a logarithmic potential. This leads to explicit results for the intersection with NS and R
punctures.

Number of boundary components for the Kontsevich–Penner model The parameter m of
the Kontsevich–Penner model, (m is the coefficient of the logarithmic potential), is related
to the number of boundaries as follows. The number b of the boundary components appears
as the power of m, i.e. mb [45,46]. To convince oneself of the validity of this interpretation
one considers the expansion

emtrlogM = (detM)m =
∞∑
b=0

1

b!m
b(trlogM)b (127)

Thus the correlation functionU (s) has b-boundaries, described by the insertion of trlogM =
logdetM . In general, we could consider the moduli space with genus g, n b boundaries, n
interior marked point, and k marked points at the boundary. This moduli space is denoted as
Mg,b;k,n .

Since the Riemann surface with boundary becomes a Klein surface, we interpret it as a
double surface D� (D means double), where � has genus g, with b boundary components
and n interior marked points. The surface D� has a doubled genus g = 2h + b − 1, where
h is the number of handles and b the number of boundary components. We have assumed
here that there are no marked points at the boundary. From the dimensional constraint, the
Riemann–Roch theorem gives

3g − 3 + s = 6h − 6 + 3b + 2n = 2
n∑

i=1

ni (128)

where n is the number of interior marked points (double counting; s=2n) and ni the indices
of the intersection numbers 〈∏n

i=1 τni 〉, b is the number of boundaries (holes) and n is the
number of punctures.

For the one point correlation, we have seen that when the intersection numbers are
expressed as polynomials in m, when the power of m is odd, the coefficient is obtained by a
residue calculation, and it leads to an R-type. If the power of m is even, then the puncture is
of NS-type.

The interpretation of the Kontsevich–Penner model for the moduli space with boundaries
does not refer to marked points at the boundaries. It has been argued that when m = 1, it
describes the moduli space with marked point at the boundaries [47]. In any case, it does
not answer the question about how these marked points are distributed on the boundaries. To
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answer this question of the distribution of marked points, a refined open Kontsevich–Penner
model has been proposed [48,49].

7 Summary

In this article we have considered matrix models with a p-spin structure which generalize
Kontsevich Airy matrix model. The external source plus duality method that we have used,
provides explicit integral representations for the generating functions of the intersection
numbers. Therefore these matrix models provide an alternative approach to the computation
of the intersection numbers.

The integral representations of the generating functions present p Stokes domains which
characterize the so-called spin-structure in our formulation of the problem. The value l = −1
of the spin component corresponds to a Ramond puncture, but such punctures are not present
for integer p. However our formulation allows for a continuation to non-integer and negative
values of p. We could then show that the matrix models for half-integer spins p do present
R-type punctures. The results that we have found for the intersection numbers confirm the
selection rule given by the Riemann–Roch relation, and allow for an extension of this rule to
half-integer spins.

We have also used integrals over super-matrices that we had introduced in an earlier work,
within the same framework of external source and explicit correlation functions. The scaling
limit leads then to a natural extension to matrix models with logarithmic potentials which
are known to generate surfaces with boundaries which are also considered in this work.

We intend to study future extensions to more general symmetries.
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Appendix: Intersection Numbers for Logarithmic Potentials

With the logarithmic potential introduced in [21], we have for p = 2 (Kontsevich model),

Z =
∫

dBe
tr
(
− 1

3 B
3+B�+mlogB

)
(129)

where B is an Hermitian matrix: it is an extension of (1) for p = 2, and F = logZ has now
additional terms �F for m �= 0 as in [21],

�F = 1

2
mt0t 1

2
+ 1

4
m2t1 + 1

16
m2t21 + m

4
t0t 1

2
t1 + 1

24
mt31

2
+ 1

4
m2t 1

2
t 3
2

+ · · · (130)

123

http://creativecommons.org/licenses/by/4.0/


E. Brézin, S. Hikami

Note that the t 1
2
can be written as (t1,−1) according to the previous notation of tn,l , which is∑ 1

λ
n+ 1

p (l+1)

i

. It belongs to an R-puncture since it has l = −1. The Virasoro equations follow

from the constraints ∫
dB

∂

∂Bba
e
tr
(
− 1

3 B
3+B�+mlogB

)
= 0 (131)

i.e. (
−

(
∂

∂�

)3

ab
+

(
�T ∂

∂�

)
ab

+ (k + m)δab

)
Z = 0 (132)

The partition function Z may then be obtained for finite k (k is a size of the matrix B), as an
expansion in inverse powers of the λi [21].

There are no R-punctures in the Kontsevich model without logarithmic potential, but R-
pairs do appear in the presence of a logarithmic potential, in the case of even powers ofm, as
seen in the last term of (130) 1

4m
2t 1

2
t 3
2

= 1
4m

2t1,−1t2,−1. The power of m gives the number
of boundaries. The existence of a Ramond sector for a logarithmic potential had already been
noticed in [21].

When p = 2 with logarithmic potential, the string equation is
⎛
⎜⎝− ∂

∂t0,0
+ 1

4
t20,0 − m

2
t1,−1 +

∑
n=0, 12 ,1, 32 ,2,...

(n + 1

2
)tn+1,0

∂

∂tn,0

⎞
⎟⎠ g = 0 (133)

where Z = Z0g with

Z0 = 1∏
i< j (

√
λi + √

λ j )
1
2

e
2
3

∑
λ
3
2
i

∏
λ

m
2
i (134)

The string equation leads to

〈τ0,0
∏
i

τni ,li 〉 =
∑
i

〈τni−1,li

∏
j �=i

τni ,li 〉 (135)

In the presence of a logarithmic potential, there is an additional Virasoro equation for t1,−1.

(
−2

∂

∂t1,−1
− mt0,0 −

(
1

16
+ m2

4

)
t2,−1 − 1

12
J (3)
−4 + m

4
J (2)
−4 − 1

2
J (2)
−1

)
g = 0 (136)

where we have used the notations of J (l)
−m from [21]. The intersection numbers are tabulated

in [45].
The string equation works also for the R-punctures. For instance, we have the relation,

〈τ0,0τ 24,−1〉 = 2〈τ3,−1τ4,−1〉 = 1

144
m2(m4 + 11m2 + 16) (137)

The intersection numbers, with odd numbers of R-punctures, such as τn,−1, may be expressed
as polynomials in m, with odd powers of m. The intersection numbers, with an even number
of R-punctures, are polynomials in m, with even powers of m. Hence, there is a parity for
the numbers of R-punctures.
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